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Abstract 

The human mitochondrial genome is replicated by DNA polymerase J in concert with key 

components of the mitochondrial DNA (mtDNA) replication machinery.  Defects in mtDNA 

replication or nucleotide metabolism cause deletions, point mutations, or depletion of mtDNA.  

The resulting loss of cellular respiration ultimately induces mitochondrial genetic diseases, 

including mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral 

syndromes, and mtDNA deletion disorders such as progressive external ophthalmoplegia, 

ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy.  Here we review 

the current literature regarding human mtDNA replication and heritable disorders caused by 

genetic changes of the POLG, POLG2, Twinkle, RNASEH1, DNA2 and MGME1 genes. 

 

 

 

Key Words: POLG, POLG2, DNA polymerase J, mitochondrial DNA replication, mitochondrial 

DNA depletion syndrome, Alpers syndrome, progressive external ophthalmoplegia, ataxia-

neuropathy. 
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Introduction 

 Human mitochondrial DNA (mtDNA) occurs as a double stranded negatively supercoiled 

circular genome of 16,569 base pairs (bp) that encodes 37 genes required for energy 

production (Figure 1).  Thirteen genes encode proteins required for the mitochondrial electron 

transport chain or oxidative phosphorylation (OXPHOS).  The remaining 24 genes encode 22 

transfer RNAs and 2 ribosomal RNAs required for synthesis of the 13-mitochondrial 

polypeptides.  A cell can contain several thousand copies of mtDNA distributed within hundreds 

of individual mitochondria [1] or within an elaborate intracellular network of reticular 

mitochondria  Several proteins associate with mtDNA at distinct nucleoid structures on the 

matrix-side of the inner membrane [2], and such protein-mtDNA nucleoids can be visualized as 

foci or puncta via immunocytochemistry or live-cell fluorescence microscopy [3,4]. 

 Mitochondrial disorders can be caused by genetic defects in mtDNA or in nuclear genes 

that encode proteins that function within mitochondria [5].  A class of genes specifically linked to 

instability of mtDNA has emerged over the last fifteen years (Table 1).  Disorders associated 

with multiple mtDNA deletions and point mutations comprise commonly known disorders such 

as progressive external ophthalmoplegia (PEO) and ataxia-neuropathy syndromes but also 

some very rare disorders of TCA cycle abnormalities [6].  MtDNA depletion syndromes (MDS) 

include early childhood disorders such as Alpers-Huttenlocher syndrome (AHS), hepatocerebral 

syndromes, myocerebrohepatopathy spectrum (MCHS), and fatal myopathies [7,8].  Mutations 

in genes required for nucleotide biosynthesis and mitochondrial homeostasis are also linked to 

MDS and deletion syndrome (Table 1), although a comprehensive review is beyond the scope 

of this paper.  Here we review the known enzymes and proteins comprising the human mtDNA 

replication machinery and briefly discuss the current models of mtDNA replication.  Attention is 

focused on mtDNA maintenance disorders associated with mutation of genes encoding 

components of the mtDNA replication and repair machinery: POLG, POLG2, Twinkle, 

RNASEH1, DNA2, and MGME1 genes. 
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The mtDNA replisome 

 MtDNA is replicated and repaired by the mtDNA polymerase J ol J  Human pol J is 

a heterotrimer consisting of one 140-kDa catalytic subunit (p140 encoded by POLG) and a 110-

kDa homodimeric processivity subunit (p55 accessory subunit encoded by POLG2), Figure 1 

and Figure 2.  The p140 catalytic subunit harbors active sites for 5’-3’ DNA polymerase, 3’-5’ 

exonuclease, and 5’ dRP lyase activities [9,10].  The p55 imparts high processivity onto the 

holoenzyme by increasing the binding affinity to DNA [4,11].  The majority of intermolecular 

contacts occur between the C-terminal region of the ‘proximal’ p55 monomer (purple in Figure 

2) and the AID subdomain (Accessory-Interacting Determinant subdomain that extends an an 

‘arm’ around p55) of the p140 catalytic subunit [12-15].  Pol J functions in conjunction with a 

number of additional replisome components including: 1) topoisomerase, 2) Twinkle mtDNA 

helicase, 3) mitochondrial RNA polymerase (mtRNAP), 4) RNaseH1, 5) mitochondrial single-

stranded DNA-binding protein (mtSSB), and 6) mitochondrial DNA ligase III, (Figure 1).  Other 

factors critical for maintenance of the mitochondrial genome include: the multifunctional 

mitochondrial transcription factor A (TFAM) with important roles in mtDNA replication and 

packaging, the RecB-type mitochondrial genome maintenance 5’-3’ exonuclease 1 (MGME1), 

the RNA and DNA 5’ flap endonuclease (FEN1), and the helicase/nuclease, DNA2 [16-18].  

MGME1, FEN1, and DNA2 have all been implicated in the mtDNA base excision repair (BER) 

pathways [19].  Interestingly, DNA2 has also been demonstrated to stimulate pol J activity and 

co-localizes with Twinkle in the mitochondrial nucleoid, suggesting an important role in the 

replisome [20,21].  Most all DNA polymerases start DNA synthesis by extension of an RNA 

primer that is synthesized by a primase.  In mitochondria primase function is afforded by the 

mitochondrial RNA polymerase (mtRNAP) [22].  Recently the translesion DNA polymerase-

primase, PrimPol, was identified in mitochondria isolated from a human embryonic kidney cell 

line [23].  Translesion DNA polymerases are specialized enzymes that pass through DNA 
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damage.  However, PrimPol is likely required for mtDNA repair and not for mtDNA replication, 

as PRIMPOL-/- knockout mice are viable.  Of note to human genetic disease, mutation of 

PRIMPOL is associated with the ocular disorder high myopia [24,25].   

 

Overview of human mtDNA replication 

 Replication of animal cell mtDNA is complex and slow, taking approximately one hour to 

synthesize both daughter strands [26].  An asymmetric mode of replicating animal mtDNA 

daughter strands was proposed in the 1970s [27]. In this strand displacement model of mtDNA 

replication, two origins of replication direct the replisome to initiate continuous DNA synthesis 

but initiation is temporally regulated at these locations [26].  First, daughter heavy (H) strand 

synthesis is initiated at the H-strand origin of replication (OH) located within the control region 

(Figure 1).  The two mtDNA strands are named heavy and light (L) based on the ability to 

separate them on alkaline cesium chloride buoyant density gradients [28].  To initiate nascent 

H-strand synthesis pol J must add nucleotides to the 3'-end of an existing RNA primer and in 

human mitochondria these RNA primers occur at very low frequency [26].  This low frequency 

implies that either primers are removed very quickly or another initiation mechanism takes 

place.  Evidence supporting the role of human mtRNAP as the mtDNA primase comes from the 

identification of primers located adjacent to nascent displacement-loop (D-loop) H-strands 

isolated from human KB cell mitochondria [29] and from in vitro experiments demonstrating that 

mtRNAP has primase activity [22].  MtRNAP directs polycistronic transcription from H- and L-

strand promoters located in the mtDNA control region (Figure 1).  The 5’-end of RNA primers 

have been mapped to the L-strand promoter and, therefore, likely serve to initiate mtDNA 

replication at OH [29].  Support for RNA priming of mtDNA synthesis comes from observations 

that replicating mtDNA obtained from mouse embryonic fibroblasts, and lacking RNase H1, 

retain unprocessed primers at replication [30].  
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According to the strand displacement model when H-strand synthesis is two-thirds of the 

way complete L-strand synthesis is initiated at OL, the L-strand origin of replication.  The template 

H-strand OL sequence is predicted to adopt a stem-loop structure that is recognized by mtRNAP 

[31].  OL-dependent initiation has been faithfully reconstituted in vitro and mtRNAP initiates primer 

synthesis from a poly-dT stretch located within the single-stranded region of the stem-loop [31].  

Recent experiments utilizing mitochondria isolated from human HeLa cells demonstrated there 

are sufficient in vivo levels of mtSSB to cover the displaced parental H-strand during mtDNA 

replication and mtSSB specifically restricts the initiation of nascent L-strand synthesis to OL [32].  

Furthermore, exploiting immunoprecipitation and DNA sequencing, mtSSB was demonstrated to 

bind exclusively to the H-strand and there is a gradient of high to low mtSSB occupancy from 

immediately downstream of OH in the control region towards OL, in a clockwise direction, Figure 1 

[32].  This observation supports the hypothesis that mtSSB stabilizes the H-strand when displaced 

during replication.  Before termination of daughter strand replication, the two mtDNA must 

segregate to avoid catenation.  A recent study of human breast cancer and osteosarcoma cell 

 is the most prevalent human 

mitochondrial gyrase critical for decatenation of mtDNA circles during replication and relaxation of 

positive supercoils introduced during transcription and mtDNA replication [33].   

 Another model termed the bootlace model posits that processed RNA transcripts are 

“threaded” onto the displaced H-strand in a 3’-5’ direction and remain hybridized until they are 

displaced, degraded or further processed during the replication cycle [34].  Thus, the bootlace 

model suggests that formation of single-stranded sections of H-strand could be prevented.  

Advantages of mtDNA harboring an H-strand duplexed with mtRNA include: increased genomic 

stability due to the ability to repair single H-strand breaks annealed to RNA, protection of the H-

strand from base damage, and providing the information for mtDNA repair, as pol J is proficient 

in performing single-nucleotide reverse transcription [35]. 
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Of the two models, recent evidence using ChIP-seq mapping of the mtSSB to the 

displaced loop and the retention of primers at the two origins in RNaseH1 deficient cells clearly 

points to the strand-displacement model as the more favored model of mtDNA replication. 

 

Disorders of POLG, the catalytic subunit of the human mtDNA polymerase J 

 In 2001, Van Goethem et al. published a seminal paper describing 4 mutations in the 

POLG gene associated with progressive external ophthalmoplegia (PEO) [36].  To date, there 

are nearly 300 pathogenic mutations in POLG (http://tools.niehs.nih.gov/polg/) [6,37-40], Figure 

3.  POLG disorders are very polymorphic in regard to the timing of presentation, organ-systems 

affected and overall symptoms.  These disorders are currently defined by at least six major 

phenotypes of neurodegenerative disease that include: AHS, MCHS, myoclonic epilepsy 

myopathy sensory ataxia (MEMSA), the ataxia neuropathy spectrum (ANS), autosomal 

recessive PEO (arPEO), and autosomal dominant PEO (adPEO) [7,8,41,42].  Also, alteration of 

the (CAG)10 repeat in the 2nd exon of POLG has been implicated in male infertility, testicular 

cancer, and Parkinsonism [8].  The POLG gene is unique in regard to the number of pathogenic 

mutations spread out over the gene and by the variety of diseases that they cause. 

 PEO is a mitochondrial disorder associated with mtDNA deletions and point mutations 

[36,43-45]. PEO is characterized by late onset (between 18 and 40 years of age) bilateral ptosis 

(sometimes initially unilateral), progressive weakening of the external eye muscle 

(ophthalmoparesis), proximal muscle weakness and wasting, and exercise intolerance.  The 

disease is often accompanied by cataract, hypogonadism, dysphagia, hearing loss and may, 

within several years, lead to development of neuromuscular problems [43,46].  Neurological 

problems may include depression or avoidant personality [47].  Skeletal muscles of PEO 

patients present ragged red fibers and lowered activity of respiratory chain enzymes.  AdPEO 

mutations in POLG are generally found in very conserved residues within the active site of the 

http://tools.niehs.nih.gov/polg/
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=autosomal-recessive
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=autosomal-recessive
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=autosomal-dominant
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p140 DNA polymerase domain [48], while recessive PEO mutations are spread throughout the 

gene. 

 Alpers syndrome typically occurs as an autosomal recessive mtDNA depletion disorder 

that affects children and young adults.  It is a devastating disease characterized by psychomotor 

retardation, hepatic failure, and intractable seizures, as well as tissue-specific mtDNA depletion.  

Alpers patients rarely survive past 10 years of age. 

 In an attempt to understand the disease progression and severity, biochemical and 

genetic analysis of POLG mutations have provided a useful understanding of the defects as well 

as the ability to predict the recessive or dominant nature of mutations.  Structures of the pol J 

trimer (3.2 Å resolution), the pol J-DNA complex bound to 2’-3’-dideoxycytidine triphosphate (3.3 

Å), and the pol J-DNA complex bound to deoxycytidine triphosphate (3.5 Å) have been solved 

by Yin and coworkers, Figure 2 [14,15].  These structures reveal asymmetric binding of the 

dimeric processivity subunit with the catalytic subunit, providing valuable insight into our 

understanding of the p140-p55 subunit interface.  The catalytic subunit partially extends an 

‘arm’, known as the AID subdomain around p55 (Figure 2).  In the structures of the replication 

complexes, p55 rotates by 22o toward the p140 polymerase domain but does not alter the 

interface between p140 and the proximal p55 monomer.  However, the distal p55 monomer 

becomes 16 Å closer, resulting in a substantial enhancement of the inter-subunit contacts 

between p140 and the distal monomer.  Collectively these differences contribute to a dynamic 

p140-distal p55 interface that may permit greater regulation of the DNA polymerase and 3’-5’ 

exonuclease functions, as compared to the subunit interface in the 3.2 Å pol J structure. 

Analysis of the structure-function relationship of Alpers mutations has revealed that recessive 

mutations cluster within five distinct functional modules in the pol J catalytic subunit [49].  This 

clustering can serve as a diagnostic tool to evaluate the consequence of new POLG mutations. 
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 A study of unrelated families with two mutant POLG alleles reported that A467T is the 

most common POLG disease mutation [40].  G848S, W748S, and T251I-P587L mutations are 

the second, third, and fourth most common POLG disease alleles, respectively.  A467T is 

commonly associated with Alpers, PEO, and ataxia-neuropathy.  Biochemical studies of the 

A467T p140 variant demonstrated reduced template binding, lower processivity and ~4% 

activity [50,51].  Furthermore, this residue results in compromised p55 interaction [52]. The 

A467 residue is located in a hydrophobic center of the thumb subdomain and the T467 hydroxyl 

group substitution may interrupt the local hydrophobicity of this region as previously suggested 

[49]. 

 With a single exception, all dominant POLG mutations that cause PEO map to the 

polymerase domain of pol J.  Three of the substitutions, H932Y, R943H and Y955C, change 

side chains that interact directly with the incoming dNTP [48,53].  These enzymes retain less 

than 1% of the WT polymerase activity and display a severe decrease in processivity [48], 

characteristics that likely cause the severe clinical presentation in heterozygotes.  In addition, 

the Y955C substitution increases nucleotide misinsertion errors 10- to 100-fold in the absence 

of exonucleolytic proofreading [54], and the Y955C pol J displays relaxed discrimination during 

incorporation of 8-oxo-dGTP or translesion synthesis opposite 8-oxo-dG [55].  A mouse 

transgenic model with the Y955C POLG allele targeted to the heart resulted in cardiomyopathy, 

loss of mtDNA, and enlarged hearts [56].  These experiments strongly suggest that large 

reductions in pol J polymerase activity are sufficient to cause mitochondrial dysfunction that is 

central to POLG-related disease. 

 

Disorders of POLG2, the mtDNA polymerase J�p55 processivity subunit 

 The first POLG2 mutation described (c.1352G>A; p.G451E) was identified in a late onset 

PEO patient with multiple mtDNA deletions in muscle and ptosis [57].  Biochemical experiments 
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revealed that the G451E p55 homodimer completely failed to stimulate pol J due to an inability 

to bind p140 [57,58]. The second case also involved a late onset adPEO patient with mtDNA 

deletions and harbored a c.1207-1208ins24 mutation, causing mis-splicing and skipping of exon 

7, thus impairing the C-terminal domain required for enzyme processivity [38]. 

 Seven more novel heterozygous mutations in POLG2 were identified in a cohort of 112 

patients suspected of POLG involvement but lacking POLG mutations [58]. Recombinant 

homodimeric proteins harboring these alterations were assessed for stimulation of processive 

DNA synthesis, binding to the catalytic subunit, binding to dsDNA and self-dimerization [58,59].  

In this analysis, G103S, L153V, D386E and S423Y displayed wild-type behavior, while P205R 

and R369G had reduced stimulations of processivity.  The L475DfsX2 variant was unable to 

bind the p140 catalytic subunit [58,59]. 

 Because currently identified POLG2 patients harbor heterozygous mutations, and 

because monomers within the p55 homodimer do not readily dissociate, the patients should 

harbor a mixture of p55 molecules: 25% WT homodimers, 25% variant homodimers, and 50% 

heterodimers [4]. Using a tandem affinity strategy and biochemistry to study p55 heterodimers 

we showed that one p55 disease variant, G451E, is dominant negative and associates with a 

wild-type p55 monomer in pol J to poison the enzyme’s activity. These results are in agreement 

with previous observations, that homodimeric G451E substitutions are located in critical regions 

of both monomers that interact with p140 [15] and that these substitutions result in decreased 

processivity due to compromised p55-p140 subunit interaction [57,58]. 

 In contrast to the WT/G451E p55 heterodimer, L475DfsX2, P205R, and R369G p55 

heterodimers maintain WT levels of processivity in vitro.  However, the P205R and L475DfsX2 

p55 disease variants failed to localize to mitochondrial nucleoids in vivo when tagged with GFP.  

Furthermore, homogenous preparations of P205R and L475DfsX2 formed aberrant reducible 

multimers in vitro.  This suggests that abnormal protein folding or aggregation or both contribute 
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to the pathophysiology in patients harboring these mutations.  Lastly, bioenergetics analysis in 

HEK293 cell lines stably expressing mutant p55 proteins utilizing the Seahorse Extracellular 

Flux Analyzer demonstrated significant decreases in reserve respiratory capacity [4].  We 

predict that the various defects associated with p55 disease variants ultimately result in 

diminished cellular energy reserves and by extension mitochondrial disease. 

 While the catalytic subunit has been shown to be essential for embryo development [60], 

genetic data regarding the processivity subunit has been lacking in mammalian systems.  To 

address the role of POLG2 in vertebrates we generated heterozygous (Polg2+/-) and 

homozygous (Polg2-/-) knockout (KO) mice [61].  Polg2+/- mice are haplosufficient and 

developed normally with no discernable difference in mitochondrial function through 2 years of 

age.  In contrast, Polg2-/- mice were embryonic lethal at day 8.0-8.5 p.c. with concomitant loss of 

mtDNA and mtDNA gene products.  This finding was similar to the POLG KO mouse [60].  

Electron microscopy demonstrated severe ultra-structural defects and loss of organized cristae 

in mitochondria of the Polg2-/- embryos as well as an increase in lipid accumulation compared 

with both WT and Polg2+/- embryos. This data indicates that p55 and p140 function is essential 

for mammalian embryogenesis and mtDNA replication. 

 

Disorders of Twinkle, the mtDNA helicase 

 The mitochondrial replicative helicase, referred as the Twinkle helicase, is encoded by 

the Twinkle gene (also known as PEO1 or C10orf2) and was originally identified by Spelbrink 

and co-workers in 2001 [62].   Electron microscopy and small angle X-ray scattering were 

recently utilized to examine the structure of Twinkle and revealed it forms hexamers and 

heptamers of variable conformation [63].  Missense mutations in Twinkle co-segregate with 

mitochondrial disorders such as adult-onset PEO, hepatocerebral syndrome with mtDNA 

depletion syndrome, and infantile-onset spinocerebellar ataxia.  Screening of Twinkle in 

individuals with adPEO, associated with multiple mtDNA deletions, identified 11 different 
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mutations that co-segregated with the disorder in 12 affected families [62].  At least 23 

additional missense mutations in Twinkle associated diseases have been reported in adPEO 

[64,65].  Although mutations in Twinkle are mainly associated with adPEO, several reports have 

described recessive mutations as a cause of either epileptic encephalopathy with mtDNA 

depletion or infantile-onset spinocerebellar ataxia [66-68]. 

 Expression of this protein in baculovirus, purification, and characterization has verified 

that Twinkle functions as a 5’-3’ DNA helicase and its activity is stimulated by mtSSB [69].  

Furthermore, when the core replisome components are combined in an in vitro reaction 

(containing pol J�p140 + pol J p55, Twinkle, and mtSSB) the reconstituted system efficiently 

utilize dsDNA mini-circle templates to synthesize ssDNA molecules greater than 15,000 

nucleotides in length, about the size of human mtDNA [70].  Overexpression of dominant 

disease variants of the mtDNA helicase in cultured human or Schneider cells results in stalled 

mtDNA replication or depletion of mtDNA [71-73], which emulates the disease state.  Two of five 

adPEO mutants exhibited a dominant negative phenotype with mtDNA depletion in Schneider 

cells [72].  Disease mutations in the linker region were shown to disrupt protein hexamerization 

and abolish DNA helicase activity [74].  Four mutations in the N-terminal domain demonstrated 

a dramatic decrease in ATPase activity [75]. 

 A comprehensive study of 20 recombinant disease variants overproduced and purified 

from Escherichia coli has reveled mild to moderate defects in helicase activity and ATP 

hydrolysis [37].  Utilizing optimized in vitro conditions some of the 20 variants also displayed 

partial reductions in DNA binding affinity and thermal stability.  Such partial defects are 

consistent with the delayed presentation of mitochondrial diseases associated with mutation of 

the Twinkle gene. 

 A mouse model of Twinkle deficiency has been produced by transgenic expression of a 

Twinkle cDNA with an autosomal dominant mutation found in patients [76,77].  These mice 

developed progressive respiratory chain deficiency at 1 year of age in skeletal muscle, 
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cerebellar Pukinje cells, and hippocampal neurons.  The affected cells accumulated multiple 

mtDNA deletions.  These ‘Deletor’ mice recapitulates many of the symptoms associated with 

PEO and provides a useful model for further study. 

 

Disorders of RNASEH1 

 A recent study by Reyes et al. examined three families with recessive inheritance 

patterns consistent with affected individuals harboring causative homozygous or compound-

heterozygous mutations [78].  Whole-exome sequencing revealed mutations in the RNASEH1 

gene.  RNASEH1 encodes the nuclear and mitochondrial isoforms of RNaseH1 

endoribonuclease, which hydrolyze RNA strands in RNA-DNA hybrids containing a stretch of at 

least four ribonucleotides [79].  Two in-frame methionine codons are located at the 5’-end of the 

gene and translation from the first produces RNaseH1 harboring a MTS that localizes it to the 

mitochondria while the second targets RNaseH1 to the nucleus [79,80].  All of the mitochondrial 

disease-associated amino acid substitutions map within the RNaseH1 catalytic domain.  

Recombinant disease variants harboring these substitutions had significantly reduced 

endoribonuclease activity relative to WT RNaseH1.  Two patients from two separate families 

were found to harbor compound-heterozygous mutations and four other affected siblings from a 

third family were found to harbor identical homozygous substitutions.  All affected individuals 

presented with chronic PEO and exercise intolerance in their twenties.  As the disorder 

progressed they also exhibited muscle weakness, dysphagia, impaired gait coordination, 

dysmetria and dysarthria.  Muscle biopsies revealed impaired mitochondrial respiratory chain 

complexes as well as ragged-red and COX-negative fibers.  Presumably, virtually all damage 

was mitochondrial genomic alterations in these patients (and in RNASEH1 KO mice [80]) due to 

a compensatory function of nuclear RNaseH2, which is not found within the mitochondrion. 

 

Disorders of DNA2, Dna2 Helicase/nuclease 
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 While mutations in POLG are the major cause of mtDNA-deletion, disorders diagnosis is 

typically only achieved in about half of the cases. In a cohort of patients suffering from 

childhood- and adult-onset mtDNA-deletion disorders, Ronchi and co-workers identified 

mutations in the gene encoding the mitochondrial helicase/nuclease DNA2 [81].  Human Dna2 

localizes to both the nucleus and to mitochondria and is required for mtDNA and nuclear DNA 

maintenance [21].  Dna2 participates in the mtDNA long-patch BER pathway (LP-BER) and the 

LP-BER machinery repairs small lesions such as those induced by oxidative damage.  The four 

patients identified in this study harbored heterozygous DNA2 mutations associated with 

hallmark mtDNA-deletion disease molecular and histochemical defects, mtDNA deletions and 

COX-negative muscle fibers respectively [81].  Recombinant forms of these Dna2 disease 

variants were determined to alter enzymatic nuclease, helicase, and ATPase activities and 

therefore, theoretically could compromise the LP-BER machinery in vivo. 

 

Disorders of MGME1, MGME1 RecB-type exonuclease 

 Homozygous nonsense mutations in the MGME1 gene were identified in several 

individuals with severe, recessive multi-systemic mitochondrial disorder from two families [17]. 

MGME1 encodes a mitochondrial RecB-type exonuclease of the PD-(D/E)XK nuclease 

superfamily.  Cellular fractionation indicated mitochondrial localization and protease-resistance 

for the native protein, and confocal microscopy convincingly demonstrated mitochondrial 

localization of a GFP-tagged recombinant form.  Patient samples exhibited partial deletion and 

depletion of mtDNA, and the postulated direct involvement of MGME1 in the maintenance of 

mtDNA and turnover of prematurely terminated 7S DNA replication intermediates is quite 

compelling.  Indeed, MGME1 null patient fibroblasts depleted of mtDNA by continuous culturing 

in the presence of 2’, 3’-dideoxycytidine (ddC) failed to repopulate their mtDNA upon release 

from ddC.  The accumulation of mtDNA replication intermediates in HeLa cells subjected to 

MGME1 siRNA was clearly demonstrated by 2D native agarose gel electrophoresis, further 
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supporting a role for MGME1 in maintenance of mtDNA replication in vivo. Preliminary 

qualitative characterization revealed the recombinant enzyme cleaves DNA but not RNA, 

requires a free 5’-end to a nucleic acid substrate, and prefers ssDNA over dsDNA in vitro [17]. 

 

Conclusions 

 Many unresolved issues exist in our understanding of mitochondrial syndromes.  POLG 

disorders are especially polymorphic and the question remains as to why some organs and 

tissues affected in mitochondrial disease and not others?  Does mtDNA mutation, deletion, and 

depletion play a role in tissue specific effects?  What role do mtDNA polymorphisms play in 

mitochondrial disease?  Do environmental toxicants influence these disorders?  These 

questions are important areas for future research endeavors and will pave the way to 

understand disease pathophysiology and eventually to design therapies for treatment.  It is clear 

that nuclear genes functioning in maintenance of mtDNA are commonly altered alleles in 

mitochondrial disease.  Disorders of mtDNA stability are found in core proteins of mtDNA 

replication or in genes involved in supplying the mitochondrial nucleotide precursors needed for 

DNA replication (Table 1).  With current next generation sequencing techniques, and our 

awareness of current disease causing mutations in these genes, the incidence of identified 

variants in mitochondrial patients will continue to increase with molecular screening.  As an 

example, the number of individuals harboring a recessive pathogenic mutation in POLG has 

been estimated to approach 2% in the population [82].  However, the varied polymorphic nature 

of these diseases, as well as the age of presentation due to these gene mutations, stumps our 

understanding and challenges clinicians and researchers.  Why do individuals with certain 

POLG mutations present early with a devastating disorder, while others with the same POLG 

mutations present much later in life?  Continued in vitro biochemistry and model systems, such 

as yeast, tissue culture, and mice, are essential to understanding the consequence of these 
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mutations and to predict the in vivo consequences of newly identified mutations within these 

genes. 
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Figure Legends 

 

Figure 1.  Map of the human mitochondrial genome and the mtDNA replication fork.  The outer 

circle represents the 16,569 bp covalently closed circular double-stranded mtDNA.  

Counterclockwise from the top of the circle: Grey, control region including the heavy-strand 

origin of replication (OH) and the displacement-loop (D-loop); Green; 12 and 16 S rRNA; Blue, 

NADH dehydrogenase (ND) 1 and 2; Red, cytochrome oxidase (COX) I and II; Yellow, ATPase 

8 and 6; Red, COX III; Blue, ND 3, 4L, 4, 5, 6; Purple, cytochrome b.  The D-loop form of 

mtDNA is a triple-stranded structure that results from the template-directed termination of H-

strand synthesis soon after initiation resulting in mtDNA molecules with nascent H-strand 

annealed to them [83].  Recent evidence supports that the loading of the Twinkle helicase at the 

3’-end of the D-loop is reversible, indicating that this site is critical to regulating the switch 

between formation of D-loop molecules and initiation of mtDNA replication [84].  Black 

rectangles represent the 22 tRNA genes.  The inset illustrates the replisome at an area near the 

light-strand origin (OL) of replication located within the WANCY cluster of genes, which encode 

for tryptophan, alanine, asparagine, cysteine, and tyrosine tRNAs.  Black lines represent 

template mtDNA while green lines represent nascent mtDNA.  Main factors highlighted at the 

replication fork include: 1) the 5’-3’ DNA polymerase pol J 2) the enzyme topoisomerase (Topo) 

required for mtDNA unwinding ahead of the replication fork.  The phospodiester backbones of 

both mtDNA strands are enzymatically broken and rejoined allowing relaxation of positive 

supercoils introduced ahead of the replisome during replication fork elongation, 3) the 

hexameric replicative Twinkle mtDNA helicase required for ATP-dependent disruption of the 

hydrogen bonds that hold the two DNA strands together causing mtDNA duplex denaturation 

(strand separation), 4) mitochondrial RNA polymerase (mtRNAP) required for mitochondrial 

transcription as well as for RNA primer formation to initiate DNA replication, 5) RNaseH1 

required for RNA primer removal [31,70,85], 6) mitochondrial single-stranded DNA (ssDNA) 
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binding protein (mtSSB) required for ssDNA stabilization during mtDNA replication, 7) DNA 

ligase III (mtLigIII) required for mtDNA break (nick) sealing, 8) mitochondrial transcription factor 

A (TFAM), 9) mitochondrial genome maintenance 5’-3’ exonuclease 1 (MGME1), 10) flap 

endonuclease (FEN1), and 11) the helicase/nuclease, DNA2. 

 

Figure 2.  DNA polymerase J ternary structure.  The p140 catalytic subunit consist of: 1) an 

amino terminal domain (NTD, light grey), 2) an exonuclease domain (exo, dark grey), 3) a 

spacer domain comprised of an intrinsic processivity (IP) subdomain (yellow) plus the 

accessory-interacting determinant (AID) subdomain (orange), and 4) a DNA polymerase (pol) 

domain, which folds to resemble a “right-hand” comprised of three subdomains: the thumb 

(green), fingers (dark blue), and palm (red).  The p55 processivity subunit dimer is comprised of 

the proximal monomer (purple) and the distal protomer, light blue.  The DNA primer strand is 

colored red while the template strand is colored pink.  The figure was generated using UCSF 

Chimera and the published 3.3 Å crystal structure PDB ID 4ZTU; Szymanski et al. [15]. 

 

Figure 3.  Schematic diagram of POLG, the human DNA polymerase J�catalytic subunit gene, 

and the linear sequence of the p140 amino acid residues.  Amino acid substitutions encoded by 

POLG disease mutations are listed on the linear map and p140 domains and subdomains are 

color coded as in Figure 2. 
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Table 1.  Nuclear genes identified in mitochondrial patients that affect mtDNA stability* 
 
Gene Disorder Chromosomal 

locus 
Function 

 
mtDNA replication and repair 
POLG PEO / Alpers / ataxia 15q25 Pol J catalytic subunit  
POLG2 PEO 17q Pol J processivity subunit 
Twinkle (PEO1 or 
C10orf2) PEO / ataxia 10q24 MtDNA helicase 

RNASEH1 PEO / ataxia  2p25 Mitochondrial and nuclear 
RNaseH1 [78] 

DNA2 PEO 10q21.3-22.1 Mitochondrial and nuclear 
helicase/nuclease [81] 

MGME1 PEO, MtDNA 
depletion 20p11.23 RecB type exonuclease 

 
Maintaining dNTP pools 
ANT1 PEO 4q35 Adenine nucleotide translocator 
rTP MNGIE 22q13.33 Thymidine phosphorylase 
DGUOK MtDNA depletion 2p13 Deoxyguanosine kinase 
TK2 MtDNA depletion 16q22-23.1 Mitochondrial thymidine kinase 

SUCLA2 MtDNA depletion 13q14.2 ATP-dependent Succinate-CoA 
ligase 

SUCLG1 MtDNA depletion 2p11.2 GTP-dependent Succinate CoA 
ligase 

RRM2B MtDNA depletion 8q23.1 p53-Ribonucleotide reductase, 
small subunit 

MPV17 MtDNA depletion and 
deletion  2p23.3 Mitochondrial inner membrane 

protein 

ABAT MtDNA depletion 16p13.2 4-aminobutyrate aminotransferase 
[86] 

 
Mitochondrial homeostasis and dynamics 
OPA1 Dominant optic 

atrophy 3q29 Dynamin related GTPase 

MFN2 Recessive optic 
atrophy 1p36.22 Mitofusin 2 [87] 

FBXL4 MtDNA depletion, 
Encephalopathy 6q16.1-16.3 Mitochondrial LLR F-Box protein 

 

*Additional references for genes listed in the table can be found in the text of this article and in 

reference [88]. 
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