

Aalborg Universitet

High throughput 16S rRNA gene amplicon sequencing

Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup; Albertsen, Mads; Karst, Søren Michael; Christensen, Morten Lykkegaard; Nielsen, Per Halkjær

Publication date: 2014

Document Version Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

Nierychlo, M., Larsen, P., Jørgensen, M. K., Albertsen, M., Karst, S. M., Christensen, M. L., & Nielsen, P. H. (2014). High throughput 16S rRNA gene amplicon sequencing: A fast and cheap method to study the influence of microbial community composition on activated sludge floc properties. Poster session presented at Activated sludge - 100 years and counting, Essen, Germany.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

mni@bio.aau.dk

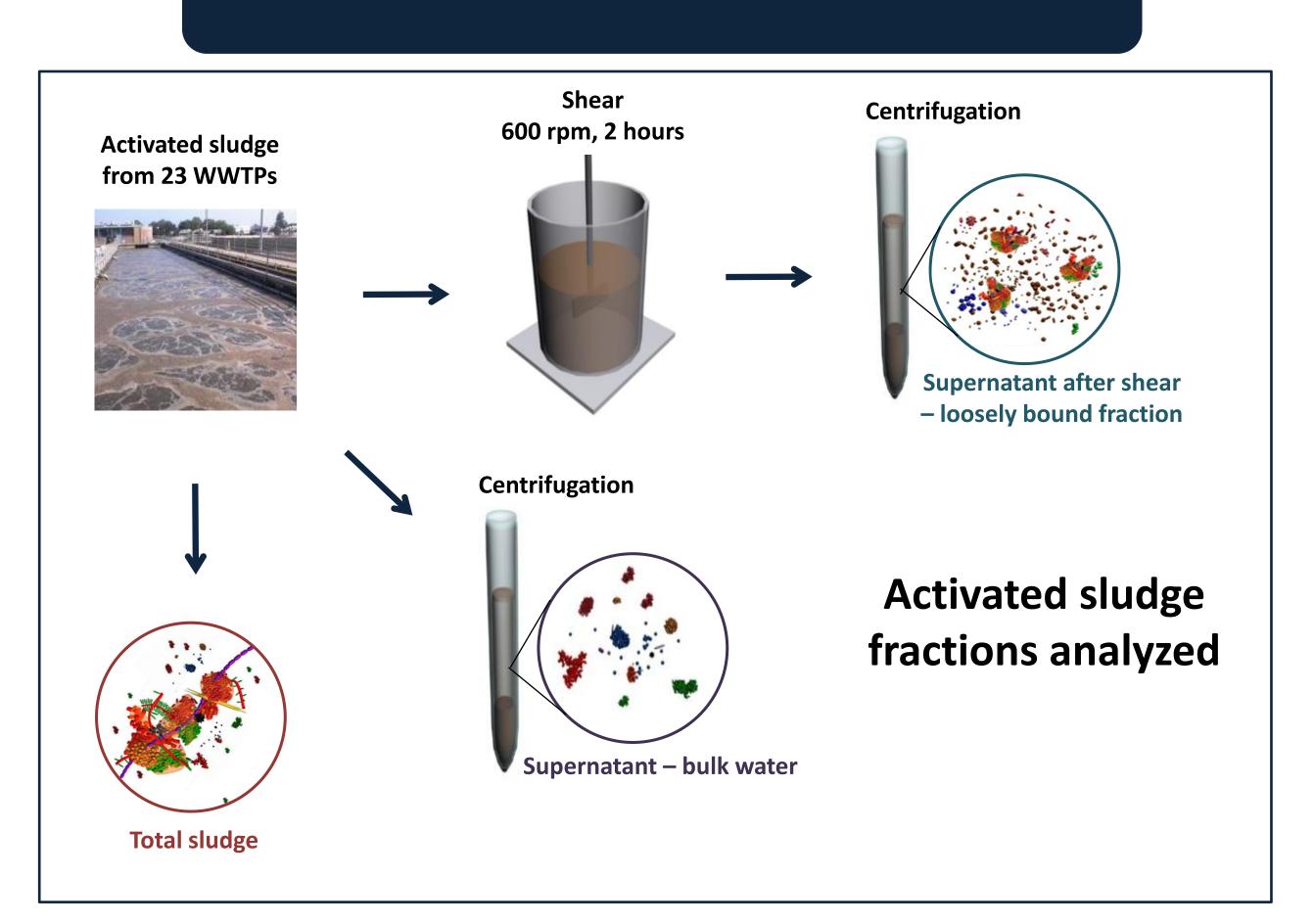
High throughput 16S rRNA gene amplicon sequencing: a fast and cheap method to study the influence of microbial community composition on activated sludge properties

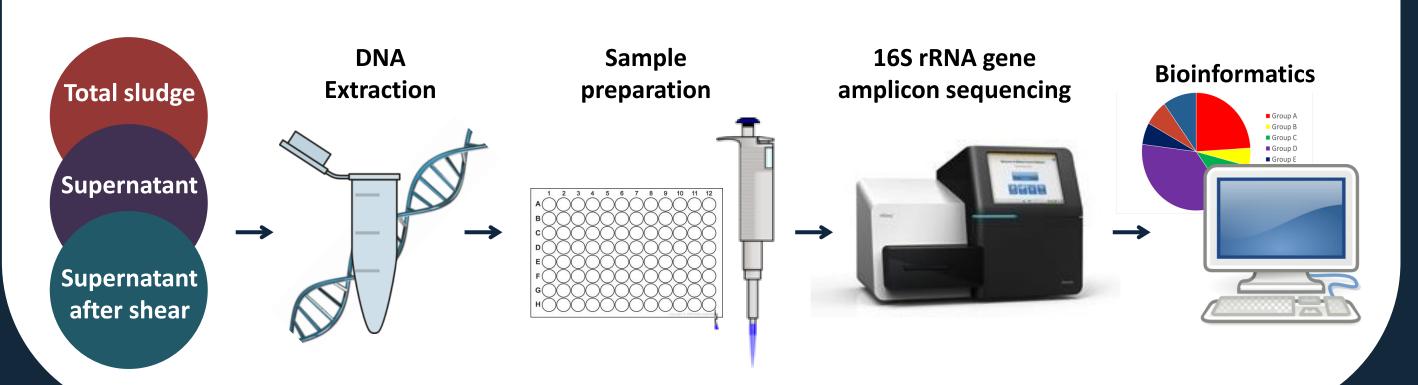
Marta Nierychlo, Poul Larsen, Mads K. Jørgensen, Mads Albertsen, Søren M. Karst, Morten L. Christensen, Per H. Nielsen

Center for Microbial Communities Aalborg University, Aalborg, Denmark

Introduction

reliable and reproducible method for identification and quantification of microorganisms is important for the studies of microbial communities in activated sludge and for the demonstration of their significance for plant operation and stability.

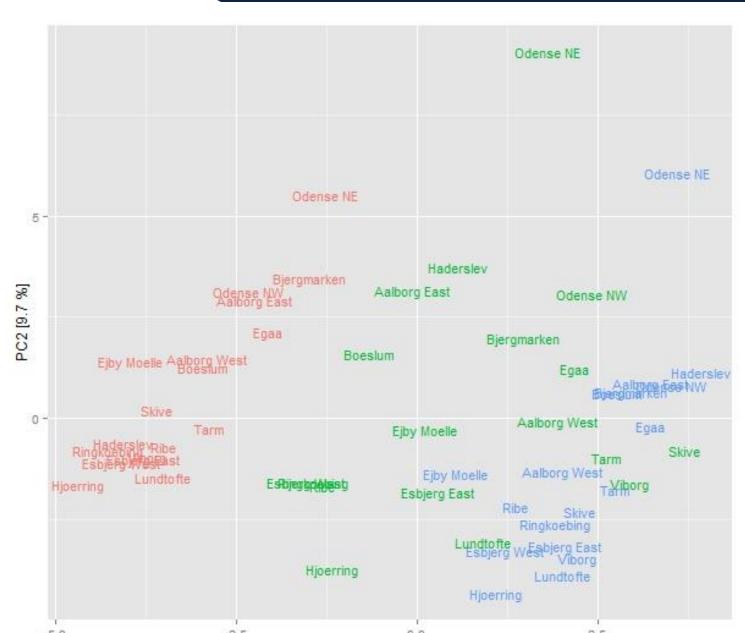

DNA-based identification of microorganisms using 16S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution.


Since bacterial morphology, mode of growth and EPS composition determine floc size, shape and strength, which in turn influence important sludge properties, the link established between the microbial community structure and physico-chemical sludge characteristics may provide a better understanding of the activated sludge process.

Objectives

- ☐ To show how 16S rRNA gene amplicon sequencing can be used to reveal factors of importance for the operation of 23 full-scale nutrient removal plants that can be related to settling problems and floc properties.
- ☐ To investigate whether the microbial community composition differs between the flocs and the supernatant (bulk water) and whether certain bacterial species are prone to detachment from the flocs.

Methods


Conclusions

gene amplicon sequencing is suitable for comprehensive studies of WWTPs thanks to short analysis time, low cost, high throughput, and high taxonomic resolution.

A number of bacterial species can be correlated to the sludge characteristics that are important for the proper plant operation (SVI, floc strength, and EPS content).

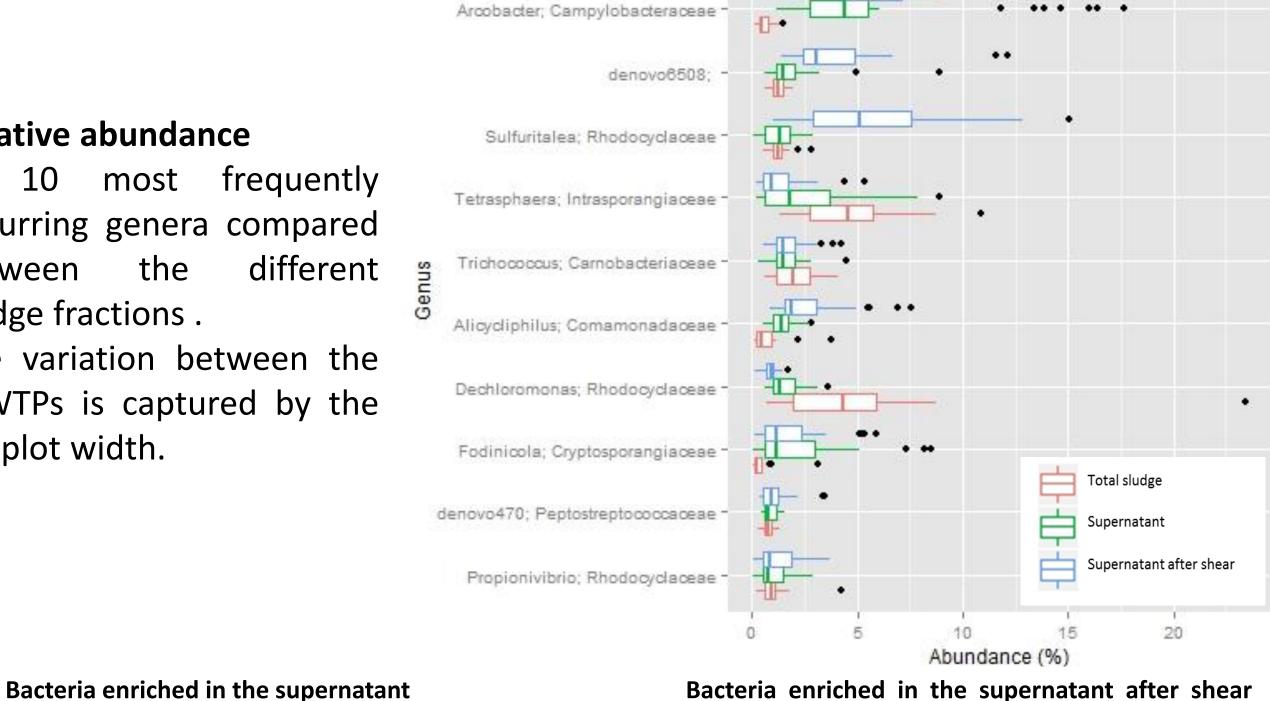
Specific bacteria are enriched in the bulk water fraction and in the fraction loosely bound to the floc.

Results

PC1 [20.3 %]

Community composition in different activated sludge fractions

The figure shows the relationship between all samples analyzed from 23 WWTPs.


Samples grouping into individual sludge fractions (total sludge - bulk water - loosely bound fraction) can be clearly observed.

- 8 Total sludge
- Supernatant before shear
- 8 Supernatant after shear

Relative abundance

most frequently occurring genera compared different the between sludge fractions.

The variation between the WWTPs is captured by the boxplot width.

compared to total sludge g Fodinicola

4			₱	N	leisseriaceae				258 50	
1			10		1			1	1	
0.	0 0.5		1.0		1.5	2.	0	2.5	3.0	
			me	2	n abundance [%	1				
			1116	a	ii abundance [/o	1				
•			SL	U	OGE VOLUME INDEX					
Total sludge			Supernatant				Supernatant after shear			
OTU	taxonomic classification	R	OTU	ta	axonomic classification	R	OTU	taxonomic classification	R	
276	gLactococcus	0.8	276	g_	_Lactococcus	0.7	11683	fCaldilineaceae	0.6	
9794	gArcobacter	0.8	6323	g_	_Arcobacter	0.6	11886	<u> </u>	0.7	
.1683	fCaldilineaceae	0.7	11683	f_	_Caldilineaceae	0.8	6545	gCaldilinea	0.6	
	gCaldilinea	0.7	8679	g_	_Fodinibacter	0.8			0.7	
.2307	gPseudorhodobacter	0.7	13221	g_	_Streptococcus	0.8	4117	gGordonia	0.9	
4117	gGordonia	0.7	10334	g_	_Thermomonas	0.7	8679	gFodinibacter	0.9	
8679	gFodinibacter	0.7	203	g_	_Alicycliphilus	0.7	5480	gNocardioides	0.7	
.3221	gStreptococcus	0.7	15756	f_	_Nocardioidaceae	0.6	10334	gThermomonas	0.7	
5480	gNocardioides	0.6	11578	g_	_Variovorax	0.7	8804	gAlicycliphilus	0.8	
5643	gFerruginibacter	0.6	6976	g_	_Cloacibacterium	0.7	13375	gParabacteroides	0.6	
7904	fChitinophagaceae	0.6	4241	0_	_SHA-35	0.6	14340	gAeromicrobium	0.6	
6268	gLeucobacter	0.9	6930	g_	_HF_BF39	0.7	975	gMycobacterium	0.6	
978	fenv.OPS_17	0.7	13925	p_	Unclassified	0.7	15219	gBrevundimonas	0.6	
49	g_BS063	0.7					13530	gCandidatus_Nitrotoga	0.9	
							6763	g Rhodovulum	0.8	
							2634	g Enterococcus	0.7	
							13221	g Streptococcus	0.7	
							6930	g HF BF39	0.7	
5387	g Geothrix	-0.8					2741	g B1-K2-141	0.6	
	g Geothrix	-0.7					2681	g MK04	0.6	
	g Nannocystis	-0.7					5384	f Rhodobacteraceae	0.7	
2357	·	-0.7					954	f Phyllobacteriaceae	0.6	
	gPropionivibrio									
.5181	gPropioniciclava	-0.6					7086		0.8	
	gA0837	-0.7	F26=		0 11 1	0.0	4378		0.6	
	gSulfuritalea	-0.7	5387	1	_Geothrix	-0.8	5387		-0.8	
	gFerruginibacter	-0.7	3960		_Betaproteobacteria	-0.7	12821	cBetaproteobacteria	-0.8	
9778		-0.7	12821	c _	_Betaproteobacteria	-0.9		<u> </u>	-0.6	
.3898		-0.6	15181	g_	_Propioniciclava	-0.6	1821	gLeadbetterella	-0.9	
8809	' 	-0.7	9172	J	_P58	-0.6	5787	gH106	-0.7	
.5957	fCaulobacteraceae	-0.8	5969	g_	_Saccharimonas	-0.6	9302	gThiothrix	-0.6	

Bacteria enriched in the supernatant after shear compared to supernatant Arcobact

SHEAR SENSITIVITY

DEGREE OF FLOCCULATION turbidity / mean floc size OTU taxonomic classification | R | OTU | taxonomic classification | R | OTU | taxonomic classification CONDITIONS FOR FLOCCULATION total EPS / cation OTU | taxonomic classification | R OTU taxonomic classification

Spearman correlation of bacteria present in different sludge fractions with important sludge characteristics: Sludge Volume Index (SVI), shear sensitivity, degree of flocculation and conditions for flocculation. Bacteria that were highly correlated (R <> 0.6) with the mentioned parameters are listed above.