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ABSTRACT 

Movement of invertebrates among large rivers, tributaries, and floodplain lakes or dispersal of 

adult aquatic insects from riverine or floodplain habitats may provide important subsidies to food 

webs in receiving habitats.  Intensive sampling at habitat interfaces and artificial labeling are two 

approaches to assess freshwater invertebrate dispersal, but these are difficult to implement at a 

landscape scale.  Natural chemical tracers have been used to track dispersal of fishes and marine 

invertebrates, but the potential applicability of stable isotope ratios as natural tracers of 

invertebrate dispersal in freshwater environments has not been assessed.  We evaluated stable 

hydrogen and oxygen isotopes (δD and δ18O) as natural markers of source environment and 

dispersal of macroinvertebrates in the middle Mississippi River, tributaries, and floodplain 

wetlands.  Water and invertebrates were collected from 12 sites during 2007-2008.  Water δD 

and δ18O differed among the river, its tributaries, and floodplain wetlands and were strongly 

correlated with invertebrate δD and δ18O.  Variability in invertebrate δ18O rendered it ineffective 

as an indicator of invertebrate source environment.  Mean δD of Mississippi River invertebrates 

differed from δD of invertebrates from floodplain wetlands; δD distinguished invertebrates from 

these two environments with > 80% accuracy.  Neither δD nor δ18O of aquatic insects changed 

following emergence from their natal site.  Preservation method (ethanol or freezing) did not 

affect invertebrate δD or δ18O.  Invertebrate δD may be a useful natural tracer of natal 

environment and dispersal in the Mississippi River-floodplain ecosystem and other freshwater 

systems where spatial variation in water δD is present.  
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INTRODUCTION 

Understanding how dispersal affects metapopulation dynamics of species is essential for 

conservation of critical habitats (Hanski and Simberloff, 1997), particularly in highly fragmented 

landscapes such as many of the world’s temperate, large river-floodplain ecosystems.  Aquatic 

macroinvertebrate community structure in floodplain habitats along large rivers is influenced by 

river-floodplain connectivity (Kohler et al., 1999; Leigh and Sheldon, 2009).  

Macroinvertebrates are also known to drift into streams from floodplain habitats and tributaries 

(Bonetto, 1975; Smock, 1994), but their overall influence on riverine invertebrate populations 

and food webs is unclear.  Dispersal of aquatic macroinvertebrates from tributary or floodplain 

lakes or wetlands may potentially provide important subsidies (e.g., Polis et al., 1997) to food 

webs in large rivers or adjacent riparian habitats.  Emerging aquatic insects are known to 

subsidize terrestrial food webs along small streams (Baxter et al., 2005), but the extent to which 

aquatic invertebrates subsidize terrestrial food webs within the floodplains of large rivers is 

uncertain.  Knowledge of the extent to which aquatic invertebrates disperse among large river, 

tributary, and floodplain lake and wetland habitats (including restored habitats) would be 

valuable for maintenance and restoration of river-floodplain ecosystems.   

Approaches for measuring population and food web subsidies provided by drifting 

immature aquatic invertebrates or dispersal of adult stages of aquatic insects include intensive 

sampling at habitat interfaces or application of artificial markers to trace invertebrate dispersal.  

However, both of these methods are difficult to implement at a landscape scale.  Intensive 

sampling at habitat interfaces is labor intensive, limiting the number of locations that can be 

sampled, and does not enable identification of individuals that disperse well beyond the 

boundaries of their source environment.  Dispersal of immature and emerging adult aquatic 

insects has also been investigated by artificially marking immature aquatic invertebrates with 

chemical labels such as rubidium (Payne and Dunley, 2002) or compounds enriched in the heavy 

stable isotope of nitrogen (15N) (Hershey et al., 1993; Caudill, 2003).  However, artificial 

labeling of aquatic invertebrates is more appropriate for relatively small streams and ponds and 

would not be practical for a landscape-scale investigation of aquatic invertebrate dispersal in 

large river-floodplain ecosystems.   
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Natural chemical markers such as stable isotope ratios that are specific to particular 

habitats or environments represent a potential means to quantify population and food web 

subsidies provided by dispersing aquatic invertebrates in large river-floodplain ecosystems.  

Recent studies have demonstrated that some large rivers (including the middle Mississippi River 

bordering Illinois and Missouri), possess stable isotopic and trace elemental “fingerprints” that 

are distinct from those of tributaries and floodplain lakes (Crook and Gillanders, 2006; 

Whitledge et al., 2007; Zeigler, 2009; Zeigler and Whitledge, 2010).  These natural 

environmental signatures can be used to identify source environment (river, tributary, or 

floodplain lake) of fishes in these large rivers (Crook and Gillanders, 2006; Whitledge et al., 

2007; Zeigler, 2009; Zeigler and Whitledge, 2010).  Stable hydrogen isotopes have been used to 

identify natal origins of migratory monarch butterflies in North America (Hobson et al., 1999) 

and natural trace elemental signatures have been used to track dispersal of marine invertebrate 

larvae (DiBacco and Levin, 2000), but this approach has not yet been applied to freshwater 

invertebrates.   

Our goal was to assess the potential of stable hydrogen and oxygen isotopes (δD and 

δ18O) as natural tracers of source environment and dispersal for aquatic invertebrates in the 

middle Mississippi River-floodplain ecosystem.  Specific objectives were to: 1) determine 

whether water δD and δ18O differed among the middle Mississippi River, tributaries, and 

floodplain wetlands, consistent with findings of Zeigler (2009), 2) characterize the relationship 

between water and invertebrate δD and δ18O and determine whether differences in water δD and 

δ18O among the middle Mississippi River, its tributaries, and floodplain wetlands were reflected 

in δD and δ18O of aquatic invertebrates captured from these environments, 3) determine whether 

invertebrate δD and δ18O signatures within environments differed among individuals 

representing different functional groups, 4) determine whether adult stages of aquatic insects 

maintain the isotopic fingerprint of their home water body after emergence, and 5) determine the 

accuracy with which invertebrates could be classified to their environment of capture 

(Mississippi River, tributary, or floodplain wetland) based on their δD and δ18O signatures.  We 

also investigated whether preservation method (ethanol vs. freezing) affected invertebrate stable 

hydrogen and oxygen isotopic signatures. 
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METHODS 

Invertebrate and water sample collection and processing 

 Invertebrate and water samples were collected from the middle Mississippi River 

(between the confluence of the Mississippi and Missouri Rivers and the mouth of the Ohio 

River), three of its tributaries, three intermittent floodplain wetlands, and five permanent 

floodplain wetlands during spring, summer, and fall 2007 and 2008.  Water samples for stable 

hydrogen and oxygen isotope analysis were collected and stored in scintillation vials containing 

minimal air space and sealed to curtail evaporative loss and fractionation (Kendall and Caldwell, 

1998).  Multiple habitats were sampled within each site to obtain a variety of benthic 

macroinvertebrate taxa for stable isotope analysis.  Invertebrates were collected using a 0.3 m x 

0.5 m, 500-μm mesh dip net or by picking individual invertebrates from coarse woody debris.  

Large invertebrates were picked directly from the dip net.  Smaller invertebrates, sediment, and 

organic debris remaining in the net were transferred to a 19-L bucket and water from the site was 

added.  The solution was agitated and poured through stacked 5-mm and 1-mm sieves to separate 

invertebrates from fine sediments.  Invertebrates picked from the dip net, sieves, or organic 

debris were placed in collection jars containing water from the sampling site and separated by 

functional group and size to avoid consumption of or damage to smaller specimens by larger 

taxa.  Collection jars were placed in a cool water bath for 24 h to allow for gut evacuation and to 

slow metabolism for easier handling and identification of invertebrates in the laboratory.   

Adult insects were captured during or immediately following emergence to assess 

whether invertebrates retained the stable hydrogen and oxygen isotopic signatures of their natal 

environment after metamorphosis.  Adult Hydropsychidae from the middle Mississippi River and 

Coenagrionidae from Mary’s River in Randolph County, IL were collected using emergence 

traps.  Libellulidae that were captured as nymphs from a floodplain wetland in Jackson County, 

IL and raised in the laboratory were also collected following emergence.  All adult insects had an 

immature counterpart of the same taxa captured from the same water body for comparison of 

stable hydrogen and oxygen isotopic signatures of adult and immature insects.  

 Invertebrates except crayfish (Cambaridae) were identified to family using Merritt et al. 

(2008).  Most invertebrates were then frozen prior to preparation for stable isotope analysis.  
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However, a subsample of immature invertebrates (n=20) from three collection sites was 

preserved in ethanol to evaluate the effect of preservation method (ethanol vs. freezing) on 

invertebrate stable hydrogen and oxygen isotopic signatures.  All samples preserved in ethanol 

had a counterpart of the same taxa captured from the same water body that was frozen.  

Invertebrate samples were dried at 60°C for 24-48 h, ground with a mortar and pestle, weighed, 

and placed into silver capsules for stable isotope analysis.  Most invertebrates were large enough 

to be analyzed individually.  However, 2-3 individuals had to be combined for a few smaller taxa 

(e.g., some chironomids and smaller-bodied caddisfly larvae) to obtain sufficient material for 

stable isotope analysis.  

 

Stable isotope analysis 

Water and invertebrate samples were analyzed for stable hydrogen and oxygen isotopic 

compositions using a high-temperature conversion elemental analyzer (TC/EA) interfaced with a 

Thermo Finnigan Delta Plus XL® isotope ratio mass spectrometer at the Alaska Stable Isotope 

Facility, University of Alaska-Fairbanks (ASIF).  Stable isotope ratios were expressed in 

standard δ notation, defined as the parts per thousand deviation between the isotope ratio of a 

sample and standard material (Vienna Standard Mean Ocean Water):  

δD or δ18O (‰) = [(Rsample / Rstandard) – 1] x 1000 

where R represents D/H (2H/1H) or 18O/16O.  All invertebrate samples were held in the ASIF 

laboratory for at least two weeks prior to analysis to allow exchangeable hydrogen and oxygen to 

equilibrate with the lab environment (Wassenaar and Hobson, 2003).   

 

Data analysis 

One-way analyses of variance (ANOVAs) followed by Tukey’s HSD tests were used to 

assess whether mean water δD and δ18O differed among individual sampling sites and among site 

types (the Mississippi River, tributaries, and floodplain wetlands).  Least squares linear 

regressions were used to relate mean invertebrate δD and δ18O to corresponding mean water 
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isotopic values.  Differences in mean δD and δ18O values of invertebrates among individual 

collection sites and site types were assessed using one-way ANOVAs followed by Tukey’s HSD 

tests for separation of site or site type means.  

Differences in δD and δ18O among immature invertebrates from different functional 

groups within sites were assessed using one-way ANOVAs followed by Tukey’s HSD tests for 

separation of group means.  Two-sample t-tests were conducted to evaluate potential effects of 

preservation method (ethanol vs. freezing) on invertebrate δD and δ18O.  Two-sample t-tests 

were also used to test for differences in δD and δ18O between adult and immature insects of the 

same family collected from the same locations.   

Multivariate analysis of variance (MANOVA) with Pillai’s trace statistic and a 

discriminant analysis (CANDISC procedure in SAS) were used to assess differences in 

multivariate isotopic signatures (both δD and δ18O) of invertebrates among site types 

(Mississippi River, tributaries, and floodplain wetlands); a plot of the first two canonical variates 

was used to visually depict differences in invertebrate isotopic signatures among site types.  

Linear discriminant function analysis with a leave-one-out jackknife procedure was used to 

determine the accuracy with which invertebrates could be classified back to their environment of 

capture (the Mississippi River, tributaries, or wetlands) based on invertebrate δD and δ18O 

values.  P-values ≤ 0.05 were considered significant for all statistical tests. 

 

RESULTS 

Mean water δD and δ18O signatures were significantly different among sampling sites (F11, 26 = 

13.68, p < 0.0001 for δD; F11, 26 = 7.46, p < 0.0001 for δ18O) (Figure 1).  Water δD and δ18O 

signatures were highly correlated (r2 = 0.90, p < 0.0001).  Mean hydrogen and oxygen isotopic 

signatures also differed among water body types (the Mississippi River, its tributaries, and 

permanent and intermittent wetlands) (F3, 34 = 91.82, p < 0.0001 for δD; F3, 34 = 20.59, p < 0.01 

for δ18O).  The Mississippi River had the lowest water δD and δ18O signatures and floodplain 

wetlands exhibited the highest water δD and δ18O values; tributary streams to the Mississippi 

River had intermediate water δD and δ18O signatures (p < 0.05) (Figure 1).  Intermittent and 
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permanent wetlands generally exhibited more variation in water δD and δ18O within sites 

compared to the Mississippi River or its tributaries.  High rainfall and flooding during 2008 

resulted in some temporal variation in water δD and δ18O within individual sites, particularly 

some of the intermittent and permanent wetlands.  However, temporal variation in water δD and 

δ18O within sites was low in comparison to differences in water hydrogen and oxygen isotopic 

signatures among site types.     

The mean δD signature of invertebrates was highly correlated with the δD signature of 

the environment of capture (r2 = 0.69, p < 0.0001) (Figure 2A).  Mean δD signature of 

invertebrates was significantly different among site types (F3, 199 = 79.18, p < 0.0001), generally 

reflecting the trend observed for water δD (Figure 2A).  Mean δD of invertebrates collected from 

the Mississippi River was significantly lower than that of invertebrates collected from permanent 

or intermittent floodplain wetlands (p < 0.05).  Invertebrates from tributary sites also had lower 

mean δD values than invertebrates collected from floodplain wetlands (p < 0.05).  However, 

mean δD values of invertebrates from the Mississippi River and its tributaries were not 

significantly different (p > 0.05).  Invertebrate δ18O and water δ18O signature of the environment 

of capture were correlated (r2 = 0.05, p = 0.001), but this relationship was much weaker than the 

correlation between water and invertebrate δD (Figure 2B).  Invertebrate δ18O was more variable 

among individual water bodies within site types compared to invertebrate δD.  Mean invertebrate 

δ18O differed among some individual collection sites (F11, 191 = 3.60, p < 0.0001), but did not 

differ among site types (p > 0.05). 

Collection of invertebrates representing five functional groups of aquatic insects 

(shredders, collector-gatherers, scrapers, collector-filterers, and predators) and crayfish from a 

Mississippi River tributary (Clear Creek) enabled evaluation of differences in δD and δ18O 

among invertebrates from different trophic groups at this site.  Mean stable hydrogen and oxygen 

isotopic signatures of invertebrates representing different functional groups collected from Clear 

Creek were significantly different (F5, 34 = 22.93, p < 0.0001 for δD; F5, 34 = 8.38, p < 0.0001 for 

δ18O) (Figure 3).  Shredders and collector-gatherers had significantly higher δD values than 

crayfish and all other functional groups (p<0.05).  Crayfish had a higher mean δ18O than all 

insect functional groups (p<0.05).  More variation in δ18O among invertebrates collected from 

Clear Creek was observed in comparison to variability in δD among invertebrates captured from 
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this site.  Isotopic analysis of basal energy sources (stream-conditioned leaf litter and epilithic 

algae) showed about a 60 ‰ difference in δD between leaf litter and algae.  The δD values of 

most invertebrates from Clear Creek more closely resembled the leaf litter signature than the 

algal signature.  Epilithic algal δD values were depleted by approximately 150‰ compared to 

water from Clear Creek.   

Preservation method (freezing vs. ethanol preservation) did not significantly affect 

invertebrate δD (t=0.47, DF=38, p=0.64) or δ18O (t=1.76, DF=38, p=0.10).  Mean δD and δ18O 

signatures of adult insects captured soon after emergence were not significantly different from 

mean δD and δ18O signatures of immature insects (t=0.43, DF=38, p=0.97 for δD; t=-1.11, 

DF=38, p=0.28 for δ18O).     

Identification of the particular site in which an invertebrate was captured was not possible 

due to similarity of invertebrate δD and δ18O signatures among different floodplain wetlands and 

tributaries, but classifying individuals to their site type of capture (Mississippi River, tributary, or 

floodplain wetland) was much more successful, as significant differences in invertebrate isotopic 

signatures were present among site types (Pillai’s trace statistic; F4, 400 = 30.91, p < 0.0001) 

(Figure 4).  Linear discriminant function analysis indicated that 86 percent of individuals 

captured in the Mississippi River were correctly classified as having come from the river, and 82 

percent of invertebrates collected from floodplain wetlands were correctly classified back to that 

site type (Table I).  The intermediate and variable stable isotopic signatures of invertebrates 

captured in Mississippi River tributaries proved problematic, and most invertebrates collected in 

tributaries were not correctly classified back to their environment of capture (Table I).   

 

DISCUSSION 

Results suggested that δD may be a useful tool for tracing the origins and movements of 

invertebrates among water bodies that differ substantially in δD, such as the middle Mississippi 

River and its floodplain wetlands.  Invertebrate δD values reflected water δD of an invertebrate’s 

environment of capture and reliably distinguished individuals collected from the Mississippi 

River and its floodplain wetlands.  Similarly, Schimmelmann and DeNiro (1986) found a strong 

positive relationship between δD of terrestrial beetle chitin and δD of local rainfall.  Stable 

oxygen isotopic composition of invertebrates collected in the Mississippi River, its tributaries, 
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and floodplain wetlands also reflected water δ18O, but to a much lesser extent than observed for 

δD.   

For stable isotopic signatures to be consistently useful as tracers of food web subsidies or 

invertebrate dispersal, water δD and δ18O should remain distinct among environments over time.  

Mean water δD for the middle Mississippi River during this study was within the range of δD 

values reported by Coplen and Kendall (2000) for the middle Mississippi River during 

November 1984-August 1987, suggesting that the middle Mississippi River’s δD signature is 

relatively stable across years.  Despite some temporal variation in δD and δ18O within habitat 

types, differences in water δD and δ18O among the middle Mississippi River, tributaries, and 

floodplain wetlands persisted over the course of this study.  Temporal variation in water δD and 

δ18O within environments was likely due to a combination of evaporative fractionation, 

particularly in wetlands (Hoefs, 2004), and relatively high rainfall and flooding during 2008.  

Greater evaporative fractionation of H and O isotopes in floodplain wetlands with relatively 

small volumes and longer water residence times also likely explains the more positive water δD 

and δ18O values in floodplain wetlands compared to lotic environments (Hoefs, 2004).  

Differences in water δD between the middle Mississippi River and its floodplain wetlands are 

consistent with results of prior studies which have demonstrated that water δD and δ18O can 

differ between large rivers and their floodplain lakes (Whitledge et al, 2007; Zeigler, 2009; 

Zeigler and Whitledge, 2010).  The strong correlation between mean water δD and δ18O 

signatures for our sampling sites was not surprising given that water δD and δ18O are subjected 

to the same fractionation processes during the hydrologic cycle (Hoefs, 2004). 

Although water δD differed among environments and invertebrate δD differed between 

wetlands and the Mississippi River, sources of variation in invertebrate δD other than water δD 

precluded effectively distinguishing invertebrates collected from tributary habitats from 

invertebrates captured in the other two habitat types.  One possible explanation for the 

misidentification of capture location for two invertebrates collected in the Mississippi River is 

that these individuals may have drifted into the river from tributaries.  Additional sources of 

variation in invertebrate δD within sites that may have contributed to our inability to reliably 

distinguish tributary invertebrates from their counterparts collected in the Mississippi River or 

floodplain wetlands include variation in contributions of allochthonous and autochthonous 
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energy sources to aquatic invertebrates, variable contributions of water and food to invertebrate 

hydrogen, and differences in δD among individuals with different proximate compositions. 

Differences in invertebrate δD among functional groups in Clear Creek, particularly 

shredders and other functional groups, suggest that differences in the trophic basis of invertebrate 

production (allochthonous vs. autochthonous organic matter sources) likely contributed to 

variation in δD among invertebrates at Clear Creek and perhaps other sites.  Epilithic algal and 

stream-conditioned leaf litter samples collected from Clear Creek exhibited distinct δD values, 

consistent with recent studies in streams and rivers in other regions of North America (Doucett et 

al., 2007; Jardine et al., 2009).  Thus, δD may also be potentially useful as a tracer of terrestrial 

energy subsidies to stream food webs.   

For application of δD as a natural marker of invertebrate dispersal, development of 

classification models for particular functional groups or taxa may improve classification 

accuracy when attempting to identify an invertebrate’s home water body.  There does not appear 

to be a trophic shift for δD (Solomon et al., 2009), so it is unlikely that trophic level directly 

contributed to variation in δD among invertebrates within sites.  Variation in environmental 

water and food as hydrogen sources for invertebrates may have contributed to variation in 

invertebrate δD within sites.  Prior studies have determined that 61-86% of hydrogen in aquatic 

invertebrates is derived from their diet, with 14-39% of hydrogen derived directly from 

environmental water (Solomon et al., 2009; Wang et al., 2009).  Differences in proximate 

composition of invertebrates may also have contributed to variation in δD among individuals, as 

lipids have more negative δD values than proteins and carbohydrates (Sessions et al., 1999).  

Although the sources of variation in invertebrate δD described above may limit the applicability 

of δD as a natural marker of invertebrate source environment and dispersal when an individual 

moves between water bodies with similar δD signatures, results of this study indicate that δD can 

potentially serve as a natural tracer of aquatic invertebrate dispersal when δD signatures of 

source and receiving environments (e.g., the middle Mississippi River and its floodplain 

wetlands) are sufficiently distinct.  In contrast to use of δD for quantifying contributions of 

different energy sources to a consumer, application of δD as a natural marker of source 

environment and dispersal does not require quantitative understanding of sources and isotopic 

fractionation of hydrogen in pathways that lead from water to consumers.  Invertebrates from 
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different environments of interest must simply possess consistently different δD signatures and 

retain the source environmental signature for some period of time following dispersal.   

 Variation in invertebrate δ18O within sites precluded its use as an effective natural marker 

of an invertebrate’s source environment.  There are several potential sources of variation in 

invertebrate δ18O within environments, including those mentioned previously for δD.  In contrast 

to hydrogen, aquatic invertebrates derive approximately 70% of the oxygen in their tissues 

directly from environmental water (Wang et al., 2009), so δ18O of immature aquatic invertebrates 

may be more sensitive to fine-scale fluctuation in water δ18O compared to δD (Myers, 2010).  

Variation in δ18O among invertebrates collected from Clear Creek despite the similar δ18O 

signatures of algae and leaf litter suggests that differences in the relative importance of aquatic 

and terrestrial energy sources among invertebrate consumers are not likely responsible for 

observed variation in invertebrate δ18O.  The behavior of δ18O in food webs is poorly understood, 

and further basic research is needed.  Organically bound oxygen, particularly in carbonyl and 

carboxyl functional groups, is readily exchangeable with environmental water (Hoefs, 2004), and 

oxygen exchange likely represents a major source of variability in invertebrate δ18O values.  

Thus, δ18O appears to be much less effective than δD as a natural marker of aquatic invertebrate 

source environment and dispersal.   

 Despite some variation in invertebrate δD within sites, we were able to distinguish 

invertebrates from the middle Mississippi River and its floodplain wetlands with a high degree of 

accuracy.  This is consistent with recent studies that have used stable isotopes to distinguish 

fishes from large rivers (including the Mississippi River) and their floodplain lakes (Whitledge et 

al., 2007; Zeigler, 2009; Zeigler and Whitledge, 2010).  Our results suggest that δD may be a 

useful natural marker of invertebrate origin and dispersal in the middle Mississippi River-

floodplain ecosystem and in other connected river and lake systems where spatial variation in 

water δD is present.  Results of this study also indicate that preservation of invertebrate samples 

in ethanol or by freezing does not significantly affect invertebrate δD, enabling the convenience 

of using specimens freshly preserved in ethanol in applications of δD as a natural tracer.  Other 

natural chemical markers such as strontium:calcium (Sr:Ca) and barium:calcium (Ba:Ca) ratios 

and strontium isotope ratios (87Sr/86Sr) have been successfully used to identify natal origin and 

track dispersal of fishes (Kennedy et al., 2002; Wells et al, 2003; Brazner et al, 2004) and marine 

invertebrates (DiBacco and Levin, 2000) and may also be effective as natural tracers of 
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freshwater invertebrate dispersal.  Water Sr:Ca differs between the middle Mississippi River and 

its tributaries, enabling fishes from the Mississippi River, its tributaries, and floodplain lakes to 

be distinguished using a combination of otolith Sr:Ca and stable isotope ratios (Zeigler, 2009).  

Inclusion of additional natural chemical tracers such as Sr:Ca might improve classification 

accuracy of invertebrates collected in the Mississippi River-floodplain ecosystem to their water 

body of origin (river, tributary, or floodplain wetland) over use of δD alone.   

There are several potential applications of environmental δD signatures as a natural tracer 

of aquatic invertebrate dispersal.  Stable hydrogen isotopic signatures could be used to identify 

source environment for drifting immature invertebrates.  Application of δD for this purpose 

would require knowledge of the time span over which the δD signature of the invertebrate’s 

source environment persists in invertebrate tissues following movement into a new environment 

with a different δD signature.  The degree to which an invertebrate would retain its source 

environmental signature over time will depend on the rate at which the δD signature of the 

source environment is replaced in the invertebrate’s tissues by the new environmental signature 

through growth dilution and elemental turnover (Fry, 2006).  Further research should assess 

persistence of environmental δD signatures in aquatic invertebrates that move among water 

bodies that differ in δD.  Application of δD and other natural tracers of aquatic invertebrate 

dispersal may also facilitate assessment of the extent to which invertebrates that drift into the 

Mississippi River from floodplain lakes, wetlands, or tributaries subsidize riverine invertebrate 

populations and food webs.   

Stable hydrogen isotopic analysis may also be useful for identifying natal environment of 

dispersing adult aquatic insects.  Hobson et al. (1999) used δD of metabolically inert wing 

keratin to identify natal origin of migratory monarch butterflies in North America.  Our results 

showed no change in δD or δ18O signatures of aquatic insects following emergence, indicating 

that natal environmental signatures are retained in recently emerged adult aquatic insects and that 

δD will likely be applicable as a natural tracer of dispersal for aquatic as well as terrestrial 

insects.  Many adult aquatic insects do not feed, but the natal environment δD signature may be 

replaced over time in aquatic insect taxa that feed as adults.  Further research should assess the 

effect of feeding on changes in δD signatures of adult aquatic insects over time.  In contrast to 

artificial labeling methods for tracking dispersal of adults of aquatic insect taxa (Payne and 

Dunley, 2002; Caudill, 2003), use of δD and other natural tracers of invertebrate dispersal is not 
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limited to relatively discrete locations in which application of an artificial label is practical.  

Thus, natural tracers such as δD will facilitate assessment of population and food web subsidies 

provided by adult stages of aquatic insects at a landscape scale (e.g., Polis et al., 1997).   

We anticipate that δD may be a useful natural marker of origin and dispersal for both 

immature and adult stages of aquatic invertebrates not only in the middle Mississippi River-

floodplain ecosystem, but also in other aquatic environments where spatial variation in water δD 

is present.  Use of natural markers such as δD can further our understanding of the complex 

foodwebs and energy flow pathways of large river-floodplain ecosystems and thereby enhance 

management and restoration efforts. 
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Table I.  Results of linear discriminant function analysis showing classification accuracy 

(determined by jackknife procedure) for individual invertebrates to the environment in which 

they were collected (Mississippi River, tributary, or floodplain wetland) based on invertebrate 

δ18O and δD.  n=number of invertebrates collected from each environment.  

______________________________________________________________________________ 

          Assigned location 

     _______________________________ 

Source location   n  MS River Tributary  Wetland % Correct  

______________________________________________________________________________ 

MS River    14       12        2       0        86  

Tributary    68       29      22     17        32 

Wetland  121         0      22     99        82 

______________________________________________________________________________ 
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Figure Captions 

 

Figure 1.  Mean water δD (a) and δ18O (b) values (±SE) for the middle Mississippi River, 

tributaries, permanent wetlands (P. wetlands) and intermittent wetlands (I. wetlands) during 2007 

and 2008.  X-axis sampling location codes: MISS = Mississippi River, BM = Big Muddy River, 

CC = Clear Creek, MR = Mary’s River, OB1, 2, 3 = Oakwood Bottoms wetlands, GTC = Grand 

Tower Chute, BP = Cape Bend State Fish and Wildlife Area wetland #1, UC1 = Union County 

Refuge wetland, FS = Cape Bend State Fish and Wildlife Area wetland #2, NF = Shawnee 

National Forest wetland.   

 

Figure 2.  Relationships between (a) mean invertebrate δD (± SE) and water δD and (b) mean 

invertebrate δ18O (±SE) and water δ18O for invertebrates collected from the Mississippi River, 

tributaries, permanent wetlands (“P. Wetlands”) and intermittent wetlands (“I. Wetlands”).    

Solid lines in each panel depict regression lines fit to the data.   

 

Figure 3.  δD and δ18O signatures of individual invertebrates from different functional groups 

and δD and δ18O signatures of water, periphyton, and conditioned leaf litter from Clear Creek, a 

tributary of the middle Mississippi River in Union County, IL. 

 

Figure 4.  Stable isotopic signatures of invertebrates collected from the middle Mississippi River, 

tributaries, and floodplain wetlands based on the first two canonical variates obtained through 

linear discriminant function analysis (proc CANDISC in SAS®) on invertebrate δD and δ18O.   
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