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A scaling method and its applications to problems in
fractional dimensional space

Sami I. Musliha� and Om P. Agrawalb�

Department of Mechanical Engineering, Southern Illinois University, Carbondale, Illinois
62901, USA

�Received 30 September 2009; accepted 17 October 2009;
published online 2 December 2009�

A scaling method is proposed to find �1� the volume and the surface area of a
generalized hypersphere in a fractional dimensional space and �2� the solid angle at
a point for the same space. It is demonstrated that the total dimension of the
fractional space can be obtained by summing the dimension of the fractional line
element along each axis. The regularization condition is defined for functions de-
pending on more than one variable. This condition is applied �1� to find a closed
form expression for the fractional Gaussian integral, �2� to establish a relationship
between a fractional dimensional space and a fractional integral, �3� to develop the
Bochner theorem, and �4� to obtain an expression for the fractional integral of the
Mittag–Leffler function. Some possible extensions of this work are also
discussed. © 2009 American Institute of Physics. �doi:10.1063/1.3263940�

I. INTRODUCTION

Mandelbrot1 introduced the concept of “fractal” to describe irregular geometries of complex
objects such as clouds, mountains, cost lines, and travel path of a lightning. The first fractional
physical phenomenon, which was observed sometime ago and is still a subject of many investi-
gations, is the Brownian motion.1 Feynman and Hibbs2 were the first to formulate the nonrelativ-
istic quantum mechanics as an integral over Brownian paths, which is now known as the Feynman
path integral. The concept of fractals has been applied in many other areas of physics ranging from
the dynamics of fluids in porous media to the resistivity networks in electronics.3–5

One of the key issues in fractal geometry is measuring the dimension of the fractional space.
Several methods have been proposed related to this issue. For example, the fractional mass di-
mension obeys the scaling rule M�r�=krDM,1 where M is the mass of the fractal medium, r is the
radius of the sphere, DM is the mass fractal dimension, and k is a constant that depends on the
scaling rule. This definition could be used to compute the dimension of the fractional space. An
experimental measurement suggests that the fractional mass dimension DM of our real world is
�3�10−6�.6 The same technique can be used to find the fractional charge dimension via the
relation Q�r�=krDQ, where the terms Q and DQ are defined similarly. This scaling rule has one
more implication; it suggests that a charge may be understood as a distribution instead of a
monopole, a dipole, or a quadrupole, as it is traditionally done.7

Several applications of fractional dimensional space could be cited. In the 1970s, Stillinger6

described a procedure for integration on a fractional space of dimension D �where D is a nonin-
teger number� and generalized the Laplace operator �D��r� in this space as

a�On leave from Al-Azhar University-Gaza. Electronic mail: smuslih@ictp.it.
b�Electronic mail: om@engr.siu.edu.

JOURNAL OF MATHEMATICAL PHYSICS 50, 123501 �2009�

50, 123501-10022-2488/2009/50�12�/123501/11/$25.00 © 2009 American Institute of Physics

Downloaded 20 Jun 2012 to 131.230.71.39. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3263940
http://dx.doi.org/10.1063/1.3263940
http://dx.doi.org/10.1063/1.3263940


�D =
�2

�r2 +
D − 1

r

�

�r
+

1

r2 sinD−2 �

�

��
sinD−2 �

�

��
.

Many investigations into low-dimensional semiconductors8,9 have used this Laplacian to solve the
Schrödinger equation for hydrogenlike atoms for anisotropic solids to obtain energy bounds and
the optical spectra as a function of fractional spatial dimension D.

As a next application, consider the N-quarks statistical mechanics with a potential
U�r1 ,r2 , . . . ,rN�=�1�i�j�Nqiqj�ri−rj��, where � is a parameter. From the theory of statistical
mechanics of many body problem, it is shown in Ref. 10 that the potential energy term defined
above will be thermodynamically stable if 0���2.

In quantum field theory, the dimensional regularization technique,11 i.e.,

� f�x�d�V�D =
2��D�/2

	�D

2
	 �0




f�x�xD−1dx ,

suggests that D �the parameter representing noninteger dimension of the space� could be of
relevance as a regularization parameter in the Feynman integral. The technique is used as a
method of removing the divergent term from the Feynman integral. Clearly, the fractional dimen-
sional space could be important in many applications.

Related to fractal geometry and fractional dimensional space is the area of fractional deriva-
tives and integrals which have recently been applied in many applications including particle
physics,12 fractional Hamiltonian systems,13 chaotic dynamics,5 astrophysics,14 physics of fractals
and complex media,4 and recent studies of scaling phenomena.15–17 However, as demonstrated in
Refs. 4 and 18, the areas of fractals, fractional dimensional space, and fractional derivatives are
not completely independent.

In this paper, we examine applications of fractional dimensional space and its relationship
with fractional derivatives and integrals. To accomplish this, we first present a generalization of a
differential volume element in a fractional space of dimension D�0 �also denoted as the
D-dimensional space�. We use this definition �1� to obtain the volume and the surface area of a
hypersphere in the D-dimensional space and �2� to define the solid angle about a point in the same
space. This hypersphere is also denoted as a D-hypersphere or simply a D-sphere �and an
N-hypersphere or simply an N-sphere when D=N is an integer�. The proposed extension allows us
to define a scaling rule for a fractional line element. It is shown that this definition leads to the
same expressions for the volume and the surface area of the hypersphere, and the solid angle about
a point in the fractional space. Furthermore, the overall dimension of the space could be obtained
by summing the dimensions of the fractional line elements. This paper also presents a regulariza-
tion condition for two-parameter functions defined in a D-dimensional space. This definition
differs from that presented in Ref. 19, where Tarasov used the formula of fractional regularization
only for fractional space of dimension D, 0�D�3. The regularization condition defined here is
used �1� to find a closed form expression for the fractional Gaussian integral, �2� to establish a
relationship between a fractional dimensional space and a fractional integral, �3� to develop the
Bochner theorem, and �4� to obtain an expression for the fractional integral of a Mittag–Leffler
function. Some possible extensions of this work are also discussed.

II. THE VOLUME AND THE SURFACE AREA OF A D-HYPERSPHERE

In this section we define the volume and the surface area of a generalized D-hypersphere for
D�0 and the total solid angle around a point for the same space. The equations give the starting
point for the concept of a fractional line element and the regularization condition for a fractional
space. To accomplish this, first consider the volume and the surface area of an N-hypersphere in an
N-dimensional space, where N is an integer. Note that the experts in geometry and topology define
an N-hypersphere differently.20–23 Here, we shall follow the definition used by the experts in
geometry.20,21 We assume that the radius of this N-hypersphere is R, and its center coincides with
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the origin of the coordinate system in the space. Using the Cartesian coordinates x= �x1 , . . . ,xN�,
the differential volume element and the volume of the N-sphere in the N-dimensional space are
given by

�dV�N = dx1 ¯ dxN = 

j=1

N

dxj �1�

and

VN = �
�


j=1

N

dxj , �2�

where 
 is the product symbol and �= �x�RN �x1
2+ ¯+xN

2 �R2�.
To simplify the derivation, let us define the transformation equations between the Cartesian

coordinates and a set of polar coordinates �r ,�1 , . . . ,�N−1� as �Ref. 24, Vol. II, Chap. IX�

xj = r cos�� j�

k=0

j−1

sin��k�, j = 1, . . . ,N − 1,

xN = r

k=1

N−1

sin��k� , �3�

where �0=� /2, 0�� j �� �j=1,2 , . . . ,N−2�, 0��N−1�2�, and r is the radial coordinate defined
as r= �� j=1

N xj
2�1/2. Using Eq. �3�, the volume element in the new coordinates can be written as

�dV�N = rN−1drd
N, �4�

where

d
N = 

k=1

N−1

�sin �k�N−1−kd�k �5�

is the hypersolid angle at the origin defined by the hypersurface element

�dS�N = rN−1d
N. �6�

Substituting Eqs. �4� and �5� into Eq. �2�, integrating over the complete range of angles
�1 , . . . ,�N−1, and using the identity

�
0

�

sinj �d� =


�	� j + 1

2
	

	� j + 2

2
	 , �7�

we obtain

VN = �
�

�dV�N = �
0

R 2�N/2

	�N/2�
rN−1dr , �8�

where 	 is the gamma function. Equation �8� suggests the following transformation:
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�
�

→ �
0

R

�dV�N →
2�N/2

	�N/2�
rN−1dr , �9�

where “a→b” indicates that “a could be replaced with b.” Note that the transformation indicated
in Eq. �9� must take place simultaneously. Furthermore, Eq. �9� assumes that it is possible to
integrate over all angles separately �as is the case here�. If this condition fails, then the transfor-
mation given in �9� will not be valid. Therefore, transformation �9� must be applied carefully. Note
that the value of R could extend to 
.

Using Eq. �8�, we obtain the volume of the N-sphere as

VN =
2�N/2RN

N	�N/2�
. �10�

Differentiating Eq. �10� with respect to R, the hypersurface area of the N-sphere is given as

SN =
2�N/2

	�N/2�
RN−1. �11�

For N�3, this hypersurface can be of dimension of more than 2. Note that SN is proportional to
RN−1. Dividing SN by RN−1, we obtain the expression for the hypersolid angle about a point in the
N-dimensional space as


N =
2�N/2

	�N/2�
. �12�

Note that for N=2 and N=3, the hypersolid angle about a point, the hypersurface area, and the
hypervolume of a sphere of radius R are given as 
2=2�, S2=2�R, V2=�R2, 
3=4�, S3

=4�R2, and V3= �4 /3��R3. For N=2, the hypersphere is denoted as the circle, the solid angle, the
surface area, and the volume are simply called the angle, the circumference, and the area of the
circle. For N=1, the hypersurface area and the hypervolume is reduced to 2 points and a line, and
we obtain 
1=2, S1=2, and V1=2R, and thus for N=1, the hypervolume is essentially the length
of the line. For N=1, it is not common to call 
1, S1, and V1 as the hypersolid angle, the
hypersurface area, and the hypervolume.

Equation �9� could be thought of as a transformation from an N-dimensional space to a
one-dimensional space. Therefore, it is our conjecture that one could write the following transfor-
mation:

�
�D

→ �
0

R

�dV�D →
2�D/2

	�D/2�
rD−1dr , �13�

where D�0 is the dimension of the space �which could be a noninteger�, �D is the domain of the
D-sphere, and �dV�D is the fractional volume element in the D-dimensional space. Like before,
this transformation is valid only when the angles could be integrated separately. Furthermore, both
transformations in �13� must be applied at the same time. Otherwise, this transformation may not
be valid. Our interpretation of the meaning of D will be discussed in Sec. III.

Using Eq. �13�, the volume of the D-sphere of radius R is given as

VD = �
�D

�dV�D = �
0

R 2�D/2

	�D/2�
rD−1dr =

2�D/2RD

D	�D/2�
. �14�

Differentiating Eq. �14� with respect to R, the hypersurface area of the D-sphere is given as
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SD =
2�D/2

	�D/2�
RD−1. �15�

Note that this area is proportional to RD−1, and therefore, dividing SD by RD−1, we get the hyper-
solid angle about a point in the D-dimensional space as


D =
2�D/2

	�D/2�
. �16�

It could be verified that these definitions of the volume and the surface area of a hypersphere and
the solid angle at a point in the D-dimensional space are also applicable when D is an integer. As
discussed later, fractionalization of Cartesian coordinates also leads to the same results. One of the
major significance of Eq. �13� is that it allows us to propose a scaling rule.

III. THE SCALING METHOD AND THE DIMENSION OF THE SPACE

In Secs. I and II, we used “dimension D of a fractional space” and similar phrases. One may
ask “What is the dimension D of a space for a positive noninteger D?” Here we shall try to answer
this question.

Let us say that N coordinates x1 , . . . ,xN are needed to locate a point in a space. In the case
where a space is filled with regular geometric objects, and the curves and the surfaces are smooth,
it is common to call this number N as the dimension of the space. Thus, a straight line, a plane
surface, and a cube are of dimensions 1, 2, and 3. This is also true if these spaces have curvatures.
For example, motions along the circumference of a circle and on the surface of a sphere can be
considered as motions in one- and two-dimensional spaces even though our true motions may be
in a three-dimensional space. In such cases, infinitesimal line, area, and volume elements in the
Cartesian coordinates are defined as dx1, dx1dx2, and dx1dx2dx3, respectively, and even in the case
of a space with curvature, the distance between two points sufficiently closed to each other is
given by a quadratic expression. However, this is not the situation in the case of fractal lines,
surfaces, volumes, and hypervolumes. Thus, in these cases, there is a clear distinction between the
number of coordinates used to locate a point and the dimension of the space.

As discussed in Ref. 1, the dimensions of the fractals can be defined in various ways. Here, we
shall use the scaling method d�x= f����x��−1dx to relate the differential fractional line element d�x
with the differential straight line element dx, where � is a parameter called the fractional dimen-
sion of the line and f��� is a function of �. Here, we take the absolute value of x in �x��−1 to
indicate that our scaling is symmetric about the origin. A space filled with such lines is called a
fractional space. Theoretically, one can speculate � to have any positive value. However, we shall
restrict the value of � such that 0���1. The case of ��1 is left for future considerations. For
�=1, f��� also must be 1 so that the scaling is a unit scaling �or an identity transformation�. Many
functions would satisfy this requirement. However, based on Sec. II, we take f���
=��/2 /	�� /2� �see Eq. �13��. The presence of a factor of 2 in Eq. �13� is due to the fact that for
D=1, r is integrated from −R to R, and when the limits are taken as 0 and R, one gets a factor of
2. Thus, if a point in a space is located using N points x1 , . . . ,xN, then the scaling between d�ixi and
dxi is defined as

d�ixi =
��i/2�xi��i−1

	��i/2�
dxi, i = 1, . . . ,N . �17�

We call this space as a fractional space, and

D = �1 + ¯ + �N �18�

as the dimension of the space. When �1= ¯ =�N=1, we call the scaling as the unit or the identity
scaling, and in this case D=N, i.e., the fractional dimension agrees with the normal dimension of
the space. If �1= ¯ =�N=�, where 0���1, we call the scaling as the isotropic scaling, other-
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wise an anisotropic scaling. Regardless of the isotropic or the anisotropic scaling, the dimension of
the space is always given by Eq. �18�. Furthermore, we call the space a fractional dimensional
space as long as �i for at least one i is not equal to 1. When � j is not equal to 1 for some j, then
we also say that the coordinate xj has been fractionalized.

Following the above discussion, the volume element in fractional dimensional space D is
defined as

�dV�D = d�1x1 ¯ d�NxN, �19�

and the volume of the D-sphere is given as

VD = �
�D

d�V�D = �
�D

d�1x1 ¯ d�NxN. �20�

Let us examine the consequences of this definition of a fractional volume element. For this
purpose, we compute the volume of the D-sphere once again. First note that for �1= ¯ =�N=1,
the definition of the volume element given by Eq. �19� coincides with that given in Eq. �1�.

Using Eqs. �17� and �18�, the differential fractional volume element �Eq. �19�� is given as

�dV�D = �D/2�

i=1

N �xi��i−1

	��i/2���

i=1

N

dxi� . �21�

Using Eqs. �1�, �3�–�5�, �18�, and �21�, the volume of the D-sphere �Eq. �20�� is given as

VD = 2N�D/2�
0

R �
�1=0

�/2

¯ �
�N−1=0

�/2 �

i=1

N−1

�cos �i��i−1��

i=1

N
1

	��i/2��

k=0

i−1

sin �k��i−1�
��rD−1dr


k=1

N−1

�sin �k�N−1−kd�k� . �22�

Finally, using the identity14

2�
0

�/2

cos�−1 � sin�−1 �d� =
	��/2�	��/2�
	��� + ��/2�

, �,� � 0, �23�

in Eq. �22�, we obtain the volume of the D-sphere as

VD =
2�D/2RD

D	�D/2�
, �24�

which is the same as that given by Eq. �14�. Accordingly, the scaling method gives the same
results for the surface area of the D-sphere and the hypersolid angle around a point in the
D-dimensional space as those given by Eqs. �11� and �12�. Thus, we have the following.

Theorem 1: If the scaling is defined by Eq. �17�, then for arbitrary values of �1 , . . . ,�N, the
volume VD and the surface area SD of a D-sphere and the hypersolid angle 
D around a point in
a D-dimensional space are given by Eqs. �14�–�16�, respectively, where D is defined by Eq. �18�.
Furthermore, VD, SD, and 
D depend on the total dimension of the space and not explicitly on the
individual dimensions of the fractional line elements.

IV. DIMENSIONAL REGULARIZATION TECHNIQUE AND ITS APPLICATIONS

The scaling rule presented in Sec. III can be used to develop a regularization technique that
will allow us to compute the integral of a function over a fractional domain. Thus, let us assume
that we have a function F�x1 , . . . ,xN� defined over a fractional domain �, and we want to compute
the integral ��F�x1 , . . . ,xN�d�1x1 , . . . ,d�NxN. Using the scaling Eq. �17�, this integral is given as

123501-6 S. I. Muslih and O. P. Agrawal J. Math. Phys. 50, 123501 �2009�
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�
�D

F�x1, . . . ,xN�d�1x1, . . . ,d�NxN = �
�

F�x1, . . . ,xN��D/2�

i=1

N �xi��i−1

	��i/2���

i=1

N

dxi� . �25�

The domains �D and � used here may be different from those defined above. This conversion of
an integral of a function from a fractional dimensional space to a regular dimensional space is
called the regularization technique. This regularization method is used to remove the divergent
term in the evaluation of Feynman diagram term. For example, in the space-time dimension of
four, i.e. D=4, the Feynman diagram loop integral

� d4p

�2��4

1

�p2 + m2�2

diverges. To avoid this divergence and to change this integral into convergent loop integral, we
introduce integration on the fractional dimensional space D=4−�, where � is small parameter
closed to zero. In this case the convergent loop integral is obtained as

lim
�→0+

� d4−�p

�2��4−�

1

�p2 + m2�2 = lim
�→0+

� dp

�2���4−��
2��4−��/2

	�4 − �

2
	

p3−�

�p2 + m2�2 .

The regularization condition given in Eq. �25� can be specialized for special functions. For
radial function, this specialization is expressed as follows.

Theorem 2: Let F�r� be a radial function. The fractional dimensional regularization condition
for this function is given as

�
�D

F�r��dV�D =
2�D/2

	�D/2��0

R

F�r�rD−1dr , �26�

where D is the dimension of the space, �D is the domain of the hypersphere, which in regular
space is defined as �= �x �x1

2+ ¯+xN
2 �R2�, and R is the radius of the sphere which can be

extended to infinity.
Proof: The fractional volume element �dV�D is defined by Eq. �19�. Since F�r� is a radial

function, the integration of angle terms in �dV�D separately is allowed. Thus, the right-hand side of
Eq. �26� follows by applying the transformation given by Eq. �13� to the left-hand side of Eq. �26�.

We now consider some applications of this dimensional regularization technique.

A. Gaussian function in D-dimensional space

The Gaussian integral

�
−





e−x2
dx = 
� �27�

plays a fundamental role in probability and statistics. One can prove the equality in Eq. �27� using
the Poisson �or the Liouville� approach.25,26 Its N-dimensional equivalent is the following identity:

�
RN

e−r2
dV = �N/2, �28�

and it follows by writing Eq. �27� for each coordinates and multiplying them together. For frac-
tional dimensional space, this identity is defined as follows.

Theorem 3: The fractional Gaussian integral in the D-dimensional space satisfies the fol-
lowing identity:
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�
RN

e−r�
d�V�D =

2�D/2	�D/��
	�D/2��

�29�

and, in particular, for �=2, we have

�
RN

e−r2
d�V�D = �D/2. �30�

Proof: Note that e−r�
is a radial function. Thus, the identity in Eq. �29� follows by using

Theorem 2 and the definition the gamma function, and Eq. �30� follows by taking �=2. Note that
both Eqs. �29� and �30� agree with Eq. �28�.

B. The relationship between an integral over a fractional dimensional space and a
fractional integral

The right Riemann–Liouville fractional integral of order � is defined as27

zIb
�f�z� =

1

	����z

b

�x − z��−1f�x�dx . �31�

Setting z=0 in Eq. �31� and using the scaling defined in Eq. �17�, it follows that

�
�

f�x�dDx =
�D/2	�D�
	�D/2� zIb

�f�0� , �32�

where �= �0,b�. Here, b can be extended to 
. Thus, one interpretation of a fractional integral of
a function computed at the initial point �or at the origin� would be that it is a measure of the
integral of the function over a fractional dimension space. Analogously, one could also define an
integral of a function over a fractional dimensional space in terms of a fractional integral.

Let us take b=
. In this case, z could take any value. Using a simple translation of the axis,
Eq. �31� could be written as

zI

� f�z� =

1

	����0




x�−1f�x + z�dx . �33�

Thus, a fractional integral could be thought of as an integral of a translated function over a
fractional dimensional space.

C. Bochner theorem in a fractional dimensional space

A natural way for the investigation of Riesz integrodifferentiation27 is the computation of the
Fourier transform of the kernel �x��−N, where N is the dimension of the space, x�RN, and � is a
real positive number.27 This transform can be computed using the Bochner theorem, which, after
some changes in notations, can be stated as follows.27

The Bochner theorem: The Fourier transform of a radial function is a radial function, and the
following relation is valid:

�
�

eiz·x��r��dV�N =
�2��N/2

�z��N−2�/2�
0

R

��r�rN/2JN/2−1��z�r�dr �34�

provided ��r� is summable in x��, where �= �x�RN � �x�=r�R�, z�RN, “·” represents the
scalar product, and J� is the Bessel function of the first kind of order �. Furthermore,
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�
RN

eiz·x��r��dV�N =
�2��N/2

�z��N−2�/2�
0




��r�rN/2JN/2−1��z�r�dr �35�

for any function ��r� provided that

�
0




rN−1�1 + r��1−N�/2���r��dr � 
 . �36�

The integral on the left-hand side of �36� is interpreted as conventionally convergent. It converges
absolutely if �0


rN−1���r��dr�
.
Proof: See Ref. 27.
The Bochner theorem presented above can be stated in a fractional dimensional space as

follows.
Theorem 4: Assume that z and x are two arbitrary vectors in RN, �x�=r�R, D is the dimen-

sion of the fractional space, and the space normal to z is fractionalized. Then, the following
identity holds:

�
�

eix·z��r��dV�D =
�2��D/2

�z�D/2−1 �
0

R

rD/2��r�JD/2−1�r�z��dr �37�

provided that the integration of ��r� over the domain � exists. Moreover,

�
RN

eix·z��r��dV�D =
�2��D/2

�z�D/2−1 �
0




rD/2��r�JD/2−1�r�z��dr �38�

for any ��r� such that

�
0




r�D−1�/2��r�dr � 
 . �39�

Note that this theorem requires only the dimension of the space and not the individual dimensions
of each axis, except that the dimension of the axis x1 is 1. Proof of this theorem requires the
knowledge of the following two lemmas.

Lemma 1: Assume that x is an arbitrary vector in RN, �= �x�RN � �x�=r�R�, D is the
dimension of the fractional space, �1 is the angle between the radial line r and the axis x1, and all
coordinates except x1 are fractionalized. Then, the following relationship holds:

�
�

f�r,cos �1��dV�D =
2��D−1�/2

	��D − 1�/2��0

R

rD−1dr�
0

�

f�r,cos �1�sinD−2 �1d�1. �40�

Proof: This follows by using Eqs. �17� and �19�, setting �1=1 �because x1 is not fractional-
ized�, and performing integration for variables �2 to �N−1. Equation �40� suggests that if the
function being integrated does not depend on �2 to �N−1, then one can take the following trans-
formations:

�
�

→ �
r=0

R �
�1=0

�

,�dV�D →
2��D−1�/2

	��D − 1�/2�
rD−1dr sinD−2 �1d�1. �41�

Lemma 2: The following relationship is valid:

�
0

�

ei�z�cos � sinD−2 �d� = 
�	��D − 1�/2�� 2

�z�	
�D/2−1�

JD/2−1��z�� . �42�

Proof: This follows by defining t=cos��� and then using a Poisson’s formula.27
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We now prove Theorem 4. To accomplish this, we assume, without loss in generality, that z
coincides with the axis x1. Thus, x1 is not fractionalized. Further, we can write x ·z=r�z�cos��1�. We
then apply Lemma 1 to obtain

�
�

eix·z��r��dV�D =
2��D−1�/2

	��D − 1�/2��0

R

rD/2��r�dr�
�1=0

�

eir�z�cos��1� sin��1�d�1. �43�

Finally, we apply Lemma 2 to obtain Eq. �37�. Of course, the integration on the left-hand side of
Eq. �37� is valid provided that the integration of ��r� over � exists. Since �J��r���c
r as r
→
, the limit on the right-hand side of Eq. �37� exists provided that Eq. �39� is satisfied. This
yields Eq. �38�. Note that for integer dimensional space �i.e., for D=N�, Eqs. �37�–�39� reduce to
Eqs. �34�–�36�, respectively.

D. Integration of the Mittag–Leffler function over a fractional dimensional space and
its relationship with the Fox H-function

The Mittag–Leffler function28,29 is the generalization of the exponential function. The original
Mittag–Leffler function and its generalized form are given by

E�,1�z� = E��z�, E�,��z� = �
j=0



zj

	�� + �j�
. �44�

Using the dimensional regularization technique, the integral of the Mittag–Leffler function over
the fractional space of dimension s�0 is given by

�
0




E��x�dsx =
��s�/2

	� s

2
	�0




E��x�xs−1dx . �45�

Note that the Mittag–Leffler function is a special case of the Fox H-function,29 and the relationship
between these two functions is given by

E�,��x� = H1,2
1,1�x��0,1�

�0,1�,�1 − �,��
�� . �46�

The Mellin transform of a single H-function is given as30

�
0




xs−1Hp,q
m,n�ax��ap,Ap�

�bq,Bq�
��dx = a−s 
 j=1

m 	�bj + Bjs�
 j=1
n 	�1 − aj + Ajs�


 j=m+1
q 	�1 − bj + Bjs�
 j=n+1

p 	�aj + Ajs�
, �47�

where −min1�j�m R�bj /Bj��R�s��1 /Aj −max1�j�n R�aj /Aj� , �arg a�� 1
2��, �=� j=1

m Aj

−� j=n+1
p Aj� j=1

m Bj −� j=m+1
q Bj �0. Setting m=n= p=a1=A1=B1=1, b1=b2=0, q=2, s=D, and B2

=�, we obtain

�
0




xs−1H1,2
1,1�x��0,1�

�0,1�,�1 − �,��
��dx = 	�s� , �48�

which leads to

�
0




E��x�dsx =
��s�/2	�s�

	� s

2
	 . �49�

Equation �49� is useful in finding the Mellin transform of the Feynman propagator of a free
particle system, which allows us to obtain the Feynman quantum mechanical kernel for the
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systems.31 It is also useful in evaluating the Green’s function for fractional diffusion processes32

and in obtaining the probability density for fractional Brownian motion.33

V. CONCLUSIONS

In this paper, we considered the generalization of a volume element �dV�N to a fractional
volume element �dV�D for a fractional space of dimension D, 0�D�N. We presented a gener-
alization of the regularization condition for a fractional space of dimension D. We also developed
Bochner theorem in the fractional space. This will enable us to introduce a new technique to solve
nonhomogeneous fractional differential equations, which will involve taking Fourier transform of
the differential equations in the fractional space. This topic will be discussed in a later paper.
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