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Theoretical analysis of balanced truncation
for linear switched systems
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Abstract: In this paper we present a theoretical analysis of the model reduction algorithm for
linear switched systems from Shaker and Wisniewski (2011, 2009). This algorithm is based on
balanced truncation. More precisely, (1) we provide a bound on the approximation error in L2

norm, (2) we provide a system theoretic interpretation of grammians and their singular values,
(3) we show that the performance of balanced truncation depends only on the input-output
map and not on the choice of the state-space representation. In addition, we also show that
quadratic stability and LMI estimates of the L2 gain also depend only on the input-output
map.

Keywords: switched systems, model reduction, balanced trunction, realization theory.

1. INTRODUCTION

In this paper we address certain theoretical problems
which arise in balanced truncation of continuous-time lin-
ear switched systems using balanced truncation. In order
to explain the contribution of the paper, we will first
present a very informal overview of balanced truncation
for switched system, which appeared in Shaker and Wis-
niewski (2011, 2009). Consider a linear switched system of
the form

Σ :
{
ẋ(t) = Aq(t)x(t) +Bq(t)u(t), x(t0) = x0

y(t) = Cq(t)x(t). (1)

where Aq, Bq, Cq are n×n, n×m and p×n matrices respec-
tively, and the switching signal q maps time instances to
discrete states in a set Q. Note that the switching signal q
is viewed as an input of the system. We seek to replace the
system Σ by another one of smaller dimension, but which
still adequately approximates the input-output behavior
of Σ. To this end, define the observability grammian of the
system above as any positive definite Q > 0 such that

∀q ∈ Q : ATq Q+QAq + CTq Cq < 0. (2)
Likewise, define a controllability grammian of the system
as a strictly positive definite P > 0 which satisfies.

∀q ∈ Q : AqP + PATq +BqB
T
q < 0. (3)

By applying a suitable state-space isomorphism, the sys-
tem can be brought into a form where P = Q = Λ =
diag(σ1, . . . , σn) are diagonal matrices and σ1 ≥ . . . ≥
σn > 0. We will call the numbers σ1 ≥ . . . ≥ σn > 0 the
singular values of the pair (P,Q). It is easy to see that
σi =

√
λi(PQ), where λ1(PQ) ≥ . . . ≥ λn(PQ) are the

ordered eigenvalues of PQ. Following the classical termi-
nology, we will call a state-space representation balanced,
if P = Q = Λ, where Λ is a diagonal matrix. We reduce
the dimension of a balanced state-space representation by
discarding the last n− r+ 1 state-space components. The
system matrices Âq, B̂q, Ĉq of the reduced order system Σ̂

are obtained by partitioning the matrices of the original
balanced system as

Āq =
[
Âq ?
? ?

]
, B̄q =

[
B̂q
?

]
, C̄Tq =

[
ĈTq , ?

]
where Âq, B̂q, Ĉq are r × r, r ×m and p × r matrices re-
spectively. The performance of this procedure has been ex-
tensively tested by means of numerical examples in Shaker
and Wisniewski (2011, 2009). However, many theoretical
questions remain open.

Problem formulation
We would like to find error bounds, and to establish
the invariance of the method with respect to state-space
representation. More precisely, we seek an answer to the
following questions:

(1) Error bounds
Can we state an error bound on the distance between
the original system Σ and the reduced one Σ̂, using
some metric ? In particular, can we extend the well-
known result from the linear case, by proving that

||Y Σ − Y Σ̂||L2 ≤ 2(σr+1 + · · ·+ σn) (4)

where Y Σ and Y Σ̂ are the input-output maps of Σ
and Σ̂ respectively and ||.||L2 denotes the L2 norm of
the switched system as defined in Hespanha (2003) ?

(2) State-space representation invariance of the
grammians
Under which conditions the controllability and ob-
servability inequalities (9) and (10) have solutions ?
Does the existence of a solution to these inequalities
depend on the choice of the state-space represen-
tation ? Can we characterize the set of observabil-
ity/controllability grammians in a way which does not
depend on the choice of the state-space representation
but only on the input-output map ?



(3) State-space representation invariance of the
singular values
Do the singular values of the system (i.e., the values
σ1, . . . , σn) depend only on the input-output map of
the system or do they also depend on the choice of
the state-space representation. Do they have a system
theoretic interpretation ?

(4) State-space representation invariance of the L2

norm estimates
Is it possible to estimate the system norm (in our case
L2 norm) in a manner which does not depend on the
choice of the basis of the state-space ?

(5) System theoretic interpretation of the gram-
mians
What is the relationship between grammians and
observability/controllability of the switched systems.
Recall that in the linear case, existence of strictly pos-
itive observability/controllability grammians implies
observability/controllability of the system. Does this
extend to the switched case ?

(6) Preservation of system theoretic properties by
the reduced system
If the original system was reachable, observable, min-
imal, stable, etc., then will balanced truncation pre-
serve these properties ?

The motivation for the first problem is clear. The mo-
tivation for questions 2–4 is the following. The formula-
tion of balanced truncation does not a priori exclude the
possibility that the choice the state-space representation
might influence existence of grammians and the values of
the corresponding singular values. Similarly, the existence
of a solution to the LMIs which are used for estimating
L2 gains could, in principle, also depend on the choice of
the state-space representation. This would adversely affect
the applicability of the method, since the choice of the
initial state-space representation is often circumstantial.
Question 5 is important for obtaining a deeper theoretical
insight and for answering Question 6. Finally, Question 6
is important, because the reduced system is supposed to be
used for control design, which is easier if certain important
system-theoretic properties remain valid.

Contribution of the paper In this paper, we prove
the error-bound (4), and in addition, we show that the
existence of grammians, singular values and the estimates
of the L2 norm all depend only on the input-output map
and not on the choice of the state-space representation.
This is accomplished by using realization theory, i.e., by
exploiting the existence and uniqueness of minimal state-
space representations Petreczky (2011). Furthermore, the
results of the paper show that when dealing with model
reduction or with L2 norms in control, one can restrict
attention to minimal state-space representations without
loss of generality. More precisely, we present the following
results.

(1) The error bound (4) holds.
(2) If a system admits an observability (controllability)

grammian, then any minimal linear switched system
which describes the same input-output map will ad-
mit an observability (controllability) grammian.

There is a one-to-one correspondence between con-
trollability (resp. observability) grammians of mini-
mal systems which describe the same input-output

map. This correspondence preserves the singular val-
ues. That is, the existence of grammians is a property
of the input-output map and not of the state-space
representation. For minimal state-space representa-
tions, the singular values are functions of the input-
output map and not of the state-space representation.
We also relate th largest singular value to the Hankel-
norm of the system.

As a byproduct, we also show that if an input-
output map can be realized by a quadratically stable
system 1 , then any minimal realization of this map
will be quadratically stable.

(3) We show how to estimate the L2 norm using LMIs in
such a way that the obtained estimate does not de-
pend on the choice of the state-space representation.

(4) For minimal systems, if controllability and observabil-
ity grammians exist, then they are necessarily strictly
positive definite.

(5) Balanced truncation preserves quadratic stability.
However, it does not necessarily preserve minimality.
The fact that balanced truncation does not preserve
minimality is a further indication of that the method
might be very conservative.

Related work To the best of our knowledge, the results
of the paper are new. A rich literature covers the subject
of model reduction for switched systems, Shaker and Wis-
niewski (2011, 2009); Birouche et al. (2010); Monshizadeh
et al. (2011); Zhang et al. (2008); Mazzi et al. (2008); Ha-
bets and van Schuppen (2002); Zhang et al. (2009); Zhang
and Shi (2008); Gao et al. (2006); Kotsalis and Rantzer
(2010). In particular, balanced truncation,was explored in
Shaker and Wisniewski (2011, 2009); Kotsalis and Rantzer
(2010); Gao et al. (2006); Monshizadeh et al. (2011). The
procedure dealt with in this paper was already described
in Shaker and Wisniewski (2011, 2009). Error bounds were
dealt with in Kotsalis and Rantzer (2010), however there
the authors worked with discrete-time stochastic systems,
while here we study continuous-time deterministic ones.
Induced L2 norms for switched systems was addressed in
Hespanha (2003); Margaliot and Hespanha (2008); Hirata
and Hespanha (2009), but those papers did not focus on
the invariance of the computed estimates with respect to
the choice of the state-space representation.

Outline In §2, we present the formal definition and system
theoretic properties of linear switched systems. In §3, we
present a brief overview of realization theory of linear
switched systems. In §4, we present the formal definition
of L2 norms and grammians and show the relationship
between these concepts along with conditions which guar-
antee their existence. In §5 we show the state-space rep-
resentation invariance of quadratic stability, estimates of
the L2 norm, existence of grammians and the singular
values of the system. In §6 we discuss the system theoretic
interpretation of grammians and their singular values.
Finally, in §7, we present the proof of the error bound for
balanced truncation and we discuss which system theoretic
properties are preserved by balanced truncation.

Notation
Denote by N the set of natural numbers, including 0.
Denote by T = R+ the set of nonnegative reals. We denote

1 i.e. a system with a common quadratic Lyapunov function



by ||x||2 the Eucledian norm of a vector x ∈ Rn. We
denote by Rk×l the set of all k × l matrices with real
entries. If A ∈ Rn×n is symmetric, then we denote the
fact that A is strictly positive definite, strictly negative
definite, positive semi-definite and negative semi-definite
by A > 0, A < 0, A ≥ 0 and A ≤ 0 respectively. We denote
by diag(a1, a2, . . . , an) the n×n diagonal matrix, diagonal
entries of which are a1, . . . , an ∈ R.

We use the standard notation of automata theory Eilen-
berg (1974). For a finite set X, called the alphabet, denote
by X∗ the set of finite sequences (also called strings or
words) of elements of X. The length of a word w is denoted
by |w|, i.e., |w| = k. We denote by ε the empty sequence
(word). In addition, we define X+ = X∗ \ {ε}.
We say that a map f : T → Rn is piecewise-continuous, if f
has finitely many points of discontinuity on any compact
subinterval of T , and at any point of discontinuity the
left-hand and right-hand side limits of f exist and are
finite. We denote by PC(T,Rn) the set of all piecewise-
continuous functions of the above form. We denote by
AC(I,Rn) the set of all absolutely continuous maps f :
I → Rn. We denote by L2(T,Rn) the set of all Lebesque
measurable maps f : T → Rn for which

∫∞
0
||f(s)||22ds <

+∞. For f ∈ L2(T,Rn), we denote by ||f ||2 the standard

norm of f , i.e. ||f ||2 =
√∫∞

0
||f(s)||22ds.

2. LINEAR SWITCHED SYSTEMS

Below we present the formal definition of linear switched
systems and their system theoretic properties. The presen-
tation is based on Petreczky (2011, 2006).

Let Q = {1, . . . , D}, 0 < D ∈ N.
Definition 1. (Linear switched systems). A linear switched
system with external switching (abbreviated as LSS) is a
tuple

Σ = (n,Q, {(Aq, Bq, Cq) | q ∈ Q}),
where for each q ∈ Q, (Aq, Bq, Cq) ∈ Rn×n × Rn×m ×
Rp×n. A solution of the switched system (with external
switching) Σ with initial state x0 ∈ Rn relative to the
pair (u, q) ∈ PC(T,Rm)×PC(T,Q) is by definition a pair
(x, y) ∈ AC(T,Rn)× PC(T,Rp) which solves the Cauchy
problem

ẋ(t) =Aq(t)x(t) +Bq(t)u(t), x(t0) = x0

y(t) =Cq(t)x(t).

We shall call u the control input, q the switching signal,
x the state trajectory and y the output trajectory. In
the sequel, we use the following notation: the state space
X = Rn, the output space Y = Rp, and the input space
U = Rm. The elements of the set Q will be called the
discrete modes, and Q will be called the set of discrete
modes.
Definition 2. (Input-to-state and input-output maps). For
an initial condition x0 ∈ X, we define the maps XΣ

x0
:

PC(T,U)×PC(T,Q)→ AC(T,X) and Y Σ
x0

: PC(T,U)×
PC(T,Q) → PC(T, Y ) by XΣ

x0
(u, q)(t) = x(t) and

Y Σ
x0

(u, q)(t) = y(t), where (x, y) is the solution of the
switched system Σ at x0 relative to (u, q). The map Y Σ

x0

is called the input-output map induced by the initial state
x0.

The potential input-output maps of a linear switched
system are maps of the form

f : PC(T,U)× PC(T,Q)→ PC(T, Y ). (6)
Below, we define when such a map is realized by a linear
switched system. To this end, we will fix a designated ini-
tial state for LSSs. Since in the sequel we will mostly deal
with exponentially stable LSSs, we will set the initial state
to be zero. Note that while this choice seems natural for the
current paper, other choices might be more appropriate in
other circumstances. Many of the results of this paper can
be extended to the case of non-zero initial conditions.
Definition 3. (Realization). The input-output map Y Σ of
a LSS Σ is the input-output map Y Σ = Y Σ

0 induced by
the zero initial state. The LSS Σ is said to be a realization
of an input-output map f of the form (6), if Y Σ = f .

The LSSs Σ1 and Σ2 are equivalent, if Y Σ1 = Y Σ2 .

It is clear that any LSS is a realization of its own input-
output map induced by the zero initial state. In the sequel,
we will need the notions of minimality, reachability and
observability of LSSs. Below we recall these notions.
Definition 4. (Dimension and minimality). The dimension
dim Σ of a LSS Σ of the form (5) is the dimension of
its state-space X . The LSS Σm is said to be a minimal
realization of an input-output map f , if Σm is a realization
of f and if for any other LSS Σ which is a realization of
f , dim Σm ≤ dim Σ. We say that Σm is a minimal LSS , if
it is a minimal realization of its input-output map Y Σm .
Definition 5. (Observability). An LSS Σ is said to be
observable, if for any two states x1 6= x2 ∈ X , the
input-output maps induced by x1 and x2 are different, i.e.
Y Σ
x1
6= Y Σ

x2
.

Definition 6. (Reachability). The LSS Σ is said to be
reachable if every state is reachable from the zero ini-
tial state, i.e., if {XΣ

0 (u, q)(t) | u ∈ PC(T,U), q ∈
PC(T,Q), t ∈ T} = X.

3. OVERVIEW OF REALIZATION THEORY

In this section, we recall from Petreczky (2011, 2007, 2006)
the main results on realization theory of LSSs.
Definition 7. (Isomorphism) Consider a LSS

Σ1 = (n,Q, {(Aq, Bq, Cq) | q ∈ Q}),
and a LSS Σ2

Σ2 = (n,Q, {(Aaq , Baq , Caq ) | q ∈ Q})
A non-singular matrix S ∈ Rn×n is said to be an isomor-
phism from Σ1 to Σ2, denoted by S : Σ1 → Σ2, if

∀q ∈ Q : AaqS = SAq, B
a
q = SBq, C

a
q S = Cq.

Theorem 1. (Minimality, Petreczky (2011, 2007)). An LSS
realization Σ of f is minimal if and only if it is reachable
and observable. All minimal LSS realizations of f are
isomorphic.

Observability and reachability of an LSS Σ can be charac-
terized by linear-algebraic conditions. In order to present
these conditions, we need the following notation.



Notation 1. Consider a LSS Σ = (n,Q, {(Aq, Bq, Cq) | q ∈
Q}). For a sequence w ∈ Q∗, we write

Aw =
{
In if w = ε,

Aqk
· · ·Aq2Aq1 if w = q1q2 · · · qk,

where In denotes the n × n identity matrix, and ε is the
empty sequence.

Denote by M the cardinality of the set of all words w ∈ Q∗
of length at most n, i.e., M = |{w ∈ Q∗ | |w| ≤ n}|. Fix
an ordering {v1, . . . , vM} of the set {w ∈ Q∗ | w ≤ n}.
Theorem 2. (Sun and Ge (2005); Petreczky (2006)).
Reachability: The LSS Σ is reachable if and only if
rank R(Σ) = n, where
R(Σ) =

[
Av1B̃, Av2B̃, . . . , AvM

B̃
]
∈ Rn×m|Q|M

with B̃ = [B1, B2, . . . , BD] ∈ Rn×|Q|m.
Observability: The LSS Σ is observable if and only if
rank O(Σ) = n, where

O(Σ) =
[
(C̃Av1)T , (C̃Av2)T , . . . , (C̃AvM

)T
]T ∈ Rp|Q|M×n.

where C̃ =
[
CT1 CT2 , . . . , C

T
D

]T ∈ Rp|Q|×n.

The matrix R(Σ) (resp. O(Σ)) will be called a controlla-
bility matrix (resp. observability matrix ) of Σ.
Remark 1. If a linear subsystem of a LSS Σ is observable
(reachable), then Σ is observable (resp. reachable). Hence,
by Theorem 1, if a linear subsystem of Σ is minimal, then
Σ itself is minimal.
Remark 2. Note that observability (reachability) of a LSS
does not imply observability (reachability) of any of its
linear subsystems. In fact, it is easy to construct a counter
example, see Petreczky (2011). Together with Theorem
1, which states that minimal realizations are unique up
to isomorphism, this implies that there exist input-output
maps which can be realized by a LSS, but which cannot
be realized by a LSS where all (or some) of the linear
subsystems are observable (or reachable).

We can formulate the following algorithms for reachabil-
ity/observability reduction and minimization.
Procedure 1. (Petreczky (2011, 2006)).
Reachability reduction:
Assume rank R(Σ) = nr and choose a basis b1, . . . , bn of
Rn such that b1, . . . , bnr span Im R(Σ). In the new basis,
Aq, Bq, Cq, q ∈ Q become as follows

Aq =

[
Ar
q A

′

q

0 A
′′

q

]
, Cq =

[
Cr
q, C

′

q

]
, Bq =

[
Br
q

0

]
, (7)

where AR
q ∈ Rnr×nr

, Br
q ∈ Rnr×m, and Cr

q ∈ Rp×nr
. As

a consequence, Σr = (nr, Q, {(Ar
q, B

r
q, C

r
q) | q ∈ Q}) is

reachable, and has the same input-output map as Σ.

Intuitively, Σr is obtained from Σ by restricting the dy-
namics and the output map of Σ to the space Im R(Σ).
Procedure 2. (Petreczky (2011, 2006)).
Observability reduction:
Assume that kerO(Σ) = n − no and let b1, . . . , bn be a
basis in Rn such that bno+1, . . . , bn span kerO(Σ). In this
new basis, Aq,Bq, and Cq can be rewritten as

Aq =
[
Ao
q 0

A
′

q A
′′

q

]
, Cq =

[
Co
q , 0

]
, Bq =

[
Bo
q

B
′

q

]
,

where Ao
q ∈ Rno×no

, Bo
q ∈ Rno×m, Co

q ∈ Rp×no
and xo

0 ∈
Rno

. Then the LSS Σo = (no, Q, {(Ao
q, B

o
q , C

o
q ) | q ∈ Q}) is

observable and its input-output map is the same as that
of Σ. If Σ is reachable, then so is Σo.

Intuitively, Σo is obtained from Σ by merging any two
states x1, x2 of Σ, for which O(Σ)x1 = O(Σ)x2.
Procedure 3. (Petreczky (2011, 2006)). Minimization:
Transform Σ to a reachable LSS Σr by Procedure 1.

Subsequently, transform Σr to an observable LSS Σm =
(Σr)o using Procedure 2. Then Σm is a minimal LSS which
us equivalent to Σ.

4. STABILITY, GRAMMIANS AND L2 NORMS

In this section, we briefly review the definition of control-
lability/observability grammians, L2 norms and quadratic
stability for LSSs. We also recall the basic relationships
between these concepts.
Definition 8. (Quadratic stability). A LSS

Σ = (n,Q, {(Aq, Bq, Cq) | q ∈ Q})
is said to be quadratically stable, if and only if there exists
a positive definite matrix P = PT > 0 such that

∀q ∈ Q : ATq P + PAq < 0. (8)

It is well-known Liberzon (2003) that quadratic stabil-
ity implies exponential stability for all switching signals.
For our purposes quadratic stability is convenient, as
it implies the existence of an L2 gain and controllabil-
ity/observability grammians.
Definition 9. (Controllability/observability grammians)
An observability grammian of Σ is a strictly positive
definite solution Q > 0 of the following inequality

∀q ∈ Q : ATq Q+QAq + CTq Cq < 0. (9)
A controllability grammian of Σ is a strictly positive
definite P > 0 of the following inequality

∀q ∈ Q : AqP + PATq +BqB
T
q < 0. (10)

We will call the eigenvalues of PQ the singular values of
the pair of grammians (P,Q).

It is easy to see that quadratic stability implies the
existence of controllability and observability grammians,
using techniques from Boyd et al. (1994). Existence of a
controllability or observability grammian trivially implies
quadratic stability.

Next, we define the L2 gain for LSSs.
Definition 10. (Hespanha (2003)). We say that Y Σ has a
L2 gain γ > 0, if for all u ∈ L2(T,U) ∩ PC(T,U),

sup
q∈PC(T,Q)

∫ ∞
0

||Y Σ(u, q)(s)||22ds ≤ γ2||u||22. (11)

If Y Σ has a finite L2 gain, then we define the L2 norm of
Y Σ, denoted by ||Y Σ||L2 as the infimum of all γ > 0 such
that (11) holds. If Y Σ does not have a finite L2 gain, then
we set ||Y Σ||L2 = +∞.
Lemma 1. If for Σ, the matrix inequality (10) admits a
solution P > 0, then there exists a solution R > 0 to

ATq R+RAq + CTq Cq + γRBqB
T
q R < 0. (12)

In particular, if Σ is quadratically stable, then (12) has a
positive definite solution R. If a positive definite solution



to (12) exists, then the L2 norm of Y Σ is not greater than
γ.

Lemma 1 seems to be folklore, for the sake of completeness
we briefly sketch its proof.

Proof. [Sketch of the proof of Lemma 1] The proof
that existence of a solution R > 0 to (12) implies that
||Y Σ||L2 exists and ||Y Σ||L2 ≤ γ follows from (Hirata and
Hespanha, 2009, Theorem 1) by taking V (x) = xTRx.

It is left to show that (12) holds. Consider the solution P
of (10) and multiply the equation (10) from the left and
the right by P−1. Subsequently, we can find suitably small
γ > 0 such that by setting R = 1

γP
−1, the inequality (12)

holds.

5. STATE-SPACE REPRESENTATION INVARIANCE

In the previous section, we defined quadratic stability, L2

gains, and grammians. The concepts were defined in terms
of LMIs. We will show that the existence of a solution
to those LMIs is a property of the input-output map.
Furthermore, for equivalent minimal systems, the set of
solutions are isomorphic. In order to present this result
formally, we will introduce the following notation.
Definition 11. For a LSS

Σ = (n,Q, {(Aq, Bq, Cq) | q ∈ Q})
define the following subsets of the set of n × n strictly
positive definite matrices

• S(Σ) is the set of all P > 0 which satisfy (8).
• O(Σ) is the set of all Q > 0 for which (9) holds.
• C(Σ) is the set of all P > 0 for which (10) holds.
• For γ > 0, let Gγ(Σ) be the set of all R > 0 which

satisfy (12).

We can now state the following result.
Theorem 3. Let K be any symbol from {S,O,C,Gγ}.
(1) If the LSS Σ is such that K(Σ) 6= ∅, then for any

minimal LSS Σm which is equivalent to Σ, K(Σm) 6=
∅.

(2) Let Σ1 and Σ2 be two LSSs of dimension n and let
S : Σ1 → Σ2 be an isomorphism between them. If
K ∈ {S,O,Gγ} then define M = S−1 ∈ Rn×n, if
K = C, then define M = ST . Then

P ∈ K(Σ1) ⇐⇒ MTPM ∈ K(Σ2). (13)
In particular, for any two minimal and equivalent
LSSs Σ1 and Σ2, there exists a nonsingular matrix
M such that (13) holds.

The theorem above means that quadratic stability and
existence of controllability/observability grammians is pre-
served by minimization. In fact, if one of these properties
holds for a state-space representation, then it holds for any
state-space representation.
Corollary 1. For minimal LSSs, the singular values of
grammians do not depend on the choice of state-space
representation. Indeed, assume that Σ1 is a minimal LSS,
and consider the singular values σ1, . . . , σn for a choice of
grammians (P1,Q1) of Σ1. Then for any minimal LSS Σ2

which is equivalent to Σ1 there exists a pair of grammians

(P2,Q2) of Σ2 such that the singular values of (P2,Q2)
are also σ1, . . . , σn.
Corollary 2. For a LSS Σ, define γ(Σ) = inf{γ > 0 |
Gγ(Σ) 6= ∅}. Then clearly the L2 norm of the input-output
map of Σ is at most γ(Σ). From Theorem 3, we obtain that

• for any minimal LSS Σm which is equivalent to Σ,
γ(Σm) ≤ γ(Σ), and

• If Σi,i = 1, 2, are two minimal and equivalent LSSs,
then γ(Σ1) = γ(Σ2).

As a consequence, the number γ(Σ), where Σ is minimal,
depends only on the input-output map of Y Σ. Note that
γ(Σ) can be computed by solving a classical optimization
problem.

Proof. [Proof of Theorem 3] The proof of the second part
of the theorem follows by an easy computation and by
recalling that if Σ1 and Σ2 are two equivalent and minimal
LSSs, then they are related by an LSS isomorphism.

Hence, it is enough to show that if K(Σ) 6= ∅ and we
apply Procedures 1–2 to obtain a minimal LSS Σm, then
K(Σm) 6= ∅.
To this end, define for all q ∈ Q, P > 0, S(q,Σ, P ) =
ATq P+PAq, O(q,Σ, P ) = ATq P+PAq+CTq Cq, C(q,Σ, P ) =
ATq P +PAq +PBqB

T
q P and Gγ(q,Σ, P ) = ATq P +PAq +

CTq Cq + γPBqB
T
q P . For any choice of the symbol K ∈

{S,O,Gγ}, P ∈ K(Σ) if and only if for all x ∈ Rn,
∀q ∈ Q : xTK(q,Σ, P )x < 0. By multiplying (10) by P−1

from left and right, we get that P ∈ C(Σ) if and only if
for any x ∈ Rn, ∀q ∈ Q : xTC(q,Σ,P−1)x < 0.

First, we show that the application of Procedure 1 pre-
serves the non-emptiness of K(Σ). Recall the partitioning
of Aq from (7) and consider the corresponding partitioning
of P

P =
[
P11 P12

P21 P22

]
.

A simple computation reveals that for any xr ∈ Rnr[
xr
0

]T
K(q,Σ, P )

[
xr
0

]
= xTr K(q,Σr, P11)xr

Since xr and q ∈ Q are arbitrary, we obtain that P ∈ K(Σ)
if and only if P11 ∈ K(Σr) for K 6= C and P−1 ∈ C(Σ)
if and only if P−1

11 ∈ C(Σr). Thus P11 is positive definite,
if P is positive definite. As a consequence, we obtain that
K(Σr) 6= ∅.
Next, we show that Procedure 2 preserves non-emptiness
of K(Σ). We will use the duality between observabil-
ity and reachability. Define the dual system ΣT =
(n,Q, {(ATq , CTq , BTq ) | q ∈ Q}). The following properties
of the dual ΣT hold

(1) For P ∈ S(Σ) ⇐⇒ P−1 ∈ S(ΣT ), P ∈ Gγ(Σ) ⇐⇒
1
γP
−1 ∈ Gγ(ΣT ), C(Σ) = O(ΣT ), and O(Σ) =

C(ΣT ).
(2) If Σrt is the result of applying Procedure 1 to ΣT ,

then ΣTrt = Σo, where Σo is the result of application
of Procedure 2 to Σ.

As a consequence, K(Σ) 6= ∅ if and only if K(ΣT ) 6= ∅.
Since Procedure 1 preserves non-emptiness of K(ΣT ), we



have that K(Σrt) 6= ∅, which implies that K(ΣTrt) =
K(Σo) 6= ∅.

6. SYSTEM-THEORETIC INTERPRETATION OF
GRAMMIANS AND THEIR SINGULAR VALUES

In this section, we try to provide a system theoretic
interpretation of grammians and their singular value, by
linking them to observability, reachability and Hankel-
norms.
Theorem 4. If Σ is observable (resp. reachable), then any
positive semi-definite solution to (9) (resp. (10)) is strictly
positive definite.

The proof of Theorem 4 is based on the following results,
which are interesting on their own right.
Lemma 2. Assume that Q ≥ 0 is a solution to (9). Then
for all q ∈ PC(T,Q), t > 0

xTQx ≥
∫ t

0

||Y Σ
x (0, q)(s)||22ds

Lemma 3. Assume that P > 0 is a solution to (10). Then
for all q ∈ PC(T,Q), u ∈ PC(T,U), and t > 0

xTP−1x ≤
∫ t

0

||u(s)||22ds,

where x = XΣ
0 (u, q)(t).

Proof. [Proof of Theorem 4] We prove the statement
for the observability by contradiction. Assume that there
exists x ∈ Rn \ {0} such that xTQx = 0. By Lemma
2, this implies that for all q ∈ PC(T,Q), the map
Y Σ
x (0, q) = 0 and thus Y Σ

x (0, q) = Y Σ
0 (0, q) for all q. Note

that Y Σ
x (u, q) = Y Σ

x (0, q)+Y Σ
0 (u, q), and hence we get that

Y Σ
x (u, q) = Y Σ

0 (u, q) for all q and u, which contradicts the
observability of Σ.
The statement for controllability grammian follows by
duality.

Notice that unlike in the linear case, an LSS may fail to be
observable (resp. reachable), even if (9) (resp. (10)) has a
strictly positive definite solution, see Example 1 of Section
7. This is due to the fact that in (9) and (10), we require
inequalities instead of equalities. As we shall see in Section
7, an side effect of this phenomenon is that the reduced
order model obtained by balanced truncation may fail to
be minimal.

As a consequence, one is tempted to ask the question
what happens if in (9) (resp. in (10)) we require that
for some or all q ∈ Q, ATq Q + QAq + CTq Cq = 0 (resp.
PATq +AqP+BqB

T
q = 0) holds with equality. In this case,

the existence of a strictly positive definite solution to the
equations will imply observability (resp. controllability)
of some (or all) linear subsystems. However, in Remark
2 we already explained that for a large class of input-
output maps, including those which are realizable by
quadratically stable LSSs, such state-space representation
do not exist. Hence, by replacing inequalities by equalities
we necessarily restrict applicability of the model reduction
approach.

Finally, we present the interpretation of the largest sin-
gular value of a grammian pair (P,Q) in terms of the
Hankel-norm of the input-output map.

Definition 12. (Hankel-norm). Let Σ be a LSS and define
the Hankel-norm ||Y Σ||H as follows. Let HG(Σ) be the
set of all γ > 0 such that for all u ∈ PC(T,U)∩L2(T,U),

sup
(q,t)∈PC(T,Q)×T

∫ ∞
t

||Y Σ
0 (u#t0, q)(s)||22ds ≤ γ2||u||22,

where

u#t0(s) =
{
u(s) for s ∈ [0, t]
0 for s > t.

If HG(Σ) = ∅, then define ||Y Σ||H = +∞, and if
HG(Σ) 6= ∅, then define ||Y Σ||H = inf HG(Σ).

Intuitively, the Hankel-norm of Y Σ gives us the maximum
output energy of the system, if we first feed in a continuous
input u with unit energy and from some time t we stop
feeding in continuous input and we let the system to
develop autonomously.
Theorem 5. Assume that Σ is a LSS , P > 0 is a
controllability grammian and Q > 0 is an observability
grammian of Σ. The largest singular value σmax of (P,Q)
satisfies

||Y Σ||H ≤ σmax.

Proof. [Proof of Theorem 5] Pick a switching signal q an
input u and a time instance t such that u(s) = 0 for all
s > t and ||u||L2 ≤ 1. Denote by x and y the corresponding
state and output trajectories. By combining Lemma 2 and
Lemma 3, we obtain that x(t)TP−1x(t) ≤ 1 and

xT (t)Qx(t) ≥
∫ ∞
t

||y(s)||22ds.

Since u, q and t are arbitrary, we then obtain that
sup

xTP−1x≤1

xTQx ≥ ||Y Σ||H

We proceed to prove that√
λmax(PQ) = sup

xTP−1x≤1

xTQx

For Let P−1 = STS, and define Q̂ = (S−1)TQS−1. It
follows that

{Sx | xTP−1x ≤ 1} = {v | vT v ≤ 1}.
Hence,

sup
xTP−1x≤1

xTQx = sup
vT v≤1

vT Q̂v =
√
λmax(Q̂),

where λmax is the maximal eiegenvalues of Q̂. But Q̂ =
SPQS−1, hence the eigenvalues of Q̂ and PQ coincide.

7. MODEL REDUCTION FOR LINEAR SWITCHED
SYSTEMS IN CONTINUOUS-TIME

In this section, we state formally the procedure for model
reduction by balanced truncation, and we prove a bound
of the approximation error.
Procedure 4. Balanced truncation, Shaker and Wis-
niewski (2011) Consider a LSS Σ = (n,Q, {(Aq, Bq, Cq) |
q ∈ Q}).
(1) Find a positive definite solution Q > 0 to (9).
(2) Find a positive definite solution P > 0 to (10).
(3) Find U such that P = UUT and find K such that

UTQU = KΛKT , where Λ is diagonal with the



diagonal elements taken in decreasing order. Define
the transformation

S = Λ1/2KTU−1

(4) Replace Σ with Σbal = (n,Q, (Āq = SAqS−1, B̄q =
SBq, C̄q = CqS−1)q∈Q).

(5) The transformed system Σbal is balanced, i.e. for all
q ∈ Q,

ĀTq Λ + ΛĀTq + C̄Tq C̄q < 0

ĀqΛ + ΛĀTq + B̄qB̄
T
q < 0

(14)

Indeed, SPST = Λ and (S−1)TQS−1 = Λ and SPST
and (S−1)TQS−1 satisfy (10) and (9) for Σbal.

(6) Assume that Λ = diag(σ1, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥
σn. Choose r < n and let Λ1 = diag(σ1, . . . , σr).
Choose Âq ∈ Rr×r, B̂q ∈ Rr×m and Ĉq ∈ Rp×r so
that

Āq =
[
Âq Aq,12

Aq,21 Aq,22

]
, B̄q =

[
B̂q
Bq,2

]
, C̄Tq =

[
ĈTq
CTq,2

]
(15)

Return as a reduced model Σ̂ = (r,Q, {(Âq, B̂q, Ĉq) |
q ∈ Q}).

In the following, we will state an error bound for the
difference between the input-output maps of Σ and Σ̂. To
this end, we will use the following simple fact.

Lemma 4. (Shaker and Wisniewski (2011)). The LSS Σ̂
returned by Procedure 4 is balanced and quadratically
stable.

One may wonder if the system Σ̂ returned by Procedure
4 is minimal, at least when Σ was minimal. The answer is
negative, as demonstrated by Example 1. The fact that the
reduced system need not even be minimal already indicates
that Procedure 4 might be too conservative.
Example 1. Assume Q = {1} consists of one element,

A =

[−2 0 0
0 −1 1
0 0 −3

]
, B =

[1
0
1

]
, C = [1 1 0]. Then

(A,B,C) is balanced according to our definition with

Λ = diag(2, 1, 0.5). However, Â =
[
−2 0
0 −1

]
, B̂ =

[
1
0

]
and Ĉ = [1 1], which is clearly not minimal.

Theorem 6. (Error bound). For the system Σ̂ returned by
Procedure 4,

||Y Σ − Y Σ̂||L2 ≤ 2
n∑

k=r+1

σk. (16)

Proof. [Proof of Theorem 6] The proof of Theorem 6 is
based in the following lemma.
Lemma 5. For r = n− 1, (16) is true.

Proof. [Proof of Lemma 5] The proof is inspired by the
PhD thesis Sandberg (2004). Without loss of generality, we
assume that Σ is already balanced and hence Σbal = Σ.
Assume that the balanced observability and controllability
grammians are of the following form.

Λ =
[
Λ1 0
0 β

]
.

We will also use the notation of the partitioning in (15).

Fix an input u and a switching signal q and denote by
x(t) the corresponding state trajectory of Σ and by x̂(t)
the corresponding state trajectory of the reduced order
model Σ̂. Consider the decomposition x(t) = (x1(t), x2(t))
where x1(t) ∈ Rn−1, and define

z(t) = Aq(t),21x̂(t) +Bq(t),2u(t).
With this notation, consider the following vectors

Xc(t) =
[
x1(t) + x̂(t)

x2(t)

]
, Xo(t) =

[
x1(t)− x̂(t)

x2(t)

]
.

An easy calculation reveals that

Ẋc(t) = Aq(t)Xc(t)−
[

0
z(t)

]
+ 2Bq(t)u(t)

Ẋo(t) = Aq(t)Xo(t) +
[

0
z(t)

] .

It follows that for all 0 < P =
[
P1 0
0 γ

]
, 0 < γ ∈ R,

P1 ∈ R(n−1)×(n−1),
d

dt
(Xc(t)TPXc(t)) = 2Xc(t)TATq(t)PXc(t)+

4uT (t)BTq(t)PXc(t)− 2γz(t)Tx2(t)
(17)

Similarly, the derivative of XT
o (t)PXo(t) satisfies

d

dt
(Xo(t)TPXo(t)) =

2Xo(t)TATq(t)PXo(t) + 2γz(t)Tx2(t)
. (18)

Notice that (10) for P = Λ can be rewritten as
∀q ∈ Q : ATq Λ−1 +AqΛ−1 + Λ−1BqB

T
q Λ−1 < 0

by multiplying the original equation by Λ−1 from the left
and from the right. In other words, for all 0 6= x ∈ Rn,

∀q ∈ Q : 2xTATq Λ−1x < −xTΛ−1BqB
T
q Λ−1x (19)

Similarly, (9) is equivalent to
∀q ∈ Q : 2xTATq Λx < −xTCTq Cqx, (20)

for all 0 6= x ∈ Rn. Applying (19) to (17) with P = Λ−1

and completing the squares yields
d

dt
(Xc(t)TΛ−1Xc(t)) ≤ −Xc(t)TΛ−1Bq(t)B

T
q(t)Λ

−1Xc(t)+

+ 4uT (t)BTq(t)Λ
−1
1 Xc(t)− 2

1
β
z(t)Tx2(t) ≤

− ||BTq(t)Λ
−1Xc(t) + 2u(t)||2 + 4||u(t)||2 − 2

1
β
z(t)Tx2(t) ≤

4||u(t)||2 − 2
1
β
z(t)Tx2(t).

By noticing that Xc(0) = 0, we get that

Xc(t)TΛ−1Xc(t) =
∫ t

0

d

ds
(Xc(s)TΛ−1Xc(s))ds ≤

4
∫ t

0

||u(s)||2ds− 2
∫ t

0

1
β
z(s)Tx2(s)ds

Since Xc(t)TΛ−1Xc(t) ≥ 0,∫ ∞
0

z(s)Tx2(s)ds ≤ 2β||u||22 (21)

Similarly, applying (20) to (18) with P = Λ implies
d

dt
(Xo(t)TPXo(t)) ≤

−Xo(t)TCTq(t)Cq(t)Xo(t) + 2βz(t)Tx2(t)



which together with Xo(0) = 0 implies that

Xo(t)TΛXo(t) =
∫ t

0

d

ds
(Xo(s)TΛXo(s))ds ≤

−
∫ t

0

Xo(s)TCTq(s)Cq(s)Xo(s)ds+ 2β
∫ t

0

z(s)Tx2(s)ds.

(22)
Since Xo(t)TΛXo(t) ≥ 0, we get∫ t

0

Xo(s)TCTq(s)Cq(s)Xo(s)ds ≤ 2β
∫ t

0

z(s)Tx2(s)ds.

(21) and taking the limit as t→ +∞ yields∫ ∞
0

Xo(s)TCTq(s)Cq(s)Xo(s)ds ≤ 4β2||u||22. (23)

Notice that Cq(t)Xo(t) = y(t) − ŷ(t), where y(t) is the
output trajectory of Σ and ŷ(t) is the output trajectory of
Σ̂. Hence, (21) is equivalent to

||y − ŷ||22 ≤ 4β2||u||22
From this the statement of the lemma follows.

The proof of Theorem 6 is based on Lemma 5 and goes as
follows. Suppose that Σ̂1 is the reduced system obtained
by removing the singular value σn. It is easy to see that Σ̂1

is again balanced with grammian Λ1. We can again apply
the model reduction procedure to Σ̂1, remove its smallest
singular value σ2 and obtain Σ̂2. Suppose that the bal-
anced system Σ̂i with grammian Λi = diag(σ1, . . . , σn−i)
is given. Define Σ̂i+1 as the system which is obtained from
Σ̂i by applying the balanced truncation to the last state,
i.e., to the state which corresponds to σn−i. In this way,
we obtain systems Σ̂1, . . . , Σ̂n−r such that dim Σ̂i = n− i
and ||Y Σ̂

i−1−Y Σ̂
i ||L2 ≤ 2σn−i+1, where Σ̂0 = Σ. Notice that

Σ̂n−r = Σ̂

||Σ− Σ̂||L2 ≤
n−r∑
i=1

||Σ̂i−1 − Σ̂i||L2 ≤ 2
n∑

k=r+1

σk,

i.e., the error bound holds.

8. CONCLUSIONS

We have made the first steps towards the theoretical
analysis of balanced truncation of linear switched systems.
A great deal of questions still remain open. For example,
it is not clear if error bounds could be derived for norms
which are different than the L2 norm. In fact, it is not
at all evident that the L2 norm is the natural choice for
all the applications of switched systems. Another open
question is how to extend balanced truncation to systems
which do not admit a common Lyapunov function. Model
reduction of unstable systems also remains a challenge,
especially when it comes to deriving error bounds. Finally,
the problem of model reduction for switched systems with
autonomous switching is still open.
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