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Determination of p-y Curves for Bucket Foundations in Sand Using
Finite Element Modeling

Bjørn S. Knudsen1 Martin U. Østergaard1 Lars Bo Ibsen2 Johan Clausen3

Department of Civil Engineering, Aalborg University

Abstract

Cylindrical offshore wind turbine foundations, such as bucket foundations and monopiles, have up till now been designed
using analytical methods based on experiments done with piles much more slender than the ones used in today’s industry.
Compared to the widely used monopile foundation, the suction bucket has a much smaller ratio between length and
diameter, and the suction buckets will thus act more as a rigid object during rotation in the soil. To improve the design
of suction buckets through analytical methods, the soil pressure needs to be calculated more precisely since currently
available p− y curves, linking displacement and soil pressure, are based on more slender cylindrical structures. Using
finite element methods, the p− y curves for suction buckets will be determined as a function of the internal angle of
friction of the soil, the diameter and the skirt length of the suction buckets, which can in turn be applied in determination
of soil pressures for analytical design methods of suction bucket foundations.

1 Introduction

The aim of this study is to determine the soil pressure re-
sponse p in drained sand as a function of a displacement
y for a set of bucket foundations with different diame-
ter D and skirt length L embedded in soils of varying
strength determined by the internal angle of friction ϕ .
The p− y curves are found by using finite element mod-
eling in PLAXIS 3D. PLAXIS 3D is used mainly within
the fields of geotechnics since it has several advanced
soil material models incorporated, e.g. the Hardening
Soil Small Strain model that will be used in this inves-
tigation. The method used to obtain the soil response p
and the displacement y is explained in the following.

1. A prescribed uniform horizontal displacement is
applied to all parts of the bucket foundation. The
soil reaction pressure p builds during this step, and
p is extracted from PLAXIS 3D.

2. The horizontal displacement is removed from the
bucket foundation so that only irreversible (i.e.
plastic) deformations remain. This plastic deforma-
tion y is extracted from PLAXIS 3D.

3. This procedure is repeated for an increasing lateral
displacement.

4. To increase usability of the results outside the finite
element method, p and y are normalized to elimi-
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nate variation in depth and a function is fitted to al-
low for a fast computation of the soil reaction pres-
sure p for varying bucket diameter, skirt length and
soil strength (through the internal angle of friction
ϕ).

2 Theory

Traditionally, soil response has been treated as a
2D-problem, described thoroughly for plane strain
problems, e.g. sheet pile walls. With the introduction
of monopiles as a solution to offshore foundation of
e.g. wind turbines, the soil response of such cylindrical
structures has increased the demands for knowledge
within the field of 3D soil interaction. For a bucket foun-
dation however, the existing knowledge regarding p− y
response curves for slender structures in 3D cannot be
employed since buckets behave nearly rigid, cf. figure
1. Thus, the geometry has to be taken into account. The
traditional 2D-theory provides a good offset for the un-
derstanding of displacement and soil response. Figure 2
shows how the active and passive earth pressure develop.

It can be seen that to mobilise the full passive soil
pressure requires a larger displacement than to mobilise
the full active pressure. The illustrated principle is
valid for 2D but the same principle applies for 3D. To
examine the 3D-effect, the soil pressure found in the
numerical calculation will be compared to the 2D-soil
pressure found by Rankine’s soil pressure theory. By
doing so, any added soil pressure obtained for a given
displacement in a given soil compared to the 2D-case
will be caused by this 3D-effect. Since the Rankine
pressure is easily calculated, the results in the following



will mainly focus on determining the factor that the
3D-soil pressure is larger than the corresponding 2D-soil
pressure.

3 Material Model

The applied material model in the finite element code is
the Hardening Soil Small Strain material model (HSs-
mall). HSsmall includes the stress-dependent behaviour
of the Hardening Soil Material Model (HS) where the
current stress state is taken into account when calculating
the stiffness, but HSsmall has a more realistic behaviour
towards small strains. The HSsmall model is more de-
manding calculationwise, however the extra calculation
time is well spend, as the results are closer to real-life
behaviour. Additional stiffness at very small strains has
long been known to occur in the field of soil dynamics,
but has only recently been implemented in static calcu-
lations (Ovesen et al., 2009). By not using the HSsmall
model there is a significant risk of overestimating the
deformations in the soil and thus underestimating the
stresses. Since the objective of this article is to find a
link between the displacement y and the resultant soil
pressure p, the HSsmall model is highly relevant. As the
name implies the HSsmall model incorporates hardening
in the soil, causing the stiffness parameters to change as a
function of the current stress state. This is done by using
a power law to describe the development of the moduli
of elasticities and the shear moduli. The power laws for
the different stiffness moduli follow the same form, e.g.
the development of E50 is given by,

E50 = Ere f
50

(
σ3 + c cot(ϕ)
σref + c cot(ϕ)

)m

. (1)

The model incorporates a multi-surface yield criterion
with isotropic hardening. The shape of the yield crite-
rion is similar to that of the Mohr-Coulomb hexagonal
cone, however the surface is bound by a cap in the direc-
tion of the hydrostatic stress axis. A sketch of the yield

H H

Figure 1: The difference between the behaviour of slender and non-
slender piles when subjected to horisontal load. The non-
slender pile rotates as a rigid body. (Brødbæk et al., 2009)

ypya

p

y

pp

pa

p0

0

Figure 2: The relation between the displacement away from the soil δa
and the active pressure pa and the displacement towards the
soil δp and the passive soil pressure pp. The soil pressure at
rest is p0. (Ovesen et al., 2009)

surface in the principal stress space is shown in figure 3.
Compression is positive, tension is negative.

4 Determination of Soil Strength and Stiff-
ness Parameters

The internal angle of friction ϕ is commonly used as
a design parameter for sands since it is used in Mohr-
Coulomb yield criterion and also resembles a physical
property of the material. Therefore, ϕ is also the main
parameter in this study, and all other strength and stiff-
ness parameters of the sand are linked to ϕ . The used re-
lations in the following are taken from Det Norske Ver-
itas (1992), Jensen et al. (2009) and Brinkgreve et al.

3

2

1

p

Figure 3: The yield surface of the HSsmall model. (Brinkgreve et al.,
2012)



(2012) and the sand is assumed to be of the type Fred-
erikshavn Sand which characteristics are typical for an
offshore sand. The relative density ID is an important
parameter since it indicates how much the soil is com-
pacted. The terms ’loose’, ’medium’ or ’dense’ referring
to the degree of compaction, is often used in empirical
formulas in geotechnical engineering. ID is linked to ϕ

through,

ϕ = ϕ
′
crit +3◦IR−3◦ID−∆ϕ1, (2)

where the critical internal of friction ϕ ′crit = 33◦, ∆ϕ1 =
2◦ for 5-10 % content of silt and IR is calculated from,

IR = ID

(
Qmin− ln

p′

1 kPa

)
, (3)

where the representative mean normal stress is p′ =
100 kPa and Qmin = 10 for quartz sand. IR and Qmin
are both dependent on mineralogy of the grain material.
Poissons ratio ν is linked to ϕ through,

ν =
1− sinϕ

2− sinϕ
. (4)

The elastic modulus E50 is determined from,

E50 =
1−ν−2ν2

1−ν
Eoed, (5)

with Eoed found by,

Eoed = m
√

σ ′σa, (6)

where m as a function of ID is shown in figure 4. The
values here are used commonly for Norwegian inor-
ganic sands, which are assumed similar to Frederik-
shavn Sand. In equation (6), the atmospheric pressure is
σa = 100 kPa and the reference pressure σ ′ = 100 kPa.
This is used along with figure 4 to compute Eoed. For
computing the unloading and reloading response, the un-
loading/reloading elastic modulus Eur is calculated from,

Eur = 3E50. (7)
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Figure 4: Approximation of m as a function of ID. (Det Norske Veritas,
1992)

Table 1: Strength and stiffness parameters for sand used in the numer-
ical model.

ϕ [◦] 30 35 40

ψ [◦] 0 5 10
Qmin [-] 10.00 10.00 10.00
∆ϕ1 [◦] 2.00 2.00 2.00
ID [%] 15.17 53.09 91.02
ν [-] 0.33 0.30 0.26

E50 [MPa] 4.92 14.06 28.54
Eoed [MPa] 7.39 18.87 35.15
Eur [MPa] 14.77 42.17 85.62
e [-] 0.99 0.83 0.68

G0 [MPa] 65.23 82.30 103.49
γ0.7 [mm/m] 0.22 0.18 0.14
K0 [-] 0.50 0.43 0.36
c′ [kPa] 0.10 0.10 0.10

In HSsmall extra parameters compared to HS need to be
determined to model the stress dependency of the shear
stiffness and the shear modulus dependency of the strain.
The initial shear modulus G0 is determined from equa-
tion (8) and the reference shear strain from equation (9).

G0 =
33(2.97− e)2

1+ e
, (8)

γ0.7 =
2c′ (1+ cos(2ϕ ′))−σ ′1 (1+K0)sin(2ϕ ′)

9G0
, (9)

where the effective cohesion c′ = 0.1 kPa and the co-
efficient for soil pressure at rest K0 = 1− sin(ϕ). The
effective cohesion in the soil is set to 0.1 kPa to ensure
numerical stability as recommended in Brinkgreve et al.
(2012). emin = 0.64 and emax = 1.05 are used for the
Frederikshavn Sand to determine e through,

ID =
emax− e

emax− emin
. (10)

Table 1 contains the material parameters used in the nu-
merical modeling in PLAXIS 3D.

5 Modeling in PLAXIS 3D

The finite element tool used to compute p− y curves for
the bucket foundation is PLAXIS 3D. The bucket is built
using different geometries to determine the influence of
the diameter D and the skirt length L on the p− y re-
sponse. The third changeable parameter is the internal
angle of friction ϕ . Table 2 shows the models that are
tested in PLAXIS 3D. The bucket itself is constructed of
steel plate elements. The steel material is chosen thicker
than steel ordinarily used for bucket foundations to in-
crease the bending stiffness and to avoid any deforma-
tion in the steel structure itself. This is done since the
main interest of this investigation is the soil response. To
further avoid any bending in the bucket steel structure,



the displacement is applied to all parts of the bucket pro-
ducing a lateral displacement of the entire bucket instead
of the more realistic rotational behaviour. This does not
influence the results, since only the lateral soil response
is of interest.

5.1 Boundaries, Convergence and Meshing

The boundaries of the model domain are chosen so that
the failure mechanism has enough room to develop fully
without being influenced by the edges of the model. The
size of the model domain is seen in figure 6. Along the
bottom of the skirt, stress concentrations will arise due
to the abrupt change in geometry. To even this concen-
tration out and reduce the effect of it, an extended inter-
face is introduced as recommended in Brinkgreve et al.
(2012). The interface is extended both vertically and
horizontally. The length of the extension is Lext = 0.2D
based on Vaitkunaite (2012). To ensure the results close
to the bucket, where the strain and stress gradients are

Table 2: Overview of the tested models.

Model no. D [m] L [m] ϕ [◦]

1 10 5 30
2 10 5 35
3 10 5 40
4 10 10 30
5 10 10 35
6 10 10 40
7 15 7.5 30
8 15 7.5 35
9 15 7.5 40

10 15 15 30
11 15 15 35
12 15 15 40
13 20 10 30
14 20 10 35
15 20 10 40
16 20 20 30
17 20 20 35
18 20 20 40

Figure 5: An example of the mesh of the FE model.

Table 3: Phases in the models.

Phase Name Action(s)

0 Initial K0-procedure, soil activated
1 Installation Plates, interfaces activated
2 Nil-step Equilibrium reestablished

3,5,7... Load Displacement activated
4,6,8... Unload Displacement deactivated

large, are modeled with a sufficient accuracy, the mesh
is refined in a volume close to the bucket itself. The size
of this refined volume is shown in figure 6. The meshing
facility in PLAXIS 3D allows for a relative meshing size
to be chosen. Firstly the overall mesh density is selected,
after which a linear mesh refinement factor is applied to
the volume containing the bucket. A convergence analy-
sis has been carried out, to ensure a sufficient mesh qual-
ity. An example of the mesh can be seen in figure 5.

5.2 Phases in the Calculation

The model has five basic phases. The first two being
the initial phase (phase 0) and installation phase (phase
1). In the nil-step phase, equilibrium is reestablished af-
ter the installation of the bucket and all deformations are
reset because only the displacement from phase 3 and
onwards is of interest. Phase 3 is a loading phase where
the prescribed displacement is applied to all parts of the
structure. Phase 4 is an unloading phase where the pre-
scribed displacement is removed. Because of the elasto-
plastic behaviour of the soil, the elastic deformations
from phase 3 will be rolled back and only the plastic
part of the deformation will remain. This pattern, plastic
loading followed by elastic unloading, is continued for
an increasingly large deformation until the soil body col-
lapses or the maximum applied displacement has been
reached.

5.3 Integration of Stresses

In order to determine the soil reaction pressure, the
stresses on the bucket skirt are examined. From PLAXIS
3D it is possible to extract stresses in the soil, the plate
elements of the bucket and the interface between soil and
bucket. From Hansen et al. (2012) the method with ex-
traction of stresses from the interface provided more re-
liable results and this method will be used in the follow-
ing. In short, the method uses the normal σ ′N stress and
the shear stresses τ1 and τ2 from the interfaces to com-
pute a total soil pressure on the surface of the structure
bucket foundation skirt as,

Fy =
∫

A
(σN sinθ + τ1 cosθ)dA. (11)

The shear stress τ1 acts along the circumference and τ2
acts vertically along the skirt of the bucket. For deter-
mining the soil reaction pressure p, τ2 is disregarded.
The pressures acting on the bucket skirt during the hori-
zontal displacement are shown in figure 7.



Figure 6: Size of model domain shown with black lines. The bucket itself is shown with blue lines, the volume with refined mesh is shown with
pink lines and the extended interfaces are shown with red lines.

1 N

Figure 7: Principal sketch of the normal stress σN and the shear stress
τ1 when the bucket foundation is displaced horizontally
(de Place, 2012).

The bucket is divided into layers with the depth and
each layer is divided into slices as seen in figure 8 where
two areas, the blue and the red, have been highlighted
as an example. In each of these areas, the average stress
is found which is multiplied by the specific area to get
the force acting on the specific area. The resulting soil
reaction p for a given layer is then found as the sum of
the average forces of all areas in this layer divided by the
height of the layer.

6 Results

The results from the models shown in table 2 will be
visualized through the following procedure.

1. Raw results from the model are plotted in a p− y
diagram.

Figure 8: Areas for integration of surface stresses.

2. The soil pressure p is normalized by the Rankine
pressure pR. The displacement y is normalized by
the bucket diameter D.

3. The results are trimmed so edge effects in the skirt
top and bottom are removed.

4. A tanh-function is fitted to the data.

6.1 Plotting of p-y Curves

The p−y data extracted from model 9 is plotted in figure
9. There is a p−y curve for each of the depth layers. The
z-value in the legend is taken as the depth of the middle
of each layer. The pressure increases with depth as ex-
pected. To better visualize the results, the depth param-
eter z is sought to be eliminated through normalization.
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Figure 9: Step 1 - Raw results from the model are plotted in a p− y
diagram. This data have already been trimmed, cf. section
6.3.

6.2 Normalization of Soil Pressure

To eliminate the depth dependency of the p− y curves,
the soil pressure p is normalized by the Rankine pres-
sure pR which is a linear function of the depth z. The
displacement y is normalized by the bucket diameter D.
The Rankine pressure is calculated as,

pR = γ
′zD(K p

γ −Ka
γ ) (12)

= γ
′zD
(

1+ sin(ϕ)
1− sin(ϕ)

− 1− sin(ϕ)
1+ sin(ϕ)

)
,

where γ ′ is the specific soil weight, z is the depth and ϕ is
the internal angle of friction of the soil. By normalizing
the pressure p by the Rankine pressure that is a linear
function of the depth z, the p− y curves for each depth
layer will turn into one curve, if the pressure p is also a
linear function of z.

6.3 Trimming and Fitting of Data

It is evident from investigating the data, that the normal-
ization by the Rankine pressure is not suitable in the top
and the bottom of the bucket. These variations are con-
sidered to be edge effects and are disregarded. After the
data has been trimmed, the results are fitted with a func-
tion of the type,

p
pR

= β1 tanh
(

β2
y
D

)
(13)

+β3 tanh
(

β4
y
D

)
+

K0

K p
γ −Ka

γ

,

where β2 and β4 are shape coefficients of the fitting func-
tion that controls the climb rate of the function in the
initial part and towards the ultimate soil pressure. From
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Figure 10: Step 3 and 4 - The results are trimmed so edge effects in the
skirt top and bottom are removed. The best fit is shown.
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Model 1, D = 10, L = 5, φ = 30

Model 4, D = 10, L = 10, φ = 30

Model 7, D = 15, L = 7.5, φ = 30

Model 10, D = 15, L = 15, φ = 30

Model 13, D = 20, L = 10, φ = 30

Model 16, D = 20, L = 20, φ = 30

Figure 11: Best fit for models with ϕ = 30◦.

equation (13) it is evident that,

p
pR
→ β1 +β3 +

K0

K p
γ −Ka

γ

for
y
D
→ ∞, (14)

meaning that β1 and β3 control the maximum relative
soil pressure. The fitting function consists of three terms,
the first two enabling the fitting function to fit both the
initial and end slope, while the third term involving K0
takes into account the soil pressure at rest at y = 0. The
trimmed data with the fitted function is shown in figure
10. This procedure is done for all 18 models, and the
fitted functions are gathered - one diagram for ϕ = 30◦,
ϕ = 35◦ and ϕ = 40◦. These results are shown in figures
11, 12 and 13. From this initial study of the p−y curves
and the best fit, it seems like models with L/D= 0.5 have
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Figure 12: Best fit for models with ϕ = 35◦.
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Model 3, D = 10, L = 5, φ = 40

Model 6, D = 10, L = 10, φ = 40

Model 9, D = 15, L = 7.5, φ = 40

Model 12, D = 15, L = 15, φ = 40

Model 15, D = 20, L = 10, φ = 40

Model 18, D = 20, L = 20, φ = 40

Figure 13: Best fit for models with ϕ = 40◦.

a bigger initial stiffness than models with L/D = 1. This
is evident for all values of ϕ . Figures 11, 12 and 13 show
the best fit, meaning that the parameters β1, β2, β3 and
β4 are free to attain an arbitrary value. In the following,
these parameters are sought to be described as a function
of the three basic parameters, D, L and ϕ .

7 Mathematical Model

In order to put the results from the numerical exami-
nation into real-life application, a mathematical model,
that can be used to evaluate the soil response of an arbi-
trary bucket geometry and soil strength, is sought. The
method for obtaining this mathematical expression is to
examine the dependency of the parameters β1 to β4 of
the geometrical parameters D and L and the soil strength
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Figure 14: Examination of β1 +β3 as a function of ϕ

L .

Table 4: Coefficients in the fit of β1 and β3.

a1 a2 b1 b2[m
◦
]

[−]
[m
◦
]

[−]
0.041 2.050 0.107 0.560

parameter ϕ . Ultimately, the goal is to express the earth
pressure through D, L and ϕ .

7.1 Investigation of β1 and β3

The parameters β1 are β3 are investigated as a pair, since
they both contribute to the limit value for y/D going to-
wards infinity as described in section 6.3. The investiga-
tion of β1 and β3 is done by plotting the sum β1+β3 and
the product β1β3 against the basic parameters D, L and ϕ

to discover any trend in the data. To get the actual values
for β1 and β3, two equations with two unknowns have to
be solved. In this particular case, it is seen that the sum
and product could be described as linear functions of the
types,

β1 +β3 = a1
ϕ

L
+a2, (15)

β1 β3 = b1
ϕ

L
+b2. (16)

Figures 14 and 15 show the data and the best linear fit.
The coefficient for the two linear functions are seen in

table 4.

7.2 Investigation of β2 and β4

Subsequently to examining the linear fit of β1 and β3,
these two parameters are locked in the non-linear fitting.
This means that the non-linear fit is done again, this time
only for β2 and β4. The slope parameters β2 and β4 are
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Figure 16: Examination of β2 +β4 as a function of ϕ

L .

examined using the same procedure as for β1 and β3,
using the sum and the product. From the examination, it
is found that the best fit for β2 and β4 are found to be a
polynomial fit in the form,

β2 +β4 = c1

(
ϕ

L

)2
+ c2

(
ϕ

L

)
+ c3, (17)

β2 β4 = d1

(
ϕ

L

)2
+d2

(
ϕ

L

)
+d3, (18)

Again, the coefficients of the fit are found. They can be
seen in table 5. The actual plot of the data and the best
quadratic fit can be seen in figures 16 and 17.
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Figure 17: Examination of β2 β4 as a function of ϕ
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Table 5: Coefficients in the fit of β2 and β4.

c1 c2 c3 d1 d2 d3[(m
◦
)2
] [m

◦
]

[−]
[(m
◦
)2
] [m

◦
]

[−]

8.900 -13.12 66.24 936.5 -4579 5989

7.3 Assessment of Mathematical Model

After developing the mathematical model it is compared
to the best fit done by non-linear curve fitting. Figure 18
shows the two functions and the original data. It shows
relatively good coherence between the best fit and the
mathematical model. The quality of the fit based on the
mathematical model of course varies, but in general the
quality is good. The worst results are gained from the
models with ϕ = 30◦. Obviously, greater effort could
be put into the development of this mathematical model
- especially regarding the connection between the basic
parameters, D, L and ϕ , and the fitting parameters, β1,
β2, β3 and β4. In this case, the fitting parameters were
examined as a function of D, L, ϕ , ϕ/D and ϕ/L, and
as shown, the coherence was best in the case of ϕ/L.
No significant trend based on the bucket diameter D was
found. This matter should be examined further. Ulti-
mately, the mathematical model is rather simple even
though it uses ten fitted parameters as input. A more
precise model could possible be developed, but it would
without any doubt involve substantially more complex
expressions. The user should assess whether this formu-
lation is adequate for use in the specific case.

8 Conclusion

From the numerical analysis of the lateral displacement
of the bucket foundation and the corresponding soil re-
sponse in the drained condition, a general expression
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Figure 18: Comparison between best fit with free parameters and the
mathematical model.

for obtaining the soil pressure is given for an arbitrary
bucket diameter, bucket skirt length and internal angle of
friction of the surrounding soil. This enables fast compu-
tation of the soil pressure to be used in analytical design
models. When designing numerous bucket foundations
for e.g. an offshore wind turbine park, it is important that
the stabilising pressures on the skirt sides can be calcu-
lated readily but still accurately enough to provide a safe
but still efficient design.

9 Further Work

In the formulation of the mathematical model, ten em-
pirical parameters were necessary. Further calibration
of these parameters by doing more models with varying
geometry and strength parameters is a straight-forward
expansion of the investigations and could help increase
the validity of the formulation. The numerical tests done
in this project have all been drained tests for a typical
offshore sand. A natural way to expand the work and ob-
tain further results, would be to perform the same tests
in the undrained condition. In nature, the behaviour of
the bucket foundation will be much influenced by the
build up and dissipation of pore pressure in and around
the bucket skirts. However, in nature neither completely
drained or undrained conditions can be assumed - this
depends solely on the nature of the loading. A more
probable scenario is that the actual behaviour is some-
where in between completely drained and undrained -
namely partially drained. The partially drained state will
be examined in a scaled experiment in the pressure tank
at Aalborg University in the Spring 2013. This project
will try to clarify the behaviour of the bucket foundation
when subjected to loading with varying velocity.
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