Development and Evaluation of Species Distribution Models for Fourteen Native Central U.S. Fish Species

Kristen L. Bouska
Gregory Whitledge
Southern Illinois University Carbondale, gwhit@siu.edu

Christopher Lant

Follow this and additional works at: http:// opensiuc.lib.siu.edu/fiaq_pubs

Recommended Citation

Bouska, Kristen L., Whitledge, Gregory and Lant, Christopher. "Development and Evaluation of Species Distribution Models for Fourteen Native Central U.S. Fish Species." Hydrobiologia 747, No. 1 (Mar 2015): 159-176. doi:10.1007/s10750-014-2134-8.

Title: Development and evaluation of species distribution models for fourteen native Central U.S. fish species

Authors:

Kristen L. Bouska, Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, MO 65211 bouskak@missouri.edu

Gregory W. Whitledge, Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, gwhit@siu.edu

Christopher Lant, Department of Environment and Society, Quinney College of Natural Resources, Utah State University, Logan, UT 84321, chris.lant@usu.edu

Corresponding Author: Kristen L. Bouska, Department of Fisheries and Wildlife Sciences, University of Missouri, 302 Anheuser-Busch Natural Resources Building, 1105 E. Rollins St. Columbia, MO 65211. Phone: (618) 924-2592, email: bouskak@missouri.edu

Key Words: ensemble model; fish distributions; model performance; warmwater fishes; range projections

Abstract

Environmental change has and will continue to adversely influence aquatic communities. Efforts to model impacts of environmental change on fisheries have largely focused on cold-water, commercial, and recreationally-valued species, even though warmwater, non-game species have important roles in ecosystem services and processes. We developed species distribution models for fourteen warmwater fish species native to the Central United States and evaluated environmental drivers and predictive performance. We used an ensemble model approach produced by combining forecasts of five single-model techniques. Response plots and variable importance calculations were used to evaluate the influence of individual variables. The predictive performance of the ensemble models was assessed using area under the curve (AUC) of the receiver-operating characteristic plot. Ensemble model AUC values generally performed better than single-model types, suggesting ensemble models are more reliable and applicable for management purposes than single models. Most models were influenced by a mix of climate, land use and geophysical variables; however, climate variables were the dominant environmental drivers across models. Given the high sensitivity of models to climate and land use, we expect future climate and land use changes to influence distributions.

Introduction

Freshwater communities are facing losses in biodiversity far greater than terrestrial systems as a result of habitat loss and fragmentation, pollution, hydrologic alteration, invasive species, climate change, and overexploitation (Dudgeon et al., 2006; Heino et al., 2009). As anthropogenic activities continue to degrade freshwater systems, it will become increasingly important to develop reliable conservation planning tools that can be used to evaluate the tradeoffs of management and conservation strategies under future scenarios of environmental change. Substantial efforts to assess environmental change impacts, particularly climate change, in fisheries have been targeted at cold-water species (upper thermal tolerance $<26^{\circ} \mathrm{C}$; Hokanson 1977), such as salmonids (Comte et al., 2013), that are unable to tolerate warm water temperatures. Further, fish species with little commercial or recreational value are not wellrepresented in risk assessment and impacts modeling literature (Comte et al., 2013), despite their important role in ecosystem services and processes (Vanni, 2002; Dudgeon et al., 2006).

Species' distribution models have been utilized for a number of reasons, including testing ecological hypotheses, conservation planning, impact assessment, resource management, ecosystem restoration, and invasive species risk assessment (Manel et al., 2001; Townsend Peterson, 2006; Franklin, 2009). Although there remain limitations, species distribution models are one of few practical tools to assess impacts of environment change on species (Araujo \& Guisan 2006; Thuiller, 2007; Franklin, 2009; Morin \& Thuiller, 2009; Bellard et al., 2012). Due to the wide application of species distribution models and access to digital databases, use of species distribution modeling has greatly increased and led to the advancement of modeling techniques (Guisan \& Thuiller, 2005; Franklin, 2009; Comte et al., 2013). There are numerous modeling methods used to describe relationships between environmental predictors and a
species' distribution, each with different tradeoffs (Austin, 2002; Segurado \& Araujo, 2004; Elith et al., 2006; Franklin, 2009; Aguirre-Gutierrez et al., 2013). As techniques have moved from climate envelope models to generalized linear models (GLM) to multivariate adaptive regression splines (MARS), models have become more reflective of realistic ecological relationships (Leathwick et al., 2006; Elith \& Leathwick, 2009). Machine learning approaches such as classification and regression trees (CTA or CART), artificial neural networks (ANN), random forest (RF), generalized boosted regression (GBM), and maximum entropy (MAXENT) models have become common analytical tools (Elith \& Leathwick, 2009; Franklin, 2009). While machine learning techniques tend to have better performance, modern regression techniques often allow the modeler to more clearly interpret response curves and have more control over model-fitting (Elith \& Leathwick, 2009; Franklin, 2009; Cianfrani et al., 2011). Model selection should be considered carefully as it is the major source of uncertainty in species distribution modeling (Pearson et al., 2006; Diniz-Filho et al., 2009; Buisson et al., 2010).

Recently, there has been a move towards ensemble models, which combine projections from different model types to overcome inter-model variability (Marmion et al., 2009; Thuiller et al., 2009). The thought behind model ensembles is that a combination of unbiased model outputs, each limited by its own assumptions and algorithms, will result in a more accurate prediction. Multi-model ensembles can utilize different initial conditions, model classes, model parameters and boundary conditions in order to provide more robust projections (Araujo \& New, 2006; Grenouillet et al., 2011). Providing reliable projections is essential for natural resource agencies, which are often tasked with difficult management decisions regarding species and habitat (Mawdsley et al., 2009; Cianfrani et al., 2011; Dawson et al., 2011; Kostyack et al., 2011; Lawler \& Olden, 2011; Olden et al., 2011).

A variety of species distribution modeling approaches have been used to project fish distributions, including GLM (Lassalle et al., 2008; Wenger et al., 2011), GAM (Brosse \& Lek, 2000; Buisson et al., 2008; Lassalle et al., 2008), CTA (Lyons et al., 2010; Steen et al., 2010), and MAXENT (Labay et al., 2011). The ensemble modeling approach, however, has not been widely applied to fish species (but see Buisson \& Grenouillet, 2009; Grenouillet et al., 2011; Poulos et al., 2012). Within the United States, fish distribution models have largely been limited to small watersheds (Steen et al., 2010; Labay et al., 2011), single species (Brewer et al., 2007), or impacts of non-native species (Sharma et al., 2011; Wenger et al., 2011; Poulos et al., 2012). Recent state-wide modeling efforts in Wisconsin (Lyons et al., 2010), Maryland (Maloney et al., 2013), and other states have resulted in the development of several distribution models for common stream fishes. However, developing models at larger spatial scales that incorporate the full range of natural variability associated with species' occurrence may produce different results than models developed for sub-sections of a species' range (Babet-Massin et al., 2010).

The primary objective of this research was to explore the utility of an ensemble modeling approach for characterizing distributions of 14 fish species native to the Central United States, of which the majority are warmwater (upper thermal tolerance $>34^{\circ} \mathrm{C}$; Hokanson 1977), non-game species. In the development of these models we were interested in the environmental drivers of each model and whether the response curves made logical sense given the known ecology of each species. In the evaluation phase, we were interested in the predictive performance of individual models as well as the model ensemble approach, given the large-scale environmental variables selected. Finally, model performance is often explained to be an artifact of species ecology in that habitats associated with a specialist species are thought to be easier to discriminate than habitats for a more ubiquitous species (Segurado \& Araujo, 2004; Allouche et
al., 2006). Therefore, we were also interested if there were trends in model performance with respect to prevalence rates.

Materials and Methods

Data Collection

Natural resource agencies from twelve states representing the central United States (AR, IL, IA, KS, LA, MN, MS, MO, NE, ND, SD, and WI) were sent data requests for representative fish stream sampling events between the years 2000 and 2010. Ten states returned presence/absence fish data for a combined total of 15,710 unique fish sampling events for the time period, with data for 218 species. Due to the high number of sampling events in Wisconsin compared to the remainder of the study area, sampling events were randomly sub-sampled to provide a more even spatial coverage of sampling events across the entire study area (Figure I). The list of candidate fish species was narrowed down through a number of different methods. First, native range and study area overlap was examined for each species. Modeling of species from a restricted range of occurrence can lead to misleading conclusions (Babet-Massin et al., 2010); therefore, species whose known distribution was predominantly or completely contained within the study area were initially selected for model development. Second, records for each species were examined to make sure observations are representative of the environmental space in which it occupies (Kadmon et al., 2003). Although some successful models have been developed for species with small sample sizes (Hernandez et al. 2006, Franklin et al. 2009), species with low recorded occurrences (<30) were removed (Guisan et al., 2007; Wisz et al., 2008). The selection process
reduced the number of species down to fourteen, listed in Table I with their scientific name and nomenclatural authority.

Environmental attributes, including geology, land use, discharge, and climate variables, were quantified for each stream segment containing a fish sampling event. Physical variables included elevation, slope, drainage area, and stream order from the National Hydrography Dataset Plus (http://www.horizon-systems.com/nhdplus/), as well as number of dams in the watershed (Esselman et al., 2011). Geological variables included presence of karst (Tobin \& Weary, 2004) and 18 surficial geology variables from the USGS Surficial Geology by Major River Basins dataset (http://water.usgs.gov/GIS/metadata/usgswrd/XML/mrb_e2rf1_sgeol.xml). Land use variables included row crops, wheat, forest, grassland, developed, and water for the year in which each fish sampling event took place and originated from the National Agricultural Statistics Service's Cropland Data Layer (http://nassgeodata.gmu.edu/CropScape/). Land use and surficial geology classes were calculated as a percentage within a stream segment's watershed. Discharge variables included the $10^{\text {th }}, 50^{\text {th }}$ and $90^{\text {th }}$ percentile of flow, and a flow variability index ($90^{\text {th }} / 10^{\text {th }}$ percentiles). Discharge variables were calculated using regression models developed and evaluated using USGS gage data (http://waterdata.usgs.gov/nwis) for the study area. Climate variables were obtained through the National Climate Data Center (http://www.ncdc.noaa.gov/) and included mean seasonal and annual precipitation, mean annual maximum air temperature and mean annual minimum air temperature. Climate variables were calculated as ten-year averages with the year of sampling being the tenth chronological year used in the calculation. All environmental variables were calculated for each stream segment within the study area (roughly 700,000 stream segments) for the year 2011 in order to project the current distribution of each species.

Modeling approach

Five different individual model types were used to model the presence and absence of species: GLM, GBM, CTA, RF, and MARS. These five models were selected based on computation requirements and ability to evaluate response curves. The models were developed within the BIOMOD2 package in R (http://cran.r-project.org/web/packages/biomod2/index.html). For each species, the data were split into training and testing subsets to develop and then evaluate the model's performance (Guisan \& Zimmerman, 2000). Splitting of the original dataset into training and testing subsets was done using a stratified random sampling design. First, a 100x100 km grid was overlain on the study area. Presences within each stratum were randomly assigned to calibration (also called training) and testing datasets, and this process was repeated for absences. Approximately 75 percent of the data were allocated to the calibration subset and 25 percent allocated to the testing subset (Franklin, 2009). The calibration subset was randomly split using 75 percent for calibrating the models and the remaining 25 percent for evaluating single models. When a final set of variables were identified, a ten-fold cross validation resulted in 50 single models for each species. Each of the ten model runs for cross validation was developed using a randomized selection of 75% of the calibration dataset. The initial testing subset was used to calculate model evaluation scores for model ensembles using the optimal threshold identified (Figure II).

During the calibration process, a variable selection process reduced multi-collinearity through removal of correlated variables. Response plots and variable importance assessments were useful in identifying the best suite of variables for the final model. Response plots for individual models
were generated by holding N-1 variables constant at their mean value while the variable of interest was plotted across its range. Variable importance was evaluated in each model using a permutation procedure that compared projections made by a trained model with projections made by the same model, but with one variable randomized. This was done for each variable independently and projections were evaluated using correlation. A high correlation between projections suggested the randomized variable had little influence on the model and a low correlation suggested the variable to be more important to the model. The variable importance metric was calculated in BIOMOD2 and is equal to one minus the correlation between the trained and randomized projection. Of correlated variables ($\mathrm{r} \geq 0.60$), the variable with the highest variable importance was included in the final model. Variables accounting for $<5 \%$ of average model variable importance were assumed to have little influence on model response and were removed.

A model ensemble was produced using a weighted average of the individual-model evaluation values (Marmion et al., 2009). The primary evaluation metric used was the area under the curve of the receiver-operating characteristic plot (AUC), which measures the ability of a model to discriminate between sites where a species is present, versus those where it is absent. AUC values of 1 represent a perfect model and values of 0.5 reflect a model as good as random assignment of presence or absence (Pearce \& Ferrier, 2000). Model ensemble probability projections were converted to binary projections using thresholds identified by the model ensemble AUC that maximizes sensitivity (true positive rate) and specificity (true negative rate). Sensitivity and specificity were also used to evaluate model ensemble performance. We evaluated the influence of prevalence rates on model performance metrics using Pearson
correlations. Model ensembles were used to project current distributions and were evaluated spatially using ArcGIS.

Results

Model performance

Species distribution models performed well, with individual models producing AUC values between 0.65 and 0.99 and ensemble models producing AUC values between 0.89 and 0.99 (Figure III). Sensitivity across species' ensemble models ranged from 80% to 100% (average of 92.3%) and specificity ranged from 73% to 97% (average of 85.9%) suggesting models could predict both presences and absences well. Ensemble model AUC values generally performed better than individual model types. Although no single model type consistently out-performed other model types across species, RF and GBM models performed better than GLM, CTA, and MARS for almost all species. Variability of AUC scores within an individual model type varied across species. For example, GLM runs produced consistent AUC values for orangethroat darter (Etheostoma spectabile), but were highly variable for shortnose gar (Lepisosteus platostomus). Variability of AUC values across model types within a species also varied, with some species showing fairly consistent values, like river carpsucker (Carpiodes carpio), and other species, like smallmouth bass (Micropterus dolomieu), showing more variability. Species prevalence was negatively correlated with ensemble model AUC values $(r=-0.64, p<0.01)$, sensitivity ($r=-0.60$, $\mathrm{p}=0.02$), and specificity ($\mathrm{r}=-0.55, \mathrm{p}=0.04$).

Environmental drivers

The final set of models included between 8 and 18 environmental variables per species. Most models were influenced by a mix of climate, land use and geophysical variables; however, average variable importance was highest for climate variables across models (Figure IV). For most species, there was fairly high variabililty in variable importance for environmental drivers across individual model types and model runs. For example, variable importance for mean annual minimum air temperature for bigeye shiner (Notropis boops) and total annual precipitation for plains topminnow (Fundulus sciadicus) averaged 0.45 , but ranged across models and model runs from 0.1 to 0.8 . Response curves for mean annual maximum temperature typically resembled unimodal or threshold responses for most species. For example, response curves for mean annual maximum temperatures suggest smallmouth bass occurrence is associated with temperatures less than $31^{\circ} \mathrm{C}$, river carpsucker occurrence is associated with temperatures greater than $28^{\circ} \mathrm{C}$, and slender madtom (Noturus exilis) is associated with temperatures between $28-33^{\circ} \mathrm{C}$ (Figure V). Response curves for flow variability varied across species, with presence of smallmouth bass, bigmouth shiner (Hybopsis dorsalis), and slenderhead darter (Percina phoxocephala) associated with low flow variability, presence of plains topminnow and freckled madtom (Noturus nocturnus) associated with low to medium flow variability, and presence of suckermouth minnow (Phenacobius mirabilis) and orangethroat darter associated with medium to high flow variability.

While there was some variability in response curves across model types, there were consistent relationships for many species. Occurrence of bigeye shiner and slender madtom was associated with mean annual minimum air temperatures greater than $-5^{\circ} \mathrm{C}$, while occurrence of suckermouth minnow was associated with mean annual minimum air temperatures between -10° and $0^{\circ} \mathrm{C}$.

Occurrence of many species were associated with specific ranges of precipitation. For example, presence of plains topminnow was associated with total annual precipitation less than approximately 700 mm and presence of bigeye shiner was associated with total annual precipitation between 700 and 1300 mm .

At least one land use variable remained in the final suite of variables for each species model. Percent row crops, water and forest were the variables most commonly found across all species. A few models were strongly influenced by percent row crops, including bigmouth shiner, suckermouth minnow, smallmouth bass, and slenderhead darter. Response plots suggest occurrence of all four of these species to be positively associated with row crops. The plains minnow (Hybognathus placitus) model indicated that this species was associated with less than five percent of developed land in a watershed.

Of the geophysical variables, elevation was a particularly strong driver of occurrence of shortnose gar and river carpsucker. Presence of river carpsucker was associated with elevation less than 180 meters, while presence of shortnose gar was associated with elevation less than 60 meters. Though generally less sensitivie, surficial geology variables were present in every species' model except suckermouth minnow.

Current range projections

The current range projections of the models closely matched known distributions (NatureServe, 2010) for all species (Figure VI - Figure IX). Although the known distribution outlines were produced using reputable sources, their accuracy is not guaranteed. Models that did considerably well without over-projecting into areas where the species is not known to exist, or under-
projecting within the known range, included smallmouth bass, suckermouth minnow, largescale stoneroller (Campostoma oligolepis), plains minnow, river carpsucker, and slender madtom. The coefficient of variation of the five model types was quantified for each stream segment to show where model agreement and disagreement occurred for each species (Table II). Generally, the models agreed (had lower coefficient of variation values) where each species was projected to be present by the ensemble models, but had greater disagreement (higher coefficient of variation values) where the ensemble model projected the species' to be absent (Figure VI - Figure IX).

High densities of certain species often resulted in higher probabilities of occurrence in those areas. The southeast corner of Kansas had relatively high frequencies of freckled madtom, orangespotted sunfish (Lepomis humilis), and slenderhead darter occurrences and therefore the models projected higher probabilities of occurrence for these species in that general area. Some models failed to project where there were relatively high densities of occurrence records. For example, the bigmouth shiner model failed to project distributions in western Nebraska despite having numerous occurrence records located in that region. The bigeye shiner model also failed to project where there was presence data in southeastern Kansas.

In areas where occurrence data were limited, the models were often unable to project distribution. For example, the plains topminnow model failed to project high probabilities of occurrence within its known range in central Missouri due to limited occurrence records. Freckled madtom also had limited occurrences in the southern extent of its range that the model was unable to capture. Although there were only 69 occurrence events for plains minnow, the model captured the known range well.

Some models over-projected species range well outside known ranges. Over-projections were most commonly located north and west of the known ranges. For example, the orangespotted sunfish and slenderhead darter models projected occurrences to extend north and west of their current known ranges. Although the known range overlay makes it appear as though river carpsucker is over-projected into Nebraska and southern Minnesota, there are numerous occurrence records from these regions. Additionally, there are records of river carpsuckers present throughout the Platte River watershed in Nebraska dating back to the 1950's (University of Kansas Biodiversity Institute, Cornell University Museum of Vertebrates [Accessed through Biodiversity Information Serving Our Nation (BISON), bison.usgs.ornl.gov, on 2014-04-09]). Similarily, although the known range overlay suggests there are overprojections in the Ozarks of southern Missouri and northern Arkansas, there are occurrence records in that region.

Discussion

Model development and evaluation

We developed species distribution models for fourteen fish species that were able to discriminate suitable habitat for these species quite well. We used existing state fisheries data, suggesting these datasets are valuable resources for modeling species distributions. Differences in sampling practices and database management, however, may influence model performance. For example, prior to sub-sampling data from Wisconsin, models were developed using all fish data and projections were skewed due to the high density of samples. Others have shown that welldistributed data improve model performance (Kadmon et al., 2003). While requesting fisheries data from various state agencies, numerous personnel made clear the potential for errors due to
misidentification of a species or data entry mistakes. Additionally, some states lumped all types of sampling into a single database (e.g., fish kills, standardized basin sampling, targeted sampling, , which made it difficult to identify representative samples.

Ensemble models generally out-performed individual models in modeling current distributions, suggesting ensemble models are more reliable and applicable for fisheries management purposes than individual models. AUC values from ensemble models indicated high discrimination ability of presence/absence data in the validation stage. Recent work has suggested that high performance of ensemble models may not necessarily translate into high predictive ability outside of the model's spatial and temporal extent (Crimmins et al., 2013). An important question currently receiving attention is how to assess species distribution models' predictive performance for environmental change scenarios. Numerous studies have emphasized the use of temporally and spatially independent data to evaluate transferability of a model across time (Rapacciuolo et al., 2012; Smith et al., 2013) and space (Wenger \& Olden, 2012). Transferability of models over long time periods (>20 years) is difficult to assess for fish species, as standardized sampling programs are typically less than thirty years old. Similarly, environmental data, such as land use, are often unavailable at large scales for historic periods. While assessment of transferability will provide some understanding of a model's validity for these purposes, questions will remain regarding a model's response to climate variables with no current analogue.

Although our results suggest lower rates of prevalence result in higher model performance, ecological trait associations with model performance have been evaluated for other taxa groups including plants, insects, birds, and reptiles - with mixed results (Mitchell et al., 2001; Pearce et al., 2001; Huntley et al., 2004). Decreased performance in the form of AUC values with
increasing species prevalence has been documented previously (Segurado \& Araujo, 2004; Allouche et al., 2006). This performance metric is independent of prevalence and thus our results support the hypothesis that distributions of rare species are more predictable than those of common species. Similarly, range size has been found to be negatively correlated with AUC values of plants and birds (McPherson \& Jetz, 2007; Syphard \& Franklin, 2010). Still other studies showed little to no influence of prevalence or range size on AUC values (McPherson et al., 2004; Franklin et al., 2009).

Overall, climatic, land use, and geophysical categories of variables all appeared to be relevant to modeling these species. Distribution models for fish species regularly include variables of temperature, precipitation, drainage area, elevation, stream slope, discharge, land use, width, depth and geology (Leathwick et al., 2005; Lassalle et al., 2008; Buisson \& Grenouillet, 2009; Lyons et al., 2010; Steen et al., 2010; Bond et al., 2011; Labay et al., 2011; Wenger et al., 2011). It is possible particular variables were removed for having little influence on model performance that actually have strong impacts on species distributions at different scales. For example, developed land use is well known to have negative consequences on aquatic communities (Wang et al. 1997; Allan 2004); however, it likely failed to strongly influence model results for some species because it represents a small percentage of the overall study area.

Response curves of environmental variables for each species were examined and compared to available published relationships. For example, 10 of the 14 species have published estimated upper thermal limits for water temperatures (Table III). Although we used mean annual maximum air temperature in our models averaged over a ten year period, air and water temperatures are generally related (Stefan \& Preud'homme, 1993). Many of the modeled species' response plots do not provide an estimate of an upper thermal limit, likely because their limit is
beyond our maximum value of mean annual maximum air temperature ($34{ }^{\circ} \mathrm{C}$). Response plots for smallmouth bass, bigmouth shiner, slender madtom, and orangespotted sunfish provide an estimate of upper thermal limits of air temperature similar to published estimates of upper thermal water temperatures. If using these models to project distributions under climate change scenarios, projections will likely be more realistic for species in which an upper thermal limit was captured in response curves. For the models that are unable to estimate an upper thermal limit, model projections under warming temperatures may overestimate future distributions.

Of the fourteen species we modeled, smallmouth bass is the most well-studied. Our strongest predictor for smallmouth bass was $90^{\text {th }}$ percentile of discharge, which was strongly correlated to drainage area. A relative abundance model for riverine smallmouth bass in Missouri was strongly influenced by stream size, most likely due to the association between flow variability and stream size (Brewer et al., 2007). Headwater streams typically have greater hydrologic variability as compared to larger streams (Jackson et al., 2001), and smallmouth bass are well known to be associated with larger streams with stable hydrology (Poff \& Allan, 1995; Zorn et al., 2002). Discharge, particularly during the spawning and rearing time period, has been found repeatedly to be an important factor on riverine smallmouth bass populations (Cleary, 1956; Simonson \& Swenson, 1990; Bovee et al., 1994; Smith et al., 1995; Peterson \& Kwak, 1999) as variation in stream discharge negatively influences young of the year smallmouth bass through displacement of eggs and fry, food availability and ability to forage.

The majority of species modeled have few known habitat associations other than local habitat preferences in limited stream studies, making it difficult to validate response curves observed from our models. Small-scale variables important to structuring fish communities are often unavailable at the scale of this study. For example, coarse substrates have been associated with
the occurrence of freckled madtom (Bouska \& Whitledge, 2014) and in-stream vegetation is often associated with presence of plains topminnow (Fischer \& Paukert, 2008b). In general, there appears to be a need for additional study of environmental requirements of warmwater, nongame species in order to validate response curves. Basic ecology will be particularly important in assessing climate impacts as warmwater fishes are largely expected to expand their ranges under climate change scenarios (Comte et al., 2013).

Impoundments have drastically changed the physical and biological template of many river systems. Although the number of upstream dams was included as predictor variables, it did not improve the explanatory power of any model, which may be a consequence of the spatial scale of study. Impoundments often support non-native species that compete with native species. For example, plains topminnow distribution has been suggested to be negatively influenced by the presence of non-native species such as largemouth bass (Micropterus salmoides) and mosquitofish (Gambusia affinis) (Fischer \& Paukert, 2008a; Pasbrig et al., 2012). Impoundments have also been associated with reduced habitat and populations of suckermouth minnow, slenderhead darter, and bigmouth shiner (Quist et al., 2005; Heimann et al., 2007). Further, fluvial dependent species, such as plains minnow have been shown to require 115 km of freeflowing river for population persistence (Perkin \& Gido, 2011).

Current range projections were assessed by comparing them with known distribution maps. Both NatureServe and the U.S. Geological Survey's Biodiversity Information Serving Our Nation (BISON) product provide coarse-scale ranges and occurrence data for many species found throughout the United States (NatureServe, 2010; U.S. Geological Survey, 2013). Both resources allow for qualitative assessments of current range projections. Unfortunately, due to incomplete coverage of sampling data, we cannot quantify the degree of over- or under-
projection. Based on comparisons with these layers, our current range projections for all species appear to correlate well with known occurrences. Similarly, we can compare current projections to other modeling efforts. For example, occurrence models of smallmouth bass in Missouri closely match our projections (Brewer et al., 2007).

Limitations and applications

Forecasting how species distributions will be influenced under scenarios of future environmental change is key to developing potential conservation strategies. Reliability of distribution models should be carefully evaluated before predictions are used to inform management decisions (Fielding \& Bell, 1997). Caution should be used when using model projections in decisionmaking, with thorough understanding of the assumptions and uncertainties that limit modeling procedures.

One of the primary assumptions of species distribution models is that the system being modeled is in a static or equilibrium state (Guisan \& Zimmerman, 2000; Franklin, 2009). In systems such as streams and rivers, however, natural disturbances such as floods and drought are relatively frequent and are important community structuring events (Leopold, 1994; Dodds et al., 2004). When dynamic systems are modeled with static models, there are limitations in their ability to accurately predict species distributions using environmental predictors (Austin, 2002). More mechanistic models are increasingly being developed, yet often require extensive datasets and therefore cannot be used at large spatial scales (Kearney \& Porter, 2009). Our species distribution models, as with most, are also unable to account for biological interactions, dispersal, phenotypic plasticity or evolutionary changes (Lavergne, 2010). Therefore, models
often assume these factors have non-significant impacts on species distribution when in reality these are likely important factors to species adaptability. As models have progressed, numerous studies have demonstrated how the inclusion of these factors can improve model fit, increase accuracy and provide insight into mechanisms of community assembly (Araujo \& Luoto, 2007; Leathwick et al., 2008; Morin \& Thuiller, 2009; Van der Putten et al., 2010; Boulangeat et al., 2012).

The types of predictor variables used are also an important factor when assessing model projections. Predictor variables used in species distribution models generally fall into one of three categories: resource, direct and indirect (Austin, 1985). Resource variables represent matter and energy consumed by organisms whereas direct variables have influence on an organisms' physiology, but are not consumed. Indirect variables do not influence organisms physiologically, but are often correlated with species distribution patterns, easy to measure, more accessible and used as proxies for resource and direct variables (Guisan \& Zimmerman, 2000; Austin, 2007). Due to correlations between indirect environmental gradients and species occurrence, the use of indirect predictor variables may result in error-prone predictions (Austin, 2002; Elith \& Leathwick, 2009). For example, occurrence of a fish species may be correlated with channel slope due to its relationship with a stream discharge gradient. Slope may be a relevant substitute for discharge for predicting a species' current distributions, but may no longer be relevant under climate change scenarios, which may change discharge patterns, but not slope. Therefore, the use of resource and direct variables is recommended for large spatial scales as these variables lead to a more general, mechanistic model with greater interpretability (Austin, 2002). When resource and direct variables are not available, however, indirect variables that serve as spatial surrogates may be the only option.

Conclusions

Species distribution models are important tools for conservation and management of freshwater fish species. We were able to estimate probability of occurrence of fourteen fish species to almost 700,000 stream segments within our study area. Validation of our ensemble models indicated high performance and qualitative comparisons with known species' ranges suggest the models produced reliable species distribution projections. Although environmental associations with most of our modeled species are unknown, numerous response curves for environmental variables were supported by the literature. Given the high sensitivity of models to climate and land use variables, we expect distributions to be strongly influenced by these variables.

Acknowledgements

The authors thank the state natural resource agencies that shared fish data with us to make this project feasible: Arkansas Department of Environmental Quality, Illinois Department of Natural Resources, Kansas Department of Wildlife and Parks, Minnesota Department of Natural Resources, Minnesota Pollution Control Agency, Missouri Department of Conservation, Missouri Department of Natural Resources, Nebraska Game and Fish Commission, North Dakota Department of Health, North Dakota Game, Fish and Parks, and Wisconsin Department of Natural Resources.

References

Aguirre-Gutierrez, J., Carvalheiro, L.G., Polce, C., van Loon, E.E., Raes, N., Reemer, M. \& Biesmeijer, J.C. (2013) Fit-for-purpose: Species distribution model performance depends on evaluation criteria Dutch Hoverflies as a case study. PLoS One, 8, e63708.
Allan, J.D. 2004. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35:257-284.
Allouche, O., A. Tsoar \& Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic. Journal of Applied Ecology, 43, 1223-1232.
Araujo, M.B. \& New, M. (2006) Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42-47.
Araujo, M.B. \& Guisan , A. (2006) Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33, 1677-1688.
Araujo, M.B. \& Luoto, M. (2007) The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography, 16, 743-753.
Austin, M. (2007) Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200, 1-19.
Austin, M.P. (1985) Continuum concept, ordination methods and niche theory. Annual Review of Ecology, Evolution and Systematics, 16, 39-61.
Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157, 101-118.
Babet-Massin, M., Thuiller, W. \& Jiguet, F. (2010) How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography, 33, 878-886.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. \& Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377.
Bond, N., Thomson, J., Reich, P. \& Stein, J. (2011) Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Marine and Freshwater Research, 62, 1043-1061.
Boulangeat, I., Gravel, D. \& Thuiller, W. (2012) Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecology Letters, 15, 584593.

Bouska, K. \& Whitledge, G. (2014) Habitat associations of fish assemblages in the Cache River, Illinois. Environmental Biology of Fishes, 97, 27-42.
Bovee, K.D., Newcomb, T.J. \& Coon, T.G. (1994) Relations between habitat variability and population dynamics of bass in the Huron River, Michigan. Biological Report 21. In, p. 63. U.S. Geological Survey, Washington, DC.
Brewer, S.K., Rabeni, C.F., Sowa, S.P. \& Annis, G. (2007) Natural landscape and stream segment attributes influencing the distribution and relative abundance of riverine smallmouth bass in Missouri. North American Journal of Fisheries Management, 27, 326-341.
Brosse, S. \& Lek, S. (2000) Modelling roach (Rutilus rutilus) microhabitat using linear and nonlinear techniques. Freshwater Biology, 44, 441-452.
Buisson, L. \& Grenouillet, G. (2009) Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Diversity and Distributions, 15, 613-626.
Buisson, L., Thuiller, W., Lek, S., Lim, P. \& Grenouillet, G. (2008) Climate change hastens the turnover of stream fish assemblages. Global Change Biology, 14, 2232-2248.

Buisson, L., Thuiller, W., Casajus, N., Lek, S. \& Grenouillet, G. (2010) Uncertainty in ensemble forecasting of species distribution. Global Change Biology, 16, 1145-1157.
Cianfrani, C., Le Lay, G., Maiorano, L., Satizabal, H.F. \& Loy, A. (2011) Adapting global conservation strategies to climate change at the European scale: the otter as a flagship species. Biological Conservation, 144, 2068-2080.
Cleary, R.E. (1956) Observations on factors affecting smallmouth bass production in lowa. The Journal of Wildlife Management, 20, 353-359.
Comte, L., Buisson, L., Daufresne, M. \& Grenouillet, G. (2013) Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshwater Biology, 58, 625-639.
Coutant, C.C. (1977) Compilation of temperature preference data. Journal of the Fisheries Research Board of Canada, 34, 739-745.
Crimmins, S.M., Dobrowski, S.Z. \& Mynsberge, A.R. (2013) Evaluating ensemble forecasts of plant species distributions under climate change. Ecological Modelling, 266, 126-130.
Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C. \& Mace, G.M. (2011) Beyond predictions: biodiversity conservation in a changing climate. Science, 332, 53-58.
Diniz-Filho, J.A.F., Bini, L.M., Rangel, T.F., Loyola, R.D., Hof, C., Nogues-Bravo, D. \& Araujo, M.B. (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover of climate change. Ecography, 32, 897-906.
Dodds, W.K., Gido, K., Whiles, M.R., Fritz, K.M. \& Matthews, W.J. (2004) Life on the edge: the ecology of great plains prairie streams. BioScience, 54, 205-216.
Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z., Knowler, D.J., Leveque, C., Naiman, R.J., Prieur-Richard, A., Soto, D., Stiassny, M.L.J. \& Sullivan, C.A. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182.
Eaton, J.G. \& Scheller, R.M. (1996) Effects of climate warming on fish thermal habitat in streams of the United States. Limnology and Oceanography, 41, 1109-1115.
Elith, J. \& Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40, 677-697.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan , A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J., Townsend Peterson, A., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. \& Zimmerman, N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
Esselman, P.C., Infante, D.M., Wang, L., Cooper, A. \& Taylor, W.W. (2011) An initial assessment of integrated landscape disturbance on river fish habitats in the conterminous United States. Restoration Ecology, 23, 133-151.
Fielding, A.H. \& Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.
Fischer, J.R. \& Paukert, C.P. (2008a) Historical and current environmental influences on an endemic Great Plains fish. American Midland Naturalist, 159, 364-377.
Fischer, J.R. \& Paukert, C.P. (2008b) Habitat relationships with fish assemblages in minimally disturbed Great Plains regions. Ecology of Freshwater Fish, 17, 597-609.
Franklin, J. (2009) Mapping species distribution: spatial inference and prediction. Cambridge University Press, Cambridge, UK.
Franklin, J., Wejnert, K.E., Hathaway, S.A., Rochester, C.J. \& Fisher, R.N. (2009) Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Diversity and Distributions, 15, 167-177.

Grenouillet, G., Buisson, L., Casajus, N. \& Lek, S. (2011) Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography, 34, 9-17.
Guisan, A. \& Zimmerman, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186.
Guisan , A., Graham, C.H., Elith, J., Huettmann, F. \& Group, N.S.D.M. (2007) Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13, 332-340.
Guisan, A., and W. Thuiller (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.
Heimann, D.C., Licher, S.S. \& Schalk, G.K. (2007) Effects of impoundments and land-cover changes on streamflows and selected fish habitat in the Upper Osage River Basin, Missouri and Kansas. Scientific Investigations Report 2007-5175. In, p. 96. U.S. Geological Survey
Heino, J., Virkkala, R. \& Toivonen, H. (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews, 84, 39-54.
Hernandez, P.A., C.H. Graham, L. L. Master, and D. L. Albert. 2006. The effect of sample size and species characteristics on performance of different species distribution models. Ecography, 29, 773-785.
Hokanson, K.E.F. 1977. Temperature requirements of some percids and adaptations to the seasonal temperature cycle. Journal of the Fisheries Board of Canada 34:1524-1550.
Huntley, B., Green, R.E., Collingham, T.C., Hill, J.K., Willis, S.G., Bartlein, P.J., Cramer, W. \& Hagemeijer, W.J.M. (2004) The performance of models relating species geographical distributions to climate is independent of trophic level Ecological Letters, 7, 417-426.
Jackson, D.A., Peres-Neto, P.R. \& Olden, J.D. (2001) What controls who is where in freshwater fish communities - the role of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Science, 58, 157-170.
Kadmon, R., Farber, O. \& Danin, A. (2003) A systematic analysis of factors affecting the performance of climatic envelope models. Ecological Applications, 13, 853-867.
Kearney, M. \& Porter, W. (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecology Letters, 12, 334-350.
Kostyack, J., Lawler, J.J., Olden, J.D. \& Scott, J.M. (2011) Beyond reserves and corridors: policy solutions to facilitate the movement of plants and animals in a changing climate. BioScience, 61, 713-719.
Lassalle, G., Beguer, M., Beaulaton, L. \& Rochard, E. (2008) Diadromous fish conservation plans need to consider global warming issues: An approach using biogeographical models. Biological Conservation, 141, 1105-1118.
Labay, B., Cohen, A.E., Sissel, B., Hendrickson, D.A., Martin, F.D. \& Sarkar, S. (2011) Assessing Historical Fish Community Composition Using Surveys, Historical Collection Data, and Species Distribution Models. Plos One, 6, e25145.
Lavergne, S., N. Mouquet, W. Thuiller and O. Ronce (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution and Systematics, 41, 321-350.
Lawler, J.J. \& Olden, J.D. (2011) Reframing the debate over managed relocation. Frontiers in Ecology and the Environment, 9, 569-574.
Leathwick, J.R., Elith, J. \& Hastie, T. (2006) Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling, 199, 188-196.
Leathwick, J.R., Rowe, D., Richardson, J., Elith, J. \& Hastie, T. (2005) Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish. Freshwater Biology, 50, 2034-2052.

Leathwick, J.R., Elith, J., Chadderton, W.L., Rowe, D. \& Hastie, T. (2008) Dispersal, disturbance and the contrasting biogeographies of New Zealand's diadromous and non-diadromous fish species. Journal of Biogeography, 35, 1481-1497.
Leopold, L. (1994) The view of the river. Harvard University Press, Cambridge, MA.
Lyons, J., Stewart, J.S. \& Mitro, M. (2010) Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A. Journal of Fish Biology, 77, 1867-1898.
Maloney, K.O., Weller, D.E., Michaelson, D.E. \& Ciccotto, P.J. (2013) Species distribution models of freshwater stream fishes in Maryland and their implications for management. Environmental Modeling \& Assessment, 18, 1-12.
Manel, S., Williams, H.C. \& Omerod, S.J. (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38, 921-931.
Marmion, M., Parvianinen, M., Luoto, M., Heikkinen, R.K. \& Thuiller, W. (2009) Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15, 59-69.
Mawdsley, J.R., O'Malley, R. \& Ojima, D.S. (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology, 23, 1080-1089.
McPherson, J.M. \& Jetz, W. (2007) Effects of species' ecology on the accuracy of distribution models. Ecography, 30, 135-151.
McPherson, J.M., Jetz, W. \& Rogers, D.J. (2004) The effects of species' range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? Journal of Applied Ecology, 41, 811-823.
Mitchell, M.S., Lancia, R.A. \& Gerwin, J.A. (2001) Using landscape-level data to predict the distribution of birds on a managed forest: effects of scale. Ecological Applications, 11, 1692-1708.
Morin, A. \& Thuiller, W. (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 90, 1301-1313.
NatureServe (2010) Digital distribution maps of the freshwater fishes in the conterminous United States. Version 3.0. In: (ed. Natureserve), Arlington, VA.
Olden, J.D., Kennard, M.K., Lawler, J.J. \& Poff, N.L. (2011) Challenges and opportunities in implementing managed relocation for conservation of freshwater species. Conservation Biology, 25, 40-47.
Ostrand, K.G. \& Wilde, G.R. (2001) Temperature, dissolved oxygen, and salinity tolerances of five prairie stream fishes and their role in explaining fish assemblage patterns. Transactions of the American Fisheries Society, 130, 742-749.
Pasbrig, C.A., Koupal, K.D., Schainost, S. \& Hoback, W.W. (2012) Changes in range-wide distribution of plains topminnow Fundulus sciadicus. Endangered Species Research, 16, 235-247.
Pearce, J. \& Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133, 225-245.
Pearce, J., Ferrier, S. \& Scotts, D. (2001) An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South wales. Journal of Environmental Management, 62, 171-184.
Pearson, R.G., Thuiller, W., Araujo, M.B., Martinez-Meyer, E., Brotons, L., McClean, C., Miles, L., Segurado, P., Dawson, T.P. \& Lees, D.C. (2006) Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 1704-1711.
Perkin, J.S. \& Gido, K.B. (2011) Stream fragmentation thresholds for a reproductive guild of Great Plains fishes. Fisheries, 26, 371-383.
Peterson, J.T. \& Kwak, T.J. (1999) Modeling the effects of land use and climate change on riverine smallmouth bass. Ecological Applications, 9, 1391-1404.
Poff, N.L. \& Allan, J.D. (1995) Functional organization of stream fish assemblages in relation to hyrological variability. Ecology, 76, 606-627.

Poulos, H.M., Chernoff, B., Fuller, P.L. \& Butman, D. (2012) Ensemble forecasting of potential habitat for three invasive fishes. Aquatic Invasions, 7, 59-72.
Quist, M.C., Hubert, W.A. \& Rahel, F.J. (2005) Fish assemblage structure following impoundment of a Great Plains river. Western North American Naturalist, 65, 53-63.
Rapacciuolo, G., Roy, D.B., Gillings, S., Fox, R., Walker, K. \& Purvis, A. (2012) Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change. Plos One, 7, e40212.
Segurado, P. \& Araujo, M.B. (2004) An evaluation of methods for modelling species distributions. Journal of Biogeography, 31, 1555-1568.
Sharma, S., Vander Zanden, M.J., Magnuson, J.J. \& Lyons, J. (2011) Comparing climate change and species invasions as drivers of coldwater fish population extirpations. Plos One, 6, e22906.
Simonson, T.D. \& Swenson, W.A. (1990) Critical stream velocities for young-of-year smallmouth bass in relation to habitat use. Transactions of the American Fisheries Society, 119, 902-909.
Smale, M.A. \& Rabeni, C.F. (1995) Hypoxia and hyperthermia tolerances of headwater stream fishes. Transactions of the American Fisheries Society, 124, 698-710.
Smith, A.B., Santos, M.J., Koo, M.S., Rowe, K.M.C., Rowe, K.C., Patton, J.L., Perrine, J.D., Beissinger, S.R. \& Moritz, C. (2013) Evaluation of species distribution models by resampling of sites surveyed a century ago by Joseph Grinnell. Ecography, 36, 1017-1031.
Smith, S.M., Odenkirk, J.S. \& Reeser, S.J. (1995) Smallmouth bass recruitment variability and its relation to stream discharge in three Virginia rivers. North American Journal of Fisheries Management, 25, 1112-1121.
Steen, P.J., Wiley, M.J. \& Schaeffer, J.S. (2010) Predicting Future Changes in Muskegon River Watershed Game Fish Distributions under Future Land Cover Alteration and Climate Change Scenarios. Transactions of the American Fisheries Society, 139, 396-412.
Stefan, H.G. \& Preud'homme, E.B. (1993) Stream temperature estimation from air temperature. Journal of the American Water Resources Association, 29, 27-45.
Syphard, A.D. \& Franklin, J. (2010) Species traits affect the performance of species distribution models for plants in southern California. Journal of Vegetation Science, 21, 177-189.
Thuiller, W. (2007) Climate change and the ecologist. Nature, 448, 550-552.
Thuiller, W., Lafourcade, B., Engler, R. \& Araujo, M.B. (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography, 32, 369-373.
Tobin, B.D. \& Weary, D.J. (2004) Digital engineering aspects of karst map: a GIS version of Davies, W.E., Simpson, J.H., Ohlmacher, G.C., Kirk, W.S., and Newton, E.G., 1984, Enginering aspects of karstL U.S. Geological Survey, National Atlas of the United States of America, Scale 1:7,500,000. Available at: http://pubs.usgs.gov/of/2004/1352/ (accessed 2012).
Townsend Peterson, A. (2006) Uses and requirements of ecological niche models and relation distributional models. Biodiversity Informatics, 3, 59-72.
U.S. Geological Survey (2013) Biodiversity Information Serving Our Nation (BISON). Available at: (accessed 2014).
Van der Putten, W.H., Macel, M. \& Visser, M.E. (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2025-2034.
Vanni, M. (2002) Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology, Evolution and Systematics, 33, 341-370.
Wang, L., Lyons, J., Kanehl, P., \& Gatti, R. 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22:6-12.
Wenger, S.J. \& Olden, J.D. (2012) Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods in Ecology and Evolution, 3, 260-267.

Wenger, S.J., Isaak, D.J., Luce, C.H., Neville, H.M., Fausch, K.D., Dunham, J.B., Dauwalter, D.C., Young, M.K., Elsner, M.M., Rieman, B.E., Hamlet, A.F. \& Williams, J.E. (2011) Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences of the United States of America, 108, 1417514180.

Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan , A. \& Group, N.P.S.D.W. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763-773.
Zorn, T.G., Seelbach, P.W. \& Wiley, M.J. (2002) Distributions of stream fishes and their relationship to stream size and hydrology in Michigan's Lower Peninsula. Transactions of the American Fisheries Society, 131, 70-85.

Tables

Table I. The final list of species selected for model development and the number of occurrence records out of 8,675 sampling events.

Common Name	Scientific Name (Nomenclature Authority)	Occurrence records
Bigeye shiner	Notropis boops (Gilbert, 1984)	182
Bigmouth shiner	Hybopsis dorsalis (Agassiz, 1854)	1639
Freckled madtom	Noturus nocturnus (Gilbert, 1886)	154
Largescale stoneroller	Campostoma oligolepis (Hubbs and Greene, 1935)	260
Orangespotted sunfish	Lepomis humilis (Girard, 1958)	934
Orangethroat darter	Etheostoma spectabile (Agassiz, 1854)	1021
Plains minnow	Hybognathus placitus (Girard, 1856)	69
Plains topminnow	Fundulus sciadicus (Cope, 1865)	212
River carpsucker	Carpiodes carpio (Rafinesque, 1820)	916
Shortnose gar	Lepisosteus platostomus (Rafinesque, 1820)	375
Slenderhead darter	Percina phoxocephala (Nelson, 1876)	549
Slender madtom	Noturus exilis (Nelson, 1876)	342
Smallmouth bass	Micropterus dolomieu (Lacepéde, 1802)	1824
Suckermouth minnow	Phenacobius mirabilis (Girard, 1958)	551

Table II. Average and standard deviation of the coefficient of variation of the probabilities of occurrence over the five types of individual models for all stream segments where each species is projected to be present and absent. Higher coefficients of variation suggest greater uncertainty in model results.

Species	Presence		Absence	
	Mean CV	SD	Mean CV	SD
Bigeye shiner	0.41	0.08	2.12	0.56
Bigmouth shiner	0.45	0.10	1.36	0.54
Freckled madtom	0.49	0.08	0.89	0.14
Largescale stoneroller	0.64	0.14	1.21	0.20
Orangespotted sunfish	0.55	0.17	0.90	0.07
Orangethroat darter	0.59	0.15	1.68	0.62
Plains minnow	1.16	0.13	1.73	0.25
Plains topminnow	0.96	0.14	2.32	0.55
River carpsucker	0.59	0.16	1.15	0.30
Slenderhead darter	0.62	0.15	1.27	0.35
Slender madtom	0.79	0.25	2.29	0.69
Smallmouth bass	0.57	0.07	1.61	0.51
Shortnose gar	0.32	0.17	1.13	0.30
Suckermouth minnow	0.57	0.09	1.06	0.45

Species	Estimated upper thermal limit $\left({ }^{\circ} \mathrm{C}\right)$	Response curve upper limit $\left({ }^{\circ} \mathrm{C}\right)$	Source
Bigmouth shiner	36.6	$\sim 32{ }^{\circ} \mathrm{C}$	(Smale \& Rabeni, 1995)
Orangespotted sunfish	$32.5-36.4$	$\sim 34{ }^{\circ} \mathrm{C}$	(Smale \& Rabeni, 1995; Eaton \& Scheller, 1996)
Orangethroat darter	36.5	Not identified	(Smale \& Rabeni, 1995)
Plains minnow	39.7	Not identified	(Ostrand \& Wilde, 2001)
Plains topminnow	37.0	Not identified	(Smale \& Rabeni, 1995)
River carpsucker	$32.1-34.5$	Not identified	(Coutant, 1977; Eaton \& Scheller, 1996)
Shortnose gar	34.5	Not identified	(Coutant, 1977)
Slender madtom	36.5	$\sim 33{ }^{\circ} \mathrm{C}$	(Smale \& Rabeni, 1995)
Smallmouth bass	$29.5-36.9$	$\sim 31{ }^{\circ} \mathrm{C}$	(Smale \& Rabeni, 1995; Eaton \& Scheller, 1996)
Suckermouth minnow	32.1	Not identified	(Eaton \& Scheller, 1996)

Table III. Published estimates of upper thermal limits for fish species modeled in this study.

Figure captions

Fig. I Study area (shaded in gray) and location of sub-sampled fish sampling events (denoted by black circles) used to develop and evaluate species distribution data. This map was produced using Albers equal-area conic projection.

Fig. II Study design for the development and evaluation of ensemble species distribution models.

Fig. III Model performance by model type and model ensemble performance for 14 species distribution models.

Fig. IV Variable importance averaged across all model runs for each species.

Fig. V Response curves of the probability of occurrence of smallmouth bass, river carpsucker, and slender madtom to mean annual maximum air temperature. Each panel illustrates the agreement across ten model runs for each of the five individual model types.

Fig. VI On the left of each panel is the projected probability of occurrence of bigeye shiner, bigmouth shiner, freckled madtom, and largescale stoneroller throughout the study area. Threshold probability, or the probability value above which a species is predicted to be present, are given in parentheses for each species. On the right of each panel is the coefficient of variation of the probabilities of occurrence over the five individual models, providing a measure of agreement across model types.

Fig. VII On the left of each panel is the projected probability of occurrence of orangespotted sunfish, orangethroat darter, plains minnow, and plains topminnow throughout the study area. Threshold probability, or the probability value above which a species is predicted to be present,
are given in parentheses for each species. On the right of each panel is the coefficient of variation of the probabilities of occurrence over the five individual models, providing a measure of agreement across model types.

Fig. VIII On the left of each panel is the projected probability of occurrence of river carpsucker, shortnose gar, slenderhead darter, and slender madtom throughout the study area. Threshold probability, or the probability value above which a species is predicted to be present, are given in parentheses for each species. On the right of each panel is the coefficient of variation of the probabilities of occurrence over the five individual models, providing a measure of agreement across model types.

Fig. IX On the left of each panel is the projected probability of occurrence of smallmouth bass and suckermouth minnow throughout the study area. Threshold probability, or the probability value above which a species is predicted to be present, are given in parentheses for each species. On the right of each panel is the coefficient of variation of the probabilities of occurrence over the five individual models, providing a measure of agreement across model types.

Figure 1.

Figure 2.

	Generalized Linear Model
प्याप	Generalized Boosted Model
	Classification Tree
सापा	Random Forest
	Multi-adaptive Regression Spline
*	Ensemble Model

- Ensemble Model Sensitivity
- Ensemble Model Specificity

Figure 3.

Figure 4.

Figure 5.

Figure VI.

Figure VII.

Figure VIII.

Figure IX.

