
Southern Illinois University Carbondale
OpenSIUC

Articles Department of Electrical and Computer
Engineering

Spring 3-1-2017

Efficient Architecture of Variable Size HEVC 2D-
DCT for FPGA Platforms
Min Chen
MulticoreWare, Inc, chenm003@gmail.com

Yuanzhi Zhang
Southern Illinois University Carbondale, yzzhang@siu.edu

Chao Lu
Southern Illinois University Carbondale, chaolu@siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_articles

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted
for inclusion in Articles by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Chen, Min, Zhang, Yuanzhi and Lu, Chao. "Efficient Architecture of Variable Size HEVC 2D-DCT for FPGA Platforms." International
Journal of Electronics and Communications 73 (Spring 2017): 1-8. doi:10.1016/j.aeue.2016.12.024.

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_articles?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_articles?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

Efficient Architecture of Variable Size HEVC

2D-DCT for FPGA Platforms

Min Chen1, Yuanzhi Zhang2, Chao Lu2
1 MulticoreWare, Inc. St. Louis, MO, USA, email: chenm003@gmail.com

2 Department of Electrical and Computer Engineering, Southern Illinois University

Carbondale, IL, USA, 62901, email: yzzhang@siu.edu, chaolu@siu.edu

Abstract: This study presents a design of two-dimensional (2D) discrete cosine

transform (DCT) hardware architecture dedicated for High Efficiency Video Coding

(HEVC) in field programmable gate array (FPGA) platforms. The proposed

methodology efficiently proceeds 2D-DCT computation to fit internal components and

characteristics of FPGA resources. A four-stage circuit architecture is developed to

implement the proposed methodology. This architecture supports variable size of DCT

computation, including 4×4, 8×8, 16×16, and 32×32. The proposed architecture has been

implemented in System Verilog and synthesized in various FPGA platforms. Compared

with existing related works in literature, this proposed architecture demonstrates

significant advantages in hardware cost and performance improvement. The proposed

architecture is able to sustain 4K@30fps ultra high definition (UHD) TV real-time

encoding applications with a reduction of 31-64% in hardware cost.

Keywords—H.265/HEVC, two-dimensional discrete cosine transform (2D-DCT), FPGA

platform, hardware architecture

I. INTRODUCTION

Rapid advances in consumer electronics have resulted in a variety of emerging video

coding applications. Typical examples include ultra-high definition (UHD) 4K/8K TV [1] or

unmanned aerial vehicle (UAV) reconnaissance and surveillance [2-3], which demands

aggressive video compression requirement. Despite the success in the last decade, video

compression efficiency of H.264 standard cannot satisfy stringent requirements [4].

Alternatively, recently established H.265/HEVC standard has great potential to improve

video compression efficiency by around 50%, while retaining the same video quality as

H.264 [5-6]. As a result, HEVC has been viewed as one of the most promising standard to

overcome these challenges [7-8].

Optimized coding efficiency in HEVC is attributed to increased computational complexity

[9]. For example, Discrete Cosine Transform (DCT) and Inverse Discrete Cosine Transform

(IDCT) are indispensable building blocks of HEVC hardware implementation [10]. Previous

study has reported that DCT and IDCT computation in HEVC is estimated as 11% of total

computational complexity in hardware implementations [6]. Due to computational similarity

between DCT and IDCT, they can alter the coefficient matrix and share same circuit

architecture. Large block sizes of DCT and IDCT (i.e., 16×16 and 32×32) are supported in

HEVC standard, while H.264 only accepts smaller block sizes (i.e., 4×4 and 8×8). Large sizes

of DCT and IDCT help to improve coding efficiency. For example, the use of 16×16 and

32×32 DCTs and IDCTs in HEVC reduces bit rate up to 10.1% [11]. However, the associated

hardware cost rises significantly. For instance, a transpose buffer of 32×32×16 bits is needed

to store one-dimensional transform coefficients for 32×32 2D-DCT, while a transpose buffer

of 8×8×16 bits is sufficient for 8×8 2D-DCT. The hardware cost of transpose buffer will

continue to increase in next-generation video coding standard, since it will include 64×64 and

128×128 DCT/IDCT operations [12]. Therefore, it is necessary to investigate efficient circuit

architectures to reduce hardware implementation cost and computational complexity [13-15].

Nowadays, computational resources in FPGA are adequate to implement HEVC codecs,

such as FPGA implementation of 4K real-time HEVC decoder [16] and a full HD real-time

HEVC main profile decoder [17]. The use of FPGA instead of application-specific integrated

circuit (ASIC), shortens design time to market, and hence is a preferred approach for small

volume production. Therefore, the study of HEVC FPGA implementation is gaining more

and more attention. In order to satisfy real-time and high-efficiency coding in these emerging

video applications, a few design methodologies and circuit architectures have been developed

[11, 18-24]. In [11], the authors presented an IDCT implementation with zero-column

skipping technique to boost energy and area efficiency. However, the use of single-port static

random access memory (SRAM) does not allow pipeline operation, hence the throughput of

this design is impeded. The proposed architecture in [18] focuses on reduction of hardware

utilization. A series of hardware minimization techniques was applied, including operation

reordering, multiplications to shift-adds conversion, etc. In [19-21], the proposed designs

utilized distributed arithmetic hardware to perform multiplications in 2D-DCT. These

approaches are efficient for smaller DCT computation (e.g., 8×8). The proposed architectures

in [19-21] did not consider internal features and characteristics of FPGA platforms. In [22], a

new algorithm and processing architecture for 2D-DCT were presented to achieve higher

energy efficiency. Recently, the researchers in [23-24] proposed FPGA-based 2D-DCT with

improved area-speed efficiency. [23-24] are initial trials to efficiently utilize features and

dedicated components of FPGA platforms. However, the design strategy of allocating FPGA

resources to fit DCT architectures are not elaborated in details.

These existing architectures are inefficient when implementing HEVC 2D-DCT in FPGA

platforms, because larger DCTs (e.g., 32×32) involves a great number of transpose buffers,

cascaded additions and subtractions. When a design is synthesized towards FPGA platforms,

many general-purpose logics (i.e., Look-up Tables (LUTs)) are utilized. Thus, the critical

path delay of a synthesized design is longer, and the maximum operation frequency is

degraded. On the other hand, if a designer is aware of internal resources of FPGA, the

resultant architecture may fit with FPGA components and features. Thus, the synthesized

design efficiently utilizes FPGA resources, such as digital signal processor (DSP) blocks, bus

width, and on-chip memory. An efficient hardware architecture should always make every

effort to fit FPGA resources, which is the focus of this paper.

This paper makes the following contributions: (1) our proposed design methodology takes

into account of hardware resources of FPGA platforms, and efficiently utilizes bus width,

DSP blocks, BRAM blocks, and on-chip memory bandwidth. Thus, the required general

programmable logics (e.g., LUTs) are significantly reduced, and video processing throughput

is largely improved. (2) A hardware architecture is proposed to support variable DCT sizes

from 4×4 to 32×32, which can also be extended to larger DCT sizes (e.g., 64×64 and

128×128). This architecture facilitates hardware sharing and reusing among different DCT

sizes. The design details are described and illustrated through timing diagram. (3) The

proposed architecture has been synthesized in various FPGA platforms. The benefits are

presented through comparisons with existing designs in literature. The proposed architecture

is able to sustain 4K@30fps ultra high definition (UHD) TV real-time encoding applications

with a reduction of 31-64% in hardware cost.

The rest of this paper is organized as follows. Section II reviews basic DCT algorithm,

hardware components and FPGA characteristics. Section III describes the proposed design

methodology and system architecture. In Section IV, system implementation results are

provided. An in-depth comparison with related design architectures in literature is presented.

Finally, Section V concludes the paper.

II. Related Work

A. Basic DCT Algorithm

DCT is widely used in image coding and signal processing applications. DCT transforms

images from spatial-domain into frequency-domain, and provides a more efficient

representation of information. A 1D-DCT computation of an N×N block size can be

expressed as [10, 24]

1

0

(,) (,) (,)
N

k

Y i j X k i C j k

 (1)

Here X and Y are the input and output data matrix, respectively. C is an N×N transform

matrix. N can be 4, 8, 16 or 32 in HEVC/H.265 standard. For simplicity, integer values are

usually chosen in the transform matrix C in VLSI implementation. Thus, the hardware

implementation achieves finite precision DCT approximation [9]. Thanks to the separability

feature, a 2D-DCT is usually decomposed into two 1D-DCTs. 1D-DCT is firstly applied on

individual row of input data matrix X, then, another 1D-DCT is applied to the results from the

first 1D-DCT [18]. Two 1D-DCTs are connected through a transpose buffer, which

temporarily stores the results of the first 1D-DCT. Because direct hardware implementation

of matrix multiplication in 1D-DCT requires intensive computation, 1D-DCT based on even-

odd decomposition techniques is widely accepted to minimize computational complexity [9].

B. Hardware Components and Features of FPGA Platform

FPGA is one type of pre-fabricated integrated circuits designed for rapid prototyping and

functional verification. Nowadays, FPGA platform consists of five main elements: DSP

blocks, look-up tables (LUTs), flip-flops, random access memory (RAM) blocks and routing

matrix. The DSP blocks, including pre-adder, multiplier, accumulator, etc., are dedicated for

accelerating complex arithmetic computation. A look-up table is a collection of logic gates to

implement any arbitrarily user defined Boolean function. A look-up table is composed of

register arrays and works as a combinational logic of inputs. Users can program look-up

tables to realize any combinational logic function. Each look-up table may connect with flip-

flops, which are indispensable components of sequential logic modules. RAM block is an

embedded storage element, whose type could be single-port, dual-port or quad-port. For

example, a dual-port RAM enables simultaneously access (i.e., write or read) by two agents.

Routing matrix is used to route signals and interconnect among FPGA processing resources.

Different FPGA companies implement these five main elements differently. For example,

Zynq is one FPGA of Xilinx 7-series families. This FPGA has plentiful hardware resources,

such as LUTs, DSP48s, and BRAMs [25-26]. The LUTs of Zynq FPGA can be configured as

either six inputs with one output, or as five inputs with multiple separate outputs. Some LUTs

could be configured as 64-bit distributed RAMs or as 32-bit shift registers. A DSP48 block

consists of a 25-bit pre-adder, a 25×18 two’s complement multiplier, and a 48-bit

accumulator. A DSP48 block may be configured as a single-instruction-multiple-data (SIMD)

arithmetic unit. DSP48 block is optimized for short critical path, and hence reaches clock

frequency as high as 741MHz. In addition, on-chip dual-port block RAMs (BRAM) with port

width up to 72 bits are embedded in Zynq FPGA. This BRAM also supports asymmetric read

or write operations with variable port width.

III. Proposed Design Methodology and Circuit Architecture

As been reviewed in Sections II, FPGA owns rich on-chip high performance resources. It

is highly desirable to create HEVC architectures to fit FPGA components and characteristics.

For example, 2D-DCT involves extensive matrix multiplications. Multiplications could be

implemented either by LUTs or DSP blocks inside FPGA platforms. If a design is

implemented using LUTs, due to distributed locations of LUT components and long wire

routing, the resultant design will exploit lots of LUTs and suffer from slower system

operation. In contrast, if dedicated DSP blocks are selected to implement multiplications, its

operating frequency and hardware efficiency will be improved over LUT-based design

scheme.

From the above discussion, it is clear that existing 2D-DCT designs in literature do not

fully explore internal resources and characteristics of FPGA platforms. In this section, we

propose a FPGA-friendly DCT design methodology and circuit architecture to mitigate the

design challenges of future video coding applications.

A. Proposed Methodology

Fig. 1. Proposed 2D-DCT 32x32 algorithm with row and column seperation

Figure 1 shows the proposed 2D-DCT algorithm, assuming targeted FPGA is Xilinx Zynq.

Input data for DCT computation is a 9-bit 32×32 matrix. According to the separability

property, a 2-D DCT is decomposed into two subsequent 1-D DCTs. Unlike the conventional

approach [18] where input data are read and executed row by row, our proposed method

1st 1D DCT

Input 32x32
DCT data

Intermediate results Output 32x32
DCT results

2nd 1D DCT

… ...
… ...
… ...
… ...
… ...
… ...
… ...

…
 ..

.
…

 ..
.

…
 ..

.

…
 ..

.
…

 ..
.

… ...
… ...…

 ..
.

…
 ..

.
…

 ..
.

…
 ..

.
…

 ..
.

… ...
… ...

… ...
… ...

… ...

… ...
… ...…

 ..
.

…
 ..

.
…

 ..
.

…
 ..

.
…

 ..
.… ...

… ...
… ...

… ...

… ...

performs two rows in parallel during the first 1D-DCT. The results (i.e., 4 points) in each

clock cycle are stored in BRAM. Because maximum port width of a BRAM in Zynq is up to

72 bits, and width of intermediate results from the first 1D-DCT is 16 bits, at most 4 points

can be saved during each clock cycle. 16 clock cycles are required to accomplish two rows of

data, and its output result during each clock cycle is a 2×2 matrix, as depicted in Figure 1.

Therefore, the output pattern of 4 points (i.e., 2×2 matrix) fits with the port width of BRAMs

in Zynq, which indicates computation throughput matches bandwidth of storage memory and

hence no idle computation resource. Note this output 2×2 matrix will be transposed (also

called re-ordered) before saving into two columns of a BRAM. A total of 16 BRAMs of each

size 64×16 bits, are needed for a 32×32 2D-DCT computation. During the second 1D-DCT

computation, each row of intermediate results is read from all 16 BRAMs and proceeded.

Each clock cycle outputs 4 points (i.e., 1×4 matrix) as shown in Figure 1. Thus, throughput of

two subsequent 1D-DCTs are balanced, avoiding the risk of operation stall.

To increase hardware utilization efficiency, on-chip DSP blocks are preferred to realize

matrix multiplications. DCT transform using even-odd decomposition results in drastic

reduction in the number of multiplications and additions, when compared with direct matrix

multiplication [9]. Here we propose to map butterfly transform into DSP48 blocks in Zynq,

where the pre-adder, multiplier and 48-bit accumulator efficiently collaborate to generate

outputs. Butterfly transform can be applied several times in DCT. Each time an even data

matrix splits into smaller even and odd parts, until down to 4×4 size. Even parts may be

reused for different DCT sizes, but odd parts are prohibited. Table I illustrates how hardware

resources for processing one pixel point varies with depth of butterfly transform. It is

apparent that more levels of butterfly transforms require less number of multipliers. We

propose to apply butterfly transform only once, instead of three times as in [6]. With the

resource overhead of six more multipliers, the benefit of our design is to reuse these

computation elements in parallel in smaller DCT sizes. For example, if the DCT size is 4×4,

16 multipliers can be reconfigured in parallel to boost computation performance, compared

with conventional design which consists of only 10 multipliers. Overall, 128 DSP48 blocks in

Zynq FPGA are enough to proceed 2D-DCT implementations.

TABLE I. Hardware resources for processing one pixel point vs. butterfly transform depth

Butterfly Depth
of Multipliers required

in 1D-DCT

of Adders required

in 1D-DCT

0 (i.e., no butterfly transform) 32 31(bit width 16)

1 16 31(bit width 17)

2 12 31(bit width 18)

3 10 31(bit width 19)

B. Architecture Design

Figure 2 shows the proposed four-stage architecture to implement our design

methodology. During the first stage, input DCT data are received from upstream module.

Butterfly operation is executed and results are stored into a register buffer. During the second

stage, data are fetched from the register buffer. These data are multiplied with coefficients,

and the accumulated results are directly stored into BRAMs. Coefficients are obtained from a

read only memory (ROM), whose address is sent by the control unit. So far, the computation

of first 1D-DCT is done. The third stage reads data from BRAMs, executes one-level

butterfly transform, and finally stores the results into a buffer register. The fourth stage reads

data from the buffer register, and runs 1D-DCT again as described in the second stage with

higher bit width to adapt larger dynamic range. As four pixels (64 bits) are processed every

clock cycle, BRAMs are used as transpose buffers due to its port width is up to 72 bits. We

only use 16 BRAMs and eliminate the use of any transpose register buffers in FPGA. During

each clock cycle, the first 1D-DCT writes 2×2 reordered pixels into a BRAM, and the second

1D-DCT outputs 1×4 pixels as system output. In this architecture, the internal BRAM

bandwidth and computation throughput of 2D-DCT match each other. The control unit

generates the required read/write signals for BRAMs, coefficient addresses for ROM, and

handshaking signals for input and output synchronization. Note the output results of 2D-DCT

will be quantized in a separate quantization stage, so quantization process is not included in

Fig. 2. The proposed architecture is applicable to IDCT computation after switching

multiplication coefficients tables and using a 16-bit input data matrix.

Fig. 2. FPGA four-stage architecture of the proposed 2D-DCT transformation

DCT size option (i.e., 32×32, 16×16, 8×8, and 4×4 DCT/DST) and input DCT data are

inputs of this architecture. If DCT size is less than 32×32, the architecture will be

reconfigured to maximize throughputs and performance. For example, the control unit needs

16 clock cycles to write two rows of data in 32×32 DCT. While in 8×8 DCT mode, only 8

clock cycles are required to compute all of 8×8 DCT computation, and 16 clock cycles are

needed to store results into BRAMs under the BRAM port width restriction, so our

architecture will proceed double samples per cycle in 8×8 DCT to avoid waste computational

resources. This reconfiguration property enables multiple transform sizes to be realized using

the same architecture, thus, facilitating hardware sharing and reusing across different DCT

block sizes.

Input DCT DataDCT Size Option

Butterfly

Register

Multiply and Accumulate (MAC)

BRAM

Control
Unit

1st Stage

3rd Stage Butterfly

Register

Multiply and Accumulate (MAC)

Output

2nd Stage

4th Stage

ROM

Output Data Ready

coefficients

1D/2D address

coefficients

User Inputs

Variable
Size DCT

R/W address

two-row data

one row data

Figure 3 illustrates timing diagram of the proposed 2D-DCT architecture, where a 32×32

block size is chosen as an example. During the first stage, two rows of input data (64 points)

feed into this architecture. Next, one level butterfly transform is executed and the results are

stored in a register buffer. During the second stage, 1D-DCT computation occurs and takes

16 clock cycles. The resultant outputs (i.e., 2×2 points) in each clock cycle are written into a

BRAM. There are a total of 16 utilized BRAM blocks and 256 clock cycles needed for a

32×32 1D-DCT computation. During the next stage, 32 pixels are read from 16 BRAMs,

which indicates 2 pixels per BRAM, to compute one level butterfly transform. The outputs

are stored into a register. The last stage is responsible for the second 1D-DCT computation.

Overall, this architecture takes 500 clock cycles to accomplish a 32×32 2D-DCT.

Fig. 3. Timing diagram of the proposed 32×32 2D-DCT architecture

Fig. 4. First 1D-DCT architecture with BRAM data storage allocation

Fig. 5. Reconfiguration of DCT for variable block size

E00

E01

E15

… ...
… ...

multiplier

coefficient

multiplier

coefficient

multiplier

coefficient

Adder+
Round

Even rows of
1st Column

… ...
… ...…

 ..
.

…
 ..

.

…
 ..

.
…

 ..
.

… ...
… ...

… ...

… ...

Even
Part

O00

O01

O15

… ...
… ...

multiplier

coefficient

multiplier

coefficient

multiplier

coefficient

Adder+
Round

Odd rows of 1st
Column

Odd
Part

…
 ..

.

Input 32x32
DCT data

… ...
… ...
… ...
… ...
… ...
… ...
… ...

…
 ..

.
…

 ..
.

…
 ..

.

…
 ..

.
…

 ..
.

1st Row

E00

E01

E15

… ...
… ...

multiplier

coefficient

multiplier

coefficient

multiplier

coefficient

Adder+
Round

Even rows of
2nd Column

Even
Part

O00

O01

O15

… ...
… ...

multiplier

coefficient

multiplier

coefficient

multiplier

coefficient

Adder+
Round Odd rows of

2nd Column

Odd
Part

2nd Row

Intermediate
results

E00

E01

E02

E03

E04

E05

Multiplier with coefficient
Adder

Even Part of
32x32DCT

after 1st
Butterfly

Multiplier with coefficient

E06

E07

E08

E09

E10

E11

E12

E13

E14

E15

Multiplier with coefficient

Multiplier with coefficient
Adder

Multiplier with coefficient
Adder

Multiplier with coefficient

Multiplier with coefficient

Multiplier with coefficient
Adder

Multiplier with coefficient
Adder

Multiplier with coefficient

Multiplier with coefficient

Multiplier with coefficient
Adder

Multiplier with coefficient
Adder

Multiplier with coefficient

Multiplier with coefficient

Multiplier with coefficient
Adder

Adder

Adder

Adder

Adder

Adder

Adder

Adder

4x4 DCT result

8x8 DCT result

16x16 DCT result

32x32 DCT result

Figure 4 shows architecture details of the first 1D-DCT stage, which proceeds two-row

data in parallel. As one level butterfly transform is applied, the data of each row split into

even and odd parts. For example, E00-E15 and O00-O15 are the results of each row after one

level butterfly transform. These four groups of even or odd parts multiply with individual

DCT coefficients, then, go through adding and rounding process. The 1D-DCT results of

first-row and second-row input data are stored in the first and second columns of a BRAM,

respectively. Through storing these 1D-DCT results in columns of BRAMs, no registers are

needed to implement matrix transposition.

Figure 5 shows how the proposed architecture corresponds to variable DCT sizes. Fifteen

adders are organized as a tree structure. As outlined by the dash lines, a 4×4 DCT is

embedded within an 8×8 DCT, which in turn is embedded in a 16×16 DCT and so on until a

32×32 DCT. Specially, in the HEVC standard, 4×4 blocks are transformed as either 4×4 DCT

or 4×4 DST. The proposed architecture handles this 4×4 case by choosing different transform

coefficient table. Based on the input DCT size option, this architecture in Figure 5 adjusts its

control unit and concurrently proceeds eight 4×4 1D-DCTs, four 8×8 1D-DCTs, two 16×16

1D-DCTs or one 32×32 1D-DCT. Note the multiplication coefficients are also updated, when

the DCT size option varies with time. The proposed architecture can be easily modified for

2D-IDCT, where the input data are 16 bits and IDCT transform coefficient tables are used.

IV. System Implementation Results and Discussion

The proposed DCT architecture has been described in System Verilog. Synthesis has been

conducted in various FPGA platforms, including Altera Stratix III, Cyclone II and Arria II

GX, as well as Xilinx XC7VX330T and Zynq. The RTL compiler in [20] is no longer

supported by FPGA vendor. To make a fair comparison with [20], our proposed design is

synthesized in Cyclone II, which is the found oldest FPGA that RTL compiler still supports.

DCT transform coefficients are stored in distributed RAMs or ROMs inside FPGA platforms.

This proposed 2D-DCT architecture is generic and it is not limited to any fabrication

technology. So the proposed architecture of 2D-DCT in this work is applicable to different

technology or process nodes. It is well known that an advanced fabrication technology

usually leads to shorter propagation delay and a higher clock frequency, but a constant

number of 500 clock cycles is required to accomplish a 32×32 2D-DCT.

The related references in literature are included in Table II, which lists key performance

metrics of 2D-DCT architectures, such as FPGA model name, utilization of LUTs/ALMs and

DSP blocks, the number of required clock cycle, clock frequency, and output throughput. Our

proposed architecture enables variable block size (4×4, 8×8, 16×16 and 32×32), while the

references [18, 20-21] only support one smaller block size (8×8 or 16×16). The references

[18, 20-21] do not utilize on-chip DSP blocks. Due to the use of on-chip DSPs, our proposed

work results in much shorter critical path and significant improvement in terms of frequency

and throughput. Due to [20] and this proposed work utilize different FPGA platforms (as well

as different fabrication technology), the number of required clock cycle should be compared

instead of frequency. Under the same supported DCT size (8×8), both works utilize the same

amount of hardware resources (2.5K LUT/ALM). However, the required number of clock

cycle in this work is 7, which is equivalent to only 5.5% of that in [20]. Therefore, our

proposed work is advantageous than [20]. In the world, Xilinx and Altera are two dominant

FPGA companies. Their FPGA platforms are distinctive in terms of design tools,

reconfigurable logic cells and system architecture. As a result, there is no intention to

compare these key performance metrics of the proposed design between Arria II GX and

Xilinx Zynq. The purpose of including Xilinx Zynq results in Table II and III is to

demonstrate that our proposed design is applicable to both primary FPGA manufacturers. The

results in Table II and III indicate that our proposed idea is generic and it is not limited to any

specific FPGA company. Both the reference [24] and this work support variable DCT sizes.

Using the same FPGA platform, our proposed architecture saves LUT resources by 32% and

DSP blocks by 75%. As a result, our proposed architecture excels in hardware cost, while the

clock frequency is a little degraded than [24]. Alternatively, if Xilinx Zynq is the

implemented FPGA platform, our proposed architecture operates at a clock rate of 222MHz

and achieves a throughput of 453M pixels/second. Note the required number of clock cycle in

our proposed design is the same in both Arria II and Xilinx Zynq platforms.

Power Consumption is another important factor to compare among these designs. Yet,

because there are no power consumption values available in references [18] and [21], we

cannot include power consumption for a quantitative comparison in Table II. Alternatively,

we offer a comprehensive analysis as below. According to the statement of the primary

FPGA Company Altera [27], the DSP blocks in modern FPGA platforms are very power

efficient. These power-efficient DSP blocks enable the use of modern FPGA platforms in

high definition video coding applications (e.g., our targeted application - HEVC encoder)

[27]. Moreover, as reported in [28], the DSP blocks only account for 1% of total dynamic

power consumption in Stratix III devices. 70% of power consumption are from user logic and

signal routing. Therefore, the number of user logic (i.e., LUT/ALM) is a good indicator of

energy consumption estimation. Table II exhibits that our proposed design consists of much

less user logic than [18], [21] and [24] under the same FPGA platform. Under different

FPGA platforms, the number of user logic in the proposed work keeps the same as that in

[20], but the required clock cycle is reduced largely. Hence, it is highly possible that our

proposed design results in lower energy consumption due to significant savings in user logic

and signal routing. Even though our proposed design uses 16 or 64 more DSP blocks than

[18] or [21], the power consumption resulted from DSP blocks is negligible compared with

that from user logic and signal routing. In all, considering the above two reasons, we estimate

the use of DSP blocks in modern FPGA platforms probably does not lead to significant

power consumption. Our proposed design is acceptable in handheld consumer electronics

from an energy consumption point of view.

Moreover, we focus on Altera “Arria II GX” and Xilinx “Zynq” to thoroughly discuss

system performance. Arria II GX and Zynq are based on eight-input adaptive-logic-modules

(ALM8) and six-input look-up tables (LUT6), respectively. Table III summaries hardware

resource results for variable size of 2D-DCT computation. Note even though Arria II and

Zynq are implemented with 40nm or 28nm process respectively, the required number of

clock cycle in our proposed design is the same (i.e., 500 for a 32×32 2D-DCT in Table II).

Our proposed architecture in Zynq requires at least 15% more hardware resources than Arria

II GX. Our proposed architecture demonstrates a higher clock frequency (i.e., 222-289MHz)

at Xilinx Zynq, which is 30-38% faster than the system implementations at Arria II GX (i.e.,

138-206MHz). This is because our architecture is designed inherently to best fit

characteristics of Zynq platform, where the distributed RAMs/ROMs helps to improve

operation speed and reduces the amount of LUTs for logic synthesis. Table III also

demonstrate the benefit of this work over the reference [24]. Using the same FPGA platform,

this work achieves 31-64% reduction in the number of ALMs, while the clock frequency

overhead is no more than 31%.

Let us take a look at a 4K@30fps UHD TV video encoding application. The minimum

throughput to accomplish a 32×32 DCT is calculated as 3840×2160×30/(32×32) = 243,000

blocks/second. Since our proposed 2D-DCT architecture needs 500 clock cycles to complete

one 32×32 block, therefore, our proposed architecture demands 243,000×500 = 121.5 million

cycles/second, which is equivalent to a clock frequency of 121.5MHz. As shown in Table II,

no matter the FPGA platform is Arria II GX or Xilinx Zynq, the clock rate of our synthesized

solution reaches at least 138MHz. This number indicates our proposed architecture is able to

sustain 4K@30fps UHD TV real-time encoding applications, meanwhile achieving lower

hardware cost.

TABLE II. FPGA Performance Results Summary

 [18] This work [20] This work

FPGA Stratix III
Altera

Flex10K100
Cyclone II

Supported DCT Size 16×16 16×16

4×4,

8×8,

16×16,

32×32

8×8 8×8

4×4, 8×8,

16×16,

32×32

of LUT/ALM 16K 1.4K 5.2K 2.5K 2.5K 10.4K

of DSP Block 0 16 32 0 64 128

of Clock Cycle 18 60 500 128 7 500

Frequency (MHz) 27 283 206 10 116 94

Throughput

(Mega Pixels/sec)
204 577 421 5.53 237 192

 [21] This work [24] This work

FPGA Xilinx XC7VX330T Arria II GX Xilinx Zynq

Supported DCT

Size
8×8 8×8

4×4,

8×8,

16×16,

32×32

4×4, 8×8,

16×16,

32×32

4×4, 8×8,

16×16,

32×32

4×4, 8×8,

16×16, 32×32

of LUT/ALM 3.1K 1.7K 5.6K 7.3K 5.0K 5.8K

of

DSP Block
0 64 128 128 32 128

of Clock Cycle 15 7 500 N/A 500 500

Frequency (MHz) 256 239 177 200 138 222

Throughput

(Mega Pixels/sec)
13 488 361 N/A 282 453

TABLE III. Hardware Resource Results for Variable Size of 2D-DCT Computation

DCT Block Size

[24]

(ALM /

Frequency)

This work

(ALM or LUT /

Frequency)

Performance

Comparison at Arria II

GX FPGA

4×4 8×8 16×16 32×32 Arria II GX
Arria II

GX

Xilinx

Zynq

ALM

number

reduction

clock freq.

degradation

× × × ×
7269 /

200MHz

5034 /

138

MHz

5806 /

222 MHz
31% 31%

 × × ×
6928 /

200MHz

4108 /

138

MHz

5726 /

222 MHz
41% 31%

 × ×
6821 /

200MHz

3424 /

143

MHz

4733 /

225 MHz
50% 29%

 ×
6792 /

200MHz

2967 /

150

MHz

3898 /

237 MHz
56% 25%

× × ×
5014 /

200MHz

2586 /

179

MHz

3155 /

261 MHz
48% 11%

× ×
3436 /

200MHz

2097 /

206

MHz

2478 /

289 MHz
39% -3%

 × ×
4921 /

200MHz

1781 /

185

MHz

2745 /

263 MHz
64% 8%

V. Conclusion

This paper presents a FPGA-friendly architecture design of variable size 2D-DCT for

HEVC standard. 4×4, 8×8, 16×16 and 32×32 sizes of 2D-DCT are embedded in one

architecture. This property enables multiple DCT sizes to share and reuse hardware resources.

The proposed methodology efficiently proceeds 2D-DCT computation to fit internal

components and characteristics of FPGA platforms. Details of circuit architecture and timing

diagram are described in this work. The proposed architecture has been implemented in

several FPGA platforms. Synthesis and simulation results demonstrate that the proposed

architecture has great advantages in hardware cost, operating frequency and throughput, in

contrast with prior works in literature. The proposed architecture is able to sustain 4K@30fps

UHD TV real-time encoding applications with a reduction of 31-64% in hardware cost.

References

[1] H. Meuel, M. Munderloh, J. Ostermann, “Stereo mosaicking and 3D video for singleview

HDTV aerial sequences using a low bit rate ROI coding framework”, International

Conference on Advanced Video and Signal Based Surveillance, pp. 1-6, 2015.

[2] M. Bhaskaranand, J. Gibson, “Low-complexity video encoding for UAV reconnaissance

and surveillance”, Military communications Conference, pp. 1633-1638, 2011.

[3] M. Bhaskaranand, J. Gibson, “Low complexity video encoding and high complexity

decoding for UAV reconnaissance and surveillance”, International Symposium on

Multimedia, pp. 163-170, 2013.

[4] Q. Zhang, H. Chang, X. Huang, L. Huang, R. Su, Y. Gan, “Adaptive early termination

mode decision for 3D-HEVC using inter-view and spatio-temporal correlations”,

International Journal of Electronics and Communications, vol. 70, no. 5, pp. 727-737,

2016.

[5] F. Bossen, B. Bross, K. Suhring, D. Flynn, “HEVC complexity and implementation

analysis”, IEEE Transactions on circuits and Systems for Video Technology, vol. 22, no.

12, pp. 1685-1696, December, 2012.

[6] E. Kalali, E. Ozcan, O. Yalcinkaya, I. Hamzaoglu, “A low energy HEVC inverse

transform hardware”, IEEE Transactions on Consumer Electronics, vol. 60, no. 4, pp. 754-

761, 2014.

[7] A. Kessentini, A. Samet, M. Ayed, N. Masmoudi, “Performance analysis of inter-layer

prediction module for H.264/SVC”, International Journal of Electronics and

Communications, vol. 69, no. 1, pp. 344-350, 2015.

[8] A. Samcovic, “Mathematical modeling of coding gain and rate-distortion function in

multihypothesis motion compensation for video signals”, International Journal of

Electronics and Communications, vol. 69, no. 2, pp. 487-491, 2015.

[9] M. Budagavi, A. Fuldseth, G. Bjontegaard, V. Sze, M. Sadafale, “Core transform design

in the high efficiency video coding (HEVC) standard”, IEEE Journal of Selected Topics in

Signal Processing, vol. 7, no. 6, pp. 1029-1041, 2013.

[10] K. R. Rao, P. Yip, “Discrete cosine transform: algorithms, advantages, applications”,

1990, Academic Press, Inc.

[11] M. Tikekar, C. Huang, V. Sze, A. Chandrakasan, “Energy and area efficient hardware

implementation of HEVC inverse transform and dequantization”, pp. 2100-2104, IEEE

International Conference on Image Processing (ICIP), 2014.

[12] JVET document, Joint Video Exploration Team of ITU-T SG 16 WP 3 and ISP/IEC JTC

1/SC 29/WG 11 meeting.

[13] P. Meher, S. Park, B. Mohanty, K. Lim, C. Yeo, “Efficient integer DCT architectures for

HEVC”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 1,

pp. 168-178, 2014.

[14] J. Zhu, Z. Liu, D. Wang, “Fully pipelined DCT/IDCT/Hadamard unified transform

architecture for HEVC codec”, IEEE International Symposium on Circuits and Systems,

pp. 677-680, 2013.

[15] M. Budagavi, V. Sze, “Unified forward+inverse transform architecture for HEVC”,

IEEE International Conference on Image Processing, pp. 209-212, 2012.

[16] M. Abeydeera, M. Karunaratne, G. Karunaratne, K. D. Silva, A. Pasqual, “4K real-time

HEVC decoder on an FPGA”, IEEE Transactions on Circuits and Systems for Video

Technology, vol. 26, no. 1, pp. 236-249, January, 2016.

[17] D. Engelhardt, J. Moller, J. Hahlbeck, B. Stabernack, “FPGA implementation of a full

HD real-time HEVC main profile decoder”, IEEE Transactions on Consumer Electronics,

vol. 60, no. 3, pp. 476-484, August, 2014.

[18] R. Conceicao, J. Souza, R. Jeske, B. Zatt, M. Porto, L. Agostini, “Low-cost and high

throughput hardware design for the HEVC 16x16 2-D DCT Transform”, Journal of

Integrated Circuits and Systems, vol. 9, pp. 25-35, 2014.

[19] J. Huang, M. Parris, J. Lee, R. Demara, “Scalable FPGA architecture for DCT

computation using dynamic partial reconfiguration”, ACM Transactions on Embedded

Computing Systems, vol. 9, no. 1, 2009.

[20] Z. Yusof, I. Suleiman, Z. Aspar, “Implementation of two dimensional forward DCT and

inverse DCT using FPGA”, International Conference on Electrical & Electronic

Technology, vol. 3, pp. 242-245, 2000.

[21] P. Kitsos, N. Voros, T. Dagiuklas, A. Skodras, “A high speed FPGA implementation of

the 2D DCT for ultra-high definition video coding” International Conference on Digital

Signal Processing, pp. 1-5, 2013.

[22] R. Scrofano, J. Jang, V. Prasanna, “Energy-efficient Discrete Cosine Transform on

FPGAs”, Engineering of Reconfigurable Systems and Algorithms, pp. 215-221, 2003.

[23] A. Atitallah, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi, P. Marchegay,

“Optimization and implementation on FPGA of the DCT/IDCT algorithm”, International

Conference on Acoustics Speech and Signal Processing Proceedings, pp.928-931, 2006.

[24] G. Pastuszak, “Hardware architectures for the H.265/HEVC discrete cosine transform”,

IET Image Process, vol. 9, no. 6, pp. 468-477, 2015.

[25] Xilinx FPGA document, http://www.xilinx.com/support/documentation/ white_papers/

 wp406-DSP-Design-Productivity.pdf

[26] Xilinx 7 Series DSP48E1 Slice User Guide,

http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

[27] DSP blocks in Stratix series FPGAs, https://www.altera.com/products/fpga/features/stx-

dsp-block.html

[28] H. Blasinski, F. Amiel, T. Ea, “Impact of different power reduction techniques at

architectural level on modern FPGAs”, LASCAS, 2010.

http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

Authors Biography

Min Chen received the B.S. degree in Computer Science and

Technology from Shenzhen University, China. He has more than 16

years of industry experience in video coding software/hardware co-

design, and FPGA-based video codec. Now he is a H.265/HEVC

software and system design engineer of Multicoreware Inc. at St.

Louis, United States. His research interests include HEVC software

and hardware video encoder design, VP9 video encoder/decoder,

optimizations for multi-core codec architectures.

Yuanzhi Zhang received the B.S. and M.S. degrees in Electronic

Engineering from Shandong University, China in 2011 and 2014,

respectively. He is working towards his Ph.D. degree at Southern

Illinois University Carbondale, IL, United States since 2015 August.

His research interests include HEVC/H.265 video/image processing

circuit and system optimization, low power SRAM VLSI design and

methodology, and 3D-IC system design.

Chao Lu received the B.S. degree in electrical engineering from the

Nankai University, Tianjin, China in 2004 and the M.S. degree in the

Department of Electronic and Computer Engineering from the Hong

Kong University of Science and Technology, Hong Kong, in 2007. He

obtained his Ph.D. degree at Purdue University, West Lafayette,

Indiana, in 2012. From 2013 to 2015, He worked as a R&D circuit

design engineer at Arctic Sand Technologies Inc. and Tezzaron

Semiconductors. Now he works as an assistant professor in Electrical

and Computer Engineering Department of Southern Illinois University

Carbondale.

His research interests include design of micro-scale energy harvesting

systems, HEVC/H.265 video/image processor, power efficient memory

design, and power management IC design for ultra-low power

applications. Mr. Lu was the recipient of the Best Paper Award of the

International Symposium on Low Power Electronics and Design

(2007).

	Southern Illinois University Carbondale
	OpenSIUC
	Spring 3-1-2017

	Efficient Architecture of Variable Size HEVC 2D-DCT for FPGA Platforms
	Min Chen
	Yuanzhi Zhang
	Chao Lu
	Recommended Citation

	Paper Title (use style: paper title)

