
Southern Illinois University Carbondale
OpenSIUC

Articles and Preprints Department of Mathematics

3-2005

The isomorphism problem for computable Abelian
p-groups of bounded length
Wesley Calvert
Southern Illinois University Carbondale, wcalvert@siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Articles
and Preprints by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Calvert, Wesley. "The isomorphism problem for computable Abelian p-groups of bounded length." Journal of Symbolic Logic 70, No. 1
(Mar 2005): 331--345. doi:10.2178/jsl/1107298523.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenSIUC

https://core.ac.uk/display/60583183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


Southern Illinois University Carbondale
OpenSIUC

Articles and Preprints Department of Mathematics

2005

The isomorphism problem for computable Abelian
$p$-groups of bounded length
Wesley Calvert

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Articles
and Preprints by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


The Journal of Symbolic Logic 

Volume 70. Number 1. March 2005 

THE ISOMORPHISM PROBLEM FOR COMPUTABLE ABELIAN 

^-GROUPS OF BOUNDED LENGTH 

WESLEY CALVERT 

Abstract. Theories of classification distinguish classes with some good structure theorem from those 

for which none is possible. Some classes (dense linear orders, for instance) are non-classifiable in general, 
but are classifiable when we consider only countable members. This paper explores such a notion for classes 

of computable structures by working out a sequence of examples. 
We follow recent work by Goncharov and Knight in using the degree of the isomorphism problem 

for a class to distinguish classifiable classes from non-classifiable. In this paper, we calculate the degree 
of the isomorphism problem for Abelian /^-groups of bounded Ulm length. The result is a sequence of 

classes whose isomorphism problems are cofinal in the hyperarithmetical hierarchy. In the process, new 

back-and-forth relations on such groups are calculated. 

?1. Introduction. In an earlier paper [4], we began to consider a notion of 
"classification" for classes of computable structures. For some classes, there is 

a "classification," or "structure theorem" of some kind. For instance, the classifi 
cation of algebraically closed fields states that a single cardinal (the transcendence 

degree) completely determines the structure up to isomorphism. For other classes 

(graphs, for example, or arbitrary groups) such a result would be surprising, and 
when we introduce the necessary rigor we can prove that there is none to be found. 

They simply have more diversity than any structure theorem could describe. 
We assume all structures have for a universe some computable subset of co and 

identify a structure with its atomic diagram. Thus, for instance, a structure is com 

putable if and only if its atomic diagram is computable, as a set of G?del numbers 
of sentences. Alternatively, we could use the quantifier-free diagram instead of the 
atomic diagram. Similarly, a structure is associated with the index of a Turing ma 

chine which enumerates its atomic diagram (assuming its universe is computable). 
In this paper, I will write stfa for the computable structure with atomic diagram Wa 
and will always assume that a class K of structures has only computable members. 
The following definition was recently proposed by Goncharov and Knight [7]. 

Definition 1.1. The isomorphism problem, denoted E(K), is the set 

{(a,b) | stfa,sfb G K, and s?7a ~s?b}. 
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If the set of indices for computable members of K, denoted I{K), is hyperarith 
metical, then E(K) is X?. Intuitively, in the worst case, where EiK) is properly 

Z|, the easiest way to say that two members of K are isomorphic is to say, "There 

exists a function which is an isomorphism between them." Often there are easier 

ways to check isomorphism, such as counting basis elements of vector spaces. Such 

a "shortcut" is a classification. There is also a natural "floor" to the complexity 
of EiK), since to say that a e I{K) requires saying that a is an index for some 

structure, which is already IT^. 
This notion is closely related to work in descriptive set theory, originating in the 

work of Friedman and Stanley [6]. In that context, the set of countable models of a 

theory is viewed as a topological space, and we would calculate the topological com 

plexity of the isomorphism relation as a subset of the Cartesian product of two copies 
of the space (for a more complete description of the topological situation, see [9]). 

Many of the proofs that a class has maximal complexity, like the Friedman-Stanley 

proof of the Borel completeness of fields [6], require only minor modification. 

Several classes are well-known to have maximally complicated isomorphism prob 
lems. The following theorem summarizes several classical results. Proofs may be 

found in papers by Rabin and Scott [16], Goncharov and Knight [7], Morozov [14], 
and Nies [15]. 

Theorem 1.2. IfK is the set of computable members of any of the following classes, 
then EiK) is l\ complete: 

1. Undirected graphs, 
2. Linear orders, 

3. Trees, 

4. Boolean algebras, 

5. Abelian p-groups. 

The following additions to the list follow easily from recent work by Hirschfeldt, 

Khoussainov, Shore, and Slinko [8]. 

Theorem 1.3 (Hirschfeldt-Khoussainov-Shore-Slinko). IfK is the set of com 

putable members of any of the following classes, then EiK) is 2} complete: 

1. Rings, 

2. Distributive lattices, 
3. Nilpotent groups, 
4. Semigroups. 

In an earlier paper [4], the following were added: 

Theorem 1.4. 

1. IfK is the set of computable members of any of the following classes, then EiK) 

isY\ complete: 

(a) Fields of any fixed characteristic, 

(b) Real Closed Fields. 

2. IfK is the set of computable members of any of the following classes, then EiK) 
is Ii\ complete: 

(a) Vector spaces over a fixed computable field, 

(b) Algebraically closed fields of fixed characteristic, 

(c) Archimedean real closed fields. 
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In the present paper, the complexity of the isomorphism problem will be calcu 

lated for other classes. Two major goals which are partially achieved here are the 
answers to the following questions: 

Question 1.5. What are the possible complexities of the isomorphism problem 
for classes of structures? 

Question 1.6. Do classes with high complexity acquire it all at once? 

Considering Abelian /^-groups of bounded Ulm length will give us a sequence of 

isomorphism problems whose degrees are cofinal in the hyperarithmetical degrees. 
In some sense, this also shows a smooth transition from very low complexity (say, 

II3 complete) to the "non-classifiable" (that is, properly ?}). 

?2. Notation and terminology for Abelian /?-groups. Let p be an arbitrary prime 
number. Abelian p-groups are Abelian groups in which each element has some 

power of p for its order. We will consider only countable Abelian /?-groups. These 

groups are of particular interest because of their classification up to isomorphism 

by Ulm. For a classical discussion of this theorem and a more detailed discussion 

of this class of groups, consult Kaplansky's book [10]. Generally, notation here will 

be similar to Kaplansky's. 
It is often helpful to follow L. Rogers [18] in representing these groups by trees. 

Consider a tree T. The Abelian /j-group G(T) is the group generated by the nodes 

in T (among which the root is 0), subject to the relations stating that the group is 

Abelian and that px is the predecessor of x in the tree. Reduced Abelian /7-groups, 
from this perspective, are represented by trees with no infinite paths. 

The idea of Ulm's theorem is that it generalizes the notion that to determine a 

finitely generated torsion Abelian group it is only necessary to determine how many 

cyclic components of each order are included in a direct sum decomposition. Let G 

be an Abelian p-group. We will produce an ordinal sequence (usually transfinite) 
of cardinals U?(G) (each at most countable), which is constant after some ordinal 

(called the "length" of G). If H is also an Abelian p-groxxp and for all ? we have 

U?(G) 
= 

U?(H), then H ~ G (this is still subject to another condition we have yet 
to define). 

First set Go = G. Now we inductively define G?+\ 
? 

pG? 
= 

{px \ x e G?}, 
where px denotes the sum of x with itself p times. We also define, for limit ?, the 

subgroup G? 
= 

f] Gy. Further, let P(G) denote the subgroup of elements x for 

which px 
= 0, and let P?(G) 

= P n G?. Now the quotient P?(G)/P?+l(G) is a 

Zp vector space, and we call its dimension U?(G). Where no confusion is likely, we 

will omit the argument G and simply write P?, and so forth. 

For any Abelian p-group G, there will be some least ordinal ?(G) such that 

^a(g) 
= 

G/(g)+i- This is called the length of G. If GX(g) 
= 

{0}> then we say that 

G is reduced. Equivalently, G is reduced if and only if it has no divisible subgroup. 
The height of an element x is the unique ? such that x G G?, but x ? G?+\. It is 

conventional to write h(0) 
? 00, where 00 is greater than any ordinal. Similarly, 

if our group contains a divisible element x, we write h(x) 
= 00. In the course of 

this paper, we will only consider reduced groups. When G is a direct sum of cyclic 
groups, un(G) is exactly equal to the number of direct summands of order pn+x. 

We can now state Ulm's theorem, but we will not prove it here. 



334 WESLEY CALVERT 

Theorem 2.1 (Ulm). Let G and H be reduced countable Abelian p-groups. Then 

G ~ H if and only if for every countable ordinal ? we have U?iG) 
= 

U?{H). 

It is interesting to note that this theorem is not "recursively true." Lin showed that 

if two computable groups satisfying the hypotheses of this theorem have identical 

Ulm invariants, they may not be computably isomorphic [12]. However, it is known 

that (depending heavily on the particular statement of the theorem) Ulm's theorem 

is equivalent to the formal system ATRo [5], [19]. Related work from a constructivist 

perspective may be found in a paper by Richman [17]. 
A calculation of the complexity of the isomorphism problem for special classes of 

computable reduced Abelian p-groups is essentially a computation of the complexity 
of checking the equality of Ulm invariants. Given some computable ordinal a, we 

will consider the class of reduced Abelian ^-groups of length at most a. 

?3. Bounds on isomorphism problems. When we begin to consider special classes 

of Abelian p-groups from the perspective described in section 1, it quickly becomes 

apparent that all examples in Theorems 1.2, 1.3, and 1.4 were especially nice ones. 

In all of these cases, I{K) was n^ and E(K) was something more complicated. It 

is easy to see that I{K) <t EiK), since 

I(K) = {a I ia,a) e EiK)}. 

For instance, if K is the class of reduced Abelian /^-groups of length at most co, 

I{K) is II3 complete. Then to show that E(K) is Yl? complete, it is enough to show 

that E{K) is IT3, and this is not difficult (the reader interested in the details of this 

may wish to glance ahead to Proposition 3.5). 
However, this doesn't tell us whether E(K) has high complexity "on its own," or 

just by virtue of it being hard to tell whether we have something in K. In a talk in 

Almaty in the summer of 2002, J. Knight proposed the following definition to clear 

up the distinction: 

Definition 3.1. Suppose A ? B. Let Y be some complexity class (e.g., II3), 
and K a class of computable structures. Then A is Y within B if and only if there is 
some R eT such that A = R n B. 

In the example above, saying that E{K) is n^ within I{K) x I{K) means that 

there is a Yl\ relation R{a,b) such that if a and b are indices for computable reduced 

Abelian /^-groups, then R(a, b) defines the relation "stfa has the same Ulm invariants 
as s?hr In general, it is possible that A is not Y but that A is Y within B. Consider 

the case of a theory which is No-categorical. If K is the class of models of such a 

theory, then E{K) is not computable, buiE{K) is computable within I(K) x I(K). 
We can also define a reducibility "within J5", which will, in turn, give us a notion 

of completeness. 

Definition 3.2. Let A, B, and Y be as in the previous definition. 

1. S <m A within B if there is a computable / : ?> B such that for all n, 
n e S 4=> fin) e A. 

2. A is r complete within B if A is Y within B and for any S G Y we have S <m A 

within B. 
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Essentially, this definition says that A is T complete within B if it is Y within B 

and there is a function witnessing that it is T complete which only calls for questions 
about things in B. In fact, the questions are only about members of a c.e. subset of 
B. We will usually write "within K" for "within I(K) x I(K)" All results stated in 

section 1 remain true when we add "within K" to their statements, and the original 

proofs still work. In fact, this is intuitively the "right" way to say that the structure 

of a class is complicated: we say that if we look at some members, it is difficult to tell 

whether they are isomorphic. It would be unconvincing to argue that the structure 

of a class is complicated simply because it is difficult to tell whether things are in 

the class or not. 

For any computable ordinal a, it is somewhat straightforward to write a com 

putable infinitary sentence stating that G is a reduced Abelian p-group of length at 

most a and that G and H have the same Ulm invariants up to a. In particular, 
Barker [3] verified the following. 

Lemma 3.3. Let G be a computable Abelian p-group. 

1. G0J.a isYl?2a. 

* 
Fw.a IS 

ll^a* 

4. ?co-a+m ^^2a + l* 

Proof. It is easy to see that 3 and 4 follow from 1 and 2 respectively. Toward 1 

and 2, note the following: 

x G Gm ^=> 3y(pmy 
= 

x) 

xeG ?=> 
/i\3y(pmy 

= x) 
ra?co 

x g G .a+m <=^ 
^y[pmy 

= x A G .a(y)] 

x G G .a+ <=> 
/)(\ 3y[pmy 

= x A G .a(y)] 
mEco 

x G G .a <=> 
/y\ Gco.y(x) for limit a 

Work by Lin [13], when viewed from our perspective, shows that for any m G co, 
there is a group G in which Gm is Sj complete. Given this lemma, we can place 
bounds on the complexity ofI(K) and E(K). 

Lemma 3.4. IfKa is the class of reduced Abelian p-groups of length at most a, and 

? > 0 is a computable ordinal, then I(K ^+m) is 
Tl^?+i 

Proof. The class Kco.m+? may be characterized by the axioms of an Abelian 

/?-group (which are n!}), together with the condition 

VX[X G 
Gco.?+m 

-> X = 
0]. 

Since the previous lemma guarantees that this condition is Tl +\, we know that 

/(^ /?+m)isalson^+1. 
H 

Lemma 3.5. If a > 0 is a computable ordinal and Ka is as in the previous lemma, 
we use a to denote sup (2y + 3). Then E(Ka) is H?? within K. 

co-y<a 
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Proof. Note that the relation "there are at least n elements of height ? which are 

Zp-independent over G?+\" is defined in the following way. To say that x?,..., x? 
are 7LP-independent over G?+\, we write the computable n2g+1 formula 

n 

Dn_?ixu....xn) 
= 

f\ iY^bjXi ^ G?+]). 
b\....bne1p z' = l 

b^Q 

Now to write "there are at least n independent elements of height ? and order p" 
we use the sentence 

n n 

Bn_? 
= 

3xl,...,xn[if\G?ixi)) 
A 

i/\pxj 
= 

0) ADn.?ix)\ ?=\ 7=1 

which is a computable SL+2 
sentence. Now we can define isomorphism by 

/)/\s/a \=Bn.?<*s/b ^Bn_?. 
nEco 
?<a 

We write each ?<a&s? 
= co-y-\-m, where m e co. If ? is as defined in the 

statement of the lemma, then this can be expressed by a computable II? sentence. H 

?4. Completeness for length co m. 

Proposition 4.1. If K is the class of computable Abelian p-groups of length at 

most co, then EiK ) is Yl? complete within K . 

Proof. We first observe that the set is n^ within K, by applying the previous 
lemma. Now let S = 

^e3y\JzRin, e, y, z) be an arbitrary n|j set. We can represent 
S as the set defined by 

Ve3<00y Rin,e,y) 

where 3<0? is read "there exist at most finitely many." Consider the Abelian p-group 
G with Ulm sequence 

{co if a < co, 

0 otherwise. 

We will build a uniformly computable sequence Hn of reduced Abelian p 
- 
groups 

of height at most co such that Hn ~ Gw if and only ifneS. Let G -?? 
denote 

the direct sum of countably many copies of the smallest divisible Abelian /?-group 

Zip00), and note that G 
"?? 

has a computable copy, as a direct sum of copies of 
a subgroup of Q/Z. We will denote the element where x occurs in the z'th place 

with zeros elsewhere by (x)/. For instance, set-wise, G -?? 
is the collection of all 

sequences of proper fractions whose denominators are powers of p, and the element 

( 1)2 denotes the element (0, i, 0,0,... ). 
List the atomic sentences by <j>e, the pairs of elements in Gw,oc by ?e, and set 

D_i 
= 

C-i 
= 

Fe._i 
= 

A^._i 
? 

Xe.-\ 
= 

Te.-\ 
= 0. We will build groups to meet 

the following requirements: 

Pe: There are infinitely many independent elements x e Hn of order p and height 

exactly e if and only if there are at most finitely many y such that R{n, e, y). 
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Qe: If 6 - 
(a,b)anda.b eHn.thena+b G Hn. 

Ze: If all parameters occurring in <j>e are in Hn, then exactly one of <\>e G D or 

-></>* G D. 

Roughly speaking, Ds will be the diagram of Hn. and Cs will be its domain. For 

each e, the set Ye_s will keep track of the y already seen, Xe_s the x created of height 
at least e, and Xe_s the x which are given greater height, as in Pe. The set Te_s will 

keep track of the heights greater than e already used to put elements from Xe in Xe, 
so that we do not accidentally make infinitely many elements of height e + 1. 

We say that Pe requires attention at stage s if there is some y < s such that 

y ^ i^.j-i and R(n,e,y) and there is also some x G Xe,s-\ \ Xe,s-\, or if for all 

y < s we have either y G Ye.s-\ or ~^R(n, e,y). We say that Qe requires attention 

at stage s if ?e 
? 

(a, b) and a, b G ?v_i but a + b ? Cv_i. We say that Ze requires 
attention at stage s if all parameters that occur in cj)e are in Cy_i and Z)v_i does not 

include either 0e or ^(?)e. 

At stage 5, to satisfy Pe, we will act by first looking for some y < s such that 

y ? Ye.j-i and R(n, e, y). If none is found, the action will be to enumerate a new 

independent x of height at least e. To do this, find the first k such that (-)k does 

not occur in Cs-\ or in any element of Ds-\. Let 

C = 
Cs.^[(^)k\ 

j = 
l,...,(,-!)} 

and set Xe,s 
= 

Xe,s-\ 
U{(^)k}, 

Xe_s 
= 

Xe.s-\, Te_s 
= 

Te.s-\, and Ye,s 
= Y tS-\. If 

such a j is found, on the other hand, the action will be to give all existing element 

of Xe^s-\ height greater than e. To do this, collect 

K = 
ik\ (-) eXe^{\Xe^{\ 

and the least positive r ? Te,s-\. Note that K is finite. Set 

C^CiUljiW \j = (e,...,e + r + \)X 
keKl\PJJk ) 

and set Te.s 
= 

Te.s_x U 
{r}, Xe_s 

= 
Xe.s-\ U 

{(-^ | ̂  G I}, Xe_s 
= 

^_i, and 

Ye.s 
= 

7,,-iU{>| 

To satisfy Qe at stage 5 we will look to see whether the elements of ce = 
(a, b) are 

in Cs-\. If they are both there, set Cs 
? 

Cs-\U{a +b}. Otherwise, set Cs 
= 

Cs-\. 

To satisfy Ze. we will act at stage s by first looking for the parameters in cj>e in 

C,_i. If all of them are there and G 
-?? 

h <l>e, then set Ds = Ds-{ U {<j>e}. If all 

of them are there and Gw-?? \= ~^(j)e, then set Ds = Ds-\ U {-^}. If some of the 

parameters are not in Cs-\, we set Ds 
= 

Ds-\. 

Now if n G S, for each e we have Qe to guarantee that ue(Hn) will be infinite, so 

Hn ~ G . If n ? S, there is some e such that Qe guarantees that ue(Hn) is finite, 

soHn^G . H 

Since this result is perfectly uniform, we can use it for induction. What we actually 
have established is the following: 
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Proposition 4.2. If S is a set which is Yl? relative to X. then there is a uniformly 

X-computable sequence of reduced Abelian p-groups iHn)neco, each of length at most 

co. such that Hn ~ GOJ if and only ifn G S. 

There is a result of Khisamiev [11], which allows us to transfer these X-computable 
groups down to the computable level. 

Proposition 4.3 (Khisamiev). If G is a X/f-computable reduced Abelian p-group, 
then there is an X-computable reduced Abelian p-group H such that H0J c? G and 

un{H) 
= co for alln G co. Moreover, from an index for G, we can effectively compute 

an index for H. 

These two results together can be used to establish 

Proposition 4.4. If KOJ.m is the class of computable reduced Abelian p-groups of 

length at most co m,for some m > 0, then E^K^.m) is Yi\m+l complete within K. 

Proof. Let S be an arbitrary Il2m+1 set. Since S is H? in 0(2m~1), we have 

a uniformly 0(2w+1)-computable sequence of reduced Abelian /^-groups iHn)neco, 
each of length at most co, such that Hn ~ G if and only ifn e S. Now we can step 
each Hn down to a lower level using Khisamiev's result, so that we have a uniformly 
0(2?-3) 

_ 
0(2("-1)-1)-computable sequence iH2>n)ne of reduced Abelian p -groups, 

each of height co 2 which again have the property that H2n has a constantly infinite 

Ulm sequence if and only ifneS. By induction, we define iHl'n)nE , and when we 

get to iHm-n)ne , it will be a uniformly computable sequence of groups of length 
at most co m such that Hmn has constantly infinite Ulm sequence if and only 
ifneS. H 

?5. Completeness for higher bounds on length. Giving completeness results for 

higher levels requires more elaborate machinery. We will prove a more general 
result using an a-system, in the sense of Ash. These systems are explained in 

detail, along with several other variants, in the book of Ash and Knight [2]. The 

"Metatheorem" for a -systems was proved in a paper by Ash [1]. 

Roughly speaking, an a-system describes all possible priority constructions of a 

given kind, and the Metatheorem states that given an "instruction function" which 

is A^, the system will produce a ce. set (in our case, the diagram of a group) which 

incorporates the information given in the instruction function. More formally, we 

make the following definition: 

Definition 5.1 (Ash). Let a be a computable ordinal. An a-system is a structure 

iL,U,Pj,E.i<?)?<a) 

where L and U are ce. sets, E is a partial computable function on L (it will eventually 
enumerate the diagram of the structure we are building), P is a ce. alternating tree 
on L and U (that is, a set of strings with letters alternating between L and U) in 

which all members start with i G L, and <? are uniformly ce. binary relations 
on L, where the following properties are satisfied: 

1. <? is reflexive and transitive for all ? < a. 

2. a <y b =? a <? b for all ? < y < a. 

3. If a <0b. then Eia) CE{b). 
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4. If ou G P, where a ends in ??, and 

e? <fi, el <P? <?t_t ek 

where ?o > ?\ > > ?k, then there exists some ?* such that out* G P and 

for all i < k, we have t <?i ?*. 

If we have such a system, we say that an instruction function for P is a function q 
from the set of sequences in P of odd length (i.e., those with a last term in L) to U, 
so that for any a in the domain of q, aqio) G P. The following theorem, due to 

Ash [1], guarantees that if we have such a function, there is a string which represents 

"carrying out" the instructions while enumerating a ce. set. We call an infinite 

string 71 = ?u\?\U2?2. a "run" of (P, g) if it is a path through P with the property 
that for any initial segment au we have u = 

q{a). The Metatheorem also guarantees 
that there is a run with the property that |J E(?i) is computably enumerable. 

i Eco 

Proposition 5.2 (Ash Metatheorem). If we have an a-system 

iL,U,P,?,E,i<?)?<a) 

and if q is a A^ instruction function for P, then there is a run n : co ?> (LUU) ofiP, q) 
such that (J E{n(2i)) is c.e. Further, from computable indices for the components 

i Eco 

of the system and a A^ index for q, we can effectively determine a c.e. index for 

U E(n{2i)). 
i Eco 

What this means is that if we can set up an appropriate system, then given 
some highly undecidable requirements, we can build a computable group to satisfy 
them. The difficulty (aside from digesting the Metatheorem itself) mainly consists 

of defining the right system. Afterwards, it is no trouble to write out the high-level 

requirements we want to meet. Using such a system, we will prove the following 

generalization of Proposition 4.4. 

Theorem 5.3. Let a > 0 be a computable limit ordinal, and let 

a ? 
sup (2y -f 3) 

co-y<a 

as in Proposition 3.5. If Ka is the class of reduced Abelian p-groups of length at 

most a then E{Ka) is YL?? complete within Ka. 

Proof. Let (a/)/eo\{0} be a uniformly computable sequence of ordinals, cofinal 

in a (for instance, if a = co co, then a, = co - i would do, or if a = co (/? + 1), 
we could use a? = co ? + /; in any case, since a is computable, there is such a 

sequence). Consider the family of groups iGl)ieco, each of length a where Go has 

uniformly infinite Ulm sequence and 

f Ai\ \ if/? < a/or if/? iseven, 
Ur{G ) 

? < 
10 otherwise. 

Since the Ulm sequences of these groups are uniformly computable, there is a 

uniformly computable sequence iGl)ie such that Gl ~ G1 for all /, and such that 

in each of these groups, for any ?, the predicate "x has height /?" is computable. The 

proof of this, which is due to Oates, is a modification of an argument of L. Rogers 

[18], and may be found in Barker's paper [3]. 
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For any set S G Yl??. we will construct a sequence of groups (Hn)neoj such that if 

n G S then Hn ~ 
G?, and otherwise, Hn ^ G' for some i ̂  0. To do this, we will 

define an a -system. Let L be the set of pairs (j, p). where j G co and p is a finite 

injective partial function from co to GJ. Let U be the set {0,1}. By E(j, p), we will 
mean the first \dom(p)\ atomic or negation atomic sentences with parameters from 

the image of p which are true in G7. Let ? ? 
(0,0), and P be the set of strings of 

the form iuxtxu^ti... which satisfy the following properties: 

1. ui G U ancU/ G L. 

2. If Ui 
= 1 then u?+\ 

= 1. 

3. lili = 
(ji, pi), then both the domain and range of p? contain at least the first 

i members of co. 

4. If ii = 
(j,p) and u? = 1, then j ^ 0. Otherwise, j 

= 0. Further, if w,-_i = 1 

and^;_i 
= 

(ji-i,q),thQnj 
= 

j?-\. 

For the <? we will modify the standard back-and-forth relations on Abelian 

/^-groups. In general, the standard back-and-forth relations on a class K are 

characterized as relations on pairs (stf .?) where stf G K and ? is a finite tuple of stf. 

Definition 5.4. If a ? stf and b ? Se are finite tuples of equal length, then we 

define the standard back-and-forth relations <? as follows: 

1. (stf ,a) < i (33, b) if and only if for all finitary Yf[ formulas true of b in Se are 

true of a in stf. 

2. (stf ,a) <? (&, b) if and only if for any finite d C Se and any y with 1 < y < ? 
there is some c c stf of equal length such that (S3,b,d) <y (stf,a,c). 

This definition extends naturally to tuples of different length as follows: we say 
that (stf,?) <? (S3,b) if and only if ? is no longer than b and that for the initial 

segment beb of length equal to that of a, we have (stf ,?) <? (S3, b ). Barker [3] 
gave a useful characterization of these relations in the case of Abelian /j>-groups stf 

and 38, where stf = S3. 

Proposition 5.5 (Barker). If <? are the standard back-and-forth relations on re 

duced Abelian p-groups, and if a and b are finite subsets of equal length in an Abelian 

p-group with the height of elements given by h respectively and with equal cardinality, 
with a function f mapping elements ofb to corresponding elements of ?, then the 

following hold: 

1 a <2-? b if and only if the two generate isomorphic subgroups and for every beb 

anda = 
f(b) we have 

h (a) 
? 

h(b) < co S or h(b),h(a) > co -?. 

2. ? <2fHi ? if and only if the two generate isomorphic subgroups and for every 
beb and a = 

f(b) we have 

(a) In the case that P -?+k is infinite for every k G co, 

h (a) = h(b) <co -? 
or 

h(b) > co ? and h (a) > min{h(b),co S + co}. 
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(b) In the case that Poj-?+k is infinite and P .s+k+\ is finite, 

h (a) = h(b) <co -S 
or 

co-S <h{b) <hia) < co 3 + k 

or 

h (a) = h(b) > co -? + k 

(c) In the case that P .s is finite, 

h{x) = h(x) 
Since in all groups with which we are concerned, Pw-?+k will be infinite for all 

? < a, we will have no need for the more complicated cases. Also, it is helpful to 
deal with groups which satisfy the stronger condition that they have infinite Ulm 
invariants at each limit level. 

Definition 5.6. Let $/,& be countable reduced Abelian /^-groups of length at 
most a such that for any limit ordinal v < a we have uv{sf) 

= 
uv{&) 

= co. Let 

the height of an element in its respective group be given by h. Let ?, b be finite 

sequences of equal length from stf and 3%, respectively. Then define i<s)?< [ by the 

following: 

1. i^,a) <2.s (&,b) if and only if 

(a) The function matching elements of ? to corresponding elements of b 
extends to an isomorphism / : (b) 

? 
(a), 

(b) for every beb and a = 
fib) we have 

h {a) 
= 

h(b) < co -? or h{b),h{a) > co ? 

and 

(c) for all ? < co ? we have U?ise) 
= 

U?{&). 
2. is?,~a) <2.?+i [?$) if and only if 

(a) The function matching respective elements in a and b extends to an 

isomorphism/ \ (b) 
?> 

(a), 

(b) for every beb and a = 
fib) we have 

hia) 
= 

h(b) <co -3 

or 

h(b) > co -? and/z(a) > min{hib),co -? + co}. 

(c) for all ? < co ? we have U?istf) 
= 

U?i^?). 
(d) for all ? G [co -?,co -? + co) we have ^(?Z) 

> 
U?{&). 

In order to verify that we have an d-system, the following lemma will be impor 
tant. 

Lemma 5.7. Suppose (sf.?) <? (&,b). Then for any n < ? and for any finite 

sequence d ? ?% there exists a sequence c ? stf of equal length such that i^,b,d) <n 
istf,?,c). 

Proof. Suppose that the conditions stated for <2.? hold. Now supposed 
= y + 1. 

It suffices to show that for all finite sequences d ? 38 there exists a sequence c ? $f 

of equal length such that i38,b,d) <2-<5+i (stf,a,c). We will extend / to d one 
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element at a time. Let d G d, and suppose that d ^ (b) (since if it were in that 

subgroup, we could simply map it to the corresponding element of (c). Further 

suppose, without loss of generality, that pd G (b) and that h(d) > h(d + s) for any 
s G (b). This last condition is often stated "d is proper with respect to (b)." These 

assumptions are reasonable, since if we need to extend / to an element farther 

afield, we can go one element at a time and work down to it. From this point, we 

essentially follow Kaplansky's proof of Ulm's theorem [10] to find the appropriate 
match for d. Use z to denote f(pd). It now suffices to find some c of height h(d) 
which is proper with respect to (a) and such that pc = z. 

First suppose that h(z) 
= 

h(d) + 1. Now both z and pd must be nonzero. For 
c we may choose any element of (stf)h^d) with pc = z. The height of z tells us that 

there must exist such an element. We first check that h(c) < h(d), which is easy, 
since if h(c) > h(d), we would have 

h(z) = h(pc) > h(c) + 1 > h(d) + 1. 

Finally, it is necessary to show that c is proper with respect to (a). Suppose that 
c G (a). Then c ? 

f(y) for some y G (b). Then pd 
= 

py and d ? 
y ? (b) to 

avoid d G (b). Further, h(d 
? 

y) 
= 

h(d), since h(y) 
? 

h(d) and d is proper with 

respect to (b). However, 

h(p(x 
- 

y)) = h(0) - oo > h(d) + 1 

contradicting the maximality of h(px). Thus c ? (a). Now suppose we have 

h(c + t) > h(d) + \ for some r G (a) with r = 
f(s). Since c + r ^ 0 (to 

avoid the case that c = ?r G (?)), we know that h(p(w + r)) > h(d) + 2, so 

that h(p(d + s)) > h(d) + 2. Since h(r) > h(d), we also have h(s) > h(d), so 

h(d + s) 
= 

h(d), contradicting the maximality of h(pd). 
Suppose that h(z) > h(d) + 1. Now there is some v G (&)h{d)+\ 

sucn tnat 

pd 
= 

pv. Then the element d ? v is in Ph^(S8), has height /z(rf), and is thus 

proper with respect to (b). I make the following claim. 

Claim 5.8 (Lemma 13 of [10]). Let the function 

r : 
((b)h{d)r)p-x(3?)h{d+2)) 

-+ 
Ph{d)(&) 

be defined as follows: For any x G 
((b)h(d) 

^ 
P~X(^)h{d)+i) there exists some 

y G (?%)h{d)+\ 
sucn tnat P)- 

? 
Px- define Y by Y : x h^ x ? 

y and let Y be the 

composition of this map with the projection onto 
Ph^^(^)/Ph^^+l(^)- if 

F : ((b)h(d)^P~{(^)h(d)+2)/(b)h{d)+i 
? 

Ph{d)(&)/Ph{d)+i(&) 

is the map induced by Y on the quotient, then the following are equivalent: 

1. The range of F is not all of Ph{d)(&) / Ph{d)+X(&). 
2. There exists in 

Ph^(S8) 
an element of height h(d) which is proper with respect 

to(b). 
Proof. To show that condition 2 implies condition 1, suppose w G Ph(d) 

nas 

height h(d) and is proper with respect to (b). Then the coset of w is not in the 

range of F. Otherwise, w = x - 
y + q for some x G (b), some y G (&)h{d)> anc^ 

some q G Ph{d)+\(^)- But tnen h(w 
~ 

x) > h(d), so w was not proper. 
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To show the other implication, suppose that w is an element of Ph^{38) repre 

senting a coset not in the range of F. Then h{w) 
= 

hid). Further, w is proper, 
since ifitwerenot, and if h{s 

? 
w) > hid) witnessed this, we could writes ?w = 

p? 
with C G {&)h{d)- ^ut tnen Ps 

? 
PC since pw = 0. But then F will map s to the 

coset of v, giving a contradiction. H 

Now since d ? v is such an element as is described in the second condition of the 

claim, we know that the range of F is not all of Ph^{38)/Ph^+X i^)- Since the 

vector spaces are finite (and thus finite dimensional), we know that the dimension 

of {(b)h(d) n 
P~X{^)h(d)+2)l(b)h{d)+\ 

is less that uh[d){33). However, since / was 

height preserving, it maps 

i(b)h(d) np-{(&)h{d)+2)/(b)h{d)+i 
I onto 

i{?)h{d)^P~Xi^)h{d)+i)l(?)h[d)+x. 

Thus the dimension of 

i(?)h{d)r\P~X{^)h{d)+2)/{?)h(d)+\ 
is less than uh(?){38). 

In the case that h{d) < co -? + co,we now know that the dimension of 

{(?)h(d) n p~x {s*)h{d)+2)/(fl)h(d)+\ 

is less than uh^d){s?), 
so there is an element c\ in s? such that pc\ 

= 
0,h{pc\) 

= 
h{d), 

and which is proper with respect to (a). Since h{z) > h{d) + 1, we may write 

z = pc2 where c2 G {&)h{d)+\- 
Now we write c = c\ + C2 and note that pc 

= z, 

that A(c) 
= 

h{d), and finally that c is proper with respect to (a). 
If h{d) > co ? + co, we need considerably less. In particular, it suffices to find 

some c such that pc 
= z, such that c is proper with respect to (ci), and such that 

hie) 
= co ? + co. This can be achieved by replacing h{d) with co ? + co in the 

preceding argument, and noting that since co ? is a limit. ww.f5 
= co. This completes 

the proof for the case {s?,a) <2-s {38, b) withe) a successor. 

If (5 is a limit ordinal, it suffices to consider some odd successor ordinal 

2-ri + l <2-? 

and to show that for any d G 38 there is some c G s? such that 

{38,b,~d) <2-rj+\ {s?,a,c). 

Then the proof is exactly as in the successor case. 

In the case that we start with {s?.a) <2-<5+i {38-b) .we need to show that for any 
d G 38 there is some c G s? such that {38,b.d) <2.? {s?,?. c). Now we can follow 

the proof exactly as in the even successor case, except that we replace oj -S + co with 

co-S. H 

We now adapt the relations <? on pairs {s?. ?). {3$. b) to relations on L. 

Definition 5.9. We say that {j\.p\) <? {J2^ Pi) if and only if 

{GJ],ran{pi)) <? {Gj2.ran{p2)). 
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We need to verify that (L, U, P, ?, E, (<?)?<a) is an ?-system. For the necessary 

effectiveness, notice that we need only consider <? on members of L, so only the 

groups Gl are considered. Conditions 1-3 are clear, as is the fact that (<?)?<a is 

uniformly c.e. It remains to verify the following: 

Lemma 5.10. If ou G P where a ends in ?? and 

where ?o > ?x > > ?k> then there exists some ?* such that oui"" G P and for all 

i <k, we have V <?0 ?*. 

Proof. We write V = 
(ji,pi). By Lemma 5.7, given ?k~x <?k_{ ?k we can 

produce an ?k~l = 
(jk^x,Pk-\) such that p extends pk-x (mapping into the same 

structure) and^ <?k ?k~x. Similarly, for each i, produced such that ?l+x <?i+l ?' - 

It will then be the case that for all i. ?l <#. ??. If u = 0 or if 1 occurs somewhere 

in a, let ?* = 
(jo, p*), where p* extends po and its domain and range each contain 

the first n constants, where 2n + 1 is the length of a. Now au?* G P and for all /, 

t<?j*. 
If, on the other hand, u = 1 and 1 does not occur in a, then we may be sure that 

jo 
= 0. In this case, find some y 

* 
> 0 such that aj* > ?o- Note that since for each 

? < aj* we have U?(GJ*) 
= 

U?(G?), it follows that 

(g;\0)<?+1(goj). 

Thus, by Lemma 5.7, we have some sequence ran(p*) ? G7* of length n such that 

(G?,ran(p)) <?0 (GJ\ran(p*)), where 2n + 1 is the length of a. We define p* 
to be the function taking each of an initial sequence of the natural numbers to the 

corresponding element ofthat sequence. Then clearly au?* G P, and for any i, we 

have ?[ <?o (G?, ran(p)) <?o (G^, ran(p*)). H 

Now let S be an arbitrary YI?? set. There is a A?? function g(n, s) : co2 -? 2 such 

that for all n, we have n G S if and only if \/s[g(n, s) 
= 

0], and such that for all 

n,s G co, if g (n, s) 
= 1 then g(n, s + 1) 

= 1. We define a A?? instruction function qn 
as follows. If a G P and a is of length m, then we define qn(o) 

? 
g(n,m). 

Now we certainly can find computable indices for all the components of the 

a-system, and we can uniformly find a A?? index for each qn, so the Ash Metathe 

orem gives us (uniformly in n), a run nn of (P,qn) and the index for the ce. set 

(J E(nn(2i)). Let Hn denote the group whose diagram this is. Note that ifneS, 

then qn(m) 
= 0 for all m, and so Hn ~ G?. Otherwise there is some m such that 

for all m > m, we have qn(m) 
= 1, and so Hn ~ Gl for some i / 0. H 
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