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Abstract 1 

Environmental change has and will continue to adversely influence aquatic communities. Efforts 2 

to model impacts of environmental change on fisheries have largely focused on cold-water, 3 

commercial, and recreationally-valued species, even though warmwater, non-game species have 4 

important roles in ecosystem services and processes. We developed species distribution models 5 

for fourteen warmwater fish species native to the Central United States and evaluated 6 

environmental drivers and predictive performance. We used an ensemble model approach 7 

produced by combining forecasts of five single-model techniques. Response plots and variable 8 

importance calculations were used to evaluate the influence of individual variables. The 9 

predictive performance of the ensemble models was assessed using area under the curve (AUC) 10 

of the receiver-operating characteristic plot. Ensemble model AUC values generally performed 11 

better than single-model types, suggesting ensemble models are more reliable and applicable for 12 

management purposes than single models. Most models were influenced by a mix of climate, 13 

land use and geophysical variables; however, climate variables were the dominant environmental 14 

drivers across models.  Given the high sensitivity of models to climate and land use, we expect 15 

future climate and land use changes to influence distributions.  16 

  17 
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Introduction 18 

Freshwater communities are facing losses in biodiversity far greater than terrestrial systems as a 19 

result of habitat loss and fragmentation, pollution, hydrologic alteration, invasive species, 20 

climate change, and overexploitation (Dudgeon et al., 2006; Heino et al., 2009). As 21 

anthropogenic activities continue to degrade freshwater systems, it will become increasingly 22 

important to develop reliable conservation planning tools that can be used to evaluate the 23 

tradeoffs of management and conservation strategies under future scenarios of environmental 24 

change. Substantial efforts to assess environmental change impacts, particularly climate change, 25 

in fisheries have been targeted at cold-water species (upper thermal tolerance <26° C; Hokanson 26 

1977), such as salmonids (Comte et al., 2013), that are unable to tolerate warm water 27 

temperatures. Further, fish species with little commercial or recreational value are not well-28 

represented in risk assessment and impacts modeling literature (Comte et al., 2013), despite their 29 

important role in ecosystem services and processes (Vanni, 2002; Dudgeon et al., 2006). 30 

Species’ distribution models have been utilized for a number of reasons, including testing 31 

ecological hypotheses, conservation planning, impact assessment, resource management, 32 

ecosystem restoration, and invasive species risk assessment (Manel et al., 2001; Townsend 33 

Peterson, 2006; Franklin, 2009). Although there remain limitations, species distribution models 34 

are one of few practical tools to assess impacts of environment change on species (Araujo & 35 

Guisan 2006; Thuiller, 2007; Franklin, 2009; Morin & Thuiller, 2009; Bellard et al., 2012). Due 36 

to the wide application of species distribution models and access to digital databases, use of 37 

species distribution modeling has greatly increased and led to the advancement of modeling 38 

techniques (Guisan & Thuiller, 2005; Franklin, 2009; Comte et al., 2013). There are numerous 39 

modeling methods used to describe relationships between environmental predictors and a 40 
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species' distribution, each with different tradeoffs (Austin, 2002; Segurado & Araujo, 2004; Elith 41 

et al., 2006; Franklin, 2009; Aguirre-Gutierrez et al., 2013). As techniques have moved from 42 

climate envelope models to generalized linear models (GLM) to multivariate adaptive regression 43 

splines (MARS), models have become more reflective of realistic ecological relationships 44 

(Leathwick et al., 2006; Elith & Leathwick, 2009). Machine learning approaches such as 45 

classification and regression trees (CTA or CART), artificial neural networks (ANN), random 46 

forest (RF), generalized boosted regression (GBM), and maximum entropy (MAXENT) models 47 

have become common analytical tools (Elith & Leathwick, 2009; Franklin, 2009). While 48 

machine learning techniques tend to have better performance, modern regression techniques 49 

often allow the modeler to more clearly interpret response curves and have more control over 50 

model-fitting (Elith & Leathwick, 2009; Franklin, 2009; Cianfrani et al., 2011). Model selection 51 

should be considered carefully as it is the major source of uncertainty in species distribution 52 

modeling (Pearson et al., 2006; Diniz-Filho et al., 2009; Buisson et al., 2010).  53 

Recently, there has been a move towards ensemble models, which combine projections from 54 

different model types to overcome inter-model variability (Marmion et al., 2009; Thuiller et al., 55 

2009).  The thought behind model ensembles is that a combination of unbiased model outputs, 56 

each limited by its own assumptions and algorithms, will result in a more accurate prediction. 57 

Multi-model ensembles can utilize different initial conditions, model classes, model parameters 58 

and boundary conditions in order to provide more robust projections (Araujo & New, 2006; 59 

Grenouillet et al., 2011). Providing reliable projections is essential for natural resource agencies, 60 

which are often tasked with difficult management decisions regarding species and habitat 61 

(Mawdsley et al., 2009; Cianfrani et al., 2011; Dawson et al., 2011; Kostyack et al., 2011; 62 

Lawler & Olden, 2011; Olden et al., 2011).  63 
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A variety of species distribution modeling approaches have been used to project fish 64 

distributions, including GLM (Lassalle et al., 2008; Wenger et al., 2011), GAM (Brosse & Lek, 65 

2000; Buisson et al., 2008; Lassalle et al., 2008), CTA (Lyons et al., 2010; Steen et al., 2010), 66 

and MAXENT (Labay et al., 2011). The ensemble modeling approach, however, has not been 67 

widely applied to fish species (but see Buisson & Grenouillet, 2009; Grenouillet et al., 2011; 68 

Poulos et al., 2012). Within the United States, fish distribution models have largely been limited 69 

to small watersheds (Steen et al., 2010; Labay et al., 2011), single species (Brewer et al., 2007), 70 

or impacts of non-native species (Sharma et al., 2011; Wenger et al., 2011; Poulos et al., 2012).  71 

Recent state-wide modeling efforts in Wisconsin (Lyons et al., 2010), Maryland (Maloney et al., 72 

2013), and other states have resulted in the development of several distribution models for 73 

common stream fishes. However, developing models at larger spatial scales that incorporate the 74 

full range of natural variability associated with species’ occurrence may produce different results 75 

than models developed for sub-sections of a species’ range (Babet-Massin et al., 2010).   76 

The primary objective of this research was to explore the utility of an ensemble modeling 77 

approach for characterizing distributions of 14 fish species native to the Central United States, of 78 

which the majority are warmwater (upper thermal tolerance >34° C; Hokanson 1977), non-game 79 

species. In the development of these models we were interested in the environmental drivers of 80 

each model and whether the response curves made logical sense given the known ecology of 81 

each species. In the evaluation phase, we were interested in the predictive performance of 82 

individual models as well as the model ensemble approach, given the large-scale environmental 83 

variables selected.  Finally, model performance is often explained to be an artifact of species 84 

ecology in that habitats associated with a specialist species are thought to be easier to 85 

discriminate than habitats for a more ubiquitous species (Segurado & Araujo, 2004; Allouche et 86 
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al., 2006). Therefore, we were also interested if there were trends in model performance with 87 

respect to prevalence rates.  88 

 89 

 Materials and Methods 90 

Data Collection 91 

Natural resource agencies from twelve states representing the central United States (AR, IL, IA, 92 

KS, LA, MN, MS, MO, NE, ND, SD, and WI) were sent data requests for representative fish 93 

stream sampling events between the years 2000 and 2010. Ten states returned presence/absence 94 

fish data for a combined total of 15,710 unique fish sampling events for the time period, with 95 

data for 218 species. Due to the high number of sampling events in Wisconsin compared to the 96 

remainder of the study area, sampling events were randomly sub-sampled to provide a more even 97 

spatial coverage of sampling events across the entire study area (Figure I). The list of candidate 98 

fish species was narrowed down through a number of different methods. First, native range and 99 

study area overlap was examined for each species. Modeling of species from a restricted range of 100 

occurrence can lead to misleading conclusions (Babet-Massin et al., 2010); therefore, species 101 

whose known distribution was predominantly or completely contained within the study area were 102 

initially selected for model development. Second, records for each species were examined to 103 

make sure observations are representative of the environmental space in which it occupies 104 

(Kadmon et al., 2003). Although some successful models have been developed for species with 105 

small sample sizes (Hernandez et al. 2006, Franklin et al. 2009), species with low recorded 106 

occurrences (<30) were removed (Guisan  et al., 2007; Wisz et al., 2008). The selection process 107 
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reduced the number of species down to fourteen, listed in Table I with their scientific name and 108 

nomenclatural authority.   109 

Environmental attributes, including geology, land use, discharge, and climate variables, were 110 

quantified for each stream segment containing a fish sampling event.  Physical variables included 111 

elevation, slope, drainage area, and stream order from the National Hydrography Dataset Plus 112 

(http://www.horizon-systems.com/nhdplus/), as well as number of dams in the watershed 113 

(Esselman et al., 2011). Geological variables included presence of karst (Tobin & Weary, 2004) 114 

and 18 surficial geology variables from the USGS Surficial Geology by Major River Basins 115 

dataset (http://water.usgs.gov/GIS/metadata/usgswrd/XML/mrb_e2rf1_sgeol.xml). Land use 116 

variables included row crops, wheat, forest, grassland, developed, and water for the year in 117 

which each fish sampling event took place and originated from the National Agricultural 118 

Statistics Service’s Cropland Data Layer (http://nassgeodata.gmu.edu/CropScape/). Land use and 119 

surficial geology classes were calculated as a percentage within a stream segment’s watershed. 120 

Discharge variables included the 10th, 50th and 90th percentile of flow, and a flow variability 121 

index (90th/10th percentiles). Discharge variables were calculated using regression models 122 

developed and evaluated using USGS gage data (http://waterdata.usgs.gov/nwis) for the study 123 

area. Climate variables were obtained through the National Climate Data Center 124 

(http://www.ncdc.noaa.gov/) and included mean seasonal and annual precipitation, mean annual 125 

maximum air temperature and mean annual minimum air temperature. Climate variables were 126 

calculated as ten-year averages with the year of sampling being the tenth chronological year used 127 

in the calculation. All environmental variables were calculated for each stream segment within 128 

the study area (roughly 700,000 stream segments) for the year 2011 in order to project the 129 

current distribution of each species.  130 
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 131 

Modeling approach 132 

Five different individual model types were used to model the presence and absence of species: 133 

GLM, GBM, CTA, RF, and MARS. These five models were selected based on computation 134 

requirements and ability to evaluate response curves. The models were developed within the 135 

BIOMOD2 package in R (http://cran.r-project.org/web/packages/biomod2/index.html). For each 136 

species, the data were split into training and testing subsets to develop and then evaluate the 137 

model’s performance (Guisan & Zimmerman, 2000). Splitting of the original dataset into 138 

training and testing subsets was done using a stratified random sampling design. First, a 100x100 139 

km grid was overlain on the study area. Presences within each stratum were randomly assigned 140 

to calibration (also called training) and testing datasets, and this process was repeated for 141 

absences. Approximately 75 percent of the data were allocated to the calibration subset and 25 142 

percent allocated to the testing subset (Franklin, 2009). The calibration subset was randomly split 143 

using 75 percent for calibrating the models and the remaining 25 percent for evaluating single 144 

models. When a final set of variables were identified, a ten-fold cross validation resulted in 50 145 

single models for each species. Each of the ten model runs for cross validation was developed 146 

using a randomized selection of 75% of the calibration dataset. The initial testing subset was 147 

used to calculate model evaluation scores for model ensembles using the optimal threshold 148 

identified (Figure II).  149 

During the calibration process, a variable selection process reduced multi-collinearity through 150 

removal of correlated variables. Response plots and variable importance assessments were useful 151 

in identifying the best suite of variables for the final model. Response plots for individual models 152 
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were generated by holding N-1 variables constant at their mean value while the variable of 153 

interest was plotted across its range.  Variable importance was evaluated in each model using a 154 

permutation procedure that compared projections made by a trained model with projections made 155 

by the same model, but with one variable randomized. This was done for each variable 156 

independently and projections were evaluated using correlation. A high correlation between 157 

projections suggested the randomized variable had little influence on the model and a low 158 

correlation suggested the variable to be more important to the model. The variable importance 159 

metric was calculated in BIOMOD2 and is equal to one minus the correlation between the 160 

trained and randomized projection. Of correlated variables (r>0.60), the variable with the highest 161 

variable importance was included in the final model. Variables accounting for <5% of average 162 

model variable importance were assumed to have little influence on model response and were 163 

removed. 164 

A model ensemble was produced using a weighted average of the individual-model evaluation 165 

values (Marmion et al., 2009). The primary evaluation metric used was the area under the curve 166 

of the receiver-operating characteristic plot (AUC), which measures the ability of a model to 167 

discriminate between sites where a species is present, versus those where it is absent. AUC 168 

values of 1 represent a perfect model and values of 0.5 reflect a model as good as random 169 

assignment of presence or absence (Pearce & Ferrier, 2000). Model ensemble probability 170 

projections were converted to binary projections using thresholds identified by the model 171 

ensemble AUC that maximizes sensitivity (true positive rate) and specificity (true negative rate). 172 

Sensitivity and specificity were also used to evaluate model ensemble performance. We 173 

evaluated the influence of prevalence rates on model performance metrics using Pearson 174 
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correlations. Model ensembles were used to project current distributions and were evaluated 175 

spatially using ArcGIS.  176 

 177 

Results 178 

Model performance 179 

Species distribution models performed well, with individual models producing AUC values 180 

between 0.65 and 0.99 and ensemble models producing AUC values between 0.89 and 0.99 181 

(Figure III). Sensitivity across species’ ensemble models ranged from 80% to 100% (average of 182 

92.3%) and specificity ranged from 73% to 97% (average of 85.9%) suggesting models could 183 

predict both presences and absences well. Ensemble model AUC values generally performed 184 

better than individual model types. Although no single model type consistently out-performed 185 

other model types across species, RF and GBM models performed better than GLM, CTA, and 186 

MARS for almost all species. Variability of AUC scores within an individual model type varied 187 

across species. For example, GLM runs produced consistent AUC values for orangethroat darter 188 

(Etheostoma spectabile), but were highly variable for shortnose gar (Lepisosteus platostomus). 189 

Variability of AUC values across model types within a species also varied, with some species 190 

showing fairly consistent values, like river carpsucker (Carpiodes carpio), and other species, like 191 

smallmouth bass (Micropterus dolomieu), showing more variability. Species prevalence was 192 

negatively correlated with ensemble model AUC values (r = -0.64, p<0.01), sensitivity (r=-0.60, 193 

p=0.02), and specificity (r=-0.55, p=0.04).  194 

 195 
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Environmental drivers 196 

The final set of models included between 8 and 18 environmental variables per species. Most 197 

models were influenced by a mix of climate, land use and geophysical variables; however, 198 

average variable importance was highest for climate variables across models (Figure IV). For 199 

most species, there was fairly high variabililty in variable importance for environmental drivers 200 

across individual model types and model runs. For example, variable importance for mean 201 

annual minimum air temperature for bigeye shiner (Notropis boops) and total annual 202 

precipitation for plains topminnow (Fundulus sciadicus) averaged 0.45, but ranged across 203 

models and model runs from 0.1 to 0.8. Response curves for mean annual maximum temperature 204 

typically resembled unimodal or threshold responses for most species. For example, response 205 

curves for mean annual maximum temperatures suggest smallmouth bass occurrence is 206 

associated with temperatures less than 31°C, river carpsucker occurrence is associated with 207 

temperatures greater than 28°C, and slender madtom (Noturus exilis) is associated with 208 

temperatures between 28-33°C (Figure V). Response curves for flow variability varied across 209 

species, with presence of smallmouth bass, bigmouth shiner (Hybopsis dorsalis), and 210 

slenderhead darter (Percina phoxocephala) associated with low flow variability, presence of 211 

plains topminnow and freckled madtom (Noturus nocturnus) associated with low to medium 212 

flow variability, and presence of suckermouth minnow (Phenacobius mirabilis) and orangethroat 213 

darter associated with medium to high flow variability.  214 

While there was some variability in response curves across model types, there were consistent 215 

relationships for many species. Occurrence of bigeye shiner and slender madtom was associated 216 

with mean annual minimum air temperatures greater than -5°C, while occurrence of suckermouth 217 

minnow was associated with  mean annual minimum air temperatures between -10° and 0°C. 218 
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Occurrence of many species were associated with specific ranges of precipitation. For example, 219 

presence of plains topminnow was associated with total annual precipitation less than 220 

approximately 700 mm and presence of bigeye shiner was associated with total annual 221 

precipitation between 700 and 1300 mm.  222 

At least one land use variable remained in the final suite of variables for each species model. 223 

Percent row crops, water and forest were the variables most commonly found across all species. 224 

A few models were strongly influenced by percent row crops, including bigmouth shiner, 225 

suckermouth minnow, smallmouth bass, and slenderhead darter. Response plots suggest 226 

occurrence of all four of these species to be positively associated with row crops. The plains 227 

minnow (Hybognathus placitus) model indicated that this species was associated with less than 228 

five percent of developed land in a watershed.  229 

Of the geophysical variables, elevation was a particularly strong driver of occurrence of 230 

shortnose gar and river carpsucker. Presence of river carpsucker was associated with elevation 231 

less than 180 meters, while presence of shortnose gar was associated with elevation less than 60 232 

meters.  Though generally less sensitivie, surficial geology variables were present in every 233 

species’ model except suckermouth minnow.  234 

 235 

Current range projections 236 

The current range projections of the models closely matched known distributions (NatureServe, 237 

2010) for all species (Figure VI – Figure IX). Although the known distribution outlines were 238 

produced using reputable sources, their accuracy is not guaranteed. Models that did considerably 239 

well without over-projecting into areas where the species is not known to exist, or under-240 
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projecting within the known range, included smallmouth bass, suckermouth minnow, largescale 241 

stoneroller (Campostoma oligolepis), plains minnow, river carpsucker, and slender madtom. The 242 

coefficient of variation of the five model types was quantified for each stream segment to show 243 

where model agreement and disagreement occurred for each species (Table II). Generally, the 244 

models agreed (had lower coefficient of variation values) where each species was projected to be 245 

present by the ensemble models, but had greater disagreement (higher coefficient of variation 246 

values) where the ensemble model projected the species’ to be absent (Figure VI - Figure IX).  247 

High densities of certain species often resulted in higher probabilities of occurrence in those 248 

areas. The southeast corner of Kansas had relatively high frequencies of freckled madtom, 249 

orangespotted sunfish (Lepomis humilis), and slenderhead darter occurrences and therefore the 250 

models projected higher probabilities of occurrence for these species in that general area. Some 251 

models failed to project where there were relatively high densities of occurrence records. For 252 

example, the bigmouth shiner model failed to project distributions in western Nebraska despite 253 

having numerous occurrence records located in that region. The bigeye shiner model also failed 254 

to project where there was presence data in southeastern Kansas.  255 

In areas where occurrence data were limited, the models were often unable to project 256 

distribution.  For example, the plains topminnow model failed to project high probabilities of 257 

occurrence within its known range in central Missouri due to limited occurrence records. 258 

Freckled madtom also had limited occurrences in the southern extent of its range that the model 259 

was unable to capture. Although there were only 69 occurrence events for plains minnow, the 260 

model captured the known range well.    261 



14 
 

Some models over-projected species range well outside known ranges. Over-projections were 262 

most commonly located north and west of the known ranges. For example, the orangespotted 263 

sunfish and slenderhead darter models projected occurrences to extend north and west of their 264 

current known ranges. Although the known range overlay makes it appear as though river 265 

carpsucker is over-projected into Nebraska and southern Minnesota, there are numerous 266 

occurrence records from these regions. Additionally, there are records of river carpsuckers 267 

present throughout the Platte River watershed in Nebraska dating back to the 1950’s (University 268 

of Kansas Biodiversity Institute, Cornell University Museum of Vertebrates [Accessed through 269 

Biodiversity Information Serving Our Nation (BISON), bison.usgs.ornl.gov, on 2014-04-09]). 270 

Similarily, although the known range overlay suggests there are overprojections in the Ozarks of 271 

southern Missouri and northern Arkansas, there are occurrence records in that region.  272 

 273 

Discussion 274 

Model development and evaluation 275 

We developed species distribution models for fourteen fish species that were able to discriminate 276 

suitable habitat for these species quite well. We used existing state fisheries data, suggesting 277 

these datasets are valuable resources for modeling species distributions. Differences in sampling 278 

practices and database management, however, may influence model performance. For example, 279 

prior to sub-sampling data from Wisconsin, models were developed using all fish data and 280 

projections were skewed due to the high density of samples.  Others have shown that well-281 

distributed data improve model performance (Kadmon et al., 2003). While requesting fisheries 282 

data from various state agencies, numerous personnel made clear the potential for errors due to 283 
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misidentification of a species or data entry mistakes. Additionally, some states lumped all types 284 

of sampling into a single database (e.g., fish kills, standardized basin sampling, targeted 285 

sampling), which made it difficult to identify representative samples.  286 

Ensemble models generally out-performed individual models in modeling current distributions, 287 

suggesting ensemble models are more reliable and applicable for fisheries management purposes 288 

than individual models. AUC values from ensemble models indicated high discrimination ability 289 

of presence/absence data in the validation stage. Recent work has suggested that high 290 

performance of ensemble models may not necessarily translate into high predictive ability 291 

outside of the model’s spatial and temporal extent (Crimmins et al., 2013). An important 292 

question currently receiving attention is how to assess species distribution models’ predictive 293 

performance for environmental change scenarios. Numerous studies have emphasized the use of 294 

temporally and spatially independent data to evaluate transferability of a model across time 295 

(Rapacciuolo et al., 2012; Smith et al., 2013) and space (Wenger & Olden, 2012). Transferability 296 

of models over long time periods (>20 years) is difficult to assess for fish species, as 297 

standardized sampling programs are typically less than thirty years old.  Similarly, environmental 298 

data, such as land use, are often unavailable at large scales for historic periods. While assessment 299 

of transferability will provide some understanding of a model’s validity for these purposes, 300 

questions will remain regarding a model’s response to climate variables with no current 301 

analogue.  302 

Although our results suggest lower rates of prevalence result in higher model performance, 303 

ecological trait associations with model performance have been evaluated for other taxa groups - 304 

including plants, insects, birds, and reptiles - with mixed results (Mitchell et al., 2001; Pearce et 305 

al., 2001; Huntley et al., 2004). Decreased performance in the form of AUC values with 306 
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increasing species prevalence has been documented previously (Segurado & Araujo, 2004; 307 

Allouche et al., 2006).  This performance metric is independent of prevalence and thus our 308 

results support the hypothesis that distributions of rare species are more predictable than those of 309 

common species. Similarly, range size has been found to be negatively correlated with AUC 310 

values of plants and birds (McPherson & Jetz, 2007; Syphard & Franklin, 2010). Still other 311 

studies showed little to no influence of prevalence or range size on AUC values (McPherson et 312 

al., 2004; Franklin et al., 2009).  313 

Overall, climatic, land use, and geophysical categories of variables all appeared to be relevant to 314 

modeling these species. Distribution models for fish species regularly include variables of 315 

temperature, precipitation, drainage area, elevation, stream slope, discharge, land use, width, 316 

depth and geology (Leathwick et al., 2005; Lassalle et al., 2008; Buisson & Grenouillet, 2009; 317 

Lyons et al., 2010; Steen et al., 2010; Bond et al., 2011; Labay et al., 2011; Wenger et al., 2011). 318 

It is possible particular variables were removed for having little influence on model performance 319 

that actually have strong impacts on species distributions at different scales. For example, 320 

developed land use is well known to have negative consequences on aquatic communities (Wang 321 

et al. 1997; Allan 2004); however, it likely failed to strongly influence model results for some 322 

species because it represents a small percentage of the overall study area. 323 

Response curves of environmental variables for each species were examined and compared to 324 

available published relationships.  For example, 10 of the 14 species have published estimated 325 

upper thermal limits for water temperatures (Table III). Although we used mean annual 326 

maximum air temperature in our models averaged over a ten year period, air and water 327 

temperatures are generally related (Stefan & Preud'homme, 1993). Many of the modeled species’ 328 

response plots do not provide an estimate of an upper thermal limit, likely because their limit is 329 
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beyond our maximum value of mean annual maximum air temperature (34 ˚C). Response plots 330 

for smallmouth bass, bigmouth shiner, slender madtom, and orangespotted sunfish provide an 331 

estimate of upper thermal limits of air temperature similar to published estimates of upper 332 

thermal water temperatures. If using these models to project distributions under climate change 333 

scenarios, projections will likely be more realistic for species in which an upper thermal limit 334 

was captured in response curves. For the models that are unable to estimate an upper thermal 335 

limit, model projections under warming temperatures may overestimate future distributions.    336 

Of the fourteen species we modeled, smallmouth bass is the most well-studied. Our strongest 337 

predictor for smallmouth bass was 90th percentile of discharge, which was strongly correlated to 338 

drainage area. A relative abundance model for riverine smallmouth bass in Missouri was strongly 339 

influenced by stream size, most likely due to the association between flow variability and stream 340 

size (Brewer et al., 2007). Headwater streams typically have greater hydrologic variability as 341 

compared to larger streams (Jackson et al., 2001), and smallmouth bass are well known to be 342 

associated with larger streams with stable hydrology (Poff & Allan, 1995; Zorn et al., 2002). 343 

Discharge, particularly during the spawning and rearing time period, has been found repeatedly 344 

to be an important factor on riverine smallmouth bass populations (Cleary, 1956; Simonson & 345 

Swenson, 1990; Bovee et al., 1994; Smith et al., 1995; Peterson & Kwak, 1999) as variation in 346 

stream discharge negatively influences young of the year smallmouth bass through displacement 347 

of eggs and fry, food availability and ability to forage. 348 

The majority of species modeled have few known habitat associations other than local habitat 349 

preferences in limited stream studies, making it difficult to validate response curves observed 350 

from our models. Small-scale variables important to structuring fish communities are often 351 

unavailable at the scale of this study. For example, coarse substrates have been associated with 352 
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the occurrence of freckled madtom (Bouska & Whitledge, 2014) and in-stream vegetation is 353 

often associated with presence of plains topminnow (Fischer & Paukert, 2008b). In general, there 354 

appears to be a need for additional study of environmental requirements of warmwater, non-355 

game species in order to validate response curves. Basic ecology will be particularly important in 356 

assessing climate impacts as warmwater fishes are largely expected to expand their ranges under 357 

climate change scenarios (Comte et al., 2013). 358 

Impoundments have drastically changed the physical and biological template of many river 359 

systems. Although the number of upstream dams was included as predictor variables, it did not 360 

improve the explanatory power of any model, which may be a consequence of the spatial scale of 361 

study.  Impoundments often support non-native species that compete with native species. For 362 

example, plains topminnow distribution has been suggested to be negatively influenced by the 363 

presence of non-native species such as largemouth bass (Micropterus salmoides) and 364 

mosquitofish (Gambusia affinis) (Fischer & Paukert, 2008a; Pasbrig et al., 2012). Impoundments 365 

have also been associated with reduced habitat and populations of suckermouth minnow, 366 

slenderhead darter, and bigmouth shiner (Quist et al., 2005; Heimann et al., 2007). Further, 367 

fluvial dependent species, such as plains minnow have been shown to require 115 km of free-368 

flowing river for population persistence (Perkin & Gido, 2011). 369 

Current range projections were assessed by comparing them with known distribution maps. Both 370 

NatureServe and the U.S. Geological Survey’s Biodiversity Information Serving Our Nation 371 

(BISON) product provide coarse-scale ranges and occurrence data for many species found 372 

throughout the United States (NatureServe, 2010; U.S. Geological Survey, 2013).  Both 373 

resources allow for qualitative assessments of current range projections. Unfortunately, due to 374 

incomplete coverage of sampling data, we cannot quantify the degree of over- or under-375 
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projection. Based on comparisons with these layers, our current range projections for all species 376 

appear to correlate well with known occurrences.  Similarly, we can compare current projections 377 

to other modeling efforts. For example, occurrence models of smallmouth bass in Missouri 378 

closely match our projections (Brewer et al., 2007).   379 

 380 

 Limitations and applications 381 

Forecasting how species distributions will be influenced under scenarios of future environmental 382 

change is key to developing potential conservation strategies. Reliability of distribution models 383 

should be carefully evaluated before predictions are used to inform management decisions 384 

(Fielding & Bell, 1997). Caution should be used when using model projections in decision-385 

making, with thorough understanding of the assumptions and uncertainties that limit modeling 386 

procedures.  387 

One of the primary assumptions of species distribution models is that the system being modeled 388 

is in a static or equilibrium state (Guisan & Zimmerman, 2000; Franklin, 2009).  In systems such 389 

as streams and rivers, however, natural disturbances such as floods and drought are relatively 390 

frequent and are important community structuring events (Leopold, 1994; Dodds et al., 2004). 391 

When dynamic systems are modeled with static models, there are limitations in their ability to 392 

accurately predict species distributions using environmental predictors (Austin, 2002). More 393 

mechanistic models are increasingly being developed, yet often require extensive datasets and 394 

therefore cannot be used at large spatial scales (Kearney & Porter, 2009). Our species 395 

distribution models, as with most, are also unable to account for biological interactions, 396 

dispersal, phenotypic plasticity or evolutionary changes (Lavergne, 2010).  Therefore, models 397 
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often assume these factors have non-significant impacts on species distribution when in reality 398 

these are likely important factors to species adaptability. As models have progressed, numerous 399 

studies have demonstrated how the inclusion of these factors can improve model fit, increase 400 

accuracy and provide insight into mechanisms of community assembly (Araujo & Luoto, 2007; 401 

Leathwick et al., 2008; Morin & Thuiller, 2009; Van der Putten et al., 2010; Boulangeat et al., 402 

2012). 403 

The types of predictor variables used are also an important factor when assessing model 404 

projections. Predictor variables used in species distribution models generally fall into one of 405 

three categories: resource, direct and indirect (Austin, 1985). Resource variables represent matter 406 

and energy consumed by organisms whereas direct variables have influence on an organisms' 407 

physiology, but are not consumed. Indirect variables do not influence organisms physiologically, 408 

but are often correlated with species distribution patterns, easy to measure, more accessible and 409 

used as proxies for resource and direct variables (Guisan & Zimmerman, 2000; Austin, 2007). 410 

Due to correlations between indirect environmental gradients and species occurrence, the use of 411 

indirect predictor variables may result in error-prone predictions (Austin, 2002; Elith & 412 

Leathwick, 2009). For example, occurrence of a fish species may be correlated with channel 413 

slope due to its relationship with a stream discharge gradient. Slope may be a relevant substitute 414 

for discharge for predicting a species' current distributions, but may no longer be relevant under 415 

climate change scenarios, which may change discharge patterns, but not slope.  Therefore, the 416 

use of resource and direct variables is recommended for large spatial scales as these variables 417 

lead to a more general, mechanistic model with greater interpretability (Austin, 2002). When 418 

resource and direct variables are not available, however, indirect variables that serve as spatial 419 

surrogates may be the only option. 420 
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Conclusions 421 

Species distribution models are important tools for conservation and management of freshwater 422 

fish species. We were able to estimate probability of occurrence of fourteen fish species to 423 

almost 700,000 stream segments within our study area. Validation of our ensemble models 424 

indicated high performance and qualitative comparisons with known species’ ranges suggest the 425 

models produced reliable species distribution projections. Although environmental associations 426 

with most of our modeled species are unknown, numerous response curves for environmental 427 

variables were supported by the literature. Given the high sensitivity of models to climate and 428 

land use variables, we expect distributions to be strongly influenced by these variables.  429 
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Tables 685 

Table I. The final list of species selected for model development and the number of occurrence 686 

records out of 8,675 sampling events.  687 

Common Name Scientific Name (Nomenclature Authority) Occurrence 

records 

Bigeye shiner Notropis boops (Gilbert, 1984) 182 

Bigmouth shiner Hybopsis dorsalis (Agassiz, 1854) 1639 

Freckled madtom Noturus nocturnus (Gilbert, 1886)  154 

Largescale stoneroller Campostoma oligolepis (Hubbs and Greene, 1935) 260 

Orangespotted sunfish Lepomis humilis (Girard, 1958) 934 

Orangethroat darter Etheostoma spectabile (Agassiz, 1854) 1021 

Plains minnow Hybognathus placitus (Girard, 1856) 

placitus 

69 

Plains topminnow Fundulus sciadicus (Cope, 1865) 212 

River carpsucker Carpiodes carpio (Rafinesque, 1820) 916 

Shortnose gar Lepisosteus platostomus (Rafinesque, 1820) 375 

Slenderhead darter Percina phoxocephala (Nelson, 1876) 549 

Slender madtom Noturus exilis (Nelson, 1876) 342 

Smallmouth bass Micropterus dolomieu (Lacepéde, 1802) 1824 

Suckermouth minnow Phenacobius mirabilis (Girard, 1958) 551 

 688 

  689 
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Table II. Average and standard deviation of the coefficient of variation of the probabilities of 690 

occurrence over the five types of individual models for all stream segments where each species is 691 

projected to be present and absent. Higher coefficients of variation suggest greater uncertainty in 692 

model results.    693 

Species 

Presence Absence 

Mean CV SD Mean CV SD 

Bigeye shiner 0.41 0.08 2.12 0.56 

Bigmouth shiner 0.45 0.10 1.36 0.54 

Freckled madtom 0.49 0.08 0.89 0.14 

Largescale stoneroller 0.64 0.14 1.21 0.20 

Orangespotted sunfish 0.55 0.17 0.90 0.07 

Orangethroat darter 0.59 0.15 1.68 0.62 

Plains minnow 1.16 0.13 1.73 0.25 

Plains topminnow 0.96 0.14 2.32 0.55 

River carpsucker 0.59 0.16 1.15 0.30 

Slenderhead darter 0.62 0.15 1.27 0.35 

Slender madtom 0.79 0.25 2.29 0.69 

Smallmouth bass 0.57 0.07 1.61 0.51 

Shortnose gar 0.32 0.17 1.13 0.30 

Suckermouth minnow 0.57 0.09 1.06 0.45 

  694 
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Table III. Published estimates of upper thermal limits for fish species modeled in this study.  695 

Species Estimated 

upper thermal 

limit (˚C) 

 Response 

curve upper 

limit (˚C) 

Source 

Bigmouth shiner 36.6 ~32 ˚C (Smale & Rabeni, 1995) 

Orangespotted sunfish 32.5 - 36.4 ~34 ˚C (Smale & Rabeni, 1995; Eaton & Scheller, 1996) 

Orangethroat darter 36.5 Not identified (Smale & Rabeni, 1995) 

Plains minnow 39.7 Not identified (Ostrand & Wilde, 2001) 

Plains topminnow 37.0 Not identified (Smale & Rabeni, 1995) 

River carpsucker 32.1 - 34.5 Not identified (Coutant, 1977; Eaton & Scheller, 1996) 

Shortnose gar 34.5 Not identified (Coutant, 1977) 

Slender madtom 36.5 ~33 ˚C (Smale & Rabeni, 1995) 

Smallmouth bass 29.5 - 36.9 ~31 ˚C (Smale & Rabeni, 1995; Eaton & Scheller, 1996) 

Suckermouth minnow 32.1 Not identified (Eaton & Scheller, 1996) 

696 
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Figure captions 

Fig. I Study area (shaded in gray) and location of sub-sampled fish sampling events (denoted by 

black circles) used to develop and evaluate species distribution data. This map was produced 

using Albers equal-area conic projection. 

Fig. II Study design for the development and evaluation of ensemble species distribution 

models. 

Fig. III Model performance by model type and model ensemble performance for 14 species 

distribution models. 

Fig. IV Variable importance averaged across all model runs for each species. 

Fig. V Response curves of the probability of occurrence of smallmouth bass, river carpsucker, 

and slender madtom to mean annual maximum air temperature. Each panel illustrates the 

agreement across ten model runs for each of the five individual model types. 

Fig. VI On the left of each panel is the projected probability of occurrence of bigeye shiner, 

bigmouth shiner, freckled madtom, and largescale stoneroller throughout the study area. 

Threshold probability, or the probability value above which a species is predicted to be present, 

are given in parentheses for each species. On the right of each panel is the coefficient of variation 

of the probabilities of occurrence over the five individual models, providing a measure of 

agreement across model types. 

Fig. VII On the left of each panel is the projected probability of occurrence of orangespotted 

sunfish, orangethroat darter, plains minnow, and plains topminnow throughout the study area. 

Threshold probability, or the probability value above which a species is predicted to be present, 
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are given in parentheses for each species. On the right of each panel is the coefficient of variation 

of the probabilities of occurrence over the five individual models, providing a measure of 

agreement across model types. 

Fig. VIII On the left of each panel is the projected probability of occurrence of river carpsucker, 

shortnose gar, slenderhead darter, and slender madtom throughout the study area. Threshold 

probability, or the probability value above which a species is predicted to be present, are given in 

parentheses for each species. On the right of each panel is the coefficient of variation of the 

probabilities of occurrence over the five individual models, providing a measure of agreement 

across model types. 

Fig. IX On the left of each panel is the projected probability of occurrence of smallmouth bass 

and suckermouth minnow throughout the study area. Threshold probability, or the probability 

value above which a species is predicted to be present, are given in parentheses for each species. 

On the right of each panel is the coefficient of variation of the probabilities of occurrence over 

the five individual models, providing a measure of agreement across model types. 
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Figure 1.  
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure VI. 
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Figure VII. 
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Figure VIII. 
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Figure IX. 
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