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ATPG for Delay Defects in Current Mode
Threshold Logic Circuits

Ashok Kumar Palaniswamy, Member, IEEE, Spyros Tragoudas, Senior Member, IEEE,
and Themistoklis Haniotakis, Member, IEEE

Abstract—An automatic test pattern generation approach to
detect delay defects in a circuit consisting of current mode
threshold logic gates is introduced. Each generated pattern
should excite the maximum propagation delay at the fault site.
Manufactured weights may vary, and maximum delay is ensured
by applying an appropriately generated set of patterns per fault.
Experimental results show the efficiency of the proposed methods.

Index Terms—ATPG, Threshold logic gate, BDD, delay testing.

I. INTRODUCTION

Threshold Logic Gate (TLG) is an emerging alternative
to implement Boolean functions. It offers the capability of
realizing a complex Boolean function using less number of
gates. Although TLGs were initially introduced five decades
ago [1] they gained more importance in current years due
to the recent developments in CMOS-based implementations
[2]-[4]. TLGs are also implementable with emerging nano-
electronic technologies [5], [6].

A Boolean circuit implemented by TLGs is called a Thresh-
old Network (TN). Synthesis techniques have been proposed
for implementing TNs [7]-[11]. The objective of these meth-
ods is to minimize the number of TLGs.

Recent methods in [2], [3] minimize the delay of Current
Mode Threshold Logic (CMTL) gates which are CMOS-based.
According to [3], the input patterns of the CMTL gate can be
categorized into groups based on the delay they exhibit. All
patterns in a particular group cause the same delay. CMTL
gates are clocked. We consider the combinational core of the
TN which is pipelined, does not have any feedback loops, and
has unit combinational depth at each pipeline stage.
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The main objective of this work is to implement an Au-
tomatic Test Pattern Generation (ATPG) method where each
generated pattern excites the maximum possible delay on the
CMTL gate at the fault site and is more likely to excite an error
at the output driven by the faulty TLG. Given the pipelined
structure of the TN, the transition fault (TF) model is ideal for
detecting delay defects. This pattern sensitive approach will
likely to detect a TF, if one exists. The manufactured weights
of a TLG may vary. It is shown that the maximum delay at the
faulty TLG is excited even if the test pattern set is generated
using the designed weights. To our knowledge, ATPG methods
for TNs only focus on logic defects using the stuck-at (SA)
fault model [12], [13].

The main contributions of this work are summarized as
follows; First, it is shown how to generate a test set per TF to
excite the maximum possible delay at the gate and propagate
the latched error to an observable point of the pipelined 7TN.
An important component of the ATPG is to identify the group
of patterns that excite the maximum rising or falling transition
delay at the selected gate. Second, it is shown how to generate
a set of test patterns for each TF to ensure the maximum
delay in the presence of weight deviations. This is important
because physical defects and process variation during the
manufacturing of a 7LG may result into the manufactured
weights that differ from the designed (ideal) weight values.
Finally, a test set compaction scheme is introduced which
focuses on generating a high quality test pattern to detect more
than one TFs in order to reduce the test data volume and the
test application time.

This article is structured as follows. Section II presents pre-
liminaries. Section III presents the ATPG method considering
the designed weights. Section IV presents a method to generate
a test set per TF in order to cope with weight deviations. Sec-
tion V presents the test set compaction technique. Section VI
presents experimental results. Section VII concludes.

II. PRELIMINARIES

Threshold Logic (TL) gate is a weight dependent majority
gate. It consists of n input variables and a threshold value wy.
Each input variable z; is associated with a weight value w;.
The output O of TLG is defined as [1]:

n
i=

0  otherwise
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Fig. 1. CMTL gate.

For simplicity in the notation, let the sum of input variable
n

weights Zwi be denoted as W. Let the active weight

=1
n

summation Z w;x; of a particular pattern or minterm (fully
i=1
specified product term) p; be denoted as TW'.

The CMTL gate representation for the two input AND gate
with weight values as (wq,ws : wp) = (2, 2 : 3) is shown
in the Figure 1 [3]. The unit weight value corresponds to the
minimum gate length of the process technology. The CMTL
gate consists of the differential and the sensor part. All the
transistors in the differential part are connected in parallel.
The differential part is further divided into the threshold and
the inputs part. The PMOS transistor in the threshold part is
always active. The number of active PMOS in the inputs part
depends on the applied input pattern. The sensor part has 3
PMOS transistors Py, P, P3, and 4 NMOS transistors Ny, No,
N3, and Ny. The nodes M; and M5 connect the differential
part and the sensor part.

The operation of the CMTL gate is divided into two phases,
the equalization phase (CLK is high) and the evaluation phase
(CLK is low). Due to the design architecture, both output
nodes F' and F'B are at same initial value (=~ 30% of VDD) at
the beginning of the equalization phase. Then a small voltage
difference is developed across the output nodes which mainly
depends on the differential part due to the applied pattern p;. In
the evaluation phase, the sensor part boosts the initial voltage
difference to a logic state at the output nodes. The node F'
rises from 30% VDD to VDD for logic one, and drops from
30% VDD to OV for logic zero. The node F'B changes in
the opposite direction with respect to the node F'. See [3] for
more details.

The propagation delay (d) of the CMTL gate for the applied

X L=
1 X1Xp + X1 Xg+ X1 XoXg+ X1 XpXg +
1Xo + X1 X3 L
X2 Xg X,

X X4 + XpXg+ X1 XXz + X1 XgXe +

r XoXa -

X5 L (]
X7

X4 XsXq+X5X3

X5

Fig. 2. Combinational circuit.

Xg+ X7Xg —o
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pattern p; is modeled by [3] is shown in Equation (2).
Equation (2) also indicates that the pattern p; which minimizes
wo — Wlf generates the maximum transition delay at the gate.
The transition delay value of the CMTL gate decreases linearly
with the increase in the [wo — W'|. If the wy is equal to the
W' value of the applied pattern p;, then an unstable value
is produced at the output. Hence, the weight assignment for
the CMTL gate is chosen such that the W' value for any
input pattern p; is not equal to its wqy value. Therefore the
weight configuration of a CMTL gate always needs to satisfy
W # wy for any pattern p;.

dzco+018+%+506_12 )
Where _ 2 2 —18 —12
co=0.7 (W +w0)e +20e
10 (W + U)()) e 6 _6
- 0.01
“ TS

ca =0.7 (W2 + wg) e 1 1380717

C2

C1

The transition fault model is widely used for testing delay
defects at a gate. It requires that a transition is generated at the
output of each gate. There are two transition faults associated
with each gate: a slow-to-rise (STR) fault, and a slow-to-fall
(STF) fault. A TF should propagate to an observable point
through any path [14].

It is noted that CMTL gates are clocked. At the beginning
of the clock cycle the output of CMTL gate is set to an initial
value irrespective of the previous clock cycle value. Hence,
the initialization vector of the 7F model is not required for
testing delay defects of the CMTL gate. For each STR fault at
gate G, the test pattern is generated considering that the ATPG
requires setting logic one at the selected gate and propagating
its effect to an observable point. Likewise, a pattern for STF
is generated.

From the above and the Equation (2), the minterms which
evaluate the function to one (also called onset minterms),
and, in addition, produce minimum weight summation are
responsible for the maximum rising transition delay. The offset
minterms ( i.e., minterms that set the function to zero) which
produce maximum weight summation are responsible for the
maximum falling transition delay of the CMTL gate.
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Fig. 3. CMTL threshold network.

The following provide an overview of a combinational TN
implemented with CMTL gates. CMTL gates are clocked and
circuits that are implemented using CMTL gates are pipelined
TNs without feedback loops. Synchronization CMTL buffers
are inserted at the pipeline stages so that each CMTL gate
receives its inputs at the appropriate clock cycle. Methods as
in [7] synthesize TNs so that the total number of TLGs is
minimized.

Figure 2 shows a combinational circuit with six complex
combinational components whose functionalities are listed
explicitly. Each combinational component is a 7LG, imple-
mented by a CMTL gate. Figure 3 shows a four stage pipelined
TN of CMTL gates representing the circuit of Figure 2.
The weight assignment for the inputs and the threshold at
each CMTL gate is also shown. At each pipeline stage,
CMTL buffers (represented by rectangle) ensure that each
TLG receives its inputs at the appropriate clock cycle in a
synchronized manner.

In this paper, functions will be represented using Binary
Decision Diagrams (BDDs). An n input Boolean function f
represented in a BDD is a directed acyclic graph where the
Shannon decomposition is carried out in each node. Each
vertex has two outgoing edges. A pointer to each vertex
represents a distinct function. One outgoing edge simplifies the
function by setting the variable to true and the other outgoing
edge by setting it to false. A BDD does not contain vertices
whose outgoing edges point to isomorphic sub-graphs or to the
same node. BDDs are canonical forms suitable for representing
functions very compactly [15].

ITII. ATPG BASED ON THE TRANSITION FAULT MODEL

The proposed ATPG method is called DTL (delay defect
on Threshold Logic gates). This is a function-based test
generation approach that uses binary decision diagrams and
the conditions listed in Section II to excite maximum S7R or
STF delay at the fault site and propagate the transition to an
observable point. Each TLG has been assigned weight values
and is stored in a BDD.

Procedure GROUP returns all the minterms of a 7LG that
excite maximum delay at each TLG inputs [16]. The set of
minterms returned by GROUP is stored as a BDD function.
Another procedure of DTL, called MAP, rewrites the function
returned by GROUP so that the set of minterms of the

embedded 7LG is expressed in terms of the primary inputs
of the TN.

Algorithm GROUP is a non enumerative BDD traversal
method that identifies all the fully specified input assignments
(minterms) of the given TLG function which produce the
minimum active weight summation for STR or the maximum
active weight summation for STF [16].

The operation of GROUP is recursive. For the simplicity
in the exposition, GROUP is explained when considering a
STR fault. Similar procedures apply for a STF fault. Let f
denote the function at a BDD node. Let the field M/ be the set
of all minterms of f which produce minimum active weight
summation value W4 (ml e M’ ) For STF, M/ will have
the set of minterms with W'/ denote the maximum active
summation value. Let Mtf denote the simplified function of
outgoing edge with the variable set to true. Let M/ denote
the simplified function of outgoing edge with the variable set
to false from the M. The BDD functions at the two outgoing
edges have the minimum active weight sums denoted by th !
and W/, respectively.

Algorithm 1: GROUP(F))
Input: Transition fault F' at gate G with functionality f
Output: Set of minterms M7 with active weight summation
value as W' (m; € M)

1 if f # Constant and Not Visited then

> M = GrouP(fs,) ;

3 MJ = Group(fz,) ;

4 ADJUSTTHEN Mtf, thf ;

5

6

7

ADJUSTELSE (M, W) ;
it W' 4 WS then
if F is STR then W'/ = min W}/, wis | ;

8 if F s STF then WU = max (W, Wi/ | ;
9 it Wi =W} then Mf = M ;
10 it W = W then M/ = M/ ;
11 else
12 Wil = thf ;
3 M= Mfumf
14 endif
15 endif
16 return M/ ;

An input variable which is not present in a BDD path is
a don’t care variable of the path. Algorithm GROUP intends
to find the fully specified product terms. Hence in GROUP,
initially the Mf = {Z,7,..Z,}, W = oo for STR and W/
= —oo for STF for each BDD node. The don’t care variables
on the path of each BDD node are considered and included in
the M/ depends upon their polarity. In order to find the set
of input patterns which produce the minimum active weight
summation value for STR fault, the thf and W values
should be decremented for each don’t care variable that has
a negative weight value. This is accomplished by including
the don’t care variable in M; and M/. Similarly, in order
to find the set of input patterns which produce the maximum
active weight summation value for STF fault, the th f and



M ' ={11010, 11001, 10110, 10101, 01111 }

L M E ={01010, 01001, 00110, 00101 }
M ™ ={01111}
M € ={ 00010, 00001 }
M © ={00110, 00101 }
G M € ={00111}
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Fig. 4. Example for GROUP illustration.

WS values should be incremented for each don’t care variable
that has positive weight value.

Procedure ADJUSTTHEN in GROUP performs two updates
on variables th 7 and Mtf . For a STR, first the node variable
of the parent node f and its weight value is added to thf
and Mtf , and then it decrements the th T value by including
all the don’t care variables with negative weight values on the
path in the Mtf . Procedure ADJUSTELSE performs only the
second update of the procedure ADJUSTTHEN on W!/ and
M. The conditions in line 7 and 8 choose the W'/ value
based upon the fault, i.e., the minimum summation for a STR
and the maximum summation for a STF [16].

GROUP is illustrated for the STR fault on gate G3 at the
circuit in Figure 3 with the help of Figure 4 [16]. In this
figure, the pointer to the root node (labeled I) represents
the functionality of G3 in terms of its five input variables
x1,%2,%3, %6, T7. BDD node 1 corresponds to variable zi,
nodes E, H corresponds to variable x2, nodes C, D, G
corresponds to variable x3, nodes B, F corresponds to variable
zg, and node A correspond to variable x7. The weight value
of the input variables (z1, z2, 3,26, x7) is (6,4,4,2,2), and
the threshold value wy is 11. This example shows how to find
the onset minterms that produce the minimum active weight
summation which excites the maximum rising transition delay
at gate G3. Figure 4 lists for each function f at a BDD node
the M/ and W'/ values [16].

The BDD is traversed in reverse topological order [16]. In
GROUP, initially M/ = {00000} and W'/ = oo, for all BDD
nodes. The node traversal starts at the top pointer node and
traverses the then path until it reaches the Constant 0 (False)
or Constant 1 (True) node. The traversal considers only the
paths leading to the True node.

In this example, the then and else children of node A are
the True and False nodes, respectively. This results in MtA =
{00001} and W}4 = 2 by ADJUSTTHEN. This results to M4

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, AAAAAAA 2016

TABLE I
MAXIMUM DELAY VECTOR SET FOR THE STR FAULT AT GATE G3

Patterns in Test Set
Gate Inputs Circuit Inputs
x1 €2 x3 Z6 x7 X1 2 x3 x4 x5
0 1 1 1 1 0 1 1 X 0
1 0 1 0 1 1 0 1 X 1
1 0 1 1 0 1 1 0 0 X
1 1 0 0 1 1 1 0 1 1
1 1 0 1 0

= {00001} and W' = 2 by choosing the minimum weight
summation value.

The then child of node B is the True node and else child is
node A. Although x7 is don’t care variable on the then path
of node B, it is not added by ADJUSTTHEN due its positive
weight value. This results in M2 = {00010} and W/}B =
2, and MP = {00001} and W!B = 2. This results in M?Z
= {00010,00001} and W'B = 2. Similarly, we get M =
{00100} and W}¢ =4, and ME = {00010, 00001} and W'
= 2. This results in M = {00010,00001} and W'¢ = 2. This
way all the then path pointer nodes of root node are visited
and the M7f and W'/ values are updated [16].

Then the else path pointer nodes out of the top pointer
node are visited. All the pointer nodes are visited and updated
in a similar manner. In our example, the top pointer node
I results in M = {11010,11001,10110,10101,01111} and
WU =12 [16]. The set of patterns responsible for maximum
rising transition delay of gate (G with respect to the local
gate inputs obtained by procedure GROUP is shown on the
right hand side of Table I.

In the case of a STF fault, the same process is applied except
that the maximum active weight summation is considered
(line 8). The offset minterms of the given 7LG function with
highest active weight summation result in the maximum prop-
agation delay for a falling transition. Hence the complement
of the given gate functionality (G5 is used by GROUP.

In order to represent the functionality of the embedded
gate TLG in terms of primary inputs, the local input variables
(embedded gate inputs) are replaced by primary input variables
by function substitutions. In particular, each gate input is
replaced by its function. This procedure is referred as MAP.
In our example, the five minterms in terms of embedded gate
inputs are mapped into seven patterns expressed in terms of
primary inputs and shown on the left hand side of Table I.

The input to algorithm DTL is a transition (STR or STF)
fault F' at gate G in a CMTL TN. The output of the DTL is
a random test vector from a collection of patterns, called the
vector set .S. Set .S consists of all patterns that excite the fault
with maximum possible delay at gate G and propagate the
transition to an observable point of the TN.

The overview of algorithm DTL is presented in Algorithm 2.
First, procedure PROPAGATION (line 1) generates the set of
all pattern vectors P which ensure that the latched error
propagates to an observable point. Then procedure GROUP
(line 5) generates the set of input patterns set_M; that produce
maximum possible transition delay at the gate G. Subse-
quently, procedure MAP (line 6) transforms the test vectors
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TABLE II
FINAL SET OF PATTERNS FOR THE STR FAULT AT GATE Gg
P S=DNP

1 | x2 | x3 | T4 | x5 1 | x2 | 3 | T4 | @5
0 1 1 X 0 0 1 1 X 0

1 0 1 X X 1 0 1 X 1

1 1 X X X 1 1 0 0 X

1 1 0 1 1

in terms of primary inputs (D). Essentially, this procedure
generates input patterns that brings each binary pattern in
set_M; at the inputs of gate GG. Then the intersection of D and
P forms set S (line 7) out of which a test vector is selected.

Algorithm DTL is explained considering the STR fault
on gate GG3 in the circuit in Figure 3. All patterns that
propagate the latched error are kept as a function P and
are computed by procedure PROPAGATION. Procedure PROP-
AGATION propagates the error to an observable point in the
TN. It is implemented using a boolean difference operation
between two functions, the fault free function and the faulty
function respectively. For the STR at gate G5 in Figure 3, the
propagation vector set is obtained by propagating SAO at Gs.
The obtained input patterns that excite and propagate the error
are listed on the left hand side of Table II.

Algorithm 2: DTL(F)
Input: Transition fault /' at gate G with functionality f
Output: A test vector
1 P = PROPAGATION(G, F)) ;
S=0;
i=1;
while S = ¢ and f # ¢ do
set_M; = GROUP(F) ;
D = Map(set_M;) ;
S=DNP;
if S = ¢ then
f=f\set_M;
endif
14+ +
end
return A test vector from S ;

O 0 9 N R W

—_— e =
W N = O

The objective of the vector set .S is to sensitize the given
transition fault (STR or STF) of the selected gate G with
maximum possible delay and propagate the transition to an
observable point. For a STR fault, for each iteration of proce-
dure GROUP (line 5) produces all the minterms of the function
f that excites the maximum delay. The resulting set_M; is
substituted in terms of primary inputs by MAP (line 6). The
final sensitization vector set S (intersection of D and P) is
shown in the right hand side of Table II.

If D N P results in an empty set, then it indicates that no
pattern that excites the highest delay at the gate propagates to
an observation point. In this case algorithm DTL tries to excite
the fault with patterns that excite the next possible highest
delay at the gate. This is done by removing the set_M; from
function f (line 9), and then the reduced function is used to
find the next highest delay patterns group by GROUP. This

is repeated continuously until a non empty S is generated or
function f becomes null (line 4). That way, any test vector
in S guarantees that a transition (STR or STF) fault at the
gate (G is sensitized with the maximum possible delay and the
potential error propagate to an observable point.

The systematic removal of the maximum delay patterns
group set_M; (1 < i <n) maintains the unate property of
the given TL function f. This is a necessary condition for
a function to be a TL function. If set_M; (1 <i<mn) is
removed arbitrarily from the function f then f becomes binate
[1]. Thus, algorithm GROUP always produces the group of
patterns so that all patterns in the group exhibit the same
maximum delay. Each pattern in the set set_M; excites the
highest propagation delay at the fault site.

IV. ATPG TO COPE WITH WEIGHT DEVIATIONS

Let us assume that each weight w; (0 <i <mn) during
manufacturing has an absolute deviation of §; (0 < i < n), i.e.,
each manufactured weight value w; (0 < i < n) is in the range

This section presents algorithm EDTL, an enhancement of
DTL, which generates a set of patterns for each fault such that
one of them is guaranteed to excite the maximum delay under
any weight deviations.

Let a be the set of onset minterms, and b be the set of offset
minterms of the given TLG function. Let 7 be the maximum
allowable shift in the weight summation W' of any minterm
p; due to the deviation in the manufactured weights which
does not affect the TLG functionality. From [1], we have that:

7 = min{y1, y2} 3)
where ‘
= I]zlin{Wk} — wo
€a

= wy — wt
Yo = Wy Igleabx{ }

Let us assume for simplicity, that all weight deviations have
the same value §. Then the maximum value of ¢ for the given
weight configuration of the TLG is [1]:

Y1 Y2
n+1"n+ 1} “)

It is shown below that although the manufactured weight
values may deviate from the designed value, the set of patterns
that excite the maximum delay are the patterns that belong
to set_M; that was generated by procedure GROUP when
considering the designed weights. (This is the set of patterns
expressed in terms of local gate inputs. See line 5 of Algorithm
DTL.)

Patterns (minterms) belong into different groups when con-
sidering their designed weights. Consider the patterns of two
separate groups set_M; and set_M; of a TLG so that i is
less than j. Under weight deviations, the patterns of any such
group may further partitioned into sub groups.

Consider the gate G; shown in Figure 3. For the given
weight configuration (wq,we, w3, w4 : wo) = (4, 4, 2, 2 : 5),
we get 7 = 1 and 6 = 0.2. For the eleven onset minterms
of the TLG function, we get four delay patterns groups. The

0 = min{
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set_M; contains minterms ps, pg, Pg, and pig with W° = 6.
The set_M, contains minterms p7, pi1, and pio with W7 =
8. The set_Ms5 contains minterms pi3 and pi4 with W13 =
10. The set_M, contains minterm pi5 with W1 = 12.

Assume that the manufactured weight values for
(Wi, we, wy, wy : wy) = (4.2, 3.8, 1.8, 1.8 : 5.2). For
this new weight configuration, calculating the weight sum
for each minterm shows set_M; is further divided into
two subgroups. The first is called set_M;; and contains
minterms ps and pg with W5 = 5.6. The second is called
set_Mi o and contains minterms pg and p;o with W* = 6.
Similarly, set_M>, is divided into subgroups. The first is
called set_M>; and contains minterm p; with W’ = 7.4.
The second is called set_Ms o and contains minterm pqq
with W1l = 7.8. The third is called set_Ms5 5, and contains
minterm p;o with W12 = 8. None of the minterms in set_M;
never assigned lower delay patterns group less than set_M,
for any deviated weight configurations. Similar results are
obtained for any two separate groups set_M; and set_M;.

Theorem 1: For any n input gate G of an implemented 7N,
no patterns in set_M; will excite lesser or equal delay at G
than a pattern in set_M;, for any i < j.

Proof: Theorem 1 is shown considering only the onset
minterms. Similar arguments hold for the offset minterms. For
simplicity in explanation, assume that n is even.

From Equation 4, we have that the maximum allowable
shift in the weight summation for any minterm due to weight
deviation is 7 = (n + 1) * ¢. Consider minterms p,, and p, in
any two groups set_M; and set_M; so that 7 is less than j.

Let g;; = |W?* — W¥| for any two minterms p, and p,
in set_M; and set_M;. Due to the weight deviations during
manufacturing of a TLG, the new g;j value will be in the
range:

9ij — T < Gij < Gij (5)

Case 1: Assume that there is no variable that is active in
both minterms p, and p,. Let n, and n, be the number of
active variables in p, and p,, respectively. In order for the
theorem to be violated, the weight summation of minterms in
set_M; must increase, and those in set_M; must decrease.
Therefore W* is increased by n, *§ and WY is decreased by
ny * 6. However, n, + n, is always less than or equal to n.
This results in g;j being no less than g;; — (n * 0).

Case 2: Assume that there is n,, number of variables
that are active in both minterms p, and p,. In order for the
theorem to be violated, the weight summation of minterms in
set_M; must increase and those in set_M; must decrease. In
the worst case either all the common active variables will have
a positive deviation or all will have a negative deviation. In
the following, we prove the case assuming that they all have a
positive deviation. Similar arguments hold when they all have
a negative deviation. We have that W% is increased by n, % 0
and WV is decreased by (n, — ng,) * §. However, n, + n, -
Ngy 18 always less than or equal to 7. This results in g; , being
no less than g;; — (n * 0).

From Equation 5, we have that g;; — g; ; 18 less than 7. If the
weight configuration of a TLG satisfies that 7 is not greater

than min{g;;} then none of the minterms in the group set_M;
will have less delay than the any minterm in the group set_M;
for any weight deviated configurations, when 7 is less than j.
This proves Theorem 1.

Not all the test vectors of S generated by DTL using
designed weights may excite the maximum delay for some
deviated weight configurations. However, at least one will do.
In the above example, the highest delay group (set_M;) of the
designed weights is sub divided into two subgroups (set_Mj 1,
set_M, ) for one of the deviated weight configurations. Only
the patterns in the set_M; ; excite highest delay for this
deviated weight. Hence all patterns of S must be applied
instead of only one. However, only the vectors in .S that bring
different input assignment at a gate G must be applied. Using
the above, DTL is enhanced into algorithm EDTL (Enhanced
DTL).

Algorithm 3: EDTL(F)

Input: Transition fault F' at gate G with functionality f
Qutput: Test vector set S

15=0;
2 set_M; = GROUP(F) ;
3 P = PROPAGATION(G, F)) ;
4 foreach p; € set_M; do
5 Dj =Mapr(p;) ;
6 if D; NP #( then
7
8
9

S; = A pattern in D; N P
S=5,U8;
endif
10 end
11 return S ;

The overview of the EDTL is presented in Algorithm 3.
First, GROUP (line 2) generates the set of input patterns
set_M;, where ¢ is the minimum value in algorithm DTL that
produces a pattern which excites maximum possible transition
delay at gate G. The patterns that excite and propagate the
latched error to an observable point are generated by PROP-
AGATION (line 3). Then procedure MAP (line 5) constructs
one or more input patterns D; for each pattern p; in set_M;
at the inputs of the gate G. A pattern S; which bring the
distinct maximum delay pattern p; at the gate G is formed
by selecting one of the patterns in the intersection of D
and P (line 7). That way, a collection of patterns S; (j > 1)
is formed, where each S; will bring distinct p; of set_M;
at the gate G which sensitizes maximum possible delay and
propagate to an observable point in the TN. This collection of
patterns .S; (j > 1) is denoted by S.

The vector set generation by EDTL is illustrated for the STR
fault on gate G3 in the circuit in Figure 3. In this example,
set_M; = set_DM,. First, the set of vectors set_M; and P is
determined for the given fault. The patterns in P are listed in
right hand side of Table II.

The set of patterns in set_M; is shown in column 1 of
Table III. There are five input patterns in set_M; which excite
the maximum delay for rising transition at gate G3. Patterns
D; and D; N P for each minterm p; in set_M; are shown
in columns 2 and 3 of Table IIl. There are no input patterns
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TABLE III
SENSITIZATION VECTOR SET BY EDTL
pj in set_M; Dj; = MAP(p;) D;nP S,
xr1 2 xs3 Te xT7 1 T2 xs3 x4 s 1 T2 xs3 T4 s 1 x9 xrs3 T4 x5
0 1 1 1 1 0 1 1 X 0 0 1 1 X 0 0 1 1 0 0
1 0 1 1 0 1 0 1 X 1 1 0 1 X 1 1 0 1 0 1
1 1 0 1 0 1 1 0 0 X 1 1 0 0 X 1 1 0 0 0
1 1 0 1 1 1 1 0 1 1
1 0 1 0 1
1 1 0 1

that justify which bring the patterns ”10101” or ”11001” of
set_M; at gate Gs.

Each S;,1 < j < 3 consists of one test vector from each
D; NP1 < j < 3 which brings distinct input assignments
that excite the maximum delay at gate G'3 for STR under any
weight deviations. Patterns S; are listed in the fourth column
of Table III. Observe that the number of patterns generated
by EDTL to detect TF under weight deviations is reduced to
three.

V. TEST SET COMPACTION

This section presents a compact ATPG which we call
CEDTL (Compact EDTL). For each STR or STF fault at gate
G, algorithm EDTL generates several test functions D; N P
(step 6 of Algorithm 3) and then selects a test pattern .S;
(step 8 of Algorithm 3). A compact test set is obtained by
manipulating the test functions of several gates.

Algorithm 4: CEDTL(TN)

Input: A TN
Output: A compact test set for all TFs
1 CLUSTERING(T'N) ;
2 foreach C in TN do
3 (C; 1<i<2=COMPATIBLE(C) ;

4 foreach C;, 1 <i<2do

5 return Compact Test Set = COMPACT(C;) ;
6 end

7 end

Algorithm CEDTL is presented in Algorithm 4. Clusters of
gates are formed by traversing the TN in reserve topological
order. The size of each cluster is limited to a predetermined
constant value c. The clustering phase helps the scalability of
algorithm CEDTL. This procedure is called CLUSTERING.

Consider a STR for gate G at some cluster C, and an
immediate predecessor gate G at C' which is connected to
G with an input that has a positive weight. Then CEDTL will
generate a compact test set by considering the test functions
for a STR at GG. If the weight of that input is negative then
CEDTL will compact by considering the test functions for a
STF at G. This is due to the unate timing property of threshold
logic gates [1]. That way, two sets of test functions are formed
for each cluster C: Set Cy consists of all functions that are
compatible with the test functions for a STR at the output gate
of cluster C, and set C'y consists of all functions compatible
to a STF at the output gate of the cluster. This procedure is
called COMPATIBLE.

Then a greedy algorithm is applied to the functions in
C;,1 < i < 2. Any two test functions in C; are covered
by a single function as long as their intersection is non empty.
The two functions must target faults at different gates in set
C; since different test functions for the same gate contain
disjoint minterms. For any non-empty function intersection,
the two functions are substituted by their intersection, they
are not considered any further. This process is repeated for the
test functions until only empty intersections are encountered
among the test functions in each C;. This greedy algorithm is
called COMPACT.

Procedure COMPACT is illustrated with the help of Ta-
bles IV and V. Table IV considers a cluster C' containing gate
G of the TN of Figure 3 and its two immediate predecessor
gates G2 and GG;. We consider a STR at G, i.e., procedure
COMPACT operates on the set of functions C;. Since the input
weights of G3 are positive, the test functions for STR at G5
and GGy are considered by COMPACT (Line 5).

The second column of Table IV contains the three test
functions for gate G3. According to the notation used in
algorithm EDTL, they are labeled as S1, So and Ss. The third
column of Table IV lists the two test functions S; and S for
gate 5. Finally, the fourth column lists the two test functions
generated by EDTL for gate G;. Clearly EDTL will return
seven patterns for this cluster. For simplicity in the notation,
let the test function S, for the gate G; be denoted as .S; (G;).

In this example, algorithm COMPACT first considers
S1 (G3), and tries to determine whether there is an non-empty
intersection among the test functions S;, 1 < i < 2, of
the predecessor gate (G. These functions are examined in
increasing order. Therefore it first examines whether S; (G3)
intersects with S; (G3), and this turns out to be an non-empty
test function. At this point, S; (G3) and Sy (G2) are covered
by the intersection of sets S; (G3) and Sy (G2), and are not
considered any further. The test set for the gates in the cluster
is already reduced by one pattern.

Next, the test function resulting from the intersection of sets
S1 (G3) and S; (G2) is considered for possible intersections
with the two test functions S; and S5 of gate G in column 4.
They are considered in increasing order. The first intersection
is empty but the second intersection turns out to be non-empty.
Let T} be the set resulting from the intersection of S (G3),
S1 (G2), and S5 (G1). Therefore the sets Sy (G3), S1(G2),
and S3 (G1) are not considered any further. The test set for
the cluster is reduced by another pattern.

Now the algorithm backtracks to the test functions in the
second column of Table IV, and considers S3 (G3). It does
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TABLE IV
TEST FUNCTIONS IN SET C'1 OF A CLUSTER WITH GATES G3, G2, AND G1
Test CMTL Gates
Function G3 Gy G
Label 1 o x3 T4 x5 T o x3 T4 Ts5 1 9 x3 T4 Ts5
S1 0 1 1 X 0 0 1 1 0 0 X X 0 1 0
So 1 0 1 X 1 1 0 1 0 1 0 1 1 0 0
1 0 1 0 1
Ss3 1 1 0 0 X
1 1 0 1 1
TABLE V o5
CEDTL FOR THE EXAMPLE IN TABLE IV m Set_ M2 mset M3 mSet_ M4 uSet M5
Test Functions Test Patterns *
T T2 T3 T4 Ts5 55
T1 =51 (G3) N S1 (G2) N S2 (G1) 0 1 1 0 0 ?z o
Te = S2 (G3) N S3 (G2) 1 0 1 0 1 E
T5 = S5 (G3) I T 01 |1 §~45
Ty = S1(Gh) 1 1 0 1 0 § 40
o
35
not examine if it will intersect with set 7 since the latter 30
function covers S (G3) and the result is known to be negative. ) I | I
Thus, it examines whether S; (G3) intersects with Sy (G3). 1 2 3 4 s & 7 8 9 10 11 12 13 14 15 16
ThlS results in an non-empty set T2 Wthh covers S2 (G3) Four Input Representative Threshold Functions

and S5 (G2). The test set is reduced by another pattern at this
point.

Next, the algorithm finds whether 75 intersects with the only
possible test function Sy (G1). Set S; (G1) is disjoint with T
and their intersection results in empty set. Now the algorithm
backtracks and considers the test function S3(Gs) in the
second column. The algorithm finds whether it intersects with
S1 (G1) which is the only remaining uncovered test function.
However, these two test functions (S3 (G3) and S; (Gy)) are
disjoint, and the algorithm terminates.

In this example, CEDTL reduces the test set from seven
pattern to four patterns. The right hand side of Table V lists the
four test functions, and the left hand side list the test patterns,
one pattern per test function.

VI. EXPERIMENTAL RESULTS

Experiments are presented which show that some pattern
excite significantly more delay than the others and they must
be selected when testing for delay defects. Then a software tool
was employed to synthesize pipelined TNs for each ISCAS 85
and ITC 99 benchmark. Finally, the section demonstrates the
efficiency of the three ATPG tools presented in this paper:
The basic ATPG tool called DTL, the enhanced ATPG called
EDTL that accommodates weight variation, and the compact
ATPG method called CEDTL.

All software tools were implemented in the C++ language.
The experiments were conducted on a Sun-Blade 100 work-
station with a 1 Gigabyte RAM on the ISCAS 85 and ITC 99
Benchmark circuits [17], [18]. As described in Sections II-
V, the proposed method uses BDDs for each embedded TLG
in order to identify the maximum delay pattern set for the
gate, and a separate BDD for the whole circuit in order to

Fig. 5. Percent delay reduction of patterns.

generate the test patterns. Therefore we did not experiment
with the multiplier circuit c6288 since traditional BDDs cannot
easily handle such circuit functionalities. For such circuits, bi-
conditional BDDs have been introduced in [19], and the pro-
posed method can generate patterns by operating on this data
structure. However, such implementation details are beyond
the scope of this work.

First, an experimental study was conducted to determine the
impact of the different input patterns on the delays that they
excite at gates. There exist 17 representative threshold logic
functions which represent all the threshold logic functions of
exactly four inputs [1]. All these functions were considered.
The rising transition delay value for each onset minterm
of each function was calculated using Equation 2. Many
minterms of a function exhibited the same delay. For each
function, they were categorized into different groups set_M,,
and all the minterms in the same group set_M,; had the same
delay. For each function, up to five groups were formed, i.e.,
set_M; to set_Ms with the patterns in set_M; exhibiting the
highest delay.

For a STR fault, Figure 5 shows the percentage reduction
in the delay value for set_M;, ¢ > 2, in comparison with the
delay for set_M;. The reduction is listed for each possible
four input threshold function. Note that only 16 out of 17
functions are listed because when analyzing the results of
Figure 5 we observed that for one of them only set_M; can
be formed. The reduction in the delay value for set_M> is at
least 43% when compared with the delay of set_Mj, and 34%
on average. Similarly, the reduction in the delay for set_Ms3
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Fig. 6. Total faults of synthesized ITC 99 and ISCAS 85 benchmarks.

is at least 54% when compared with the delay of set_M;,
and 46% on average. Additional experiments have indicated
similar behavior for STF fault delay values. These results show
that it is important to test each transition fault with patterns in
set_M;. Patterns for set_My should only be applied if none
of the patterns in set_M; propagates to an output, and so on.

Subsequently, a synthesis tool was developed, so that each
benchmark is synthesized into a pipelined TN. The gates of the
input combinational circuit were mapped into CMTL gates. It
is designed using a modification of [7] since [7] is based on
the asummable property of [1] and does not assign weights.
Thus, the tool of [7] was modified in order to assign weights
of each TLG. The TL function identification method proposed
in [20] was employed to check whether a particular Boolean
gate cluster can be implemented as a 7LG. The fan-in bound
of a TLG was set to eight.

Figure 6 presents the total number of TFs (both STR
and STF) in the pipelined 7N for each benchmark circuit
considered for the proposed ATPG methods. The TFs of the
synchronized buffers are not examined by the ATPG because
the set of patterns which detects the TFs at the CMTL gate
output will also detect the 7Fs of the synchronized CMTL
buffer connected to it. Hence, we consider only the TFs (both
STR and STF) at the output stem of each CMTL gate. Figure 6
also presents total number of 7Fs in the original CMOS
Boolean circuits for each benchmark circuit. The reduction
in total number of TFs in the TN is 39% in the best case
when compared with the original CMOS Boolean circuit, and
28% on average.

The remainder of the section focuses on the efficiency of
the presented ATPG algorithms. Figure 7 shows the fault
coverage by DTL for each benchmark circuit. It shows the
fault coverage is at least 96.9% and that observed in circuit
c3540. The fault coverage was 99% on average among all
benchmarks. The best fault coverage was 100%. Figure 7 also
shows the fault coverage by considering only the patterns in
set_M. It was at least 95% and that observed in circuit
¢3540. On average, it was 97% among all benchmarks. The
best observed fault coverage was 99%.

Figure 8 shows the time performance of the algorithm DTL.

Fig. 7. Fault coverage by DTL.
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Fig. 8. Time performance of DTL.

It took approximately 13 seconds to handle all the 7Fs in the
benchmark c1908. It was also observed that the maximum
execution time never exceeded 74 seconds for any of the
benchmark circuit. Thus DTL is a very scalable ATPG method.

Figure 9 shows the time performance of algorithm EDTL
that considers weight variations due to manufacturing. EDTL
took approximately 16 seconds to handle all the TFs in
benchmark c1908. It was also observed that the maximum
execution time never exceeded 92 seconds for any of the
benchmark circuit. This is also a very scalable ATPG. Note
here that the fault coverage of EDTL is same as of DTL since
it substitutes a test pattern for DTL by a test set in order to
ensure that the fault is detected under any weight variation.

Finally, the experiments focused on the efficiency (test set
reduction) and time performance of CEDTL. Let |S| be the
total number of patterns needed to detect all 7Fs by EDTL,
and |C| is the total number of patterns needed to detect all TF's
by CEDTL. Then the percentage reduction in test set size by
CEDTL is calculated as by ((|S| —|C]) /|S]) = 100.

Figure 10 shows the average percent reduction on the
number of test vectors that were needed to detect all the TFs
under any weight deviation in each benchmark circuit. The
cluster size bound was set to four in all benchmark circuits.
For circuit bl1, the reduction was at least 40%. On average
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Fig. 11. Time performance of CEDTL.

among all benchmark circuits, the reduction was 52%. In the
best case, it was 62%.

Figure 11 shows the time performance of CEDTL (exclud-
ing the time taken by EDTL). It took approximately 4 seconds
to handle all the 7TFs in the benchmark c1908. It was also
observed that the maximum execution time never exceeded
22 seconds for any of the benchmark circuit. This is also a

very scalable ATPG.

VII. CONCLUSION

In this article, we presented ATPG tools for current mode
threshold logic gate circuits which are designed using CMOS
technology. They use the transition fault model that can handle
small delay defects due to the pipeline nature of the designs.
Since different patterns excite different delays at the fault
site, ATPG tools focus on generating patterns that excite the
maximum possible delay for each fault. Three ATPG tools
have been presented. The basic ATPG tool is very scalable
and ensures very high fault coverage. A second ATPG tool
was developed to handle instances where the manufactured
weights differ from designed weights due to process variations.
A compact ATPG has also been presented that reduce the test
size for all benchmark circuits by approximately 52%.
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