
Southern Illinois University Carbondale
OpenSIUC

Articles Department of Electrical and Computer
Engineering

2016

Non-enumerative Generation of Path Delay
Distributions and its Application to Critical Path
Selection
Ahish Mysore Somashekhar
Southern Illinois University Carbondale, msahish@siu.edu

Spyros Tragoudas
Southern Illinois University Carbondale, spyros@siu.edu

Rathish Jayabharathi
Intel, rathish.jayabharathi@intel.com

Sreenivas Gangadhar
Intel, sreenivas.gangadhar@intel.com

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_articles
© 2016 ACM. This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record will be published in ACM Transactions on Design
Automation of Electronic Systems.

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted
for inclusion in Articles by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Somashekhar, Ahish Mysore, Tragoudas, Spyros, Jayabharathi, Rathish and Gangadhar, Sreenivas. "Non-enumerative Generation of
Path Delay Distributions and its Application to Critical Path Selection." ACM Transactions on Design Automation of Electronic Systems
(Jan 2016).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_articles?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_articles?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

A

Non-enumerative Generation of Path Delay Distributions and its
Application to Critical Path Selection

Ahish Mysore Somashekar, Southern Illinois University

Spyros Tragoudas, Southern Illinois University

Rathish Jayabharathi, Intel Corporation

Sreenivas Gangadhar, Intel Corporation

A Monte Carlo based approach is proposed capable of identifying in a non-enumerative and scalable manner
the distributions that describe the delay of every path in a combinational circuit. Furthermore, a scalable
approach to select critical paths from a potentially exponential number of path candidates is presented.
Paths and their delay distributions are stored in Zero Suppressed Binary Decision Diagrams. Experimental
results on some of the largest ISCAS-89 and ITC-99 benchmarks shows that the proposed method is highly
scalable and effective.

1. INTRODUCTION

As CMOS technology is scaled down in to the deep nanometer regime, control of the
physical parameters, such as the feature size of transistors, their doping levels, and
oxide thicknesses, has become extremely difficult. Also, the close proximity of devices
to each other has given rise to significant interference from elements surrounding a
device, due to inductive and capacitive coupling, and due to environmental factors such
as power supply and temperature fluctuations. These and other factors have made it
increasingly difficult to predict the timing behavior. This results in significant loss of
yield of the manufactured circuits.

Due to process variations the delay of a path varies among the different manufac-
tured chips. Therefore, the path delay is no more a discrete quantity but a statistical
quantity, a.k.a a distribution. A path delay distribution can be obtained using SSTA
[Blaauw et al. 2008] or Monte Carlo. Under the SSTA based technique, the delay of
each gate/interconnect is given as a probability density function (pdf) represented us-
ing a mean (µ) and a standard deviation (σ). The delay of a path is derived by perform-
ing a statistical summation operation over all gates/interconnects along the path.

Monte Carlo, on the other hand, generates several instances of a given circuit. In
each instance, a discrete value is assigned to each gate and interconnect of the circuit
[Stein 1986]. The delay of a path in each instance is a discrete value which is the sum
of all the discrete values corresponding to the gates and interconnects along the path.
The delay distribution of a path is obtained by collecting its delays over all generated
instances.

The above stated method for identifying the delay distribution of each path is path-
enumerative in nature, and it is non-scalable given the potentially exponential number
of paths in the circuit. Analyzing the delay distributions of paths is key to determining

This research has been supported in part by grants NSF IIP 1432026, and NSF IIP 1361847 from the
NSF I/UCRC for Embedded Systems at SIUC. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© YYYY ACM. 1084-4309/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

the operating frequency (clock period) and the consequent timing yield. This requires
a framework to store and manipulate path delay distributions without path enumer-
ation. Less pessimistic timing analysis methods as in [Sivaraman and Strojwas 2000]
rely on Monte Carlo, and for each instance they operate on a path enumerative man-
ner. Thus, they are not scalable. The proposed method may accelerate such efforts.
After all pdfs are calculated with our method, one can identify the highest delay and
all associated path frequencies. This will indicate the probability of the highest circuit
delay. Similar information can be extracted for the second highest delay, and so on.
Thus, the circuit’s critical timing behavior can be obtained without path enumeration.

The second contribution in this article is aimed at selecting a set of critical paths
under any clock period in a scalable manner without path enumeration. These are the
set of paths that exhibit a high probability of violating the desired clock period due to
defects arising from manufacturing process variations or signal integrity issues. The
path delay fault (PDF) model is considered to be very effective in detecting failures
caused by undesirable variations in manufacturing processes, [Wang et al. 2009] [Pad-
manaban and Tragoudas 2005] among others. It is prohibitive to test all paths, and
only a subset of paths that exceed a given test margin τ are tested. However, typi-
cally, the number of paths that exceed the test margin may be prohibitive, [Wang et al.
2009] [Padmanaban and Tragoudas 2005] among others, and this requires an approach
which does not enumerate paths.

In order to account for variations in manufacturing processes and other environ-
mental sources statistical timing models are used to model gates delays and the circuit
delay. With the introduction of statistical timing models the criticality/critical proba-
bility of a path x (ϕτ (x)) is defined as the probability with which x exceeds the given
τ .

The shrinking time to market has tightly constrained the test budget for detection of
delay defects and allows for only a small number of paths to be tested. The challenge,
therefore, is to select the set of paths that provide the maximum delay defect coverage
under a given test budget.

The authors in [Li et al. 1989] [Murakami et al. 2000] [Shao et al. 2003] [Sharma
and Patel 2002] [Qiu and Walker 2003] [Lu et al. 2005] propose to select a longest
testable path through each gate. These approaches are path enumerative and lack an
appropriate modeling for process variations.

Path correlation is classified into two categories, one is topological correlation and
the other is spatial correlation. Topological correlation refers to shared gates and inter-
connects and spatial correlation stems from high process correlation in closely placed
path components. According to the spatial correlation model, gates placed very close on
the layout are highly correlated and as the distance between any two gates increases
their correlation decreases. The authors in [Agarwal et al. 2003] present a method to
capture such spatial correlation between gates by dividing the circuit layout into grids.

The authors in [Christou et al. 2010] present a non-enumerative technique for mea-
suring path correlations. A numerical value representing the topological correlation
among a given set of paths is computed. However, it is unclear how this approach can
take into account path criticality under process variations and spatial correlation of
processes to yield a high quality path set for delay test.

Analytical path selection methods in [Zolotov et al. 2010] [Chung et al. 2012] [He
et al. 2013] assume a Normal distribution of gate delays and the linear relation of gate
delays to the process parameter variations. Also, they are imprecise in their statistical
maximum calculation. Such inaccuracies or simplifications may lead to inaccuracies
in computing path criticalities and selecting high quality path sets for effective delay
testing.

2

Monte Carlo, on the other hand, makes no simplifying assumptions on the distribu-
tion of process parameters or the models for gate/circuit delays. The accuracy of the
Monte Carlo method is independent of the set of process variations and holds direct
dependence on the sample size. This is favorable because the accuracy can be increased
with an increase in sample size. It is regarded as the golden standard for validating
approximation based tools such as statistical static timing analysis(SSTA), and recent
work in [Singhee et al. 2008] [Veetil et al. 2011] present enhanced sampling methods
that deliver reduced sample sizes to achieve a desired accuracy.

The authors in [Wang et al. 2004] proposed a Monte Carlo approach for critical path
selection while considering topological and spatial path correlations. [Wang et al. 2004]
selects paths based on their conditional criticality. Conditional criticality of a path is
the probability that a path is critical in the currently uncovered process space, which
also translates to a given path’s ability to detect defects that weren’t already detected
by the previously selected paths. This approach requires identifying enumeratively an
initial set of candidate critical paths. The initial set of paths may be prohibitive on
modern circuits with many close-to-critical paths. Each path is tested on every circuit
instance to determine the set of instances detected by the path which are then removed
from consideration for subsequent paths.

A Monte Carlo based approach is proposed capable of identifying in a non-
enumerative and scalable manner the distributions that describe the delay of every
path in a combinational circuit. Furthermore, a scalable approach to select critical
paths from a potentially exponential number of path candidates is presented. Paths
and their delay distributions are stored in Zero Suppressed Binary Decision Diagrams
(ZBDDs). This article presents a holistic content that elaborates on the procedures
used for non-enumerative generation of path delay distributions and non-enumerative
correlation aware critical path selection. It expands on preliminary versions in [So-
mashekar et al. 2012] and [Somashekar et al. 2015], and introduces new procedures
for implicit manipulation of paths and their related distributions.

The rest of this article is organized as follows. Section 2 presents preliminary infor-
mation related to ZBDDs and the method of representing path distributions in ZBDDs.
Section 3 presents the proposed approach for non-enumerative generation of path de-
lay distributions for all paths in the given circuit. Section 4 presents the proposed
correlation aware critical path selection method to return paths that cover the vari-
ous process instances. Experimental results in Section 5 show the effectiveness of the
proposed approach in comparison to existing approaches and Section 6 concludes.

2. PRELIMINARIES ON ZBDDS

A ZBDD is a canonical representation of Boolean expressions that facilitates implicit
manipulation of a collection of sets. If the elements of each set are gates then each set
represents a path.

The operation on ZBDDs correspond to the basic set manipulation operations and
the ZBDDs provide built-in operators to carry out such operations. These operators
have been shown to be very fast [Minato 1993]. Below we list the operators used in
this article.

∪ =⇒ Union

∩ =⇒ Intersection

∗/Update() =⇒ Unate product

− =⇒ Set difference

subset() =⇒ Cofactoring

3

The complexity of the procedures presented in this paper are expressed as a function
of the number of calls to these operators.

Figure 1(b) shows a ZBDD containing all physical paths in the circuit shown in
Figure 1(a). Each node in the ZBDD corresponds to a gate in the circuit. Nodes are
placed in ZBDD levels, and all nodes at the same level correspond to the same gate or
input pin in the circuit. In Figure 1(b), the root node is A, and it corresponds to input
pin A. In the example of Figure 1(b), there are 3 inputs pins and 3 gates in the circuit,
and the ZBDD has only 6 nodes that are placed in the 6 levels. However, in general,
each ZBDD level may have multiple nodes that correspond to an input pin or gate.
This will be shown in subsequent examples.

The solid edge out of each node indicates that the node belongs on a path. A dotted
edge indicates that the node is not on a path. A ZBDD path is any directed path from
the root to terminal ′1′. In Figure 1(b), each ZBDD path corresponds to a physical
path in the circuit. Given a circuit, the corresponding ZBDD is constructed using the
operations given in [Padmanaban and Tragoudas 2005].

Figure 1(c) shows a ZBDD, denoted by Φ, representing the logical paths of the cir-
cuit in Figure 1(a). In Φ there are 2 nodes per physical circuit node. A subscript is used
with node names to denote a transition at the respective nodes. The symbol r is used
to denote a rising transition whereas the symbol f is used to denote a falling transi-
tion. Note that the ZBDD node corresponding to a rising transition at a gate and the
ZBDD node corresponding to a falling transition at a gate are at different levels. This
representation is useful to model different rise and fall delays.

A

B

C

D

E

F

(a) Circuit

1 0

F

E

A

B

D

C

Level 1

Level 2

Level 4

Level 5

Level 6

Level 3

(b) Path ZBDD

Ar

Ef

Er

Cf

Cr

Bf

01

Dr

Df

Ff

Fr

Br

Af

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Level 10

Level 11

Level 12

(c) Φ, Sensitizable
paths

Fig. 1. ZBDDs of physical and sensitizable paths in a circuit

The delay distribution of a path represents the different delay values exhibited by
the path and the number of times the path exhibited each delay value. A discerning
approach to record delay distribution of a path is to observe the frequency fk with
which a path exhibits delays within each interval bk. Figure 2 illustrates assuming
a Normal distribution. However, the delay distribution of a path is not necessarily
Normal and the proposed approach does not apply any approximation to normalize the

4

distribution. The following describes a method to store path frequencies for different
delay intervals in ZBDDs.

Fr
eq

ue
nc

y
of

 o
cc

ur
an

ce

Delay exhibited by the path

b b b b b b b b b b0 1 2 3 b4 5 6 7 8 9 10

f

f

f
f

f

f
3

4

5

6

7

8

Fig. 2. Identifying the probability distribution of a path

We expand on the work in [Minato 1995] that presents an approach to represent
polynomials in a ZBDD. A similar approach is employed to record the frequency of a
path in a delay interval. To represent path delay distributions in a ZBDD additional
nodes are added to Φ and paths are extended to include these nodes.

Consider the following expression

4ADF + 6BDF + 2CEF (1)

The integer coefficients in the above expression can be represented as a sum of 2′s
exponents using binary encoding.

C = bm · 2
m + bm−1 · 2

m−1 + bm−2 · 2
m−2.......+ b0 · 2

0,

where b ∈ {0, 1} and {bmbm−1bm−2 . . . b0} is the m bit binary representation of the
integer C. Integer 6 is represented in binary as 110. It is expressed using sum of 2′s
exponents as {22 + 21}. The expression in Equation 1 can be re-written as

22ADF + 21BDF + 22BDF + 21CEF

The ZBDD for the above expression is shown in Figure 3(a) where nodes ’21’ and
’22’ are added in order to associate frequency to paths. The frequency of any path is
derived by adding the labels of all 2′s exponent nodes with solid edges on the path.

In general, nodes for the exponents of 2 are added to the ZBDD and are attached to
the desired paths. These nodes are shared by all paths.

In the proposed approach, we first identify a set of delay intervals in the time line of
the circuit delay. For k delay intervals we have k nodes in the ZBDD represented by bi,
i ∈ {0, 1, 2, . . . k}.

Nodes corresponding to delay intervals are added to the ZBDD and paths are tagged
to these nodes to complete the representation of delay distributions. Consider path
{A-D-F} with frequency 4 in interval b3 and frequency 2 in b4. Also, path {B-D-F} with
frequency 3 in interval b3 and 3 in interval b4. The expression for these paths is

22b3ADF + 21b4ADF + 20b3BDF + 21b3BDF + 20b4BDF + 21b4BDF

Figure 3(b) shows the ZBDD that represents the above expression, where nodes ’b3’
and ’b4’ are added in order to associate delays with paths

5

12 12

22

B

1 0

A

D

E

C

F

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

(a) Polynomial
paths in a ZBDD

22
12

02

b3 b3b3

b4 b4

A

B

F

01

22
12

02

b3 b3b3

b4 b4

A

B

01

D

Level 1

Level 3

Level 2

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

(b) Paths tagged with
delay and frequency
count

Fig. 3. Path specific information in ZBDD

3. PROPOSED APPROACH FOR NON-ENUMERATIVE GENERATION OF PATH DELAY
DISTRIBUTIONS

This section presents an approach to identify delay distributions for an exponential
number of paths in a circuit. This is achieved over several iterations. During each
iteration the node/gate delays are instantiated using a Monte Carlo instance. At each
iteration all path delay distributions are implicitly updated.

B

C

A D
[9, 11]

[12, 15]

[20, 36]

[15, 21]
E F

G

(a) Circuit showing arrival time bounds at output of each gate

A

C

B

D

E

F

G

1 0

13

12

9

0

0

0

4

Level 3

Level 1

Level 2

Level 4

Level 5

Level 6

Level 7

(b) ZBDD representing a
given circuit instance

Fig. 4. Implicit approach to identify path delays in a given circuit instance

Static timing analysis (STA) identifies the arrival (upper and lower) time bounds at
the output of each node/gate, and, subsequently, a time interval on the circuit delay
that represents the expected range of path delays. The time interval is represented
with up to P discrete points that define the precision of the approach. P can be some
exponent of 10. Assume a circuit operating at 1GHz frequency. The delay of the longest

6

path in this circuit is at most 1ns. If a precision of P = 103 is used then two paths will
be kept in distinct sets if their delay difference is at least 1ps. In this scenario, there can
be a maximum of 1000 discrete points to capture all path delays. Each discrete point,
essentially, represents an interval that abstracts the delay to a given precision. The
higher the precision the greater the accuracy with which we can capture path delay
distributions. The choice of precision is a trade-off between accuracy and computation
time.

A partial path is defined as a path from a primary input to an internal gate. We use
ZBDDs to store partial paths. Partial paths are kept in different sets based on their
delays. Discrete values are used to identify each set of partial paths.

Consider gate G shown in Figure 5. The ZBDD associated with the discrete point t at
the output of G is represented as Ψt

G. Ψt
G will contain all partial paths up to G whose

delay is t.

Ψv
E Ψt

G

G
E

Fig. 5. Extending partial paths through a gate

Each gate in any given Monte Carlo instance has a fixed delay value. Let I(G) rep-
resent the delay of gate G in a given instance. In Figure 5, E is one of the inputs to G.
Let Ψv

E be the ZBDD containing all those partial paths through E whose delay, in the
given instance, ties to v. The following operations take place each time a partial path
is extended through a gate G. Using Equation 2 the delay of the partial path, when ex-
tended to the output of G, is calculated. Then using Equation 3 the appropriate ZBDD
is updated to include the partial path extended through G.

t = v + I(G) (2)

Ψt
G = Ψt

G ∪
(

Ψv
E ∗G

)

(3)

GenPathDelayDists() in Procedure 1 lists the procedure to identify the path delay
distributions in a given set of Monte Carlo instances. The inputs to Procedure 1 is a
ZBDD Φ which implicitly holds all circuit paths, the desired precision P and the set of
Monte Carlo instances MC-Insts.

The following describes Procedure 1 with an example. The following exposition uses
the circuit in Figure 4(a) which shows the bounds on the arrival time at the output
of each gate. Figure 4(b) shows the ZBDD containing paths from the circuit in Figure
4(a). The number adjacent to each node represents the corresponding gate delay in a
given Monte Carlo instance.

Line 1 in Procedure 1 performs STA to determine the arrival time delay bounds at
the output of each node. The function in line 2 identifies the discrete points within the
delay range at each node based on the given precision. A is an associative array which
stores the discreet points associated with each gate’s output.

In lines 3−17, the ZBDD(Φ) is traversed in a breadth first manner, i.e., level by level,
from the root node to the terminal node 1 while processing nodes at each ZBDD level.
In the ZBDD of Figure 4(b), A is the root node and the solid edge from A leads to node

7

Procedure 1: GenPathDelayDists

Input: Φ, P , MC-Insts
Output: ξ

1 Delay-Bounds← WC-STA(Φ)
2 A ← DiscretePoints(Φ, Delay-Bounds,P)
3 foreach inst ∈MC-Insts do
4 g ← Root(Φ).then
5 while g 6= Terminal-1 do
6 foreach i ∈ inedge(g) do
7 if i = then then
8 foreach v ∈ A(i) do
9 t← v + I(g)

10 Ψt
g ← Ψt

g∪ Update(Ψv
i , g)

11 else
12 foreach p ∈ inedge(i) do
13 if p = then then
14 foreach v ∈ A(p) do
15 t← v + I(g)
16 Ψt

g ← Ψt
g∪ Update(Ψv

p, g)

17 g ← g.next

18 ξinst ← ∅
19 foreach po ∈ PrimaryOutputs do
20 foreach v ∈ A(po) do
21 b← ZBDDvar (v)
22 ξinst ← ξinst∪ Update(Ψv

po, b)

23 ξ ← UpdateDelayDists(ξ, ξinst)

24 return ξ

D. For the given instance, the delay associated with node D is 9 and the parents of D
are nodes A and B.

Nodes A and B are primary inputs and, in this scenario, both have delay 0. There-
fore, all partial paths that extend to the output of node D tie to the same discrete point,
i.e. 9. The only non-empty ZBDD at the output of D is expressed as follows

Ψ9
D = AD +BD

At the next level, node E has parents C and D. The delay associated with E in
the given instance is 13 (see also Figure 4(b)). Node C has a solid (then) edge to E
and therefore, it participates on the paths through E. The node D has a dotted edge
(else) to E and therefore, it does not participate in the paths through E. We obtain the
parents of node D with solid edge to D which are A and B.

Nodes A, B and C are primary inputs and, in this scenario, all three nodes have
delay 0. Therefore, all partial paths that extend to the output of node E tie to the same
discrete delay which in this case is 13. The only non-empty ZBDD at the output of E is
expressed as

8

Ψ13
E = AE +BE + CE

Node F has one parent node (E) and the delay at node F in the given instance is 4
(see also Figure 4(b)).

The delay of all partial paths through F is 17, and is obtained as follows

D(Ψ13
E) +D(F) = 17

In the above expression, D(Ψ13
E) returns the corresponding discrete point 13. Ψ13

E is
the only non-empty ZBDD at the input of F and therefore, the only non-empty ZBDD
at the output of F is expressed as follows

Ψ17
F = AEF +BEF + CEF

Node G has solid edge parents D and F . The delay associated with G in the given
instance is 12. The delay of all partial paths through input D is 21 at the output of G,
which is obtained as follows

D(Ψ9
D) +D(G) = 21

The delay of all partial paths through input F tie to 29 at the output of G, which is
obtained as follows

D(Ψ17
F) +D(G) = 29

The non-empty ZBDDs at the output of G are expressed as follows

Ψ21
G = ADG+BDG

Ψ29
G = AEFG+BEFG+ CEFG

Let {b0, b1, . . . b15, b16} be the set of ZBDD variables that correspond to the discrete
points that our method uses to denote discrete delays of paths from the circuit inputs
to circuit outputs. In this example, we need 17 discrete points to represent all integers
in the range [20-36] (see also output of gate G in Figure 4(a)). The final expression for
the path delay distributions in the given instance is as follows

ξinst = b1ADG+ b1BDG+ b9AEFG+ b9BEFG+ b9CEFG

Line 23, in Procedure 1, calls UpdateDelayDists() to update ξ with the path delay
information obtained from the current Monte Carlo instance. The complexity of Proce-
dure 1, per Monte Carlo instance, is O(E ·k+k ·m), in terms of built-in ZBDD operators,
where E is the number of edges in the ZBDD, k is the number of discrete points to rep-
resent path delays and m is the number of frequency nodes. From this analysis one can
observe that the proposed approach is capable of identifying the delay distributions of
all paths in the circuit without enumerating the paths.
UpdateDelayDists() in Procedure 2 lists the sequence of operations carried out in

order to update the path delay distributions after each Monte Carlo iteration.
The following illustrates UpdateDelayDists() (Procedure 2) with an example. Con-

sider two paths {A-D-F, B-D-F}, the ZBDD in Figure 3 represents the delay distribu-
tions recoded for these paths up to the last Monte Carlo iteration and corresponds to ξ
in the input to Procedure 2. Figure 6(a) shows the ZBDD of path delays obtained from
the current Monte Carlo iteration and corresponds to ξinst in the input of Procedure
2. The ZBDD in Figure 6(a) suggests that for the given instance during the current
Monte Carlo iteration paths A-D-F and B-D-F exhibited delays in intervals b4 and b5,
respectively.

9

Procedure 2: UpdateDelayDists

Input: ξ, ξinst
Output: ξ

1 foreach b ∈ {b0, . . . , bn} do
2 ξb ← SubSet(ξ, b)

3 ξbinst ← SubSet(ξinst, b)

4 if ξbinst = ∅ then
5 continue

6 ξbinst ← Update(ξbinst, 2
0)

7 if ξb 6= ∅ then
8 ξ ← ξ − ξb
9 ξI ← ξb ∩ ξbinst

10 ξb ← (ξb ∪ ξbinst)− ξI
11 i← 1
12 while ξI 6= ∅ do
13 ξtemp ← SubSet (ξI , 2

i−1)

14 ξtemp ← Update(ξtemp, 2
i)

15 ξI ← ξb ∩ ξtemp

16 ξb ← (ξb ∪ ξtemp)− ξI
17 i← i+ 1

18 else

19 ξ ← ξ ∪ ξbinst
20 ξ ← ξ ∪ ξb

21 return ξ

The expressions corresponding to the input ZBDD ξ is

ξ = 22b3ADF + 21b4ADF + 20b3BDF + 21b3BDF + 20b4BDF + 21b4BDF

and of ξinst is

ξinst = b4BDF + b5ADF

For each interval b the procedure identifies the paths from ξinst and non-
enumeratively updates the frequencies of the paths for the same interval in ξ. For
the given instance no path exhibits delay in intervals b0–b3 and therefore, the process
continues to b4. In line 2 the function SubSet(ξ, b4) identifies the subset of paths in ξ
that contain the variable b4. The expression is

ξb = 21b4ADF + 20b4BDF + 21b4BDF

Similarly, line 3 obtains the subset of paths with variable b4 in ξinst. The expression
is

ξinstb = b4BDF

10

1 0

F

D

A

B

5b

4bLevel 1

Level 2

Level 3

Level 4

Level 5

Level 6

(a) ZBDD showing de-
lay of paths in one
Monte Carlo iteration

22
12

02

b3b3b3

b4b4

A

B B

D

F

1 0

b5

Level 1

Level 2

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Level 10

Level 3

(b) ZBDD showing the up-
dated path delay distributions
from all Monte Carlo itera-
tions

Fig. 6. Updating path distributions

Line 6 initializes a frequency count of 1 for all paths in ξinstb4
by implicitly augmenting

each path with a variable corresponding to 20. This results in the following expression

ξinstb = 20b4BDF

Lines 8−17 perform a series of operations to increment the frequency count of paths
which is encoded using 2’s exponents. In lines 8 − 10 the paths that previously had a
count of 1 (20) are identified. The following shows the corresponding expressions

ξ = 22b3ADF + 20b3BDF + 21b3BDF

ξI = 20b4BDF

ξb = 21b4ADF + 21b4BDF

The loop in lines 12− 17 increments the count of each path that previously exhibited
delay in b4 by 1. During the first iteration of the loop the variable corresponding to
20 is replaced with the variable corresponding to 21, effectively updating the path’s
frequency count from 1 to 2. The following shows the expressions corresponding to line
13− 16.

ξtemp = 20b4BDF

ξtemp = 21b4BDF

ξI = 21b4BDF

ξb = 21b4ADF

11

The following shows the expressions corresponding to the lines 13−16 during second
iteration through the loop

ξtemp = 21b4BDF

ξtemp = 22b4BDF

ξI = ∅

ξb = 21b4ADF + 22b4BDF

Line 20 adds the updated interval b4 back to the original ZBDD ξ.

ξ = 22b3ADF + 21b4ADF + 20b3BDF + 21b3BDF + 22b4BDF

The process proceeds to interval b5 and the following shows the expressions corre-
sponding to the lines 2, 3 and 6, respectively.

ξb = ∅

ξinstb = b5ADF

ξinstb = 20b5ADF

The final updated ξ is expressed as follows

ξ = 22b3ADF + 21b4ADF + 20b5ADF + 20b3BDF + 21b3BDF + 22b4BDF

Figure 6(b) shows the pictorial representation of the final ξ.
The complexity of Procedure 2 is O(k ·m), in terms of built-in ZBDD operators, where

k is the number of intervals and m is the number of frequency nodes. Notice that the
distributions of all paths are updated without enumerating the paths.

4. SELECTING CRITICAL PATHS FOR ATPG UNDER PATH CORRELATIONS

This section describes an approach to identify critical paths by implicitly considering
path correlations. It is developed on the augmented data structure generated in Sec-
tion 3. This augmented ZBDD is denoted by ξ.

The approach consists of three parts that are implemented without path enumera-
tion. First, we consider all delay intervals that exceed test clock τ . They are merged
into a single interval and the frequencies of the respective paths are updated. Then
the highest frequency path is selected. Subsequent paths are selected by considering
path correlations.

For a given test clock, the potential critical paths are those that exhibit delays
greater than the test clock. The criticality or the critical probability of each path is
given by the frequency with which the path exhibits a delay exceeding test clock. The
frequency here is analogous to the number of defective instances that can be detected
by testing this path. The critical probability for each path is implicitly held in the
augmented ZBDD ξ.

First, procedure MergeIntervals() is presented. It is a method to combine paths in a
given set of delay intervals and update their relative frequencies. This is a preprocess-
ing step used for critical path selection. The input to the procedure MergeIntervals()
is the ZBDD ξ which implicitly holds the paths delay distributions (Figure 3(b)), and
the subset of intervals over which to combine paths and their frequencies. The output
of the procedure is ZBDD ξU which is the union of all paths and their summed up fre-
quencies over the given range of intervals. MergeIntervals() is outlined in Procedure
3 and is illustrated in the following with an example.

Consider the following expression corresponding to ZBDD in Figure 3(b)

22b3ADF + 21b4ADF + 20b3BDF + 21b3BDF + 20b4BDF + 21b4BDF

12

Procedure 3: MergeIntervals

Input: ξ, {bi, . . . , bk}
Output: ξU

1 ξU ← SubSet(ξ, bi)
2 foreach b ∈ {b(i+1), . . . , bk} do
3 ξb ← SubSet(ξ, b)
4 ξI ← ξU ∩ ξb
5 ξU ← (ξU ∪ ξb)− ξI
6 while ξI 6= ∅ do
7 ξtemp ← UpdateCount (ξI)
8 ξI ← ξU ∩ ξtemp

9 ξU ← (ξU ∪ ξtemp)− ξI

10 return ξU

The function SubSet() in line 1 co-factors ξ w.r.t b3 and returns the subset of com-
binations/paths containing the variable/node b3. It further performs an UnateProduct

with bU to yield

ξU = 22bUADF + 20bUBDF + 21bUBDF

The above operations are carried out without path enumeration, and their time com-
plexity is polynomial to the number of nodes in the ZBDD. Similarly, line 3 yields

ξb = 21bUADF + 20bUBDF + 21bUBDF

The operations in line 4 and line 5 produce the following expressions

ξI = 20bUBDF + 21bUBDF

ξU = 22bUADF + 21bUADF

Since ξI is not an empty set, the operation on line 7 UpdateCount() doubles the fre-
quency count by replacing the nodes 2i with 2i+1. Notice that this is just a left shift of
the binary representation, which is a multiply-by-2 operator. The output of lines 7, 8
and 9 are as follows

ξtemp = 21bUBDF + 22bUBDF

ξI = ∅

ξU = 22bUADF + 21bUADF + 21bUBDF + 22bUBDF

Since ξI is now an empty set, the while loop is exited and the procedure in lines 3− 9
are repeated for other intervals in the list. In this case there are no more intervals and
the combined entity ξU is obtained as shown above.

The complexity of Procedure 3 is O(k · m), in terms of built-in ZBDD operators,
where k is the cardinality of the set of intervals given as input and m is the num-
ber of frequency nodes. Notice that the procedure is capable of updating the frequency
of potentially an exponential number of paths across multiple intervals without path
enumeration.

Using MergeIntervals(), the critical path selection operates only on one delay in-
terval. In particular, all paths that exhibit delays greater than the test clock will be
tagged to the node bU and the combined frequency of each path in all intervals above
the test clock will also be associated with the node bU .

13

The remainder of this section describes procedure ExtractCriticalPath() that se-
lects the path with the highest frequency in bU . Such a path can potentially detect
defects in most instances. Procedure 4 lists the process for extracting the highest fre-
quency (most critical) path.

Procedure 4: ExtractCriticalPath

Input: ξU
Output: ξπ

1 ξπ ← SubSet(ξU , 2
m)

2 for i← m− 1 down to 0 do
3 ξtemp ← SubSet(ξU , 2

i)
4 if (ξπ ∩ ξtemp) 6= ∅ then
5 ξπ ← ξπ ∩ ξtemp

6 return ξπ

The input to procedure ExtractCriticalPath() is a ZBDD of paths with their asso-
ciated frequencies in a single interval. The output is a set of one or more paths with
the highest critical probability (frequency).

Line 1 initially obtains paths through the highest frequency node 2m. This is a non-
enumerative operation on the ZBDD which quickly returns a subset of paths whose
frequency is at least 2m. In lines 2 − 5 the SubSet() operation is performed iteratively
for all frequency nodes from 2m−1 down to 20. During each iteration, line 4 performs an
intersection of paths through the current node with the previous set of paths. If this
operation yields a non-empty set then line 5 updates the path set ξπ to retain only the
common set, which corresponds to the highest frequency paths up to the current node.

Let m be the number of frequency nodes, which is usually a very small number (
much less than 20 for most circuits). The complexity of Procedure 4 is O(m), in terms of
built in ZBDD operators. Thus, the most critical path among a potentially exponential
number of paths is identified without path enumeration.

This procedure is illustrated with an example below. Consider a set of paths { A-B-
C, B-D-F, G-D-F, G-E-H } in the interval above the test clock. Consider the following
expression which shows a certain frequency count associated with each path

20bUABC + 25bUABC + 26bUABC + 21bUBDF + 25bUBDF + 26bUBDF + 24bUGDF +
23bUGEF

The approach starts from node 26 which yields paths {A-B-C, B-D-F}. This set of
paths on intersection with the paths through node 25 would again yield {A-B-C,B-D-
F}. For nodes 24 and 23, the intersection would yield ∅ (NULL) and the path set is
unchanged. For node 21, the path set will be updated to be {B-D-F}. Again, intersection
with paths for 20 returns a ∅. Thus, the path with the highest critical probability is
{B-D-F}, and its frequency is 21 + 25 + 26.

Subsequent paths are selected by considering path correlations. They should cover
segments or process space not in the previously selected paths. All nodes in ξU are
assigned a weight initialized to 1. During the path selection process the weight on
nodes that physically participate, or have strong spatial correlation to other nodes,
along previously selected paths is reduced by 1. After the weights are recomputed on
each node the problem of new critical path selection reduces to the problem of selecting
the longest path in a Directed Acyclic Graph (DAG).

14

In order to select paths with high critical probability, the longest path search is lim-
ited to paths above a user determined frequency threshold fT . The procedure to quickly
determine the set of paths with critical probability above fT is listed in Procedure 5.

Procedure 5: ExtractFreqRange

Input: ξU , fT
Output: ξfT

1 MSBpos← GetMSB(fT)
2 ξtemp ← SubSet(ξU , 2

m)
3 for i← m− 1 down to MSBpos do
4 ξtemp ← ξtemp∪ SubSet(ξU , 2

i)

5 ξfT ← ξtemp

6 ξtemp ← SubSet(ξU , 2
MSBpos)

7 LSBpos←GetLSB(fT)
8 if LSBpos 6= MSBpos then
9 for i← LSBpos to MSBpos-1 do

10 ξtemp ← ξtemp− SubSet(ξU , 2
i)

11 ξfT ← ξfT − ξtemp

12 return ξfT

The inputs to Procedure 5 are the augmented ZBDD ξU and the integer quantity
fT . The output is the set of all paths in ξU whose frequency is greater than fT . The
following illustrates the procedure with an example

Let m correspond to the highest frequency node present in ξU . In our example, this
is node 26. Let fT=10 and m=6. The 6-bit binary representation of 10 is 001010 which is
represented as 23 + 21.

The function GetMSB(10), in line 1, identifies the highest 2’s exponent for number 10,
which is 3. The frequency of these paths is at least 23. In lines 2 − 5 the procedure
gathers all such paths and stores them in ξfT .

In lines 6 − 11, the procedure prunes out unsought paths with frequencies 8 and 9
which contain the frequency node 23.

The complexity of procedure ExtractFreqRange() is O(m), in terms of built-in ZBDD
operators. Its complexity is independent of the number of paths.

The approach presented above follows from the understanding that paths that are
highly correlated share most of the same segments or contain segments that have
strong spatial correlation and therefore, exhibit similar delay behavior. In other words,
highly correlated paths have overlapping process space and tend to detect most of the
same defective instances.

One may also insist that every new path should have at least T segments not in
already selected paths, and fT can be slowly relaxed until the desired path is selected.
Identifying the optimal value of T can be challenging because it directly affects the
correlation among the selected paths. Typically, T is set to a fraction of the average
number of segments, denoted by α, along the critical paths in ξU . Quantity α is

α =

∑

v∈V

λv

|ξU |
, (4)

15

where V is the set of all nodes in ξU and λv is the number of paths through v. Quan-
tity λv, for each v, can be obtained in one forward and one backward traversal of ξU .

The proposed approach for correlation-aware path selection is listed in Procedure
6. The inputs to procedure SelectPaths() are the augmented ZBDD ξ (Section 3), the
number of paths to select K, the set Dτ of delay intervals above a given τ and the
initial lower bound on the frequency range fT . The output of SelectPaths() is a path
set Π containing K paths.

Line 1, in SelectPaths(), calls MergeIntervals() (see Procedure 3).
MergeIntervals(ξ,Dτ) returns a combined ZBDD of paths ξU and their associ-
ated frequencies over the given set of intervals Dτ . In line 2, AvgPathLength(ξU)
returns the average number of gates/nodes along paths in ξU which is calculated using
Equation 4. Line 3 calculates T . w is a vector in which each element corresponds
to the weight associated with a node in the ZBDD ξU . InitNodeWeights(), in line 4,
initializes all elements in w to 1. In line 5, ExtractCriticalPath() (see Procedure 4)
returns the path with the highest frequency. In line 6, the path p, from line 5, is added
to Π. UpdateNodeWeights(), in line 7, reduces the weight corresponding to nodes that
physically participate or have strong spatial correlation to nodes along the path p.
Eliminate(p) in line 8 removes the path from ξU .

Lines 10 − 19, in SelectPaths(), select the additional K − 1 paths. Line 10 calls
ExtractFreqRange(ξU, fT) (see Procedure 5) which returns a ZBDD of paths whose fre-
quencies are greater than fT . In line 11, LongestPath() is a linear time procedure that
extracts the longest path in the ZBDD based on the weights in w. In line 12, Length(p)
determines the length l of p as the sum of the weights on the nodes along p. If l is
greater than T then p is added to Π else fT is relaxed and the procedure is repeated
until a total of K paths are selected.

Previous efforts, [Wang et al. 2004] [He et al. 2013], towards correlation aware path
selection have relied on a small set of candidate paths because their approach for corre-
lation aware path selection is path enumerative. These approaches are forced to select
a small subset of candidate critical paths using heuristic pruning methods because
they lacked the infrastructure to maintain the delay and critical probabilities for an
exponential number of paths.

In fact, the approaches in [Wang et al. 2004] and [He et al. 2013] use Monte Carlo
sampling and select only a restricted number of top delay paths from each sample.
They combine the few paths selected from each sample and form their candidate set.
These approaches do not explore all potential candidates and, as a result, the quality
of the set of selected paths may suffer.

The following describes the metric used to demonstrate the effectiveness of the pro-
posed path selection approach. The quality of a path set Π is denoted by Q(Π) and is
evaluated based on the number of failing circuit instances the path set was able to de-
tect among 10, 000 random circuit instances. A circuit instance is failing if the circuit
delay exceeds the given τ . A path p ∈ Π detects a failing instance if the path delay
exceeds τ in the said failing instance. Let N denote the set of all failing instances and
N (p) denote the set of failing instances detected by path p. The quality of a path set
Q(Π) is calculated as follows

Q(Π) =

∣

∣

∣

⋃

∀p∈Π

N (p)
∣

∣

∣

∣

∣

∣
N
∣

∣

∣

× 100 (5)

16

Procedure 6: SelectPaths

Input: ξ,K,Dτ , fT
Output: Π

1 ξU ← MergeIntervals(ξ,Dτ)
2 α← AvgPathLength(ξU)
3 T ← ⌈0.5× α⌉
4 w← InitNodeWeights()
5 p← ExtractCriticalPath(ξU)
6 Π← p
7 w← UpdateNodeWeights(p)
8 ξU ← Eliminate(p)
9 K ← K − 1

10 while K 6= 0 do
11 ξfT ← ExtractFreqRange(ξU, fT)
12 p← LongestPath(ξfT , w)
13 l ← Length(p)
14 if l > T then
15 Π← Π ∪ p
16 w ← UpdateNodeWeights(p)
17 ξU ← Eliminate(p)
18 K ← K − 1

19 else
20 fT ← Relax()

21 return Π

5. EXPERIMENTAL RESULTS

The experimental results highlight the scalability of the proposed approach in terms
of generating the path delay distributions for all paths in the circuit and subsequently,
selecting a set of critical paths for testing from among a potentially exponential num-
ber of candidate paths.

Experimental evaluation was performed on circuits from the ISCAS’ 85, ISCAS’ 89
and ITC’ 99 benchmarks. Experiments were conducted on a Linux machine with Intel
Xeon processor and 24 Gb memory. The presented procedures were implemented in
the ’C++’ programming language. The nominal delay for each gate was obtained from
a 45nm technology library. To account for spatial correlations, the circuit was parti-
tioned into several grids and gates were randomly assigned to each grid. We generated
10, 000 Monte Carlo instances by assuming 5% variation in oxide thickness Tox and 10%
variation in gate length L. Gates assigned to the same grid received identical process
shifts. Table I lists the time for generating the delay distributions of all paths with 1ps
delay precision.

Figure 7 illustrates the trade-off between time complexity of the approach and the
granularity of path delay distributions. As shown in Figure 7, the complexity of the pro-
posed approach increases almost linearly with increasing precision (decreasing gran-
ularity) of desired path delay distributions. Observe that the time penalty for the pro-
posed approach is very reasonable considering the number of paths in the correspond-
ing circuits (see column 3 of Table I).

The test clock (threshold τ) was set to 90% of the worst case circuit delay. The worst
case circuit delay was calculated using static timing analysis. The quantity fT which

17

Table I. Implicit generation of Path delay distributions
with 1ps granularity

Benchmark Nodes Paths Time

C5315 4970 2.68E+06 2674.36
C6288 4896 1.97E+20 3147.82
C7552 7440 1.45E+06 3100.02
S38417 51394 2.78E+06 6740.6
S38584 44646 2.16E+06 5071.2

b05 2064 3.99E+08 2042.83
b15 18742 9.65E+10 11968.12
b17 67482 7.91E+11 29884.9
b18 242482 2.26E+24 128369.3
b19 489148 1.09E+25 212366.1
b20 41432 5.79E+08 14113.2
b21 42122 5.56E+08 15629.8
b22 61372 8.74E+08 22184.3

Fig. 7. Trade-off between time and accuracy

Table II. Selecting 10 paths under different values for quantity T

Benchmark Grids Total Paths Critical Paths Q(Π)

T = ⌈0.3 × α⌉ T = ⌈0.5× α⌉ T = ⌈0.8× α⌉

C5315 4×4 2.68E+06 759680 72.69 100 98.5
C6288 4×4 1.98E+20 1.08E+19 57.13 88.34 41.12
C7552 8×8 1.45E+06 222732 67.52 99.01 98.12
S38417 16×16 2.78E+06 408759 81.47 95.87 82.13
S38584 16×16 2.16E+06 223210 79.09 96.33 88.7

b05 8×8 3.99E+08 3.76E+06 91.54 99.7 94.25
b15 12×12 9.65E+10 1.78E+10 87.45 99.16 72.63
b17 20×20 7.91E+11 2.90E+10 75.48 95.92 82.12
b18 40×40 2.26E+24 1.09E+21 45.52 88.19 66.23
b19 60×60 1.09E+25 9.13E+22 51.08 83.62 57.17
b20 20×20 5.79E+08 4.47E+07 65.28 96.6 57.64
b21 20×20 5.56E+08 4.48E+07 63.48 97.36 44.12
b22 20×20 8.74E+08 6.69E+07 78.87 96.05 55.28

determines the lower bound on frequency was relaxed by 100 units if a suitable path
was not found in the current iteration.

The proposed approach for path selection (see Procedure 6) was compared against
the Monte Carlo (MC10000) based explicit path selection approach using 10, 000 in-
stances, as in [Wang et al. 2004]. We call this method MC10000, and operates as fol-
lows. First, a candidate set U is generated by collecting all paths that exhibit delays

18

above the given τ . Paths in U are ordered based on their probability of exceeding τ . A
path p from U is selected, starting with the path that has the highest probability, and
is tested over all instances. Paths are then ranked based on the number of samples de-
tected by each path. Circuit samples detected by path p are deleted before considering
the next path.

Note that, if critical path selection is the only objective and the test clock τ is per-
determined then it is not necessary to generate the delay distribution of paths over
all intervals. The authors in [Padmanaban and Tragoudas 2005] provide an efficient
non-enumerative approach to quickly identify all paths that exceed a given τ in a
given Monte Carlo sample. The approach in [Padmanaban and Tragoudas 2005] is used
along with UpdateDelayDists() (see Procedure 2) to generate the critical frequencies
(critical probabilities) of the paths. This way we consider a single interval above τ and
in this context, the procedure MergeIntervals() (see Procedure 3) is not required. The
critical path selection algorithm has been implemented using this approach.

Our experimental analysis for the proposed critical path selection approach (Proce-
dure 6) is presented in the following three tables. Table II presents the quality of a
set of 10 paths selected under different values of quantity T . Table III and Table IV
present results for path selection using the proposed approach in Procedure 6 when
compared to path selection using the path enumerative Monte Carlo based approach
MC10000.

In Table II, Column 1 lists the circuit name. Column 2 lists the number of grid par-
titions per circuit in order to account for spatial correlations. Column 3 lists the total
number of paths in the circuit. Column 4 lists the number of paths that exhibited de-
lays greater than τ i.e., at least 90% of the worst case circuit delay. Columns 5 − 7 list
the quality factor, given by Equation 5, under different T (described in Section 4). We
choose three different values for T and list the quality factor of the selected path set
under each. One can observe that the approach performs best when T = ⌈0.5 × α⌉.
A lower value on T , as in column 4, requires only a few uncovered segments along
every new path. The paths selected, in column 4, were highly correlated with fewer
additional instances detected by each new path. A higher value on T , as in column
6, demands a larger number of uncovered segments along every new path. In most
cases, the approach was unable to find paths that satisfied this criterion and therefore,
the final tally of paths, after several reductions of fT , was still under 10. In fact, the
approach returned 10 paths only for C7552.

Table III. Comparative results for selecting 10 paths from the set of all critical paths

Benchmark Critical Paths SelectPaths() MC10000, as in [Wang et al. 2004]
Q(Π) Time (s) Q(Π) Time (s)

C5315 759680 100 170.98 100 114076
C6288 1.08E+19 88.34 3102.11 - -
C7552 222732 99.01 435.4 99.82 45351
S38417 408759 95.87 1439.78 96.68 92580
S38584 223210 96.33 1313.42 95.64 42996

b05 3.76E+06 99.7 114.56 - -
b15 1.78E+10 99.16 1648 - -
b17 2.90E+10 95.92 4205.07 - -
b18 2.26E+24 88.19 14496.18 - -
b19 1.09E+25 83.62 18037.20 - -
b20 4.47E+07 96.6 4454.06 - -
b21 4.48E+07 97.36 4303.18 - -
b22 6.69E+07 96.05 9257.3 - -

19

In Table III, column 1 lists the circuit name. Column 2 lists the the number of paths
that exhibited delays greater than τ i.e, at least 90% of the worst case circuit delay.
Column 3 and 4 list the quality factor, with T = ⌈0.5 × α⌉, and time for the proposed
approach to select a set of 10 testable paths from the set of all critical paths in the
circuit. Note that the time reported here is cumulative of the time taken for generating
the critical frequencies of all potentially critical paths considering 10000 samples and
the test generation for each selected path. The testability of a path is determined after
the path is selected using [Padmanaban and Tragoudas 2005], [Kim et al. 2000]. The
path selection is carried out over several iterations. During each iteration one path
is selected using the proposed approach and untestable paths were discarded. This
procedure of determining the testability of a path applies to MC10000 as well. The
quality factor and time for MC10000 are listed in columns 5 and 6, respectively. For
the ISCAS circuits, the quality of paths selected by the proposed approach is the same
as that of MC10000 and the proposed approach achieves an average speed up of 100×
when compared to MC10000. One can observe that as the number of candidate paths
increases, as is the case for ITC’99 benchmarks, the approach in MC10000 becomes
prohibitive.

In order to provide a more thorough comparative analysis on the quality of the path
set selected by the proposed approach, we reduce the set of candidate paths by consid-
ering only the testable critical paths as in [Padmanaban and Tragoudas 2005]. Results
from this analysis are listed in Table IV.

In Table IV, column 1 lists the circuit name. Column 2 lists the number of testable
critical paths. Columns 3 and 4 list the quality factor, with T = ⌈0.5× α⌉, and time for
the proposed approach to select a set of 10 paths. Note that the time reported here is
cumulative of the time taken for generating the critical frequencies of all potentially
critical paths considering 10000 samples and the subsequent path selection process.
Columns 5 and 6 list the quality factor and time for MC10000. When compared to the
enumerative Monte Carlo approach for path selection, in columns 5 and 6, one can
observe that the proposed approach achieves the same quality factor and the proposed
approach is on an average 100× faster than MC10000.

Table IV. Comparative results for selecting 10 paths from testable critical paths as in [Padman-
aban and Tragoudas 2005]

Benchmark Testable SelectPaths() MC10000, as in [Wang et al. 2004]
critical paths Q(Π) Time (s) Q(Π) Time (s)

C5315 58110 99.36 137.92 100 3800
C6288 1.4E+07 91.32 317.38 - -
C7552 86998 98.02 201.32 99.58 5236
S38417 185485 94.8 1218.58 95.56 32515
S38584 150148 93.33 1139.54 95.13 26686

b05 1010928 98.27 82.08 98.77 166932
b15 5242925 98.76 1588.93 98.91 666091
b17 1923882 96.14 3857.22 97.27 262589
b18 5.41E+11 87.51 8366.77 - -
b19 3.96E+09 82.89 12042.91 - -
b20 1857401 96.59 3562.36 96.42 240472
b21 7533892 97.23 3506.9 98.2 706840
b22 3790663 96.43 7192.5 96.5 408414

6. CONCLUSION

In this paper, a non-enumerative approach to identify the delay distributions of every
path in the circuit was provided. Furthermore, a novel scalable approach towards path

20

selection for effective delay testing is presented. It explores an exponential number of
candidate paths but its time complexity is linear to the number of selected paths. It
has been experimentally verified that the quality of the approach is similar to path
enumerative methods.

REFERENCES

Aseem Agarwal, David Blaauw, and Vladimir Zolotov. 2003. Statistical Timing Analysis for Intra-Die Pro-
cess Variations with Spatial Correlations. In Proceedings of the 2003 IEEE/ACM International Confer-
ence on Computer-aided Design (ICCAD ’03).

D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer. 2008. Statistical Timing Analysis: From Basic Princi-
ples to State of the Art. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on 27, 4 (April 2008), 589–607. DOI:http://dx.doi.org/10.1109/TCAD.2007.907047

K. Christou, M.K. Michael, and S. Neophytou. 2010. Identification of critical primitive path de-
lay faults without any path enumeration. In VLSI Test Symposium (VTS), 2010 28th. 9–14.
DOI:http://dx.doi.org/10.1109/VTS.2010.5469629

Jaeyong Chung, Jinjun Xiong, V. Zolotov, and J.A. Abraham. 2012. Testability-Driven Statistical Path Se-
lection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 31, 8 (Aug
2012), 1275–1287.

Zijian He, Tao Lv, Huawei Li, and Xiaowei Li. 2013. Test Path Selection for Capturing Delay Failures Under
Statistical Timing Model. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 21, 7
(July 2013), 1210–1219. DOI:http://dx.doi.org/10.1109/TVLSI.2012.2208661

Joonyoung Kim, Jesse Whittemore, Karem A. Sakallah, and João P. Marques Silva. 2000. On Applying
Incremental Satisfiability to Delay Fault Testing. In 2000 Design, Automation and Test in Europe (DATE
2000), 27-30 March 2000, Paris, France. 380–384. DOI:http://dx.doi.org/10.1109/DATE.2000.840299

Wing-Ning Li, S.M. Reddy, and S.K. Sahni. 1989. On path selection in combinational logic circuits.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 8, 1 (Jan 1989), 56–
63. DOI:http://dx.doi.org/10.1109/43.21819

Xiang Lu, Zhuo Li, Wangqi Qiu, D.M.H. Walker, and Weiping Shi. 2005. Longest-path selection for delay test
under process variation. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on 24, 12 (Dec 2005), 1924–1929. DOI:http://dx.doi.org/10.1109/TCAD.2005.852674

S. Minato. 1993. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. In Design Au-
tomation, 1993. 30th Conference on. 272–277. DOI:http://dx.doi.org/10.1109/DAC.1993.203958

S. Minato. 1995. Implicit manipulation of polynomials using zero-suppressed BDDs. In
European Design and Test Conference, 1995. EDTC 1995, Proceedings. 449–454.
DOI:http://dx.doi.org/10.1109/EDTC.1995.470321

Atsushi Murakami, Seiji Kajihara, Tsutomu Sasao, Irith Pomeranz, and Sudhakar M. Reddy. 2000. Selec-
tion of potentially testable path delay faults for test generation. In Proceedings IEEE International Test
Conference. 376–384.

S. Padmanaban and S. Tragoudas. 2005. Efficient identification of (critical) testable path delay faults using
decision diagrams. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
24, 1 (Jan 2005), 77–87. DOI:http://dx.doi.org/10.1109/TCAD.2004.839488

Wangqi Qiu and D. M. H. Walker. 2003. An Efficient Algorithm for Finding the K Longest Testable Paths
Through Each Gate in a Combinational Circuit. In Proceedings of IEEE International Test Conference.
592–601.

Yun Shao, Sudhakar M. Reddy, Irith Pomeranz, and Seiji Kajihara. 2003. On Selecting Testable Paths in
Scan Designs. Journal of Electronic Testing 19, 4 (2003), 447–456.

M. Sharma and J.H. Patel. 2002. Finding a small set of longest testable paths that
cover every gate. In Test Conference, 2002. Proceedings. International. 974–982.
DOI:http://dx.doi.org/10.1109/TEST.2002.1041853

Amith Singhee, Sonia Singhal, and Rob A. Rutenbar. 2008. Practical, fast Monte Carlo statistical static
timing analysis: Why and how. Computer-Aided Design, International Conference on 0 (2008), 190–195.
DOI:http://dx.doi.org/10.1109/ICCAD.2008.4681573

M. Sivaraman and A.J. Strojwas. 2000. Primitive path delay faults: identification and their use in timing
analysis. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 19, 11 (Nov
2000), 1347–1362. DOI:http://dx.doi.org/10.1109/43.892858

Ahish Mysore Somashekar, Spyros Tragoudas, Sreenivas Gangadhar, and Rathish Jayabharathi. 2012. Non-
enumerative generation of statistical path delays for ATPG.. In Proceedings IEEE International Con-

21

ference on Computer Design (ICCD). IEEE Computer Society, 514–515. http://dblp.uni-trier.de/db/conf/
iccd/iccd2012.html#SomashekarTGJ12

Ahish Mysore Somashekar, Spyros Tragoudas, and Rathish Jayabharathi. 2015. Non-Enumerative
Correlation-Aware Path Selection. In Proceedings IEEE International Conference on Computer Design
(ICCD). IEEE Computer Society.

M.L. Stein. 1986. An Efficient Method of Sampling for Statistical Circuit Design. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on 5, 1 (January 1986), 23–29.
DOI:http://dx.doi.org/10.1109/TCAD.1986.1270174

V. Veetil, K. Chopra, D. Blaauw, and D. Sylvester. 2011. Fast Statistical Static Timing Analysis Using Smart
Monte Carlo Techniques. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on 30, 6 (June 2011), 852–865. DOI:http://dx.doi.org/10.1109/TCAD.2011.2108030

Li-C. Wang, Jing-Jia Liou, and Kwang-Ting Cheng. 2004. Critical path selection for delay fault testing based
upon a statistical timing model. IEEE Trans. on CAD of Integrated Circuits and Systems 23, 11 (2004),
1550–1565. http://dblp.uni-trier.de/db/journals/tcad/tcad23.html#WangLC04

Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting (Tim) Cheng. 2009. Electronic Design Automation,
Elsevier, First Edition, 2009.

V. Zolotov, Jinjun Xiong, H. Fatemi, and C. Visweswariah. 2010. Statistical Path Selection for At-Speed Test.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 29, 5 (May 2010),
749–759.

22

	Southern Illinois University Carbondale
	OpenSIUC
	2016

	Non-enumerative Generation of Path Delay Distributions and its Application to Critical Path Selection
	Ahish Mysore Somashekhar
	Spyros Tragoudas
	Rathish Jayabharathi
	Sreenivas Gangadhar
	Recommended Citation

	Journal2.dvi

