
Southern Illinois University Carbondale
OpenSIUC

Articles Department of Electrical and Computer
Engineering

2016

ATPG for Delay Defects in Current Mode
Threshold Logic Circuits
Ashok Kumar Palaniswamy
Southern Illinois University Carbondale, ashokpa@siu.edu

Spyros Tragoudas
Southern Illinois University Carbondale, spyros@siu.edu

Themistoklis Haniotakis
Southern Illinois University Carbondale, haniotak@siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_articles
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted
for inclusion in Articles by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Palaniswamy, Ashok Kumar, Tragoudas, Spyros and Haniotakis, Themistoklis. "ATPG for Delay Defects in Current Mode Threshold
Logic Circuits." IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS PP, No.
99 (Jan 2016). doi:10.1109/TCAD.2016.2533863.

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_articles?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_articles?utm_source=opensiuc.lib.siu.edu%2Fece_articles%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, AAAAAAA 2016 1

ATPG for Delay Defects in Current Mode
Threshold Logic Circuits

Ashok Kumar Palaniswamy, Member, IEEE, Spyros Tragoudas, Senior Member, IEEE,
and Themistoklis Haniotakis, Member, IEEE

Abstract—An automatic test pattern generation approach to
detect delay defects in a circuit consisting of current mode
threshold logic gates is introduced. Each generated pattern
should excite the maximum propagation delay at the fault site.
Manufactured weights may vary, and maximum delay is ensured
by applying an appropriately generated set of patterns per fault.
Experimental results show the efficiency of the proposed methods.

Index Terms—ATPG, Threshold logic gate, BDD, delay testing.

I. INTRODUCTION

Threshold Logic Gate (TLG) is an emerging alternative
to implement Boolean functions. It offers the capability of
realizing a complex Boolean function using less number of
gates. Although TLGs were initially introduced five decades
ago [1] they gained more importance in current years due
to the recent developments in CMOS-based implementations
[2]–[4]. TLGs are also implementable with emerging nano-
electronic technologies [5], [6].

A Boolean circuit implemented by TLGs is called a Thresh-
old Network (TN). Synthesis techniques have been proposed
for implementing TNs [7]–[11]. The objective of these meth-
ods is to minimize the number of TLGs.

Recent methods in [2], [3] minimize the delay of Current
Mode Threshold Logic (CMTL) gates which are CMOS-based.
According to [3], the input patterns of the CMTL gate can be
categorized into groups based on the delay they exhibit. All
patterns in a particular group cause the same delay. CMTL
gates are clocked. We consider the combinational core of the
TN which is pipelined, does not have any feedback loops, and
has unit combinational depth at each pipeline stage.

Manuscript received July 04, 2015; revised December 19, 2015; accepted
January 31, 2016. Date of current version Aaaaaaa xx, 2016. This research has
been supported in part by grants NSF IIP 1432026, and NSF IIP 1361847 from
the NSF I/UCRC for Embedded Systems at SIUC. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation. This paper was recommended by Associate Editor A. Gattiker.

A. K. Palaniswamy is with Synopsys, Inc., Sunnyvale, CA 94085 USA and
also with the Department of Electrical and Computer Engineering, Southern
Illinois University, Carbondale, IL 62901 USA (e-mail: ashokpa@siu.edu).

S. Tragoudas, and T. Haniotakis are with the Department of Electri-
cal and Computer Engineering, Southern Illinois University, Carbondale,
IL 62901 USA (e-mail: spyros, haniotak@.siu.edu).

Preliminary version of this work was published in Design & Technology
of Integrated Systems in Nanoscale Era 2014.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier xx.xxxx/TCAD.2016.xxxxx

The main objective of this work is to implement an Au-
tomatic Test Pattern Generation (ATPG) method where each
generated pattern excites the maximum possible delay on the
CMTL gate at the fault site and is more likely to excite an error
at the output driven by the faulty TLG. Given the pipelined
structure of the TN, the transition fault (TF) model is ideal for
detecting delay defects. This pattern sensitive approach will
likely to detect a TF, if one exists. The manufactured weights
of a TLG may vary. It is shown that the maximum delay at the
faulty TLG is excited even if the test pattern set is generated
using the designed weights. To our knowledge, ATPG methods
for TNs only focus on logic defects using the stuck-at (SA)
fault model [12], [13].

The main contributions of this work are summarized as
follows; First, it is shown how to generate a test set per TF to
excite the maximum possible delay at the gate and propagate
the latched error to an observable point of the pipelined TN.
An important component of the ATPG is to identify the group
of patterns that excite the maximum rising or falling transition
delay at the selected gate. Second, it is shown how to generate
a set of test patterns for each TF to ensure the maximum
delay in the presence of weight deviations. This is important
because physical defects and process variation during the
manufacturing of a TLG may result into the manufactured
weights that differ from the designed (ideal) weight values.
Finally, a test set compaction scheme is introduced which
focuses on generating a high quality test pattern to detect more
than one TFs in order to reduce the test data volume and the
test application time.

This article is structured as follows. Section II presents pre-
liminaries. Section III presents the ATPG method considering
the designed weights. Section IV presents a method to generate
a test set per TF in order to cope with weight deviations. Sec-
tion V presents the test set compaction technique. Section VI
presents experimental results. Section VII concludes.

II. PRELIMINARIES

Threshold Logic (TL) gate is a weight dependent majority
gate. It consists of n input variables and a threshold value w0.
Each input variable xi is associated with a weight value wi.
The output O of TLG is defined as [1]:

O =

 1 if
n∑

i=1

wixi ≥ w0

0 otherwise
(1)

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, AAAAAAA 2016

X1

CL

1P

P2 P3

M 1M 2

N3 N4

N2

N1

VDD

CL

X2

CLK

CLK

CLK

InputsThreshold

FB F

GND

GND

GND

Differential Part

Sensor Part

GND

Fig. 1. CMTL gate.

For simplicity in the notation, let the sum of input variable

weights
n∑

i=1

wi be denoted as W. Let the active weight

summation
n∑

i=1

wixi of a particular pattern or minterm (fully

specified product term) pl be denoted as W l.
The CMTL gate representation for the two input AND gate

with weight values as (w1, w2 : w0) = (2, 2 : 3) is shown
in the Figure 1 [3]. The unit weight value corresponds to the
minimum gate length of the process technology. The CMTL
gate consists of the differential and the sensor part. All the
transistors in the differential part are connected in parallel.
The differential part is further divided into the threshold and
the inputs part. The PMOS transistor in the threshold part is
always active. The number of active PMOS in the inputs part
depends on the applied input pattern. The sensor part has 3
PMOS transistors P1, P2, P3, and 4 NMOS transistors N1, N2,
N3, and N4. The nodes M1 and M2 connect the differential
part and the sensor part.

The operation of the CMTL gate is divided into two phases,
the equalization phase (CLK is high) and the evaluation phase
(CLK is low). Due to the design architecture, both output
nodes F and FB are at same initial value (≈ 30% of VDD) at
the beginning of the equalization phase. Then a small voltage
difference is developed across the output nodes which mainly
depends on the differential part due to the applied pattern pl. In
the evaluation phase, the sensor part boosts the initial voltage
difference to a logic state at the output nodes. The node F
rises from 30% VDD to VDD for logic one, and drops from
30% VDD to 0V for logic zero. The node FB changes in
the opposite direction with respect to the node F . See [3] for
more details.

The propagation delay (d) of the CMTL gate for the applied

x3+ +

G 1

x2x4

G 2

_
x5

x4
_
x5

x3+

x1

x2

x3

x4

x5

x1x2x3 x1x2x6+ +

x6x3x1 x7x2 x1+ +

x1 x6x7x2x3x7x3 +

G 3

x6

x7
x8x7 x8x4+ +

x7x4

G 5

x8

x8 x7x5+

G 4

x9 x9x4 x9x5+

G 6

o1

o2

x1x4 x2x3+ +

x1x2 x1

Fig. 2. Combinational circuit.

pattern pl is modeled by [3] is shown in Equation (2).
Equation (2) also indicates that the pattern pl which minimizes∣∣w0 −W l

∣∣ generates the maximum transition delay at the gate.
The transition delay value of the CMTL gate decreases linearly
with the increase in the

∣∣w0 −W l
∣∣. If the w0 is equal to the

W l value of the applied pattern pl, then an unstable value
is produced at the output. Hence, the weight assignment for
the CMTL gate is chosen such that the W l value for any
input pattern pl is not equal to its w0 value. Therefore the
weight configuration of a CMTL gate always needs to satisfy
W l ̸= w0 for any pattern pl.

d = c0 + c1 s+
c2
s

+ 50 e−12 (2)

where
c0 = 0.7

(
W 2 + w2

0

)
e−18 + 20 e−12

c1 =
10 (W + w0) e

−6

|w0 −W l|
+ 0.01 e−6

c2 = 0.7
(
W 2 + w2

0

)
e−18 + 380 e−17

s =

√
c2
c1

The transition fault model is widely used for testing delay
defects at a gate. It requires that a transition is generated at the
output of each gate. There are two transition faults associated
with each gate: a slow-to-rise (STR) fault, and a slow-to-fall
(STF) fault. A TF should propagate to an observable point
through any path [14].

It is noted that CMTL gates are clocked. At the beginning
of the clock cycle the output of CMTL gate is set to an initial
value irrespective of the previous clock cycle value. Hence,
the initialization vector of the TF model is not required for
testing delay defects of the CMTL gate. For each STR fault at
gate G, the test pattern is generated considering that the ATPG
requires setting logic one at the selected gate and propagating
its effect to an observable point. Likewise, a pattern for STF
is generated.

From the above and the Equation (2), the minterms which
evaluate the function to one (also called onset minterms),
and, in addition, produce minimum weight summation are
responsible for the maximum rising transition delay. The offset
minterms (i.e., minterms that set the function to zero) which
produce maximum weight summation are responsible for the
maximum falling transition delay of the CMTL gate.

PALANISWAMY et al.: ATPG FOR DELAY DEFECTS IN CURRENT MODE THRESHOLD LOGIC CIRCUITS 3

X3

X4

X5

G1

G2

G3
X6

X7

X8

G5
X9

O2G6

O1G4

X1
X2

X1 12

X2 12

X3 12

X4 12X4 12

X5 12X5 12

X7 12

X4 12

X5 12

4
4
2

2

5

2

2

−4

1

6
4

2

4
2

11

2

2

2

3

2

4

2

5

4

2

2

3

Fig. 3. CMTL threshold network.

The following provide an overview of a combinational TN
implemented with CMTL gates. CMTL gates are clocked and
circuits that are implemented using CMTL gates are pipelined
TNs without feedback loops. Synchronization CMTL buffers
are inserted at the pipeline stages so that each CMTL gate
receives its inputs at the appropriate clock cycle. Methods as
in [7] synthesize TNs so that the total number of TLGs is
minimized.

Figure 2 shows a combinational circuit with six complex
combinational components whose functionalities are listed
explicitly. Each combinational component is a TLG, imple-
mented by a CMTL gate. Figure 3 shows a four stage pipelined
TN of CMTL gates representing the circuit of Figure 2.
The weight assignment for the inputs and the threshold at
each CMTL gate is also shown. At each pipeline stage,
CMTL buffers (represented by rectangle) ensure that each
TLG receives its inputs at the appropriate clock cycle in a
synchronized manner.

In this paper, functions will be represented using Binary
Decision Diagrams (BDDs). An n input Boolean function f
represented in a BDD is a directed acyclic graph where the
Shannon decomposition is carried out in each node. Each
vertex has two outgoing edges. A pointer to each vertex
represents a distinct function. One outgoing edge simplifies the
function by setting the variable to true and the other outgoing
edge by setting it to false. A BDD does not contain vertices
whose outgoing edges point to isomorphic sub-graphs or to the
same node. BDDs are canonical forms suitable for representing
functions very compactly [15].

III. ATPG BASED ON THE TRANSITION FAULT MODEL

The proposed ATPG method is called DTL (delay defect
on Threshold Logic gates). This is a function-based test
generation approach that uses binary decision diagrams and
the conditions listed in Section II to excite maximum STR or
STF delay at the fault site and propagate the transition to an
observable point. Each TLG has been assigned weight values
and is stored in a BDD.

Procedure GROUP returns all the minterms of a TLG that
excite maximum delay at each TLG inputs [16]. The set of
minterms returned by GROUP is stored as a BDD function.
Another procedure of DTL, called MAP, rewrites the function
returned by GROUP so that the set of minterms of the

embedded TLG is expressed in terms of the primary inputs
of the TN.

Algorithm GROUP is a non enumerative BDD traversal
method that identifies all the fully specified input assignments
(minterms) of the given TLG function which produce the
minimum active weight summation for STR or the maximum
active weight summation for STF [16].

The operation of GROUP is recursive. For the simplicity
in the exposition, GROUP is explained when considering a
STR fault. Similar procedures apply for a STF fault. Let f
denote the function at a BDD node. Let the field Mf be the set
of all minterms of f which produce minimum active weight
summation value W lf

(
ml ∈ Mf

)
. For STF, Mf will have

the set of minterms with W lf denote the maximum active
summation value. Let Mf

t denote the simplified function of
outgoing edge with the variable set to true. Let Mf

e denote
the simplified function of outgoing edge with the variable set
to false from the Mf . The BDD functions at the two outgoing
edges have the minimum active weight sums denoted by W lf

t

and W lf
e , respectively.

Algorithm 1: GROUP(F)

Input: Transition fault F at gate G with functionality f
Output: Set of minterms Mf with active weight summation

value as W lf
(
ml ∈ Mf

)
1 if f ̸= Constant and Not Visited then
2 Mf

t = GROUP(fxi) ;
3 Mf

e = GROUP(fxi) ;

4 ADJUSTTHEN
(
Mf

t ,W
lf
t

)
;

5 ADJUSTELSE
(
Mf

e ,W
lf
e

)
;

6 if W lf
t ̸= W lf

e then
7 if F is STR then W lf = min

{
W lf

t ,W lf
e

}
;

8 if F is STF then W lf = max
{
W lf

t ,W lf
e

}
;

9 if W lf = W lf
t then Mf = Mf

t ;
10 if W lf = W lf

e then Mf = Mf
e ;

11 else
12 W lf = W lf

t ;
13 Mf = Mf

t ∪Mf
e ;

14 endif
15 endif
16 return Mf ;

An input variable which is not present in a BDD path is
a don’t care variable of the path. Algorithm GROUP intends
to find the fully specified product terms. Hence in GROUP,
initially the Mf = {x1x1..xn}, W lf = ∞ for STR and W lf

= −∞ for STF for each BDD node. The don’t care variables
on the path of each BDD node are considered and included in
the Mf depends upon their polarity. In order to find the set
of input patterns which produce the minimum active weight
summation value for STR fault, the W lf

t and W lf
e values

should be decremented for each don’t care variable that has
a negative weight value. This is accomplished by including
the don’t care variable in Mf

t and Mf
e . Similarly, in order

to find the set of input patterns which produce the maximum
active weight summation value for STF fault, the W lf

t and

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, AAAAAAA 2016

True False

2

4

2

4

4

6

4

2

M
I = { 11010, 11001, 10110, 10101, 01111 }

4

M
E = { 01010, 01001, 00110, 00101 }

M
H = { 01111 }

M
C = { 00010, 00001 }

M
D = { 00110, 00101 }

M
G = { 00111 }

M
B = { 00010, 00001 }

M
F = { 00011 }

W
lE

= 6

W
lH = 12

M
A = { 00001 }

W
lD

= 6

W
lC

= 2

W
lG = 8

W
lB

= 2

W
lI = 12

W
lF = 4

W
lA

= 2

I

A

B

C D

E H

G

F

X1

X2

X3

X6

X7

Fig. 4. Example for GROUP illustration.

W lf
e values should be incremented for each don’t care variable

that has positive weight value.
Procedure ADJUSTTHEN in GROUP performs two updates

on variables W lf
t and Mf

t . For a STR, first the node variable
of the parent node f and its weight value is added to W lf

t

and Mf
t , and then it decrements the W lf

t value by including
all the don’t care variables with negative weight values on the
path in the Mf

t . Procedure ADJUSTELSE performs only the
second update of the procedure ADJUSTTHEN on W lf

e and
Mf

e . The conditions in line 7 and 8 choose the W lf value
based upon the fault, i.e., the minimum summation for a STR
and the maximum summation for a STF [16].

GROUP is illustrated for the STR fault on gate G3 at the
circuit in Figure 3 with the help of Figure 4 [16]. In this
figure, the pointer to the root node (labeled I) represents
the functionality of G3 in terms of its five input variables
x1, x2, x3, x6, x7. BDD node I corresponds to variable x1,
nodes E, H corresponds to variable x2, nodes C, D, G
corresponds to variable x3, nodes B, F corresponds to variable
x6, and node A correspond to variable x7. The weight value
of the input variables (x1, x2, x3, x6, x7) is (6, 4, 4, 2, 2), and
the threshold value w0 is 11. This example shows how to find
the onset minterms that produce the minimum active weight
summation which excites the maximum rising transition delay
at gate G3. Figure 4 lists for each function f at a BDD node
the Mf and W lf values [16].

The BDD is traversed in reverse topological order [16]. In
GROUP, initially Mf = {00000} and W lf = ∞, for all BDD
nodes. The node traversal starts at the top pointer node and
traverses the then path until it reaches the Constant 0 (False)
or Constant 1 (True) node. The traversal considers only the
paths leading to the True node.

In this example, the then and else children of node A are
the True and False nodes, respectively. This results in MA

t =
{00001} and W lA

t = 2 by ADJUSTTHEN. This results to MA

TABLE I
MAXIMUM DELAY VECTOR SET FOR THE STR FAULT AT GATE G3

Patterns in Test Set
Gate Inputs Circuit Inputs

x1 x2 x3 x6 x7 x1 x2 x3 x4 x5

0 1 1 1 1 0 1 1 x 0
1 0 1 0 1 1 0 1 x 1
1 0 1 1 0 1 1 0 0 x
1 1 0 0 1 1 1 0 1 1
1 1 0 1 0

= {00001} and W lA = 2 by choosing the minimum weight
summation value.

The then child of node B is the True node and else child is
node A. Although x7 is don’t care variable on the then path
of node B, it is not added by ADJUSTTHEN due its positive
weight value. This results in MB

t = {00010} and W lB
t =

2, and MB
e = {00001} and W lB

e = 2. This results in MB

= {00010, 00001} and W lB = 2. Similarly, we get MC
t =

{00100} and W lC
t = 4, and MC

e = {00010, 00001} and W lC
e

= 2. This results in MC = {00010, 00001} and W lC = 2. This
way all the then path pointer nodes of root node are visited
and the Mf and W lf values are updated [16].

Then the else path pointer nodes out of the top pointer
node are visited. All the pointer nodes are visited and updated
in a similar manner. In our example, the top pointer node
I results in M I = {11010, 11001, 10110, 10101, 01111} and
W lI = 12 [16]. The set of patterns responsible for maximum
rising transition delay of gate G3 with respect to the local
gate inputs obtained by procedure GROUP is shown on the
right hand side of Table I.

In the case of a STF fault, the same process is applied except
that the maximum active weight summation is considered
(line 8). The offset minterms of the given TLG function with
highest active weight summation result in the maximum prop-
agation delay for a falling transition. Hence the complement
of the given gate functionality G3 is used by GROUP.

In order to represent the functionality of the embedded
gate TLG in terms of primary inputs, the local input variables
(embedded gate inputs) are replaced by primary input variables
by function substitutions. In particular, each gate input is
replaced by its function. This procedure is referred as MAP.
In our example, the five minterms in terms of embedded gate
inputs are mapped into seven patterns expressed in terms of
primary inputs and shown on the left hand side of Table I.

The input to algorithm DTL is a transition (STR or STF)
fault F at gate G in a CMTL TN. The output of the DTL is
a random test vector from a collection of patterns, called the
vector set S. Set S consists of all patterns that excite the fault
with maximum possible delay at gate G and propagate the
transition to an observable point of the TN.

The overview of algorithm DTL is presented in Algorithm 2.
First, procedure PROPAGATION (line 1) generates the set of
all pattern vectors P which ensure that the latched error
propagates to an observable point. Then procedure GROUP
(line 5) generates the set of input patterns set Mi that produce
maximum possible transition delay at the gate G. Subse-
quently, procedure MAP (line 6) transforms the test vectors

PALANISWAMY et al.: ATPG FOR DELAY DEFECTS IN CURRENT MODE THRESHOLD LOGIC CIRCUITS 5

TABLE II
FINAL SET OF PATTERNS FOR THE STR FAULT AT GATE G3

P S = D ∩ P
x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

0 1 1 x 0 0 1 1 x 0
1 0 1 x x 1 0 1 x 1
1 1 x x x 1 1 0 0 x

1 1 0 1 1

in terms of primary inputs (D). Essentially, this procedure
generates input patterns that brings each binary pattern in
set Mi at the inputs of gate G. Then the intersection of D and
P forms set S (line 7) out of which a test vector is selected.

Algorithm DTL is explained considering the STR fault
on gate G3 in the circuit in Figure 3. All patterns that
propagate the latched error are kept as a function P and
are computed by procedure PROPAGATION. Procedure PROP-
AGATION propagates the error to an observable point in the
TN. It is implemented using a boolean difference operation
between two functions, the fault free function and the faulty
function respectively. For the STR at gate G3 in Figure 3, the
propagation vector set is obtained by propagating SA0 at G3.
The obtained input patterns that excite and propagate the error
are listed on the left hand side of Table II.

Algorithm 2: DTL(F)

Input: Transition fault F at gate G with functionality f
Output: A test vector

1 P = PROPAGATION(G,F) ;
2 S = ϕ ;
3 i = 1 ;
4 while S = ϕ and f ̸= ϕ do
5 set Mi = GROUP(F) ;
6 D = MAP(set Mi) ;
7 S = D ∩ P ;
8 if S = ϕ then
9 f = f \ set Mi ;

10 endif
11 i++ ;
12 end
13 return A test vector from S ;

The objective of the vector set S is to sensitize the given
transition fault (STR or STF) of the selected gate G with
maximum possible delay and propagate the transition to an
observable point. For a STR fault, for each iteration of proce-
dure GROUP (line 5) produces all the minterms of the function
f that excites the maximum delay. The resulting set Mi is
substituted in terms of primary inputs by MAP (line 6). The
final sensitization vector set S (intersection of D and P) is
shown in the right hand side of Table II.

If D ∩ P results in an empty set, then it indicates that no
pattern that excites the highest delay at the gate propagates to
an observation point. In this case algorithm DTL tries to excite
the fault with patterns that excite the next possible highest
delay at the gate. This is done by removing the set Mi from
function f (line 9), and then the reduced function is used to
find the next highest delay patterns group by GROUP. This

is repeated continuously until a non empty S is generated or
function f becomes null (line 4). That way, any test vector
in S guarantees that a transition (STR or STF) fault at the
gate G is sensitized with the maximum possible delay and the
potential error propagate to an observable point.

The systematic removal of the maximum delay patterns
group set Mi (1 ≤ i ≤ n) maintains the unate property of
the given TL function f . This is a necessary condition for
a function to be a TL function. If set Mi (1 ≤ i ≤ n) is
removed arbitrarily from the function f then f becomes binate
[1]. Thus, algorithm GROUP always produces the group of
patterns so that all patterns in the group exhibit the same
maximum delay. Each pattern in the set set M1 excites the
highest propagation delay at the fault site.

IV. ATPG TO COPE WITH WEIGHT DEVIATIONS

Let us assume that each weight wi (0 ≤ i ≤ n) during
manufacturing has an absolute deviation of δi (0 ≤ i ≤ n), i.e.,
each manufactured weight value w

′

i (0 ≤ i ≤ n) is in the range
wi ± δi.

This section presents algorithm EDTL, an enhancement of
DTL, which generates a set of patterns for each fault such that
one of them is guaranteed to excite the maximum delay under
any weight deviations.

Let a be the set of onset minterms, and b be the set of offset
minterms of the given TLG function. Let τ be the maximum
allowable shift in the weight summation W l of any minterm
pl due to the deviation in the manufactured weights which
does not affect the TLG functionality. From [1], we have that:

τ = min{y1, y2} (3)

where
y1 = min

k∈a
{W k} − w0

y2 = w0 −max
l∈b

{W l}

Let us assume for simplicity, that all weight deviations have
the same value δ. Then the maximum value of δ for the given
weight configuration of the TLG is [1]:

δ = min{ y1
n+ 1

,
y2

n+ 1
} (4)

It is shown below that although the manufactured weight
values may deviate from the designed value, the set of patterns
that excite the maximum delay are the patterns that belong
to set Mi that was generated by procedure GROUP when
considering the designed weights. (This is the set of patterns
expressed in terms of local gate inputs. See line 5 of Algorithm
DTL.)

Patterns (minterms) belong into different groups when con-
sidering their designed weights. Consider the patterns of two
separate groups set Mi and set Mj of a TLG so that i is
less than j. Under weight deviations, the patterns of any such
group may further partitioned into sub groups.

Consider the gate G1 shown in Figure 3. For the given
weight configuration (w1, w2, w3, w4 : w0) = (4, 4, 2, 2 : 5),
we get τ = 1 and δ = 0.2. For the eleven onset minterms
of the TLG function, we get four delay patterns groups. The

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, AAAAAAA 2016

set M1 contains minterms p5, p6, p9, and p10 with W 5 = 6.
The set M2 contains minterms p7, p11, and p12 with W 7 =
8. The set M3 contains minterms p13 and p14 with W 13 =
10. The set M4 contains minterm p15 with W 15 = 12.

Assume that the manufactured weight values for
(w

′

1, w
′

2, w
′

3, w
′

4 : w
′

0) = (4.2, 3.8, 1.8, 1.8 : 5.2). For
this new weight configuration, calculating the weight sum
for each minterm shows set M1 is further divided into
two subgroups. The first is called set M1.1 and contains
minterms p5 and p6 with W 5 = 5.6. The second is called
set M1.2 and contains minterms p9 and p10 with W 9 = 6.
Similarly, set M2 is divided into subgroups. The first is
called set M2.1 and contains minterm p7 with W 7 = 7.4.
The second is called set M2.2 and contains minterm p11
with W 11 = 7.8. The third is called set M2.3, and contains
minterm p12 with W 12 = 8. None of the minterms in set M1

never assigned lower delay patterns group less than set M2

for any deviated weight configurations. Similar results are
obtained for any two separate groups set Mi and set Mj .

Theorem 1: For any n input gate G of an implemented TN,
no patterns in set Mi will excite lesser or equal delay at G
than a pattern in set Mj , for any i < j.

Proof: Theorem 1 is shown considering only the onset
minterms. Similar arguments hold for the offset minterms. For
simplicity in explanation, assume that n is even.

From Equation 4, we have that the maximum allowable
shift in the weight summation for any minterm due to weight
deviation is τ = (n+ 1) * δ. Consider minterms px and py in
any two groups set Mi and set Mj so that i is less than j.

Let gij = |W x − W y| for any two minterms px and py
in set Mi and set Mj . Due to the weight deviations during
manufacturing of a TLG, the new g

′

ij value will be in the
range:

gij − τ ≤ g
′

ij ≤ gij (5)

Case 1: Assume that there is no variable that is active in
both minterms px and py . Let nx and ny be the number of
active variables in px and py , respectively. In order for the
theorem to be violated, the weight summation of minterms in
set Mi must increase, and those in set Mj must decrease.
Therefore W x is increased by nx ∗ δ and W y is decreased by
ny ∗ δ. However, nx + ny is always less than or equal to n.
This results in g

′

ij being no less than gij − (n ∗ δ).
Case 2: Assume that there is nxy number of variables

that are active in both minterms px and py . In order for the
theorem to be violated, the weight summation of minterms in
set Mi must increase and those in set Mj must decrease. In
the worst case either all the common active variables will have
a positive deviation or all will have a negative deviation. In
the following, we prove the case assuming that they all have a
positive deviation. Similar arguments hold when they all have
a negative deviation. We have that W x is increased by nx ∗ δ
and W y is decreased by (ny − nxy) ∗ δ. However, nx + ny -
nxy is always less than or equal to n. This results in g

′

ij being
no less than gij − (n ∗ δ).

From Equation 5, we have that gij−g
′

ij is less than τ . If the
weight configuration of a TLG satisfies that τ is not greater

than min{gij} then none of the minterms in the group set Mi

will have less delay than the any minterm in the group set Mj

for any weight deviated configurations, when i is less than j.
This proves Theorem 1.

Not all the test vectors of S generated by DTL using
designed weights may excite the maximum delay for some
deviated weight configurations. However, at least one will do.
In the above example, the highest delay group (set M1) of the
designed weights is sub divided into two subgroups (set M1.1,
set M1.2) for one of the deviated weight configurations. Only
the patterns in the set M1.1 excite highest delay for this
deviated weight. Hence all patterns of S must be applied
instead of only one. However, only the vectors in S that bring
different input assignment at a gate G must be applied. Using
the above, DTL is enhanced into algorithm EDTL (Enhanced
DTL).

Algorithm 3: EDTL(F)

Input: Transition fault F at gate G with functionality f
Output: Test vector set S

1 S = ∅ ;
2 set Mi = GROUP(F) ;
3 P = PROPAGATION(G,F) ;
4 foreach pj ∈ set Mi do
5 Dj = MAP(pj) ;
6 if Dj ∩ P ̸= ∅ then
7 Sj = A pattern in Dj ∩ P ;
8 S = Sj ∪ S ;
9 endif

10 end
11 return S ;

The overview of the EDTL is presented in Algorithm 3.
First, GROUP (line 2) generates the set of input patterns
set Mi, where i is the minimum value in algorithm DTL that
produces a pattern which excites maximum possible transition
delay at gate G. The patterns that excite and propagate the
latched error to an observable point are generated by PROP-
AGATION (line 3). Then procedure MAP (line 5) constructs
one or more input patterns Dj for each pattern pj in set Mi

at the inputs of the gate G. A pattern Sj which bring the
distinct maximum delay pattern pj at the gate G is formed
by selecting one of the patterns in the intersection of Dj

and P (line 7). That way, a collection of patterns Sj (j ≥ 1)
is formed, where each Sj will bring distinct pj of set Mi

at the gate G which sensitizes maximum possible delay and
propagate to an observable point in the TN. This collection of
patterns Sj (j ≥ 1) is denoted by S.

The vector set generation by EDTL is illustrated for the STR
fault on gate G3 in the circuit in Figure 3. In this example,
set Mi = set M1. First, the set of vectors set Mi and P is
determined for the given fault. The patterns in P are listed in
right hand side of Table II.

The set of patterns in set M1 is shown in column 1 of
Table III. There are five input patterns in set M1 which excite
the maximum delay for rising transition at gate G3. Patterns
Dj and Dj ∩ P for each minterm pj in set M1 are shown
in columns 2 and 3 of Table III. There are no input patterns

PALANISWAMY et al.: ATPG FOR DELAY DEFECTS IN CURRENT MODE THRESHOLD LOGIC CIRCUITS 7

TABLE III
SENSITIZATION VECTOR SET BY EDTL

pj in set M1 Dj = MAP(pj) Dj ∩ P Sj

x1 x2 x3 x6 x7 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

0 1 1 1 1 0 1 1 x 0 0 1 1 x 0 0 1 1 0 0
1 0 1 1 0 1 0 1 x 1 1 0 1 x 1 1 0 1 0 1
1 1 0 1 0 1 1 0 0 x 1 1 0 0 x 1 1 0 0 0

1 1 0 1 1 1 1 0 1 1
1 0 1 0 1
1 1 0 0 1

that justify which bring the patterns ”10101” or ”11001” of
set M1 at gate G3.

Each Sj , 1 ≤ j ≤ 3 consists of one test vector from each
Dj ∩ P, 1 ≤ j ≤ 3 which brings distinct input assignments
that excite the maximum delay at gate G3 for STR under any
weight deviations. Patterns Sj are listed in the fourth column
of Table III. Observe that the number of patterns generated
by EDTL to detect TF under weight deviations is reduced to
three.

V. TEST SET COMPACTION

This section presents a compact ATPG which we call
CEDTL (Compact EDTL). For each STR or STF fault at gate
G, algorithm EDTL generates several test functions Dj ∩ P
(step 6 of Algorithm 3) and then selects a test pattern Sj

(step 8 of Algorithm 3). A compact test set is obtained by
manipulating the test functions of several gates.

Algorithm 4: CEDTL(TN)

Input: A TN
Output: A compact test set for all TFs

1 CLUSTERING(TN) ;
2 foreach C in TN do
3 Ci, 1 ≤ i ≤ 2 = COMPATIBLE(C) ;
4 foreach Ci, 1 ≤ i ≤ 2 do
5 return Compact Test Set = COMPACT(Ci) ;
6 end
7 end

Algorithm CEDTL is presented in Algorithm 4. Clusters of
gates are formed by traversing the TN in reserve topological
order. The size of each cluster is limited to a predetermined
constant value c. The clustering phase helps the scalability of
algorithm CEDTL. This procedure is called CLUSTERING.

Consider a STR for gate G at some cluster C, and an
immediate predecessor gate G at C which is connected to
G with an input that has a positive weight. Then CEDTL will
generate a compact test set by considering the test functions
for a STR at G. If the weight of that input is negative then
CEDTL will compact by considering the test functions for a
STF at G. This is due to the unate timing property of threshold
logic gates [1]. That way, two sets of test functions are formed
for each cluster C: Set C1 consists of all functions that are
compatible with the test functions for a STR at the output gate
of cluster C, and set C2 consists of all functions compatible
to a STF at the output gate of the cluster. This procedure is
called COMPATIBLE.

Then a greedy algorithm is applied to the functions in
Ci, 1 ≤ i ≤ 2. Any two test functions in Ci are covered
by a single function as long as their intersection is non empty.
The two functions must target faults at different gates in set
Ci since different test functions for the same gate contain
disjoint minterms. For any non-empty function intersection,
the two functions are substituted by their intersection, they
are not considered any further. This process is repeated for the
test functions until only empty intersections are encountered
among the test functions in each Ci. This greedy algorithm is
called COMPACT.

Procedure COMPACT is illustrated with the help of Ta-
bles IV and V. Table IV considers a cluster C containing gate
G3 of the TN of Figure 3 and its two immediate predecessor
gates G2 and G1. We consider a STR at G3, i.e., procedure
COMPACT operates on the set of functions C1. Since the input
weights of G3 are positive, the test functions for STR at G2

and G1 are considered by COMPACT (Line 5).
The second column of Table IV contains the three test

functions for gate G3. According to the notation used in
algorithm EDTL, they are labeled as S1, S2 and S3. The third
column of Table IV lists the two test functions S1 and S2 for
gate G2. Finally, the fourth column lists the two test functions
generated by EDTL for gate G1. Clearly EDTL will return
seven patterns for this cluster. For simplicity in the notation,
let the test function Si for the gate Gj be denoted as Si (Gj).

In this example, algorithm COMPACT first considers
S1 (G3), and tries to determine whether there is an non-empty
intersection among the test functions Si, 1 ≤ i ≤ 2, of
the predecessor gate G2. These functions are examined in
increasing order. Therefore it first examines whether S1 (G3)
intersects with S1 (G2), and this turns out to be an non-empty
test function. At this point, S1 (G3) and S1 (G2) are covered
by the intersection of sets S1 (G3) and S1 (G2), and are not
considered any further. The test set for the gates in the cluster
is already reduced by one pattern.

Next, the test function resulting from the intersection of sets
S1 (G3) and S1 (G2) is considered for possible intersections
with the two test functions S1 and S2 of gate G1 in column 4.
They are considered in increasing order. The first intersection
is empty but the second intersection turns out to be non-empty.
Let T1 be the set resulting from the intersection of S1 (G3),
S1 (G2), and S2 (G1). Therefore the sets S1 (G3), S1 (G2),
and S2 (G1) are not considered any further. The test set for
the cluster is reduced by another pattern.

Now the algorithm backtracks to the test functions in the
second column of Table IV, and considers S2 (G3). It does

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, AAAAAAA 2016

TABLE IV
TEST FUNCTIONS IN SET C1 OF A CLUSTER WITH GATES G3 , G2 , AND G1

Test CMTL Gates
Function G3 G2 G1

Label x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

S1 0 1 1 x 0 0 1 1 0 0 x x 0 1 0
S2 1 0 1 x 1 1 0 1 0 1 0 1 1 0 0

1 0 1 0 1
S3 1 1 0 0 x

1 1 0 1 1

TABLE V
CEDTL FOR THE EXAMPLE IN TABLE IV

Test Functions Test Patterns
x1 x2 x3 x4 x5

T1 = S1 (G3) ∩ S1 (G2) ∩ S2 (G1) 0 1 1 0 0
T2 = S2 (G3) ∩ S2 (G2) 1 0 1 0 1

T3 = S3 (G3) 1 1 0 1 1
T4 = S1 (G1) 1 1 0 1 0

not examine if it will intersect with set T1 since the latter
function covers S1 (G3) and the result is known to be negative.
Thus, it examines whether S2 (G3) intersects with S2 (G2).
This results in an non-empty set T2 which covers S2 (G3)
and S2 (G2). The test set is reduced by another pattern at this
point.

Next, the algorithm finds whether T2 intersects with the only
possible test function S1 (G1). Set S1 (G1) is disjoint with T2

and their intersection results in empty set. Now the algorithm
backtracks and considers the test function S3 (G3) in the
second column. The algorithm finds whether it intersects with
S1 (G1) which is the only remaining uncovered test function.
However, these two test functions (S3 (G3) and S1 (G1)) are
disjoint, and the algorithm terminates.

In this example, CEDTL reduces the test set from seven
pattern to four patterns. The right hand side of Table V lists the
four test functions, and the left hand side list the test patterns,
one pattern per test function.

VI. EXPERIMENTAL RESULTS

Experiments are presented which show that some pattern
excite significantly more delay than the others and they must
be selected when testing for delay defects. Then a software tool
was employed to synthesize pipelined TNs for each ISCAS 85
and ITC 99 benchmark. Finally, the section demonstrates the
efficiency of the three ATPG tools presented in this paper:
The basic ATPG tool called DTL, the enhanced ATPG called
EDTL that accommodates weight variation, and the compact
ATPG method called CEDTL.

All software tools were implemented in the C++ language.
The experiments were conducted on a Sun-Blade 100 work-
station with a 1 Gigabyte RAM on the ISCAS 85 and ITC 99
Benchmark circuits [17], [18]. As described in Sections II-
V, the proposed method uses BDDs for each embedded TLG
in order to identify the maximum delay pattern set for the
gate, and a separate BDD for the whole circuit in order to

Fig. 5. Percent delay reduction of patterns.

generate the test patterns. Therefore we did not experiment
with the multiplier circuit c6288 since traditional BDDs cannot
easily handle such circuit functionalities. For such circuits, bi-
conditional BDDs have been introduced in [19], and the pro-
posed method can generate patterns by operating on this data
structure. However, such implementation details are beyond
the scope of this work.

First, an experimental study was conducted to determine the
impact of the different input patterns on the delays that they
excite at gates. There exist 17 representative threshold logic
functions which represent all the threshold logic functions of
exactly four inputs [1]. All these functions were considered.
The rising transition delay value for each onset minterm
of each function was calculated using Equation 2. Many
minterms of a function exhibited the same delay. For each
function, they were categorized into different groups set Mi,
and all the minterms in the same group set Mi had the same
delay. For each function, up to five groups were formed, i.e.,
set M1 to set M5 with the patterns in set M1 exhibiting the
highest delay.

For a STR fault, Figure 5 shows the percentage reduction
in the delay value for set Mi, i > 2, in comparison with the
delay for set M1. The reduction is listed for each possible
four input threshold function. Note that only 16 out of 17
functions are listed because when analyzing the results of
Figure 5 we observed that for one of them only set M1 can
be formed. The reduction in the delay value for set M2 is at
least 43% when compared with the delay of set M1, and 34%
on average. Similarly, the reduction in the delay for set M3

PALANISWAMY et al.: ATPG FOR DELAY DEFECTS IN CURRENT MODE THRESHOLD LOGIC CIRCUITS 9

Fig. 6. Total faults of synthesized ITC 99 and ISCAS 85 benchmarks.

is at least 54% when compared with the delay of set M1,
and 46% on average. Additional experiments have indicated
similar behavior for STF fault delay values. These results show
that it is important to test each transition fault with patterns in
set M1. Patterns for set M2 should only be applied if none
of the patterns in set M1 propagates to an output, and so on.

Subsequently, a synthesis tool was developed, so that each
benchmark is synthesized into a pipelined TN. The gates of the
input combinational circuit were mapped into CMTL gates. It
is designed using a modification of [7] since [7] is based on
the asummable property of [1] and does not assign weights.
Thus, the tool of [7] was modified in order to assign weights
of each TLG. The TL function identification method proposed
in [20] was employed to check whether a particular Boolean
gate cluster can be implemented as a TLG. The fan-in bound
of a TLG was set to eight.

Figure 6 presents the total number of TFs (both STR
and STF) in the pipelined TN for each benchmark circuit
considered for the proposed ATPG methods. The TFs of the
synchronized buffers are not examined by the ATPG because
the set of patterns which detects the TFs at the CMTL gate
output will also detect the TFs of the synchronized CMTL
buffer connected to it. Hence, we consider only the TFs (both
STR and STF) at the output stem of each CMTL gate. Figure 6
also presents total number of TFs in the original CMOS
Boolean circuits for each benchmark circuit. The reduction
in total number of TFs in the TN is 39% in the best case
when compared with the original CMOS Boolean circuit, and
28% on average.

The remainder of the section focuses on the efficiency of
the presented ATPG algorithms. Figure 7 shows the fault
coverage by DTL for each benchmark circuit. It shows the
fault coverage is at least 96.9% and that observed in circuit
c3540. The fault coverage was 99% on average among all
benchmarks. The best fault coverage was 100%. Figure 7 also
shows the fault coverage by considering only the patterns in
set M1. It was at least 95% and that observed in circuit
c3540. On average, it was 97% among all benchmarks. The
best observed fault coverage was 99%.

Figure 8 shows the time performance of the algorithm DTL.

Fig. 7. Fault coverage by DTL.

Fig. 8. Time performance of DTL.

It took approximately 13 seconds to handle all the TFs in the
benchmark c1908. It was also observed that the maximum
execution time never exceeded 74 seconds for any of the
benchmark circuit. Thus DTL is a very scalable ATPG method.

Figure 9 shows the time performance of algorithm EDTL
that considers weight variations due to manufacturing. EDTL
took approximately 16 seconds to handle all the TFs in
benchmark c1908. It was also observed that the maximum
execution time never exceeded 92 seconds for any of the
benchmark circuit. This is also a very scalable ATPG. Note
here that the fault coverage of EDTL is same as of DTL since
it substitutes a test pattern for DTL by a test set in order to
ensure that the fault is detected under any weight variation.

Finally, the experiments focused on the efficiency (test set
reduction) and time performance of CEDTL. Let |S| be the
total number of patterns needed to detect all TFs by EDTL,
and |C| is the total number of patterns needed to detect all TFs
by CEDTL. Then the percentage reduction in test set size by
CEDTL is calculated as by ((|S| − |C|) / |S|) ∗ 100.

Figure 10 shows the average percent reduction on the
number of test vectors that were needed to detect all the TFs
under any weight deviation in each benchmark circuit. The
cluster size bound was set to four in all benchmark circuits.
For circuit b11, the reduction was at least 40%. On average

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, AAAAAAA 2016

Fig. 9. Time performance of EDTL.

Fig. 10. Test set size reduction by CEDTL.

Fig. 11. Time performance of CEDTL.

among all benchmark circuits, the reduction was 52%. In the
best case, it was 62%.

Figure 11 shows the time performance of CEDTL (exclud-
ing the time taken by EDTL). It took approximately 4 seconds
to handle all the TFs in the benchmark c1908. It was also
observed that the maximum execution time never exceeded
22 seconds for any of the benchmark circuit. This is also a

very scalable ATPG.

VII. CONCLUSION

In this article, we presented ATPG tools for current mode
threshold logic gate circuits which are designed using CMOS
technology. They use the transition fault model that can handle
small delay defects due to the pipeline nature of the designs.
Since different patterns excite different delays at the fault
site, ATPG tools focus on generating patterns that excite the
maximum possible delay for each fault. Three ATPG tools
have been presented. The basic ATPG tool is very scalable
and ensures very high fault coverage. A second ATPG tool
was developed to handle instances where the manufactured
weights differ from designed weights due to process variations.
A compact ATPG has also been presented that reduce the test
size for all benchmark circuits by approximately 52%.

REFERENCES

[1] S. Muroga, Threshold Logic and Its Applications. New York: Wiley-
Interscience, 1971.

[2] S. Bobba and I. N. Hajj, “Current-mode threshold logic gates,” in Proc.
IEEE ICCD, pp. 235–240, Sep. 2000.

[3] C. B. Dara, T. Haniotakis, and S. Tragoudas, “Delay analysis for an
n-input current mode threshold logic gate,” in Proc. IEEE ISVLSI, pp.
344–349, Aug. 2012.

[4] J. Yang, N. Kulkarni, S. Yu, and S. Vrudhula, “Integration of threshold
logic gates with RRAM devices for energy efficient and robust operation,”
in Proc. IEEE/ACM NANOARCH, pp. 39–44, May. 2014.

[5] J. Quintana, M. Avedillo, and J. Nunez, “Design guides for a correct DC
operation in RTD-based threshold gates,” in Proc. IEEE Euromicro DSD,
pp. 530–536, 2006.

[6] D. Bol, J. D. Legat, J. M. Quintana, and M. Avedillo, “Monostable-
Bistable transition logic elements: Threshold logic vs. Boolean logic
comparison,” in Proc. IEEE ICECS, pp. 1049–1052, Dec. 2006.

[7] L. Pierce and S. Tragoudas, “Nanopipelined threshold network synthesis,”
ACM Jour. Emerg. Technol. Comput. Syst., vol. 10, no. 2, pp. 17:1–17:17,
Mar. 2014.

[8] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, “Threshold network
synthesis and optimization and its application to nanotechnologies,” IEEE
Trans. Comput-Aided Des., vol. 24, no. 1, pp. 107–118, Jan. 2005.

[9] M. K. Goparaju, A. K. Palaniswamy, and S. Tragoudas, “A fault tolerance
aware synthesis methodology for threshold logic gate networks,” in Proc.
IEEE DFT, pp. 176–183, Oct. 2008.

[10] T. Gowda, S. Vrudhula, N. Kulkarni, and K. Berezowski, “Identification
of threshold functions and synthesis of threshold networks,” IEEE Trans.
Comput-Aided Des., vol. 30, no. 5, pp. 665–677, May. 2011.

[11] A. K. Palaniswamy and S. Tragoudas, “Improved threshold logic syn-
thesis using implicant-implicit algorithms,” ACM Jour. Emerg. Technol.
Comput. Syst., vol. 10, pp. 21:1– 21:32, Apr. 2014.

[12] K. Weidong and E. Banatoski, “Testing for threshold logic circuits based
on resonant tunneling diodes,” in Proc. IEEE NANO, vol. 1, pp. 387–390,
Jun. 2006.

[13] P. Gupta, R. Zhang, and N. K. Jha, “Automatic test generation for
combinational threshold logic networks,” IEEE Trans. VLSI Syst., vol. 16,
no. 8, pp. 1035–1045, Jul. 2008.

[14] S. Krstic and K. Cheng, Delay Fault Testing for VLSI Circuits. London:
Springer, 2012.

[15] R. E. Bryant, “Graph based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[16] A. K. Palaniswamy, S. Tragoudas, and T. Haniotakis, “ATPG for
transition faults of pipelined threshold logic circuits,” in Proc. IEEE DTIS,
pp. 1–5, May. 2014.

[17] J. Hayes, ISCAS Benchmark Circuits. [Online] Available: http://www.
eecs.umich.edu/∼jhayes/iscas/

[18] Polito, ITC Benchmark Circuits. [Online] Available: http://www.cad.
polito.it/downloads/tools/itc99.html

[19] L. Amaru, P. Gaillardon, and G. De Micheli, “A novel canonical bdd
for logic synthesis targeting xor-rich circuits,” in Proc. IEEE DATE, pp.
1014–1017, Mar. 2013.

PALANISWAMY et al.: ATPG FOR DELAY DEFECTS IN CURRENT MODE THRESHOLD LOGIC CIRCUITS 11

[20] A. K. Palaniswamy and S. Tragoudas, “An efficient heuristic to identify
threshold logic functions,” ACM Jour. Emerg. Technol. Comput. Syst., pp.
19:1–19:17, Aug. 2012.

Ashok Kumar Palaniswamy received the B.E.
degree in electronics and communication from the
Anna University, Chennai, India, in 2006, the M.S.
and Ph.D. degrees in electrical and computer engi-
neering from Southern Illinois University, Carbon-
dale, IL, USA, in 2009 and 2014, respectively.

He is currently with Synopsys, Inc., Sunnyvale,
CA, USA. His Ph.D. dissertation is in the area
of synthesis and testing of circuits consisting of
threshold logic gates. His research interests include
Synthesis and Verification of digital circuits, VLSI

Design and Test Automation, and VLSI Testing.

Spyros Tragoudas (BSc 1986, MSc 1988, PhD
1991) is Professor and Department Chair at the
Electrical and Computer Engineering (ECE) De-
partment, Southern Illinois University at Carbondale
(SIUC), and the Director of the National Science
Foundation (NSF) Industry University Cooperative
Research Center (IUCRC) on Embedded Systems at
the SIUC site. He has held prior appointments with
the faculty of the ECE Department at the University
of Arizona, and with the faculty of the Computer
Science Dept. at SIUC.

His current research interests are in the areas of VLSI Design and Test
Automation and embedded systems. Dr. Tragoudas has published over two
hundred papers in journals and peer-reviewed conference proceedings in these
areas, and has received three outstanding paper awards for research in VLSI
Testing. His research has been funded from federal agencies and industry. He
has served and current serving on the editorial board of several journals, the
technical program committees of many conferences, was the program chair
of the DFTS’09, and the general chair of DFTS’10.

Themistoklis Haniotakis received a B.S. degree
in physics and a Ph.D. degree in Informatics from
the University of Athens, Greece. His Ph.D. thesis
is in the area of Self Checking Circuits. He is a
faculty at the Electrical and Computer Engineering
Department at Southern Illinois University at Car-
bondale and has held prior appointment as a faculty
in University of Patras, Greece.

His interests include VLSI design, Fault-Tolerant
computing, VLSI Testing and Design For Testability,
RF IC Design and Test. He has 20 Journal and more

than 50 Conference publications. He is a member of IEEE, has receive best
paper award (ISQED), has been a reviewer in IEEE journals and conferences
and has been a member of various Program Committees.

	Southern Illinois University Carbondale
	OpenSIUC
	2016

	ATPG for Delay Defects in Current Mode Threshold Logic Circuits
	Ashok Kumar Palaniswamy
	Spyros Tragoudas
	Themistoklis Haniotakis
	Recommended Citation

	tmp.1455226313.pdf.6398b

