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a b s t r a c t

A transition from an oil and coal based energy system to a systems based on renewable and sustainable
energy sources has begun in many countries throughout the developed world. As a pioneer, Denmark
currently has a wind energy penetration of 30% in the electricity sector and an end goal of 100% re-
newables in all energy sectors by 2050. The main elements in this transition are an increase in the wind
energy production and electrification of main energy sectors such as transport and heating. Activation of
flexible consumption in the electricity markets is believed to be one of the means to compensate for the
growth of fluctuating renewables and the decrease of conventional power plants providing system-
stabilizing services. In this work, we examine the requirements for flexible consumption to be active
in the spot market and the regulating power market in the Nordic system and estimate the costs of
entering these markets; further, we briefly describe the debated and planned changes in the electricity
market to better accommodate flexible consumers. Based on recent market data, we estimate the rev-
enue that flexible consumers can generate by market entry depending on the capacity of the consumers.
The results show that consumers should have an energy capacity in the magnitude of 20�70 kWh to
break-even in the spot market, while a capacity of 70�230 kWh is required in the regulating power
market under current regulations. Upon implementation of the debated and planned market changes,
the break-even capacity will decrease significantly, possibly to an energy capacity as low as 1 kWh.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many actions have been taken from a political point of view to
increase the penetration of renewables throughout the world. A
few examples are: renewable portfolio standards or goals that
ensure a certain percentage of renewables in almost all states in the
US [1], an energy target of 20% renewables by 2020 in the European
Union [2], and an increase in wind power capacity in China from
1260 MW in 2005 to 62,000 MW in 2011 [3]. The Danish electric
power system, which is the focus of this work, is a particularly
interesting case with a wind energy penetration of 30% in 2012 and
an expected 2020 penetration of 49.5% [4,5]. The end goal in
Denmark is to phase coal out by 2030 and become 100% renewable
in all energy sectors by 2050 [4].

The implementation of the Danish 100% renewable goal requires
actions from the entire energy supply system [6e8]. One of the
necessary steps is electrification of consumption from other energy

forms [9]. This electrification has already begun: in recent years,
27,000 heat pumps have been installed in Danish homes [10], and
additionally 205,000 households have the potential to benefit from
replacing their oil-fired boilers with a heat pump [11]. Further, the
Danish Government decided in 2012 to lower the taxes on electric
heating to expedite electrification of the heating sector [12]. Simi-
larly, electrification of the transport sector is planned: the Danish
Department of Transport decided in 2012 on electrification of the
railroad in Denmark [13] and a report from 2013 by the Danish
Energy Association projects that electrical vehicles will become an
attractive alternative to combustion engine vehicles in the
following decades leading to an electric vehicle population of
47,000 in 2020 and 221,000 in 2030 [14].

This planned electrification and replacement of conventional
power plants with renewables are crucial elements in the future
100% renewable energy system in Denmark. However, when con-
ventional power plants are replaced with renewables such as wind
turbines and photovoltaics, the ability to provide power balancing
services in the classical sense disappears: the renewable energy
sources will often fully utilize the available power and thus not be
able to provide balancing ancillary services. Furthermore, conven-
tional fossil fuel power plant generators are synchronous with the
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grid and therefore provide rotating inertia that supports the system
frequency against changes [15]. As renewable energy sources
typically interface with the grid via power electronics, they do not
directly provide inertia to the grid as the conventional synchronous
generators [16], which further increase the balancing challenges.
Although recent works suggest that wind turbines can provide
artificial inertia by regulating the active power output of the
generator according to the system frequency [17,18], this type of
control is generally not implemented in the wind power plants of
today. Moreover, many renewable sources are characterized by
highly fluctuating power generation: they can suddenly increase or
decrease production depending onweather conditions. These rapid
production changes are not always predictable and can therefore
imply severe consequences for grid stability [19].

It is therefore evident that the transition towards a Danish 100%
renewable energy system will lead to challenges of balancing the
electricity supply and demand [7]. Already now, indications of
balancing issues are seen in Denmark as evident from the following
examples. Negative spot prices occurred in 24 h in 2012 at the
electricity day-ahead spot market [20] even reaching the minimum
limit of�200V/MWh. Notice that the negative spot prices occurred
in spite of Denmark being well interconnected with Germany
(950 þ 600 MW), Norway (1040 MW), and Sweden
(1900 þ 740 MW) [21]. Also, several wind turbines were requested
to derate production for several hours on one occasion in December
2012 due to a combination of circumstances where high wind and
CHP (combined heat and power) production collidedwith a holiday
with low consumption.1 These instances are indicators of the
increasing balancing issues due to the growth in renewables. As a
pioneer in utilizing fluctuating renewables such as wind power,
Denmark is among the first places to experience these challenges;
however, the rest of Europe can expect similar issues in the coming
years [22].

2. Scope and structure of the article

As the wind penetration from fluctuating renewables increases,
the need for balancing services will consequently also increase
[23,24]. Alternative sources of balancing services must therefore be
established as the conventional power plants are pushed out. One
of the approaches to obtaining alternative balancing services is the
smart grid concept, where flexible consumption takes part in the
balancing effort [25,26]. This approach is supported by the ENTSO-E
(European Network of Transmission System Operators for Elec-
tricity), who in a resent paper stated that demand side response is
acknowledged as “a main contributor to more effective markets
and to system security with a high penetration of fluctuating
generation” [27]. Therefore, demand side response is included in
the 2012 ENTSO-E network code [28]. In Denmark, the smart grid
approach is supported by the Danish TSO (the Danish transmission
system operator) and the Danish Energy Association, who have
concluded that it is economically attractive to implement the smart
grid concept in Denmark as a means to reach the 100% renewable
goal. The main stakeholders have recommended a smart grid
roadmap with the ultimate goal of having flexible consumption
traded on a market place on equal terms with conventional pro-
duction according to the deliberated electricity market setup in
Denmark [29,30].

Control of flexible consumers to support grid stability has been
discussed as early as the 1980s [31]. Since, the topic of demand-side
management has received much attention from a research

perspective [32e34]. Within the deliberated electricity markets,
the aggregator or VPP (virtual power plant) concept has likewise
been much discussed. The functionality of the aggregator or VPP is
to aggregate and control flexible consumption devices whereby the
accumulated flexibility can be sold in the electricity markets, as
described e.g. in Refs. [35e38]. Examples of flexible consumption
devices examined as power balancing resources are: domestic heat
pumps [22,39e42], supermarket cooling systems [43e46], do-
mestic refrigerators [47,48], electrical heating elements at CHPs
[49,50], and electrical vehicles [51e54]. These existing works
describe the effects of including flexible consumers in electric po-
wer balancing. Some of the works describe how utilizing flexible
consumers will allow larger penetration of renewables, while the
focus of other works are the possible electricity savings that can be
achieved by selling balancing services. The works do, however, not
discuss the requirements for such devices to enter the electricity
markets, which is a crucial element in the Nordic liberalized sys-
tem. Further, these works do not consider the costs associated with
being active in the electricity markets.

In this work, we take the aggregator’s point of viewand examine
the Nordic electricity markets and describe the requirements for
market participation of flexible consumption. In particular, we
describe the requirements and identify the barriers for participa-
tion in the two largest markets: the day-ahead spot market and the
regulating power market. Moreover, we estimate the costs of
making devices able to participate in these markets. The main
contribution of this part of the work is a short overview intended
for potential aggregators and smart grid researchers in the Nordic
countries, describing the core regulations that apply for market
participation of flexible consumers. The background for this market
overview is the existing regulations, technical documents, reports,
and interviews with the Danish TSO.

Following, we describe how an aggregator can generate reve-
nue via the flexibility of consumers by participating in the two
examined markets, namely the spot market and the regulating
power market. We present concrete methods for utilizing flexi-
bility in the markets and estimate the revenue that can be
generated depending on the power and energy capacities of the
consumers. This revenue is compared to the previously found
costs of enabling devices to be active in the markets. Hereby we
are able to examine the capacity of a consumer required to make
market participation attractive. To complete the conceptualization,
we briefly describe the potential of some specific flexible devices:
domestic heat pumps, supermarket refrigeration systems, and
water purifying plants.

Notice, that this paper does not analyze the social benefit of
utilizing demand response or examine how flexibility is best uti-
lized. This while social benefit analysis is a most important topic
[55e58], we instead take the aggregator’s point of view and
examine the costs and potential benefits an aggregator can expect
when entering the main electricity markets. This aspect gives an
indicator of the state of the current markets with regards to the
ability to accommodate aggregated flexible consumers. Also, it
provides an easy overview to potential aggregators of the barriers
and costs that can be expected upon market entry.

The structure of this work is as follows. First, in Sec. 3, a brief
overview of the considered markets is presented; following in Sec.
4 and Sec. 5, we describe the requirements for participating in the
day-ahead spot market and the regulating power market, respec-
tively. In Sec. 6, we describe the main barriers for market entry and
show the estimated costs of market participation. Following, in Sec.
7, we estimate the revenue flexible devices can obtain by being
active in the spot market and the regulating power market and
complete the comparison between expenses and revenue of mar-
ket participation. Finally in Sec. 8, we conclude the work.

1 Information based on e-mail correspondence with the Danish transmission
system operator (TSO), Energinet.dk on March 22, 2013.
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3. Market overview

Three electricity markets exist at an overall level: a day-ahead
market, an intra-day market and an ancillary service market. In
the day-ahead market, electricity is traded for each hour of the
following day. If the market players are not able to realize the
volumes traded day-ahead, bids can be placed in the intra-day
market which closes an hour before the delivery hour. In the de-
livery hour, ancillary services are activated to accommodate for any
system imbalances [59].

The largest turnovers in the Nordic system are in the day-ahead
market and the ancillary service market for regulating power; only
very small volumes of electricity are traded in the intra-daymarket.
This work therefore focuses on the day-ahead and regulating power
market.

4. The day-ahead spot market

This section describes the requirements for flexible consump-
tion devices to optimize the electricity consumption towards the
spot market prices. First we describe how the hourly spot prices are
derived, then how the prices are settled, and finally how devices
can achieve settlement at the spot prices via hourly sampled
electricity meters.

4.1. Spot prices

Each day before gate closure at noon (12.00 p.m.), the BRPs
(balancing responsible parties) for both consumption and produc-
tion place bids in the day-ahead market for each hour of the
following day specifying the volumes they are willing to trade given
the hourly electricity prices [60]. The spot prices for each hour of the
following day are found as the intersection between the accumu-
lated bids for supply and demand. At 1 p.m., all BRPs are informed of
the traded volumes and hourly prices for the following day [59].

4.2. Settlement methods

Two different methods are used for consumption settlement in
Denmark: load-profile settlement and hourly settlement. Further,
the Danish TSO and the Danish Energy Association have proposed a
third settlement method that is planned to be implemented in the
Nordic system. These three methods are described in the following.

4.2.1. Load profile settlement
All consumerswithanannual consumption lowerthana threshold

of 100,000 kWh will by default be settled using load profile settle-
ment. By comparison, the average annual energy consumption of a
Danish household is in the order of 4500 kWh [61]; consequently, all
private consumers and smaller industrial consumerswill fall into the
load profile settlement category. For load profile settlement, the
accumulated consumption is read typically once a year. As a result of
this infrequent metering, the hourly consumption is unknown and
identical consumption profiles are used for all consumers within the
same grid area for settlement purposes [62,63]. Spot price optimiza-
tion is thus not possible for load profile customers, which today ac-
count for almost all private consumers in Denmark.

4.2.2. Hourly settlement
Hourly settlement is mandatory for consumers with a con-

sumption exceeding 100,000 kWh/year but can voluntarily be
chosen for smaller consumers. This settlement method requires
daily collection and validation of hourly-metered values [63,64].
The subscription fee varies for different distribution companies as
illustrated by the following two examples: Dong Energy

Distribution with a subscription of 1368 DKK/year2 and TREFOR
with 4940 DKK/year.3 The subscription fee covers both the instal-
lation of the hourly sampled electricity meter (smart meter) and
the extra data handling associated with collecting data on a daily
basis instead of a yearly basis.

4.2.3. 3rd settlement method
The Danish TSO Energinet.dk and the Danish Energy Association

have suggested the implementation of a third settlement method.
The concept of this method is that the consumption is metered
hourly but only read and communicated once every month [65].
This has the advantage that hourly consumption settlement is
possible while the communication costs are kept small. Distribu-
tion companies estimate that the subscription fee for this monthly
metering will be in the order of 20e50 DKK/year additional to the
load profile settlement fee [66]. The Danish Government has made
a plan to roll out hourly sampled electricity meters to all consumers
by 2020making it possible to fully enable this settlementmethod 9.

4.3. Balancing power

After the delivery hour, the balance of the BRPs is found. This is
done by adding the hourly-metered electricity consumption of the
hourly-metered customers with the electricity consumption
determined for the load profile customers. The difference between
these hourly values and the purchased electricity is by definition
traded with the TSO (transmission system operator) as balancing
power at the RP price (regulating power price) [67]. The origin of the
RP price will be described in detail in the next section.

It is important to notice that the spot prices therefore cannot be
seen as a price signal that all consumption will be traded at, as done
in many works describing control of flexible consumers. This is
evident as the spot prices only apply to the electricity purchased
day-ahead.

4.4. Multiple electricity meters

It might be desired to have several electricity meters assigned
with different electricity retailers within the same household or
company. Such a setup will for example allow an aggregator to
manage a portfolio solely consisting of flexible devices without
managing the remaining inflexible consumption. Currently, such a
setup is only possible by installing a separate meter and having a
separate subscription plan for this meter, which will cause a sub-
scription fee in the magnitude of 1368 to 4940 DKK/year, as
described in Sec. 4.2.0.2 [65]. The Danish Energy Association and
the Danish TSO are, however, currently in the process of developing
methods to handle separate electricity measurements with sepa-
rate billing from within the same household [9].

5. Regulating power market participation

This section describes the requirements for consumers to opti-
mize their flexibility towards the regulating power markets. First
we briefly describe the regulating power market, then how
demand-side devices can participate.

5.1. Regulating power

The TSO is responsible for maintaining balance between pro-
duction and consumption in the delivery hour. If BRPs for

2 1 DKK approximately equals 0.13 V.
3 Prices available online, www.trefor.dk and www.dongenergy.dk.
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consumption or production cause imbalances in the system, the
TSO will compensate by activating regulating power. The TSO will
procure this regulating power from the regulating power market
where generators or consumers with flexible consumption are able
to place bids. Players can place bids for upward and downward
regulation in the regulating power market up to 45 min before the
delivery hour [67]. The TSO’s expenses for regulating power are
financed via the balancing power traded with the BRPs that caused
the imbalances.

The regulating power bids are sorted inmerit order after price in
a list often referred to as the NOIS list (Nordic operational infor-
mation system list) [68]. If upward or downward regulation is
needed, the TSO will activate the required regulating power by
selecting the cheapest bids first (the merit order) [67]. The price
paid to the providers of regulating power is the RP price which is
found as the bidding price of the most expensive regulating power
bid activated in the delivery hour [59,67].

5.2. Requirements for demand-side participation

In the following, the requirements in terms of balance re-
sponsibility and volumes are discussed.

5.2.1. Balance responsibility
Regulating reserve bids are made through a BRP. Consumers

must therefore rest with the same BPR in order to collectively
provide regulating reserves; further, this BRP must be approved by
the TSO and conclude an agreement on balance responsibility
[69,70,59].

5.2.2. Volumes, duration, and response time
Regulating power is bought and sold in the regulating power

market for each hour of the day. The minimum volume of a regu-
lating power bid is 10 MW and the maximum is 50 MW for both
upward and downward regulation in Denmark (values may vary in
the Nordic countries). Bids greater than 10 MW can be activated in
part. Regulating power bids can be placed until 45 min before the
delivery hour and it must be possible to activate the full delivery
within at most 15 min from receipt of the activation order [67,71].

5.2.3. Combined delivery
It is allowed to make a regulating reserve bid by aggregating a

portfolio of consumption units as long as the aggregated (com-
bined) portfolio response satisfies the requirements. It is, however,
not allowed to include both production and consumption devices in
a combined delivery [71].

5.3. Day-ahead communication requirements

In this subsection, the required day-ahead communication is
described; following, in the next two subsections, the requirements
to intra-day and online communication are described. Three main
elements that will be described in the following are: notifications,
operational schedules, and adjusted operational schedules, see
Fig. 1.

5.3.1. Notification
A BRP for consumption must submit a notification for trade in

MWh per hour prepared for the 24 h of the following day with an
accuracy of one decimal. The deadline for notifications is 3 p.m. the
day before the day of operation [59,67,72].

5.3.2. Operational schedule
A BRP for flexible consumption must in addition to the notifi-

cations also submit a 24-h operational schedule with a

5-min resolution for the planned consumption the following day.
The operational schedules are specified with the unit MW and the
accuracy is one decimal. The deadline for these operational
schedules is at 5 p.m. the day before operation. For flexible con-
sumption devices with a capacity less than 10 MW it is sufficient to
provide an operational schedule with the total consumption for the
entire portfolio of devices [73,72]. Notice that the time resolution of
5 min applies in the Danish system but may vary from country to
country in the Nordic system.

5.4. Intra-day communication

In the following it is described what type of information the BRP
must provide to the TSO during the day of operation.

5.4.1. Regulating power bids and activation
A BRP for flexible consumption can place and alter bids for up-

ward or downward regulation up to 45 min before the delivery
hour. Upon activation of regulating power, the TSO will send a 5-
min power schedule to the BRP in question; this schedule will
describe how the regulating power should be delivered. Following,
the BRP must submit an adjusted operational schedule that in-
cludes the activated regulating power (see Fig. 1) and finally, the
TSO will confirm the adjusted schedule [72].

5.4.2. Notification
A BRP for consumption can send an adjusted notification to the

TSO if intra-day trades are made. The adjusted notification is the
original notification with changed time series for consumption and
trade. The deadline for the adjusted notification is 45 min before
each delivery hour [73].

5.4.3. Operational schedule
A BRP for flexible consumption must be prepared at any time to

provide the TSO with information about the anticipated operation
of the devices in the form of a 5-min operational schedule. Further,
the BRPmust submit an adjusted operational schedule if deviations
occur exceeding 10% of the installed capacity and is above a
threshold of 10 MW. Such an adjusted operational schedule must
be submitted as soon as possible after the deviation is detected [73].
The regulations do not specify any cost for updating the operational
schedules.

5.4.4. Real time communications
Using flexible consumption for regulating power deliveries re-

quires independent metering. The metered data collector must

Fig. 1. Illustration of the hourly notification (red, dash-dot) and a 5-min operational
schedule (blue, solid). Finally, an activation order of 10 MW upward regulation is
illustrated in form of an adjusted operational schedule (yellow, dashed). The adjusted
operational schedule is identical to the original operational schedule except for the
activation in hour 5 to 6. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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acquire active power measurements from each device in the port-
folio comprising the flexible consumption except if the devices are
behind the same point of connection and have a total capacity
below 1.5 MW. The real time data must be communicated via
certain protocols to the TSO [74]. It is the responsibility of the BRP to
make the necessary metering data easily accessible for the metered
data collector. Further, the BRP must finance the establishment and
operation of the metering equipment. The metered data collector is
responsible for the physical metering task and for the data
communication to Energinet.dk [74]. The equipment and installa-
tion costs will vary depending on the consumption device. The
typical costs are in the order of 10,000�50,000 DKK per device in
installation costs and a running expense of 2000 DKK/year for
communication and maintenance.4

It is important to notice that the strict regulations for real time
measurements were composed in a system where regulating ser-
vices from smaller units were of no interest. Currently, it is
debated whether these requirements should be made more
favorable towards smaller flexible consumption devices to in-
crease the volume of available balancing services. Some sugges-
tions are: that the metered data collectors will accept
standardized equipment installed by aggregators, that real time
measurements on portfolio level instead of individual device level
can be accepted, and that real time communication can be
replaced with ex-post communication. In a future scenario, the
high costs might therefore be significantly reduced e possibly
even to a marginal cost of zero if it eventually will be possible to
use the same equipment as is required between the aggregator
and the devices for control purposes. Note that such regulatory
changes are currently not planned.

6. Market barriers

In this section we summarize the barriers for market entry of
flexible consumers and present estimates of the costs per device to
enter these markets.

The main barriers of enabling a device to be active in the day-
ahead spot market are as follows.

1. The high annual costs of being read on an hourly basis. This will,
however, be resolved with the planned 3rd settlement group
possibly in 2020.

2. The requirement of a separate new electricity meter to enable a
single device to receive separate settlement. The Danish Energy
Association and the Danish TSO are working on resolving this
issue.

Themain barriers of being active in the regulating powermarket
are as follows.

1. The high annual and one-off costs of real time equipment.
Although it is debated to loosen this requirement, no plans are
currently made.

2. The threshold of 10 MW requires a large number of flexible
devices. Currently, there are no plans to reduce this value.

3. The requirement of 5-min operational schedules sent the day
before operation. The stochastic behavior of many consumers
will make it difficult to make such schedules. The current
regulations, however, allow the schedules to be updated at no
costs.

To complete the conceptualization, we summarize the costs of
making a single device able to honor the requirements of market
participation in the current and future electricity markets. This is
presented in Table 1. A number of comments to this table are
necessary. First, notice that we do not include the costs of making
the devices themselves controllable, we only consider the costs of
honoring the regulations. Second, notice that since we take the
aggregator’s view, and not a socioeconomic view, we only consider
the costs that the consumers will face and not the global society
costs. For example, we consider the cost the consumer will have
pay to the distribution company for being hourly-metered instead
of considering the actual costs the distribution company will have
to pay for installation of a smart meter, etc.

7. Market participation of flexible consumers

In this section, we examine the profit a flexible consumption
device can obtain by being part of a portfolio that is optimized
towards the day-ahead spot market and regulating power markets.
Hereby we can determine the possible profit per device and
compare this value with the cost of market entry presented in
Table 1. Notice that we consider the devices individually to find the
profit per consumer; however, in practice the devices’ flexibility
would be aggregated before market entry. The reason we examine
the cost per consumer is that the aggregator should be able to cover
the cost of each device included in the portfolio.

We assume that each flexible consumption device is able to shift
consumption in time at no additional cost and with no additional
energy loss; further, we assume that the load on each device is
constant over time. This model is presented in more detail in
Appendix A.

Obviously, this model is very simplified: flexible devices such
as thermal storage, electrical batteries, etc., are all associated with
losses that depend on how the device flexibility is utilized.
Further, the load will vary over the day, often with a stochastic
behavior depending on user behavior, weather conditions etc.
Finally, shifting consumption in time may for some devices be
associated with a given cost such as a disutility or a discomfort cost.
Some consumers will require an economical compensation for
utilizing their devices’ flexibility while other consumers will not
experience any loss of quality or comfort and consequently not
necessarily require compensation. These issues are, however,
neglected as our objective is to illustrate how revenue can be
generated and what the magnitude of this revenue is e the
objective is not to accurately model consumers or design imple-
mentable control strategies.

Strategies for flexibility optimization towards the day-ahead
spot market and the regulating power market are found in
Appendix B and Appendix C, respectively. To obtain an estimate of

Table 1
Marginal expenses per device active for spot optimization (Spot.) and regulating
power provisions (Reg.) under current (Cur.) and future (Fut.) regulations.

Investment costs Running costs per year

Cur. Fut. Cur. Fut.

Spot. 0 0a 1�5000 20e50a

Reg. 10�50,000 0b 2000 0b

a Expected costs when the 3rd settlement group will be implemented around
2020, see Sec. 4.2.

b The marginal cost can be 0 if the future market will allow the aggregator to
utilize standardized equipment that already is embedded in the devices for other
purposes and assuming we can communicate at no additional costs via the internet,
see Sec. 5.3. This is, however, the most positive projections and may be far into the
future.

4 Numbers are based on a private interview with a Danish BRP for flexible con-
sumption with experience in this field, 4th of March 2012.
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the revenue that can be generated based on participation in the
spot market and in both the spot market and the regulating power
market, we simulate market participation over one year. We do
this for a storage with normalized energy capacity but varying
power capacity. Historical spot and regulating power prices from
2011 are used and the work of [75] is utilized to provide spot price
forecasts.

7.1. Results

The results of a one-year simulation are shown in Fig. 2 and
should be interpreted as follows. The y-axis indicates the revenue
per year in DKK per kWh of energy capacity available. We assume a
liquid market where we do not influence the spot and regulating
power prices, hereby the revenuewill simply scale linearly with the
energy capacity. The x-axis indicates the power capacity of the
device ranging from 0�1 kW/kWh. It is not required to examine
higher power capacities than 1 kW/kWh: when the capacity is
1 kW/kWhwe are able to fully fill/empty the energy storage in each
hour.

As the figure shows, the revenue curve is very steep from 0 up to
around 0.3 kW/kWh, indicating that if the storage capacity for
example is 1 MWh, then it is very profitable to increase the power
capacity up to around 300 kW. Increasing the power capacity
further will only slightly increase the possible revenue.

We are now able to compare the revenue with the costs of being
active in the market as specified Table 1. The following is observed.

1. Spot price optimization. An energy capacity of 20�70 kWh is
required to break-evenwhen considering the annual costs of for
hourly metering and assume a power capacity of 0.3 kW/kWh.

2. Spot and regulating power optimization. An energy capacity of
70�230 kWh is required to break-even over a 5-year period
when considering the investment costs and costs for the
required equipment and communication. We assume a power
capacity of 0.3 kW/kWh and an interest rate of 5%.

3. Future scenario. If the revenue graph in Fig. 2 is considered valid
for the future scenario5 and if the marginal expenses from
Table 1 are used, an energy capacity in the magnitude of 1 kWh
is required to break-even.

Notice that the revenue-graph and the estimates above are
made for the Nordic electricity system and for a specific year;
however, the methods for making the graph are general and can
readily be implemented to other electricity markets to form the
background for similar analysis. Alternatively, the revenue-graph
can be generated based on data from several years to examine
how stable the revenue is over time.

Further, notice that the electricity system of today is rapidly
changing, possibly affecting the spot and regulating power prices.
For example, the rapid growth of renewables in Denmark will likely
give rise to more fluctuating electricity prices. On the other hand,
new interconnectors from Denmark to Norway are being con-
structed which possibly will compensate this effect to some extend.
Likewise, integration of demand response might smooth out fluc-
tuating electricity prices. As these effects point in different di-
rections for the market prices, it is difficult to say anything definite
about the future electricity prices and consequently difficult to find
better estimates than looking at today’s prices which are the basis
of the analysis in this work.

Finally, let us examine the results presented in Fig. 2 further by
considering a number of specific flexible devices. We examine
three consumption devices: an electric heat pump, a supermarket
system, and a water purifying plant, see Table 2. The power and
energy capacities for the heat pump are based on [22], for the
supermarket they are based on [76] (idealized and scaled up to a
larger supermarket), while the capacity for the water plant is
based on DONG Energy’s experiences in flexibility optimization of
water plants. Again, we remind the reader that we consider these
consumers as ideal storage with constant load, which clearly is a
simplification as such devices will be characterized by stochastic
consumption and possibly a consumption coupled with the stor-
age level. However, the presented values will reflect the magni-
tude of the revenue that can be generated base on the devices’
consumption flexibility. The table shows that both heat pumps
and supermarket refrigeration systems will generate a profit that
is too low compared to the costs of enabling spot market and
regulating power market participation in the current market;
however, it may prove as a desirable business case in the future
system that is better at accommodating flexible consumers. The
water plant generates sufficient profit to perform spot price
optimization. The revenue increase of DKK 20,100 for activating
regulating power will cover the running costs and allow a payback
period of 1�3 years for the installed equipment making such in-
vestments very attractive.

Notice, that the business case presented in Table 2 is only con-
cernedwith selling services in the regulating powermarket and the
spot market. However, someworks emphasize that the real value of
flexible consumers might lie in the distributed nature of these
devices [56] making it possible to deliver services on the distribu-
tion level such as voltage control [77] or congestion alleviation [78].
Other works further mention energy efficiency and ancillary ser-
vices participation as possibilities to generate revenue. These ser-
vices are not included in the business case presented here, but
might be able to further increase the value of the flexible devices.

Fig. 2. Revenue per kWh in 2011 for an energy storage when optimizing towards the
spot market and when optimizing to both spot and regulating power market as a
function of the consumer power capacity.

Table 2
Marginal expenses per device active for spot optimization (Spot.) and regulating
power provisions (Reg.) under current (Cur.) and future (Fut.) regulations.

Device capacity Annual revenue

Energy [kWh] Power [kW] Spot [DKK] Spot þ reg [DKK]

Heat pump 60 2 900 1200
Supermarket 200 10 5100 6700
Water plant 1000 300 67,900 88,000

5 It is difficult to predict how the market volatility will evolve: increasing
penetration of renewables and increasing oil prices suggests higher and more
fluctuating prices while increasing volumes of flexibility and new transmission
cables suggest the opposite.
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8. Conclusion

In this work we made a thorough survey of the Nordic regu-
lations for flexible consumers to participate in the current and
future day-ahead market and the regulating power market. Based
on this, a list of main barriers for market entry was presented and
estimates of the costs for enabling flexible consumers to enter the
considered markets were made. Following, the possible revenue of
participating in these markets was estimated based on the con-
sumer energy and power capacity limitations. The market entry
costs were compared with the possible profit of market partici-
pation, which resulted in an estimate of the capacities required to
make market participation profitable. The estimates showed that
market entry for flexible consumers had a break-even capacity in
the magnitude of 20�70 kWh and 70�230 kWh, respectively, for
day-ahead and regulating power market entry under the current
regulations. Further, the results showed that the future regulations
(around 2020) will remove many of the market barriers; possibly
reducing the break-even capacity to a magnitude of around
1 kWh.

Acknowledgments

The work is completed as a part the iPower project which
is supported by the Danish government via the DSR-SPIR program
10-095378.

Appendix A. Ideal flexible consumer model

The idealized consumption device is modeled as a consumer
with constant load which the overall consumption can be varied
around. As both the spot market and the regulating power
market are based on hourly bids, we use a discrete time model
with a sampling time of 1 h. Let k index the hours and let x(k)
denote the energy level; further let p be the constant load.
Finally, let p(k) be the total consumption of the device. By using
units kWh for x(k) and kWh for p and p(k) (energy delivered over
an hour) we obtain

xðkþ 1Þ ¼ xðkÞ þ pðkÞ � p: (A.1)

This simply expresses that if the total consumption equals the
constant load pðkÞ ¼ p, no energy is stored; however, if the con-
sumption increases above the constant load, energy is stored
accordingly and vice versa. The storage is limited in energy capacity
and power capacity which can be expressed as

0 � xðkÞ � x; 0 � pðkÞ � 2p (A.2)

where x is the energy capacity in kWh and where we assume the
device is able to vary its total power consumption with �p around
the constant load of p. This model is a much simplified version the
consumer model presented in Ref. [79].

Appendix B. Spot market optimization

Various strategies can be envisioned when participating in the
spot market. In this work we utilize the following strategy:
before gate closure at noon, we collect spot price forecasts by
using data from the work in Ref. [75]. Based on the storage en-
ergy level just before midnight (which is known from the opti-
mization done the previous day), the flexibility is optimized
towards the spot price forecasts and electricity is purchased
accordingly. During the day, the purchased electricity is

consumed such that we avoid trading balancing power with the
TSO at possibly unfavorable prices.

Formally, this can be formulated as shown in Algorithm 1.
We use k to indicate the hour number. Further, we use
K ¼ fkþ 12;.; kþ 35g to describe the 24 h of the following day at
the point in time just before gate closure which is at 12 noon (the
first hour of the following day is 12 h ahead).

Appendix C. Regulating power optimization

Optimization towards the regulating power market is a delicate
task and many strategies can be imagined: regulating power price
forecasts can be utilized, alternative day-ahead purchase strategies
can be used to allow more flexibility in bidding in the regulating
power market, etc. In this work we utilize the following simple
strategy. After gate closure at 1 p.m., the spot price realizations will
be published. Based on these spot price realizations, we reoptimize
the consumption of the portfolio. Following, for each hour of the
day, we bid the difference between the purchased electricity and
the volume gained from the reoptimization, if feasible, with a
bidding price equal to the spot price. If activated, we will get a
regulating power price equal to or better than the spot price (our
bid). Hereby we still avoid trading balancing power with the TSO,
but enable ourselves to get access to regulating power prices when
they are favorable.

Formally, this is presented in Algorithm 2. Again, we use k to
indicate the hour number but now let K ¼ fkþ 11;.; kþ 34g
describe the 24 h of the following day just after gate closure which
is 11 h ahead in time.
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Notice that more advanced strategies can be utilized to further
increase the value of the available flexibility. An example is to
withhold flexibility in the electricity spot market if forecasts indi-
cate that it might be more profitable to trade on the regulating
power market. This requires forecasts of the regulating power
prices as well as sophisticated optimization algorithms and is
consequently outside the scope of this work.
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