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Abstract 

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory loss and hippocampal 

atrophy.   Soluble amyloid-β (Aβ)42 and plaque accumulation is implicated as the neurotoxic species in this disorder, however, at 

physiological concentrations (pM-nM), Aβ42 contributes to neurogenesis, long-term potentiation, and neuromodulation.  Because Aβ42 

binds the α7 nicotinic acetylcholine receptors (α7nAChRs) located presynaptically on glutamatergic terminals, involved with 

hippocampal dependent learning and memory, we examined the effects of the human, monomeric isoform of Aβ42 on 

glutamate release in the dentate gyrus (DG), CA3, and CA1, of isoflurane anesthetized, 6-9 month old male C57BL/6J mice.  

We utilized an enzyme-based microelectrode array selective for L-glutamate measures with fast temporal (4 Hz), low spatial resolution 

(50 x 100 µm) and minimal damage to the surrounding parenchyma (50-100 µm).  Local application of Aβ42 (0.01, 0.1, 1.0, and 10.0 

µM; ~150 nl; 1-2 seconds) elicited robust, reproducible glutamate signals in all hippocampal subfields studied.  Local application of 0.1 

and 1.0 µM Aβ42 significantly increased the average maximal amplitude of glutamate release compared to saline in the DG and CA1.  

10.0 µM Aβ42 significantly elevated glutamate release in the DG and CA3, but not in the CA1.  Glutamate release was completely 

attenuated with coapplication of 10.0 µM α-Bungarotoxin, the potent α7nAChR antagonist.  Coapplication of 10.0 µM tetrodotoxin, 

indicates Aβ42 induced glutamate release originates from neuronal rather than glial sources.  This study demonstrates that the human, 

monomeric Aβ42 isoform evokes glutamate release through the α7nAChR and varies across hippocampal subfields. 

Keywords:  Alzheimer’s disease, amyloid beta, cognition, biosensor, neurotransmission, presynaptic, tetrodotoxin, alpha bungarotoxin, 

hippocampus, nicotinic acetylcholine receptor   
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Introduction 

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory loss, cognitive decline, 

and hippocampal atrophy.  The hallmark pathological features of AD includes amyloid-β (Aβ) plaques and neurofibrillary tangles with 

evidence supporting abnormal accumulation of Aβ followed by tau-mediated neuronal injury and dysfunction [1].  This process, referred 

to as the amyloid cascade hypothesis, proposes that Aβ initiates the series of pathological events leading to neuronal dysfunction, cell 

death, and the eventual cognitive impairments observed in AD [2].  In AD brains, Aβ40 and Aβ42 are the predominant peptide isoforms, 

the latter of which is believed to aggregate faster and thusly considered more neurotoxic [3].  For example, recent evidence supports 

soluble Aβ42 dimers as the neurotoxic isoform precipitating AD pathology [4–6].   

However, at physiological concentrations (pM-nM) experimental evidence suggests Aβ has a role in normal brain functions including 

neurogenesis, long-term potentiation, and neurotransmitter modulation [7–9].  Aβ42 binds to the α7 nicotinic acetylcholine receptor 

(α7nAChR) with picomolar affinity [10] and activation of this receptor is known to stimulate glutamate release [11].  Glutamate, the 

predominant excitatory neurotransmitter in the mammalian CNS, has a strong prevalence in neocortical and hippocampal pyramidal 

neurons and, therefore, plays a critical role in learning and memory [12].  Furthermore,  picomolar  concentrations of Aβ42 can enhance 

synaptic plasticity and reference memory through activation of the α7nAChR [13].  These data suggest that endogenous Aβ42 formation 

lies on a continuum whereby low concentrations of the peptide are important for normal brain function, however, when a concentration 

threshold is crossed; accumulation and aggregation dominate leading to neurotoxicity [7]. 

The purpose of the present study was to elucidate whether Aβ42 could evoke hippocampal glutamate release through the α7nAChR.  
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Because of the rapid (msec) clearance of glutamate from the extracellular space by the high-affinity excitatory amino acid transporters 

[14,15] few studies have been capable of directly measuring glutamatergic neurotransmission on a subsecond timescale.  To do this, 

we utilized an enzyme-based microelectrode array (MEA) coupled with constant potential amperometry to independently measure 

glutamate release in the dentate gyrus (DG), CA3, and CA1 of isoflurane anesthetized C57BL/6J mice.  These MEAs have fast temporal 

(4 Hz) [16], low spatial (50 x 100 µm) resolution and minimal damage to the surrounding parenchyma (50-100 microns) [17].  A glass 

micropipette was attached to the MEA to locally apply varying concentrations of Aβ42 (0.01 – 10.0 µM).  While standard practice is to 

report the concentration of solutions in the glass micropipette, it should be noted that pressure ejection of solutions from a micropipette 

in vivo act as a point source with the concentration decreasing as the distance increases from the ejection site [18].  We have 

determined that a tenth of the barrel concentration is diffusing to the MEA surface, which is considered further in the discussion section.  

The results presented here support the ability of soluble Aβ42 to stimulate the α7nAChR leading to glutamate release that varies among 

hippocampal subfields.    
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Materials & Methods 

Animals:  Six to nine month-old, male C57BL/6J mice were obtained from Jackson Laboratory (Bar Harbor, ME).  Protocols for animal 

use were approved by the Laboratory Animal Care and Use Committee at Southern Illinois University School of Medicine.  Animals 

were group housed on a 12:12 hour light: dark cycle, and food and water were available ad libitum.  Immediately following 

experimentation, mice were euthanized with an overdose of isoflurane and decapitated.  Brains were fixed in 4% paraformaldehyde 

for histological assessment of MEA placement. 

Chemicals:  All chemicals were prepared and stored according to manufacturer recommendations unless otherwise noted.  Human 

Aβ42 was obtained from Anaspec, Inc (Fremont, CA), and stored at -80°C in 0.1 mM aliquots.  Alpha-bungarotoxin (αBTx) and 

tetrodotoxin (TTX) were obtained from Tocris Bioscience (Minneapolis, MN).  L-glutamate oxidase (EC 1.4.3.11) was obtained from 

Cosmo Bio Co. (Carlsbad, CA) and diluted in distilled, deionized water (ddH2O) to make a 1U/µl stock solution for storage at 4°C.  

Sodium phosphate monobasic monohydrate, sodium phosphate dibasic anhydrous, 1,3 phenylenediamine dihydrochloride (mPD), 

sodium chloride and hydrogen peroxide (H2O2, 30% in water) were obtained from Thermo Fisher Scientific (Waltham, MA).  L-glutamic 

acid sodium salt, bovine serum albumin (BSA), glutaraldehyde, dopamine hydrochloride (DA) and L-ascorbic acid (AA) were obtained 

from Sigma-Aldrich Co. (St. Louis, MO).   

SDS-PAGE:  All chemicals were obtained from Bio-Rad (Hercules, CA).  Aβ42 samples were prepared similar to in vivo experiments to 

determine peptide isoform.  0.1 mM Aβ42 was removed from -80°C and allowed to thaw for 30 min at 4°C.  Aβ42 was serially diluted in 

physiological saline (pH 7.4) to the following concentrations 10.0, 1.0, 0.1, 0.01, and 0.001 µM.  A 1:4 ratio of tricine sample buffer to 
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Aβ42 was prepared and loaded into the wells of a 4-20% Tris-HCl gel and run for ~90 min at 120V in 1x Tris-Tricine-SDS buffer.  The 

gel was fixed with 40% methanol / 10% acetic acid for 30 min, rinsed with ddH2O and stained with Coomassie G-250 Stain for 60 min 

on a rotator.  The Coomassie G-250 Stain was rinsed twice with ddH2O in one hour intervals on a rotator and imaged using a Fluor-

S® MultiImager (Bio-Rad). 

Enzyme-Based Microelectrode Arrays:  Enzyme-based MEAs with platinum (Pt) recording surfaces (Figures 1A & B) were fabricated, 

assembled, coated, and calibrated for in vivo mouse glutamate measurements as previously described [19–21].  Briefly, one of the R2 

MEA Pt sites was coated with an L-glutamate oxidase, BSA, glutaraldehyde coating solution.  BSA and glutaraldehyde increase the 

adhesion and crosslink L-glutamate oxidase to the MEA surface.  L-glutamate oxidase enzymatically degrades glutamate to α-

ketoglutarate and the electroactive reporter molecule, H2O2. The second Pt recording site (self-referencing or sentinel site) was coated 

similar to the glutamate recording site, except L-glutamate oxidase was omitted from the coating solution; therefore, unable to 

enzymatically generate H2O2 from L-glutamate. A potential of +0.7 V vs a Ag/AgCl reference electrode was applied to the Pt recording 

surface, resulting in a two electron oxidation of H2O2 and the current was amplified and digitized by the Fast Analytical Sensing 

Technology (FAST) 16mkIII (Quanteon, LLC; Nicholasville, KY) electrochemistry instrument.   

mPD Electropolymerization:  A minimum of 72 hrs after enzyme coating, Pt recording surfaces were electroplated with 5 mM mPD in 

0.05 M phosphate buffered saline (PBS) [22].  FAST electroplating software applied a triangular wave potential with a -0.5 V offset and 

0.25 V peak-to-peak amplitude at 0.05 Hz for 20 min to create an exclusion layer that restricts the passage of AA, DA, uric acid, and 

3,4-dihydroxyphenylacetic acid.    
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Calibration:  A minimum of 24 hrs after mPD electropolymerization, each MEA was calibrated prior to implantation to generate a 

standard curve for the conversion of current to glutamate concentration [23].  The Pt recording sites and a glass Ag/AgCl reference 

electrode (Bioanalytical Systems, Inc., West Lafayette, IN) were placed in a continuously stirred solution 0.05 M PBS (40.0 mL) 

maintained at 37°C with a recirculating water bath (Stryker Corp., Kalamazoo, MI).  Final beaker concentrations of 250 µM AA, 20, 40, 

and 60 µM L-glutamate, 2 µM DA, and 8.8 µM H2O2 were used to assess MEA performance. After the H2O2 addition, a final beaker 

concentration of 0.25 µM Aβ42 was added to test that Aβ42 was not inherently electrochemically active (Figure 1C).  Forty MEAs (24 

unique) were used with an average ± standard error of the mean (SEM) for glutamate sensitivity of 9.2 ± 0.6 pA/μM (r2 = 0.998 ± 0.001), 

selectivity ratio of 1031 ± 282  to 1, and limit of detection (LOD) of 0.3 ± 0.1 μM based on a signal-to-noise ratio of 3.  All MEAs were 

selected based upon LOD levels lower than the expected in vivo glutamate response. 

Microelectrode Array / Micropipette Assembly:  A glass micropipette (1.0 mm outer diameter, 0.58 mm internal diameter; World 

Precision Instruments, Inc., Sarasota, FL) was used to locally apply solutions to the mouse hippocampal subfields.  Glass micropipettes 

were pulled using a vertical micropipette puller (Sutter Instrument Co., Novato, CA) and the tip was “bumped” to create an internal 

diameter of 12-15 µm.  The tip of the micropipette was positioned between the pair of recording sites and mounted 100 µm above the 

MEA surface.  The micropipettes were filled with sterile filtered (0.20 µm) solutions of physiological saline (0.9% NaCl, pH 7.4), 0.01 – 

10.0 µM Aβ42, 0.1 µM Aβ42 with 10.0 µM αBTx or 0.1 µM Aβ42 with 10.0 µM TTX all diluted in physiological saline.  Fluid was pressure-

ejected from the glass micropipette using a Picospritzer III (Parker-Hannafin, Cleveland, OH), with pressure (5-15 psi) adjusted to 

consistently deliver volumes between 100-200 nl over 1-2 s intervals.  Ejection volumes were monitored with a stereomicroscope (Luxo 

Corp., Elmsford, NY) fitted with a calibrated reticule [24]. 
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Reference Electrode:  A Ag/AgCl reference electrode was prepared by stripping 5 mm of Teflon® off each end of a silver wire (200 μm 

bare, 275 μm coated; A-M Systems, Carlsberg, WA). One end was soldered to a gold-plated test connector (Newark element14 

Chicago, IL) and the other was coated with AgCl by placing the tip of the sliver wire (cathode) into a 1 M HCl plating bath saturated 

with NaCl containing a stainless steel wire (anode) and applying +9 V DC using a power supply to the cathode vs the anode for 15 min. 

In Vivo Anesthetized Recordings:  Mice were anesthetized using 1.5-2.0% isoflurane (Abbott Lab, North Chicago, IL) in a calibrated 

vaporizer (Vaporizer Sales & Service, Inc., Rockmart, GA) and prepared for in vivo electrochemical recordings as described elsewhere 

[20].  The mouse was placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA) fitted with a mouse anesthesia mask and 

body temperature was maintained at 37°C with a water pad connected to a recirculating water bath.  A craniotomy was performed to 

access the hippocampus.  The Ag/AgCl reference wire was remotely implanted in the right cortex.  Using a microdrive (Narishige 

International, East Meadow, NY) attached to the electrode holder of the stereotaxic arm, the MEA / micropipette assembly was lowered 

into the DG (AP: -2.0, ML: ± 1.0, DV: -2.2 mm), CA3 (AP: -2.0, ML: ± 2.0, DV: -2.2 mm) and CA1 (AP: -2.0, ML: ± 1.0, DV: -1.7 mm), 

from Bregma that was randomly assigned for each mouse [25].  Each hemisphere was randomly assigned to a different treatment 

group to minimize the number of mice used. Constant voltage amperometry (4 Hz) was performed using the FAST16mkIII and FAST 

software for multi-channel simultaneous recordings [26].  MEAs were allowed to reach a stable baseline for 60 min before basal 

glutamate determination and pressure ejection studies. 

Data Analysis:  The FAST16MkIII electrochemical instrument and FAST software saves amperometric data, time and pressure ejection 

events for all recording sites.  Calibration data, in conjunction with a MATLAB (MathWorks, Natick, MA) graphic user interface program 
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developed by Jason Burmeister Consulting, LLC (Version 6.1) was used to calculate basal glutamate and Aβ42-evoked glutamate 

release.  To determine extracellular glutamate concentration, the sentinel site current (pA) was subtracted from the glutamate recording 

site current (pA) and divided by the slope (pA/µM) obtained during the calibration [26–29].  Basal glutamate was calculated by taking 

a 10 s baseline average prior to starting Aβ42 pressure ejections in the DG, CA3, and CA1 and both hemispheres were averaged to 

create a single data point per mouse.  Five reproducible signals were evoked in each hippocampal subfield and averaged into a 

representative signal for comparison between concentrations.  Prism (GraphPad Software, Inc., La Jolla, CA) software was used for 

statistical analyses.  A one-way analysis of variance (ANOVA) followed by a Fisher’s LSD post-hoc test was used to compare 

concentrations of Aβ42 to saline control.  An unpaired, two-tailed Student’s t-test was used to compare glutamate dynamics from 

coapplication of both 0.1 µM Aβ42 with 10.0 µM aBTx and 0.1 µM Aβ42 with 10.0 µM TTX to 0.1 µM Aβ42.  Outliers were identified with 

a single Grubbs’ test (alpha = 0.05) per group.  Data are represented as mean ± SEM and statistical significance was defined as 

p<0.05.  Throughout the manuscript, sample size refers to the number of animals in each hippocampal subfield.   

Results 

We characterized the Aβ42 peptide conformation by using gel electrophoresis methods.  With SDS-PAGE, the preparations analyzed 

resolved to a 4.5 kDA species consistent with the monomeric isoform that was visible at the 10.0, 1.0, and 0.1 µM Aβ42 concentrations 

(Figure S1).  However, the lowest concentrations of Aβ42 (0.01 and 0.001 µM) resulted in undetectable levels.   

Basal Glutamate  
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Prior to local application studies, basal glutamate measures were assessed.  Basal glutamate was similar among the DG (1.5 ± 0.3 

µM; n=30), CA3 (2.0 ± 0.3 µM; n=31), and CA1 (1.9 ± 0.3 µM; n=29) hippocampal subfields as shown in Figure 2.  Sample size refers 

to the number of animals in each hippocampal subfield.   

Local application of Aβ42 

We locally applied similar volumes (Figure 3A) of 4 different Aβ42 concentrations (0.01, 0.1, 1.0, and 10.0 µM; n=9 per dose) and 

physiological saline (n=8-9) as vehicle control in the DG, CA3, and CA1 hippocampal subfields.  Local application of 0.1 µM Aβ42 

elicited robust, reproducible glutamate signals in the mouse DG (Figure 3B), CA3, and CA1.  When the maximal amplitude of Aβ42-

evoked glutamate release was averaged, (Figure 3C), local application of 0.1 µM (p = 0.0002), 1.0 µM (p = 0.04), and 10.0 µM (p = 

0.03) Aβ42 elicited significantly more glutamate than saline control (F(4,40) = 5.170; p = 0.002) in the DG.  Evoked glutamate release 

from local application of 0.01 µM Aβ42 (p = 0.54) was similar to saline control in the DG.  In the CA3, we observed that local application 

of 1.0 µM (p = 0.04) and 10.0 µM (p = 0.001) Aβ42 elicited significantly more glutamate than saline control (F(4,39) = 3.195; p = 0.02).  

Evoked glutamate release from local application of 0.01 µM (p = 0.17) and 0.1 µM (p = 0.08) Aβ42 resulted in evoked glutamate release 

that was not statistically significant from saline control in the CA3.  Evoked glutamate release from local application of 0.01 µM (p = 

0.02), 0.1 µM (p = 0.0005), and 1.0 µM (p = 0.009) Aβ42 was significantly elevated compared to saline control (F(4,40) = 4.226; p = 

0.006) in the CA1. However, evoked glutamate release from local application of 10.0 µM (p = 0.21) Aβ42 was statistically similar to 

saline control in the CA1.  

Coapplication of 0.1 µM Aβ42 with 10.0 µM αBTx   
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To determine the contribution of glutamate release through activation of the α7nAChR, the irreversible antagonist, αBTx (10.0 µM) was 

coapplied with 0.1 µM Aβ42.  Previous studies have shown that 10.0 µM αBTx attenuates nicotine-induced glutamate release in the 

prefrontal cortex of awake, freely behaving rats [11].  The concentration of Aβ42 peptide was chosen since it elicited the largest 

glutamate release in both the DG and the CA1 and was not statistically different from the 10.0 µM Aβ42 response observed in the CA3.  

When similar volumes of 0.1 µM Aβ42 with 10.0 µM αBTx and 0.1 µM Aβ42 alone (Figure 4A) was locally applied in the DG (F(4,8) = 

1.598; p = 0.70), CA3 (F(4,8) = 2.259; p = 0.32), and CA1 (F(4,8) = 1.680; p = 0.40) the glutamate response was attenuated in the DG, 

CA3, and CA1 (Figure 4B), resulting in a similar response to that observed with local application of saline vehicle.  When these signals 

were averaged (Figure 4C), coapplication of 0.1 µM Aβ42 with 10.0 µM αBTx significantly attenuated glutamate release compared to 

local application of 0.1 µM Aβ42 in the DG (F(4,8) = 6.267; p = 0.02), CA3 (F(4,8) = 9.397; p = 0.04), and CA1 (F(4,8) = 13.56; p = 

0.003).  

Coapplication of 0.1 µM Aβ42 with 10.0 µM TTX   

To determine the neuronal versus glial contribution of Aβ42-evoked glutamate release, the reversible sodium channel blocker, TTX 

(10.0 µM) was coapplied with 0.1 µM Aβ42 alone.  When similar volumes of 0.1 µM Aβ42 with 10.0 µM TTX and 0.1 µM Aβ42 (Figure 4A) 

was locally applied in the DG (F(9,8) = 1.020; p = 0.38), CA3 (F(9,8) = 1.895; p = 0.75), and CA1 (F(9,8) = 1.185; p = 0.51) the glutamate 

response was no longer present and a decrease in basal glutamate levels was observed in the DG, CA3, and CA1 (Figure 4B).  When 

these signals were averaged (Figure 4C), coapplication of 0.1 µM Aβ42 with 10.0 µM αBTx significantly attenuated glutamate release 
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compared to local application of 0.1 µM Aβ42 in the DG (F(9,8) = 1.808; p = 0.001), CA3 (F(9,8) = 1.615; p = 0.003), and CA1 (F(9,8) 

= 1.004; p < 0.0001). 

Discussion 

The data presented in this manuscript indicates that local application of monomeric soluble Aβ42 evokes glutamate release through the 

α7nAChR in all three hippocampal subfields studied.   Magdesian and colleagues [30] have demonstrated that Aβ binds at the interface 

between the acetylcholine and nicotine binding domains of the α7nAChR.  Additionally, Aβ-evoked Ca2+ efflux from nerve terminals 

was not increased after coapplication of nicotine suggesting similar binding sites [31,32].  Since nicotine has been shown to evoke 

glutamate release via the α7nAChR [11], these studies support Aβ42 binding near the nicotinic site on α7nAChR to evoke glutamate 

release. 

Conflicting data exists in the literature regarding the α7nAChR-Aβ interaction with studies supporting both receptor activation and 

inhibition [33].  These differences may be related to the model system employed as well as the aggregation state and concentration of 

Aβ used.  We selected the anesthetized mouse as our model system since this provides us with the complete hippocampal afferent / 

efferent connections as well as contribution from astrocytes (glutamate uptake and/or gliotransmission).  Using SDS-PAGE we have 

confirmed that we are locally applying the monomeric isoform of Aβ42.  Finally the concentration of Aβ is the largest confounding 

variable in the literature.  Physiological concentrations of Aβ (pM to low nM) have been shown to potentiate neurotransmitter release 

while supraphysiological concentrations (high nM to µM) inhibit neurotransmitter release [8]. While standard practice is to report the 

concentration of solutions in the glass micropipette, it should be noted that pressure ejection of solutions from a micropipette in vivo 
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act as a point source with the concentration decreasing as the distance increases from the ejection site [18].   Using the effective 

diffusion coefficient of monomeric Aβ42 (0.623*10-6 cm2s-1) as calculated by Waters [34] and the pressure ejection diffusion equation 

derived from Nicholson [18] we have calculated an approximate concentration of Aβ42 surrounding the MEA. Based on an average 

distance of 100 microns from the micropipette (point source) to the MEA, we have approximated the concentration of locally applied 

Aβ42 surrounding the MEA to be 1.0, 10.0, 100.0 and 1000.0 nM (for micropipette concentration of 0.01, 0.1, 1.0 and 10.0 µM Aβ42, 

respectively) after a 1 second pulse of ~150 nl of solution.  While this is a theoretical approximation, these diffusion concentrations are 

in agreement with the literature, whereby the physiological pM to low nM concentrations evoked the largest glutamate release in the 

DG and CA1.  Coincidentally, in the APP/PS1 mouse model of increased Aβ42 production we have noticed that the earliest increases 

in glutamate release are observed in the CA1 [16] and DG (unpublished observations).  These data are consistent with the concept 

that physiological concentrations of Aβ modulate neurotransmitter release essential for synaptic plasticity and learning and memory 

[7,13].     

The most striking results from this study are the differences in Aβ42-evoked glutamate release among the hippocampal subfields.  The 

largest glutamate responses were observed with 0.1 µM Aβ42 in the DG and CA1, while 10.0 µM produced a slightly larger glutamate 

response in the CA3.  These discrepancies might be attributable to the distribution of α7nAChR in the rodent hippocampus.  

Autoradiographic studies indicate αBTx binding sites are slightly weaker in the CA3 compared to the DG and CA1 subfields [35].  Fewer 

CA3 α7nAChRs may help to explain why the highest concentration of Aβ42 tested evoked the largest release of glutamate in this 

hippocampal subfield.  Interestingly, Aβ protein deposition in humans with AD has been shown to occur first in the CA1 and DG followed 

by the CA3 [36], similar to the pattern we observed with increased Aβ42-evoked glutamate release at lower concentrations in the CA1 
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and DG.  Regardless, the demonstration of Aβ42-evoked glutamate release differences among the DG, CA3, and CA1 supports the 

need to utilize in vivo recording techniques with high spatial resolution to be able to independently measure discrete subregions of 

larger anatomical CNS structures. 

While our current studies support Aβ42-evoked glutamate release is completely modulated through the α7nAChR, Aβ42 can bind the 

α4β2nAChR at 100-5000 times higher concentration than α7nAChR [10].  Furthermore, Mura and colleagues [8] reported Aβ had a 

dual effect on the α7 and α4β2nAChR in the rat hippocampus.  The biggest difference between these two studies was that Mura and 

colleagues conducted their experiments in awake, freely-behaving rats while our studies were performed in isoflurane anesthetized 

mice.  Isoflurane has been shown to inhibit the α4β2, but not α7nAChR [37].  Based on these data, we cannot rule out a potential role 

for the α4β2 nAChR-Aβ42 modulation of glutamate release. 

Gahring and colleagues [38] have demonstrated that α7nAChR are located on both neurons and astrocytes, however the role of glial 

α7nAChR in glutamate release is unclear.  For example, stimulation of astrocytic α7nAChR by nicotine has resulted in the release of 

glutamate from mouse cortical gliosomes [39], but Salamone and colleagues reported that perfusion of Aβ40 onto rat hippocampal 

gliosomes inhibited glutamate overflow [40], which may result in decreased basal glutamate.  Since the present studies support that 

Aβ42 evokes glutamate release in vivo, we sought to determine the neuronal versus glial contribution by coapplying 0.1 µM Aβ42 with 

10.0 µM TTX.  TTX is a reversible sodium channel blocker that prevents neuronal depolarization, while gliotransmission, the result of 

increased astrocytic intracellular calcium levels, would be unaffected.  In the present study, coapplication of 0.1 µM Aβ42 with 10.0 µM 

TTX completely blocked Aβ42 mediated glutamate release and decreased basal glutamate levels as previously observed [27,41,42], 
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supporting Aβ42-evoked glutamate release originating from predominantly neuronal activation of the α7nAChR.      Furthermore, by 

blocking neuronal depolarization with TTX, the coapplied Aβ42 could still bind astrocytic α7nAChR and synergistically depress basal 

glutamate.  This may suggest a dual role for the α7nAChR whereby binding evokes neuronal glutamate release but blocks astrocytic 

glutamate release.  

While excitotoxicity has been proposed as a mechanism of neuronal death and cognitive decline associated with AD [43], the 

concentration of Aβ42-evoked glutamate release observed in this study is not in the neurotoxic range for an intact CNS abundant in glia 

under normal conditions [15].  Rather, the progressive accumulation of Aβ42 during disease progression could lead to persistent 

activation of the α7nAChR and chronically elevate glutamate release that, over time, results in excitotoxicity.  Soluble Aβ42 levels have 

been shown to increase during AD progression in both humans [44,45] and mouse models of AD [34,46].  Furthermore, Aβ42 causes 

protein oxidation of glutamine synthetase [47] and glutamate transporter 1 [48], the predominant isoform that accounts for ~90% of 

glutamate clearance from the extracellular space.  As the soluble Aβ42 concentration gradually increases, its neuromodulatory role on 

glutamate release is elevated while simultaneously decreasing glutamate clearance resulting in excitotoxicity, thereby initiating the 

cognitive decline associated with AD.  

Furthermore, as the Aβ42 concentration increases from a physiological neuromodulatory role to the pathological hallmark observed in 

AD, the α7nAChR-Aβ42 interaction may advance AD etiology through several mechanisms.  First, prolonged exposure to high nM 

concentrations of Aβ42 has been shown to block or desensitize α7nAChR receptor function thereby preventing the normal function of 

these receptors [49].  Second, the α7nAChR-Aβ42 complex may become internalized in both neurons and astrocytes, leading to plaque 
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formation and eventual host cell lysis and plaque deposition [50].  Third, the α7nAChR-Aβ42 may serve as the initial scaffold for Aβ42 

aggregation and eventual plaque accumulation [10] resulting in AD neuropathological progression [36] as previously mentioned.  Taken 

together, these data suggest that Aβ42 accumulation causes a functional blockade of the α7nAChR that impairs neuromodulation and 

potentially cognition, which may support why drugs targeting the cholinergic and glutamatergic systems in later stages of AD are largely 

unsuccessful.   

In conclusion, we have demonstrated that soluble, monomeric Aβ42 can evoke glutamate release through the α7nAChR and release 

varies across hippocampal subfields.  This release is mediated through a sodium channel dependent mechanism.  Future studies will 

determine if dimeric and trimeric isoforms of Aβ42-evoke or -inhibit glutamate release and determine the potential receptors through 

which these mechanisms occur. 
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Figure 1:  MEA and In Vitro Calibration 

A)  Image of the R2 MEA used for anesthetized recordings with magnified tip (B) depicting 2 Pt 

recording sites measuring 50 x 100 µm with 100 µm spacing between sites.  C) A typical MEA in 

vitro calibration measuring the change in current on a glutamate measuring site (green, top trace) 

and a sentinel recording site (blue, bottom trace) with the addition of multiple analytes (↓), as 

indicated.  The addition of interferents such as AA and DA produced no current change on either 

site since they are blocked by the mPD exclusion layer.  Three glutamate additions showed a 

stepwise increase of current on the glutamate oxidase / BSA / glutaraldehyde site, but no 

response on the BSA / glutaraldehyde sentinel site.  The addition of H2O2 produced a similar 

increase of current on both recording sites.  Finally, addition of Aβ42 produced no change in current 

on either site indicating the peptide is not electrochemically active.   

Figure 2:  Hippocampal Basal Glutamate 

Bar graph depicting basal glutamate in the DG (n=30), CA3 (n=31), and CA1 (n=29).  Sample 

size refers to the number of animals in each hippocampal subfield.  Basal glutamate measures 

were determined by taking a 10 s baseline average prior to local application of drug or saline 

control for each hippocampal subfield. 

Figure 3:  Local Application of Aβ42 

A)  Bar graph depicting a similar range of volumes was used for saline vehicle and all four 

concentrations for Aβ42 in vivo.  B) Representative trace of local application (↑) of Aβ42-evoked 

glutamate release (top, black trace) versus saline control (bottom, gray) trace in the DG.  C)  

Average glutamate response from local application of saline control and 0.01, 0.1, 1.0, 10.0 µM 
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Aβ42. One-Way ANOVA with Fisher’s LSD post-hoc *p<0.05, **p<0.01, ***p<0.001 versus saline 

control. 

Figure 4:  Coapplication of 0.1 µM Aβ42 with 10.0 µM αBTx or 10.0 µM TTX 

A)  Bar graph depicting a similar range of volumes was used for 0.1 µM Aβ42, 0.1 µM Aβ42 with 

10.0 µM αBTx, and 0.1 µM Aβ42 with 10.0 µM TTX in all three hippocampal subfields studied.  B) 

Representative trace of evoked glutamate release from local application (↑) of saline (second from 

bottom), 0.1 µM Aβ42 (top), 0.1 µM Aβ42 with 10.0 µM αBTx (second from top), and 0.1 µM Aβ42 

with 10.0 µM TTX (bottom) in the CA1.  C)  Average glutamate response from local application of 

0.1 µM Aβ42 with 10.0 µM αBTx was significantly attenuated versus 0.1 µM Aβ42 in the DG, CA3, 

and CA1.  Average glutamate response from local application of 0.1 µM Aβ42 with 10.0 µM TTX 

blocked glutamate release that was significantly decreased versus 0.1 µM Aβ42 in the DG, CA3, 

and CA1. Unpaired, two-tailed Student’s t-test, *p<0.05, **p<0.01, ****p<0.0001 versus 0.1 µM 

Aβ42. 

Supplementary Figure 1:  SDS-Page Gel  

SDS-PAGE showing Coomassie G-250 stained proteins consistent with Aβ42 monomer (4.5 kDA) 

in the 0.1, 1.0, and 10.0 µM evaluated in vivo.  Once prepared, all solutions were maintained at 

room temperature for 60 minutes prior to gel loading; the same length of time the solution remains 

in the glass micropipette before local application studies are started.    
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