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Abstract: This study presents a design of two-dimensional (2D) discrete cosine 

transform (DCT) hardware architecture dedicated for High Efficiency Video Coding 

(HEVC) in field programmable gate array (FPGA) platforms. The proposed 

methodology efficiently proceeds 2D-DCT computation to fit internal components and 

characteristics of FPGA resources. A four-stage circuit architecture is developed to 

implement the proposed methodology. This architecture supports variable size of DCT 

computation, including 4×4, 8×8, 16×16, and 32×32. The proposed architecture has been 

implemented in System Verilog and synthesized in various FPGA platforms. Compared 

with existing related works in literature, this proposed architecture demonstrates 

significant advantages in hardware cost and performance improvement. The proposed 

architecture is able to sustain 4K@30fps ultra high definition (UHD) TV real-time 

encoding applications with a reduction of 31-64% in hardware cost.  

Keywords—H.265/HEVC, two-dimensional discrete cosine transform (2D-DCT), FPGA 

platform, hardware architecture 

 

I.  INTRODUCTION 

Rapid advances in consumer electronics have resulted in a variety of emerging video 

coding applications. Typical examples include ultra-high definition (UHD) 4K/8K TV [1] or 

unmanned aerial vehicle (UAV) reconnaissance and surveillance [2-3], which demands 

aggressive video compression requirement. Despite the success in the last decade, video 

compression efficiency of H.264 standard cannot satisfy stringent requirements [4]. 

Alternatively, recently established H.265/HEVC standard has great potential to improve 

video compression efficiency by around 50%, while retaining the same video quality as 

H.264 [5-6]. As a result, HEVC has been viewed as one of the most promising standard to 

overcome these challenges [7-8].  

Optimized coding efficiency in HEVC is attributed to increased computational complexity 

[9]. For example, Discrete Cosine Transform (DCT) and Inverse Discrete Cosine Transform 

(IDCT) are indispensable building blocks of HEVC hardware implementation [10]. Previous 

study has reported that DCT and IDCT computation in HEVC is estimated as 11% of total 



computational complexity in hardware implementations [6]. Due to computational similarity 

between DCT and IDCT, they can alter the coefficient matrix and share same circuit 

architecture. Large block sizes of DCT and IDCT (i.e., 16×16 and 32×32) are supported in 

HEVC standard, while H.264 only accepts smaller block sizes (i.e., 4×4 and 8×8). Large sizes 

of DCT and IDCT help to improve coding efficiency. For example, the use of 16×16 and 

32×32 DCTs and IDCTs in HEVC reduces bit rate up to 10.1% [11]. However, the associated 

hardware cost rises significantly. For instance, a transpose buffer of 32×32×16 bits is needed 

to store one-dimensional transform coefficients for 32×32 2D-DCT, while a transpose buffer 

of 8×8×16 bits is sufficient for 8×8 2D-DCT. The hardware cost of transpose buffer will 

continue to increase in next-generation video coding standard, since it will include 64×64 and 

128×128 DCT/IDCT operations [12]. Therefore, it is necessary to investigate efficient circuit 

architectures to reduce hardware implementation cost and computational complexity [13-15].  

Nowadays, computational resources in FPGA are adequate to implement HEVC codecs, 

such as FPGA implementation of 4K real-time HEVC decoder [16] and a full HD real-time 

HEVC main profile decoder [17]. The use of FPGA instead of application-specific integrated 

circuit (ASIC), shortens design time to market, and hence is a preferred approach for small 

volume production. Therefore, the study of HEVC FPGA implementation is gaining more 

and more attention. In order to satisfy real-time and high-efficiency coding in these emerging 

video applications, a few design methodologies and circuit architectures have been developed 

[11, 18-24]. In [11], the authors presented an IDCT implementation with zero-column 

skipping technique to boost energy and area efficiency. However, the use of single-port static 

random access memory (SRAM) does not allow pipeline operation, hence the throughput of 

this design is impeded. The proposed architecture in [18] focuses on reduction of hardware 

utilization. A series of hardware minimization techniques was applied, including operation 

reordering, multiplications to shift-adds conversion, etc. In [19-21], the proposed designs 

utilized distributed arithmetic hardware to perform multiplications in 2D-DCT. These 

approaches are efficient for smaller DCT computation (e.g., 8×8). The proposed architectures 

in [19-21] did not consider internal features and characteristics of FPGA platforms. In [22], a 

new algorithm and processing architecture for 2D-DCT were presented to achieve higher 

energy efficiency. Recently, the researchers in [23-24] proposed FPGA-based 2D-DCT with 

improved area-speed efficiency. [23-24] are initial trials to efficiently utilize features and 

dedicated components of FPGA platforms. However, the design strategy of allocating FPGA 

resources to fit DCT architectures are not elaborated in details.   

These existing architectures are inefficient when implementing HEVC 2D-DCT in FPGA 

platforms, because larger DCTs (e.g., 32×32) involves a great number of transpose buffers, 

cascaded additions and subtractions. When a design is synthesized towards FPGA platforms, 

many general-purpose logics (i.e., Look-up Tables (LUTs)) are utilized. Thus, the critical 

path delay of a synthesized design is longer, and the maximum operation frequency is 

degraded. On the other hand, if a designer is aware of internal resources of FPGA, the 

resultant architecture may fit with FPGA components and features. Thus, the synthesized 

design efficiently utilizes FPGA resources, such as digital signal processor (DSP) blocks, bus 

width, and on-chip memory. An efficient hardware architecture should always make every 

effort to fit FPGA resources, which is the focus of this paper.  

This paper makes the following contributions: (1) our proposed design methodology takes 

into account of hardware resources of FPGA platforms, and efficiently utilizes bus width, 

DSP blocks, BRAM blocks, and on-chip memory bandwidth. Thus, the required general 

programmable logics (e.g., LUTs) are significantly reduced, and video processing throughput 

is largely improved. (2) A hardware architecture is proposed to support variable DCT sizes 

from 4×4 to 32×32, which can also be extended to larger DCT sizes (e.g., 64×64 and 



128×128). This architecture facilitates hardware sharing and reusing among different DCT 

sizes. The design details are described and illustrated through timing diagram. (3) The 

proposed architecture has been synthesized in various FPGA platforms. The benefits are 

presented through comparisons with existing designs in literature. The proposed architecture 

is able to sustain 4K@30fps ultra high definition (UHD) TV real-time encoding applications 

with a reduction of 31-64% in hardware cost.  

The rest of this paper is organized as follows. Section II reviews basic DCT algorithm, 

hardware components and FPGA characteristics. Section III describes the proposed design 

methodology and system architecture. In Section IV, system implementation results are 

provided. An in-depth comparison with related design architectures in literature is presented. 

Finally, Section V concludes the paper. 

II. Related Work 

A. Basic DCT Algorithm 

DCT is widely used in image coding and signal processing applications. DCT transforms 

images from spatial-domain into frequency-domain, and provides a more efficient 

representation of information. A 1D-DCT computation of an N×N block size can be 

expressed as [10, 24] 
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Here X and Y are the input and output data matrix, respectively. C is an N×N transform 

matrix. N can be 4, 8, 16 or 32 in HEVC/H.265 standard. For simplicity, integer values are 

usually chosen in the transform matrix C in VLSI implementation. Thus, the hardware 

implementation achieves finite precision DCT approximation [9]. Thanks to the separability 

feature, a 2D-DCT is usually decomposed into two 1D-DCTs. 1D-DCT is firstly applied on 

individual row of input data matrix X, then, another 1D-DCT is applied to the results from the 

first 1D-DCT [18]. Two 1D-DCTs are connected through a transpose buffer, which 

temporarily stores the results of the first 1D-DCT. Because direct hardware implementation 

of matrix multiplication in 1D-DCT requires intensive computation, 1D-DCT based on even-

odd decomposition techniques is widely accepted to minimize computational complexity [9].  

B. Hardware Components and Features of FPGA Platform 

FPGA is one type of pre-fabricated integrated circuits designed for rapid prototyping and 

functional verification. Nowadays, FPGA platform consists of five main elements: DSP 

blocks, look-up tables (LUTs), flip-flops, random access memory (RAM) blocks and routing 

matrix. The DSP blocks, including pre-adder, multiplier, accumulator, etc., are dedicated for 

accelerating complex arithmetic computation. A look-up table is a collection of logic gates to 

implement any arbitrarily user defined Boolean function. A look-up table is composed of 

register arrays and works as a combinational logic of inputs. Users can program look-up 

tables to realize any combinational logic function. Each look-up table may connect with flip-

flops, which are indispensable components of sequential logic modules. RAM block is an 

embedded storage element, whose type could be single-port, dual-port or quad-port. For 

example, a dual-port RAM enables simultaneously access (i.e., write or read) by two agents. 

Routing matrix is used to route signals and interconnect among FPGA processing resources.  

Different FPGA companies implement these five main elements differently. For example, 

Zynq is one FPGA of Xilinx 7-series families. This FPGA has plentiful hardware resources, 



such as LUTs, DSP48s, and BRAMs [25-26]. The LUTs of Zynq FPGA can be configured as 

either six inputs with one output, or as five inputs with multiple separate outputs. Some LUTs 

could be configured as 64-bit distributed RAMs or as 32-bit shift registers. A DSP48 block 

consists of a 25-bit pre-adder, a 25×18 two’s complement multiplier, and a 48-bit 

accumulator. A DSP48 block may be configured as a single-instruction-multiple-data (SIMD) 

arithmetic unit. DSP48 block is optimized for short critical path, and hence reaches clock 

frequency as high as 741MHz. In addition, on-chip dual-port block RAMs (BRAM) with port 

width up to 72 bits are embedded in Zynq FPGA. This BRAM also supports asymmetric read 

or write operations with variable port width.   

III. Proposed Design Methodology and Circuit Architecture 

As been reviewed in Sections II, FPGA owns rich on-chip high performance resources. It 

is highly desirable to create HEVC architectures to fit FPGA components and characteristics. 

For example, 2D-DCT involves extensive matrix multiplications. Multiplications could be 

implemented either by LUTs or DSP blocks inside FPGA platforms. If a design is 

implemented using LUTs, due to distributed locations of LUT components and long wire 

routing, the resultant design will exploit lots of LUTs and suffer from slower system 

operation. In contrast, if dedicated DSP blocks are selected to implement multiplications, its 

operating frequency and hardware efficiency will be improved over LUT-based design 

scheme.  

From the above discussion, it is clear that existing 2D-DCT designs in literature do not 

fully explore internal resources and characteristics of FPGA platforms. In this section, we 

propose a FPGA-friendly DCT design methodology and circuit architecture to mitigate the 

design challenges of future video coding applications. 

A. Proposed Methodology 

 

Fig. 1. Proposed 2D-DCT 32x32 algorithm with row and column seperation 

Figure 1 shows the proposed 2D-DCT algorithm, assuming targeted FPGA is Xilinx Zynq. 

Input data for DCT computation is a 9-bit 32×32 matrix. According to the separability 

property, a 2-D DCT is decomposed into two subsequent 1-D DCTs. Unlike the conventional 

approach [18] where input data are read and executed row by row, our proposed method 
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performs two rows in parallel during the first 1D-DCT. The results (i.e., 4 points) in each 

clock cycle are stored in BRAM. Because maximum port width of a BRAM in Zynq is up to 

72 bits, and width of intermediate results from the first 1D-DCT is 16 bits, at most 4 points 

can be saved during each clock cycle. 16 clock cycles are required to accomplish two rows of 

data, and its output result during each clock cycle is a 2×2 matrix, as depicted in Figure 1. 

Therefore, the output pattern of 4 points (i.e., 2×2 matrix) fits with the port width of BRAMs 

in Zynq, which indicates computation throughput matches bandwidth of storage memory and 

hence no idle computation resource. Note this output 2×2 matrix will be transposed (also 

called re-ordered) before saving into two columns of a BRAM. A total of 16 BRAMs of each 

size 64×16 bits, are needed for a 32×32 2D-DCT computation. During the second 1D-DCT 

computation, each row of intermediate results is read from all 16 BRAMs and proceeded. 

Each clock cycle outputs 4 points (i.e., 1×4 matrix) as shown in Figure 1. Thus, throughput of 

two subsequent 1D-DCTs are balanced, avoiding the risk of operation stall.  

To increase hardware utilization efficiency, on-chip DSP blocks are preferred to realize 

matrix multiplications. DCT transform using even-odd decomposition results in drastic 

reduction in the number of multiplications and additions, when compared with direct matrix 

multiplication [9]. Here we propose to map butterfly transform into DSP48 blocks in Zynq, 

where the pre-adder, multiplier and 48-bit accumulator efficiently collaborate to generate 

outputs. Butterfly transform can be applied several times in DCT. Each time an even data 

matrix splits into smaller even and odd parts, until down to 4×4 size. Even parts may be 

reused for different DCT sizes, but odd parts are prohibited. Table I illustrates how hardware 

resources for processing one pixel point varies with depth of butterfly transform. It is 

apparent that more levels of butterfly transforms require less number of multipliers. We 

propose to apply butterfly transform only once, instead of three times as in [6]. With the 

resource overhead of six more multipliers, the benefit of our design is to reuse these 

computation elements in parallel in smaller DCT sizes. For example, if the DCT size is 4×4, 

16 multipliers can be reconfigured in parallel to boost computation performance, compared 

with conventional design which consists of only 10 multipliers. Overall, 128 DSP48 blocks in 

Zynq FPGA are enough to proceed 2D-DCT implementations.   

TABLE I. Hardware resources for processing one pixel point vs. butterfly transform depth 

Butterfly Depth 
# of Multipliers required 

in 1D-DCT 

# of Adders required 

in 1D-DCT 

0 (i.e., no butterfly transform) 32 31(bit width 16) 

1 16 31(bit width 17) 

2 12 31(bit width 18) 

3 10 31(bit width 19) 

B. Architecture Design 

Figure 2 shows the proposed four-stage architecture to implement our design 

methodology. During the first stage, input DCT data are received from upstream module. 

Butterfly operation is executed and results are stored into a register buffer. During the second 

stage, data are fetched from the register buffer. These data are multiplied with coefficients, 

and the accumulated results are directly stored into BRAMs. Coefficients are obtained from a 

read only memory (ROM), whose address is sent by the control unit. So far, the computation 

of first 1D-DCT is done. The third stage reads data from BRAMs, executes one-level 

butterfly transform, and finally stores the results into a buffer register. The fourth stage reads 



data from the buffer register, and runs 1D-DCT again as described in the second stage with 

higher bit width to adapt larger dynamic range. As four pixels (64 bits) are processed every 

clock cycle, BRAMs are used as transpose buffers due to its port width is up to 72 bits. We 

only use 16 BRAMs and eliminate the use of any transpose register buffers in FPGA. During 

each clock cycle, the first 1D-DCT writes 2×2 reordered pixels into a BRAM, and the second 

1D-DCT outputs 1×4 pixels as system output. In this architecture, the internal BRAM 

bandwidth and computation throughput of 2D-DCT match each other. The control unit 

generates the required read/write signals for BRAMs, coefficient addresses for ROM, and 

handshaking signals for input and output synchronization. Note the output results of 2D-DCT 

will be quantized in a separate quantization stage, so quantization process is not included in 

Fig. 2. The proposed architecture is applicable to IDCT computation after switching 

multiplication coefficients tables and using a 16-bit input data matrix. 

 

Fig. 2. FPGA four-stage architecture of the proposed 2D-DCT transformation 

DCT size option (i.e., 32×32, 16×16, 8×8, and 4×4 DCT/DST) and input DCT data are 

inputs of this architecture. If DCT size is less than 32×32, the architecture will be 

reconfigured to maximize throughputs and performance. For example, the control unit needs 

16 clock cycles to write two rows of data in 32×32 DCT. While in 8×8 DCT mode, only 8 

clock cycles are required to compute all of 8×8 DCT computation, and 16 clock cycles are 

needed to store results into BRAMs under the BRAM port width restriction, so our 

architecture will proceed double samples per cycle in 8×8 DCT to avoid waste computational 

resources. This reconfiguration property enables multiple transform sizes to be realized using 

the same architecture, thus, facilitating hardware sharing and reusing across different DCT 

block sizes.  
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Figure 3 illustrates timing diagram of the proposed 2D-DCT architecture, where a 32×32 

block size is chosen as an example. During the first stage, two rows of input data (64 points) 

feed into this architecture. Next, one level butterfly transform is executed and the results are 

stored in a register buffer. During the second stage, 1D-DCT computation occurs and takes 

16 clock cycles. The resultant outputs (i.e., 2×2 points) in each clock cycle are written into a 

BRAM. There are a total of 16 utilized BRAM blocks and 256 clock cycles needed for a 

32×32 1D-DCT computation. During the next stage, 32 pixels are read from 16 BRAMs, 

which indicates 2 pixels per BRAM, to compute one level butterfly transform. The outputs 

are stored into a register. The last stage is responsible for the second 1D-DCT computation. 

Overall, this architecture takes 500 clock cycles to accomplish a 32×32 2D-DCT.  



 

Fig. 3. Timing diagram of the proposed 32×32 2D-DCT architecture 



 

Fig. 4. First 1D-DCT architecture with BRAM data storage allocation 

 

Fig. 5. Reconfiguration of DCT for variable block size 
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Figure 4 shows architecture details of the first 1D-DCT stage, which proceeds two-row 

data in parallel. As one level butterfly transform is applied, the data of each row split into 

even and odd parts. For example, E00-E15 and O00-O15 are the results of each row after one 

level butterfly transform. These four groups of even or odd parts multiply with individual 

DCT coefficients, then, go through adding and rounding process. The 1D-DCT results of 

first-row and second-row input data are stored in the first and second columns of a BRAM, 

respectively. Through storing these 1D-DCT results in columns of BRAMs, no registers are 

needed to implement matrix transposition.  

Figure 5 shows how the proposed architecture corresponds to variable DCT sizes. Fifteen 

adders are organized as a tree structure. As outlined by the dash lines, a 4×4 DCT is 

embedded within an 8×8 DCT, which in turn is embedded in a 16×16 DCT and so on until a 

32×32 DCT. Specially, in the HEVC standard, 4×4 blocks are transformed as either 4×4 DCT 

or 4×4 DST. The proposed architecture handles this 4×4 case by choosing different transform 

coefficient table. Based on the input DCT size option, this architecture in Figure 5 adjusts its 

control unit and concurrently proceeds eight 4×4 1D-DCTs, four 8×8 1D-DCTs, two 16×16 

1D-DCTs or one 32×32 1D-DCT. Note the multiplication coefficients are also updated, when 

the DCT size option varies with time. The proposed architecture can be easily modified for 

2D-IDCT, where the input data are 16 bits and IDCT transform coefficient tables are used. 

IV. System Implementation Results and Discussion 

The proposed DCT architecture has been described in System Verilog. Synthesis has been 

conducted in various FPGA platforms, including Altera Stratix III, Cyclone II and Arria II 

GX, as well as Xilinx XC7VX330T and Zynq. The RTL compiler in [20] is no longer 

supported by FPGA vendor. To make a fair comparison with [20], our proposed design is 

synthesized in Cyclone II, which is the found oldest FPGA that RTL compiler still supports. 

DCT transform coefficients are stored in distributed RAMs or ROMs inside FPGA platforms. 

This proposed 2D-DCT architecture is generic and it is not limited to any fabrication 

technology. So the proposed architecture of 2D-DCT in this work is applicable to different 

technology or process nodes. It is well known that an advanced fabrication technology 

usually leads to shorter propagation delay and a higher clock frequency, but a constant 

number of 500 clock cycles is required to accomplish a 32×32 2D-DCT.  

The related references in literature are included in Table II, which lists key performance 

metrics of 2D-DCT architectures, such as FPGA model name, utilization of LUTs/ALMs and 

DSP blocks, the number of required clock cycle, clock frequency, and output throughput. Our 

proposed architecture enables variable block size (4×4, 8×8, 16×16 and 32×32), while the 

references [18, 20-21] only support one smaller block size (8×8 or 16×16). The references 

[18, 20-21] do not utilize on-chip DSP blocks. Due to the use of on-chip DSPs, our proposed 

work results in much shorter critical path and significant improvement in terms of frequency 

and throughput. Due to [20] and this proposed work utilize different FPGA platforms (as well 

as different fabrication technology), the number of required clock cycle should be compared 

instead of frequency. Under the same supported DCT size (8×8), both works utilize the same 

amount of hardware resources (2.5K LUT/ALM). However, the required number of clock 

cycle in this work is 7, which is equivalent to only 5.5% of that in [20]. Therefore, our 

proposed work is advantageous than [20]. In the world, Xilinx and Altera are two dominant 

FPGA companies. Their FPGA platforms are distinctive in terms of design tools, 

reconfigurable logic cells and system architecture. As a result, there is no intention to 

compare these key performance metrics of the proposed design between Arria II GX and 



Xilinx Zynq. The purpose of including Xilinx Zynq results in Table II and III is to 

demonstrate that our proposed design is applicable to both primary FPGA manufacturers. The 

results in Table II and III indicate that our proposed idea is generic and it is not limited to any 

specific FPGA company. Both the reference [24] and this work support variable DCT sizes. 

Using the same FPGA platform, our proposed architecture saves LUT resources by 32% and 

DSP blocks by 75%. As a result, our proposed architecture excels in hardware cost, while the 

clock frequency is a little degraded than [24]. Alternatively, if Xilinx Zynq is the 

implemented FPGA platform, our proposed architecture operates at a clock rate of 222MHz 

and achieves a throughput of 453M pixels/second. Note the required number of clock cycle in 

our proposed design is the same in both Arria II and Xilinx Zynq platforms.  

Power Consumption is another important factor to compare among these designs. Yet, 

because there are no power consumption values available in references [18] and [21], we 

cannot include power consumption for a quantitative comparison in Table II. Alternatively, 

we offer a comprehensive analysis as below. According to the statement of the primary 

FPGA Company Altera [27], the DSP blocks in modern FPGA platforms are very power 

efficient. These power-efficient DSP blocks enable the use of modern FPGA platforms in 

high definition video coding applications (e.g., our targeted application - HEVC encoder) 

[27]. Moreover, as reported in [28], the DSP blocks only account for 1% of total dynamic 

power consumption in Stratix III devices. 70% of power consumption are from user logic and 

signal routing. Therefore, the number of user logic (i.e., LUT/ALM) is a good indicator of 

energy consumption estimation. Table II exhibits that our proposed design consists of much 

less user logic than [18], [21] and [24] under the same FPGA platform. Under different 

FPGA platforms, the number of user logic in the proposed work keeps the same as that in 

[20], but the required clock cycle is reduced largely. Hence, it is highly possible that our 

proposed design results in lower energy consumption due to significant savings in user logic 

and signal routing. Even though our proposed design uses 16 or 64 more DSP blocks than 

[18] or [21], the power consumption resulted from DSP blocks is negligible compared with 

that from user logic and signal routing. In all, considering the above two reasons, we estimate 

the use of DSP blocks in modern FPGA platforms probably does not lead to significant 

power consumption. Our proposed design is acceptable in handheld consumer electronics 

from an energy consumption point of view. 

Moreover, we focus on Altera “Arria II GX” and Xilinx “Zynq” to thoroughly discuss 

system performance. Arria II GX and Zynq are based on eight-input adaptive-logic-modules 

(ALM8) and six-input look-up tables (LUT6), respectively. Table III summaries hardware 

resource results for variable size of 2D-DCT computation. Note even though Arria II and 

Zynq are implemented with 40nm or 28nm process respectively, the required number of 

clock cycle in our proposed design is the same (i.e., 500 for a 32×32 2D-DCT in Table II). 

Our proposed architecture in Zynq requires at least 15% more hardware resources than Arria 

II GX. Our proposed architecture demonstrates a higher clock frequency (i.e., 222-289MHz) 

at Xilinx Zynq, which is 30-38% faster than the system implementations at Arria II GX (i.e., 

138-206MHz). This is because our architecture is designed inherently to best fit 

characteristics of Zynq platform, where the distributed RAMs/ROMs helps to improve 

operation speed and reduces the amount of LUTs for logic synthesis. Table III also 

demonstrate the benefit of this work over the reference [24]. Using the same FPGA platform, 

this work achieves 31-64% reduction in the number of ALMs, while the clock frequency 

overhead is no more than 31%.  

Let us take a look at a 4K@30fps UHD TV video encoding application. The minimum 

throughput to accomplish a 32×32 DCT is calculated as 3840×2160×30/(32×32) = 243,000 



blocks/second. Since our proposed 2D-DCT architecture needs 500 clock cycles to complete 

one 32×32 block, therefore, our proposed architecture demands 243,000×500 = 121.5 million 

cycles/second, which is equivalent to a clock frequency of 121.5MHz. As shown in Table II, 

no matter the FPGA platform is Arria II GX or Xilinx Zynq, the clock rate of our synthesized 

solution reaches at least 138MHz. This number indicates our proposed architecture is able to 

sustain 4K@30fps UHD TV real-time encoding applications, meanwhile achieving lower 

hardware cost.  

 

TABLE II. FPGA Performance Results Summary 

 [18] This work [20] This work 

FPGA Stratix III 
Altera 

Flex10K100 
Cyclone II 

Supported DCT Size 16×16 16×16 

4×4, 

8×8, 

16×16, 

32×32 

8×8 8×8 

4×4, 8×8, 

16×16, 

32×32 

# of LUT/ALM 16K 1.4K 5.2K 2.5K 2.5K 10.4K 

# of  DSP Block 0 16 32 0 64 128 

# of Clock Cycle 18 60 500 128 7 500 

Frequency (MHz) 27 283 206 10 116 94 

Throughput 

(Mega Pixels/sec) 
204 577 421 5.53 237 192 

 

 [21] This work [24] This work 

FPGA Xilinx XC7VX330T Arria II GX Xilinx Zynq 

Supported DCT 

Size 
8×8 8×8 

4×4, 

8×8, 

16×16, 

32×32 

4×4, 8×8, 

16×16, 

32×32 

4×4, 8×8, 

16×16, 

32×32 

4×4, 8×8, 

16×16, 32×32 

# of LUT/ALM 3.1K 1.7K 5.6K 7.3K 5.0K 5.8K 

# of  

DSP Block 
0 64 128 128 32 128 

# of Clock Cycle 15 7 500 N/A 500 500 

Frequency (MHz) 256 239 177 200 138 222 

Throughput 

(Mega Pixels/sec) 
13 488 361 N/A 282 453 

 

  



TABLE III. Hardware Resource Results for Variable Size of 2D-DCT Computation 

DCT Block Size 

[24]  

(ALM / 

Frequency) 

This work  

(ALM or LUT / 

Frequency) 

Performance 

Comparison at Arria II 

GX FPGA 

4×4 8×8 16×16 32×32 Arria II GX 
Arria II 

GX 

Xilinx 

Zynq 

ALM 

number 

reduction 

clock freq. 

degradation 

× × × × 
7269 / 

200MHz 

5034 / 

138 

MHz 

5806 / 

222 MHz 
31% 31% 

 × × × 
6928 / 

200MHz 

4108 / 

138 

MHz 

5726 / 

222 MHz 
41% 31% 

  × × 
6821 / 

200MHz 

3424 / 

143 

MHz 

4733 / 

225 MHz 
50% 29% 

   × 
6792 / 

200MHz 

2967 / 

150 

MHz 

3898 / 

237 MHz 
56% 25% 

× × ×  
5014 / 

200MHz 

2586 / 

179 

MHz 

3155 / 

261 MHz 
48% 11% 

× ×   
3436 / 

200MHz 

2097 / 

206 

MHz 

2478 / 

289 MHz 
39% -3% 

 × ×  
4921 / 

200MHz 

1781 / 

185 

MHz 

2745 / 

263 MHz 
64% 8% 

 

V. Conclusion 

This paper presents a FPGA-friendly architecture design of variable size 2D-DCT for 

HEVC standard. 4×4, 8×8, 16×16 and 32×32 sizes of 2D-DCT are embedded in one 

architecture. This property enables multiple DCT sizes to share and reuse hardware resources. 

The proposed methodology efficiently proceeds 2D-DCT computation to fit internal 

components and characteristics of FPGA platforms. Details of circuit architecture and timing 

diagram are described in this work. The proposed architecture has been implemented in 

several FPGA platforms. Synthesis and simulation results demonstrate that the proposed 

architecture has great advantages in hardware cost, operating frequency and throughput, in 

contrast with prior works in literature. The proposed architecture is able to sustain 4K@30fps 

UHD TV real-time encoding applications with a reduction of 31-64% in hardware cost. 
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