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Neighborhood Champions in Regular
Graphs

J. P. McSorley and W. D. Wallis,

Department of Mathematics,

Southern Illinois University,

Carbondale, IL 62901-4408. USA.

Abstract

For a vertex x in a graph G we define Ψ1(x) to be the number of
edges in the closed neighborhood of x. Vertex x∗ is a neighborhood
champion if Ψ1(x∗) > Ψ1(x) for all x 6= x∗. We also refer to such an x∗

as a unique champion. For d ≥ 4 let n0(1, d) be the smallest number
such that for every n ≥ n0(1, d) there exists a n vertex d-regular graph
with a unique champion. Our main result is that n0(1, d) satisfies
d+3 ≤ n0(1, d) ≤ 3d+1. We also observe that there can be no unique
champion vertex when d = 3.

1 Introduction

We assume the standard ideas of graph theory. All graphs considered in this
paper will be connected. We sometimes specify the vertex-set V and edge-set
E of a graph G by denoting the graph G(V,E). |V | and |E| are respectively
the order and size of G. The distance d(v, u) between two vertices v and u
in a graph is the number of edges in a shortest path from v to u. The closed
k-neighborhood of a vertex v is defined as

Nk[v] = {u ∈ V : d(v, u) ≤ k}.
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When k = 1 we simply use the term “neighborhood”.

The scale-k locality statistic Ψk(x) of vertex x in a connected graph
G(V,E) was defined in [4] to be the size of the subgraph induced by the
closed k-neighborhood of x. (This statistic is also called the number of edges
seen by x.) The scale-k scan statistic Mk(G) of G was then defined to be
the maximum over x ∈ V of the scale-k locality statistics:

Mk(G) = max
x∈V

Ψk(x).

In a mild abuse of notation, we define Ψ0(x) to be the degree of vertex x in
G, and M0(G) to be the maximum degree in G.

A champion for scale k is a vertex x∗ such that Ψk(x
∗) > Ψk(x) for

all x 6= x∗. The reasons for studying champions are discussed in [4]; in that
paper the authors discussed dramatic champions, for which Ψk(x

∗) >> Ψk(x)
for all x 6= x∗. In [3] we construct some families of dramatic neighborhood
champions, or champions for scale 1.

In this paper we focus on the pure graph theory of the situation, and con-
sider the existence of neighborhood champions for scale 1 in connected regular
graphs. We shall sometimes discuss graphs in which more than one vertex
attains the maximum value M1(G). We shall use the word “co-champion” to
denote these vertices.

1.1 Groupies

A related, but different, concept to a champion in G is a groupie in G. No
confusion should arise between the two: A vertex in G is a groupie if the
average degree of its neighbors is greater than or equal to the average degree
of G. The concept was introduced in [1] (see also [2]).

2



2 Cubic graphs: d = 3

Theorem 1. For d = 1, 2, and 3 there are no d-regular graphs with a unique
neighborhood champion.

Proof Clearly regular graphs of degrees d = 1 or 2 have no champions.

Now suppose G is a cubic graph: If M1(G) = 3 then every vertex attains
M1(G). If M1(G) = 4, then any vertex x with Ψ1(x) = 4 lies in exactly
one triangle, and the other vertices of the triangle are co-champions; so G
contains at least three co-champions. If M1(G) = 5 and vertex x sees five
edges, the configuration must be as shown in Figure 1, where y is a co-
champion. And if M1(G) = 6 (the maximum) we have G = K4, and every
vertex is a co-champion. Thus no cubic graph has a champion.

x

y

Figure 1: A cubic configuration

However, one can construct cubic graphs with precisely two co-champions,
or twin champions, for every even number n ≥ 10 of vertices. From above
we must have M1(G) = 5.

A short exhaustive search shows that this is impossible for fewer than 10
vertices (the graphs may be found on page 127 of [5]).

For every even n ≥ 10 we construct a cubic graph G on n vertices for
which Ψ1(x) = M1(G) = 5 for precisely two vertices. Our technique is to
implant the graph shown in Figure 2 as a subgraph of a host graph. The
implant graph H has six vertices a, b, p, q, y, z and adjacencies ap, bq, yp, yq,
zp, zq, yz.
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a p

y

q

z

b

Figure 2: The graph H to be implanted

Construction Select any triangle-free cubic graph on n − 4 vertices and
choose any edge ab in that graph. Delete this edge. Then identify vertices
a, b with the vertices a, b of H. See Figure 3 for an example of this; the value
of Ψ1(x) is shown on each vertex and the champion is emphasized.

Ψ1(y) = Ψ1(z) = 5, Ψ1(p) = Ψ1(q) = 4 and Ψ1(x) = 3 otherwise.

To show that the construction is always possible for n ≥ 10, we observe

Lemma 1. If n − 4 = 2s ≥ 6, there is a triangle-free cubic graph on n − 4
vertices.

Proof Take the integers modulo 2s as vertices. For each i, let vertex i be
adjacent to vertices i − 1, i + 1, and i + s (modulo 2s).

(This graph is called a Möbius ladder [5, p263].)

So we have

Theorem 2. For every even n ≥ 10 there exists a cubic graph on n vertices
with precisely two co-champions.
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Figure 3: Example for 10 vertices

3 General Constructions: d ≥ 4

For even d ≥ 4 let n0(c, d) be the smallest number such that for every n ≥
n0(c, d) there exists a n vertex d-regular graph with precisely c neighborhood
co-champions; for odd d we require existence for even n ≥ n0(c, d) only.

In this section we discuss n0(1, d).

The complete graph on n vertices is denoted Kn, while Km,n denotes the
complete bipartite graph with vertex-sets of sizes m and n. A one-factor
is a graph consisting of disjoint edges; in particular, given two ordered sets
of vertices Y = {y0, y1, . . . , yn−1} and Z = {z0, z1, . . . , zn−1}, we define the
one-factor F n

j (Y,Z) to consist of the edges

y0zj, y1z1+j, , . . . , yn−1zn−1+j ,

where subscripts are reduced modulo n. Then Kn,n can be represented as

F n
0 (Y,Z) ∪ F n

1 (Y,Z) ∪ . . . ∪ F n
n−1(Y,Z).

Lemma 2. Suppose d ≥ 4. For every t ≥ 0 there exists a d-regular graph,
with a neighborhood champion, on n = 3d + 2t + 1 vertices.

Proof Let H represent the complete graph on the d+1 vertices x0, x1, . . . , xd

with the d edges of the cycle x0x1x2 . . . xd−1 deleted. Take a copy of F n
0 (Y,Z)∪
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F n
1 (Y,Z)∪. . .∪F n

d−1(Y,Z), where n = d+t, and delete the edges y0z0, y1z1, . . . ,
yd−1zd−1. Adjoin this to H by adding edges x0y0, x0z0, x1y1, x1z1, . . . , xd−1yd−1,
xd−1zd−1.

In this graph,

Ψ1(xd) = d(d − 1)/2,

Ψ1(xi) = (d2 − 5d + 14)/2, for 0 ≤ i ≤ d − 1,

Ψ1(yj) = Ψ1(zj) = d, for 0 ≤ j ≤ n − 1.

Then xd is a champion provided d(d−1)/2 > (d2−5d+14)/2, that is d ≥ 4.

The above construction gives graphs whose order is of opposite parity
to d. When d is odd, this provides all possible orders from some point on,
because regular graphs of odd degree must have even order. However, for
even degree, another construction is needed for even orders.

Suppose G is the graph of Lemma 2 in the case where d ≥ 4 is even. We
modify G to form Ĝ as follows: Add a vertex x̂. Delete the d/2 edges x0y0,
x2y2, x4y4, . . . , xd−2yd−2, and add the d edges x̂x0, x̂y0, x̂x2, x̂y2, x̂x4, x̂y4, . . . ,
x̂xd−2, x̂yd−2.

The Ψ1 values of all vertices of G are unchanged. We have Ψ1(x̂) =
d +

(
d/2
2

)
= (d2 + 6d)/8. Thus vertex xd is still the champion, and we have

Lemma 3. Suppose d ≥ 4 is even. For every t ≥ 0 there exists a d-regular
graph, with a neighborhood champion, on n = 3d + 2t + 2 vertices.

Theorem 3. Suppose d ≥ 4. Then

d + 3 ≤ n0(1, d) ≤ 3d + 1.

Proof For any d ≥ 4 the only d-regular graph with d + 1 vertices is Kd+1,
which clearly doesn’t have a unique champion. And for odd d ≥ 4 there is no
d-regular graph with d + 2 vertices, so n0(1, d) ≥ d + 3. And for even d ≥ 4
the only d-regular graph with d+2 vertices is Kd+2 minus a one-factor, which
again doesn’t have a unique champion; so n0(1, d) ≥ d + 3 here also. Hence,
for any d ≥ 4, we have n0(1, d) ≥ d + 3. The upper bound n0(1, d) ≤ 3d + 1
comes from Lemmas 2 and 3.
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4 Small degrees: d = 4, 5

By inspection, there are no 4-regular (quartic) graphs on n = 7 or 8 vertices
with a unique champion (see [5, p145]). From Theorem 3 and the examples
for orders n = 9, 10, 11 and 12 shown in Figure 4 we see that n0(1, 4) = 9,
i.e., there is a 4-regular graph, with a neighborhood champion, on n vertices
whenever n ≥ 9.

Similarly, at degree 5, inspection shows (see [5, p154]) there are no quintic
graphs on n = 6 or 8 vertices with a unique champion. We present examples
on 10, 12 and 14 vertices in Figure 5, showing that n0(1, 5) = 10. Thus there
is a 5-regular graph, with a neighborhood champion, on n vertices for every
even n ≥ 10. So the cases of d = 4 or 5 are completely solved.
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7
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12 vertices

Figure 4: Small quartic graphs, each with a champion
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9 11 9

9 8 9

10 10

10 10

10 vertices

12

9 9 10 10 7

9 9 9 9 9 9

12 vertices

12

9 9 10 10 8

8 8 9 9 9 9

10 10

14 vertices

Figure 5: Small quintic graphs, each with a champion
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5 Directions for future work

In our constructions above of a d-regular graph with a unique champion
we allowed the function Ψ1 to take on as many values as the construction
demanded. In some applications it is desirable to restrict the range of Ψ1 to
just two values, namely Ψ1(x

∗), the value of Ψ1 at the champion vertex x∗,
and Ψ1(x) for all other vertices x 6= x∗. Some graphs with this property were
constructed in [4], and the existence of further graphs is an area for future
research.

Another problem is the existence of regular graphs with precisely two
co-champions. We discussed the d = 3 case earlier; some further results have
been obtained and will be the subject of a future paper.
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Combinatorial Theory 29A (1980), 354-360.

[2] E. Bertram, P. Erdös, P. Horák, J. S̆irán̆ and Zs. Tuza, Local and global
average degree in graphs and multigraphs. J. Graph Theory 18 (1994),
647–661.

[3] J. P. McSorley, C. E. Priebe and W. D. Wallis, Neighborhood Champi-
ons. (In preparation)

[4] C. E. Priebe and W. D. Wallis, On the Anomalous Behaviour of a Class
of Locality Statistics. Discrete Math. 308 no.10 (2008), 2034–2037.

[5] R. C. Read and R. J. Wilson, An Atlas of Graphs (Oxford U.P., 1999).

10


	Southern Illinois University Carbondale
	OpenSIUC
	2009

	Neighborhood Champions in Regular Graphs
	John McSorley
	Walter D. Wallis
	Recommended Citation


	hopRegFIN.DVI

