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Abstract

Each fixed integer n has associated with it bn
2 c rhombs: ρ1, ρ2, . . . , ρbn

2
c,

where, for each 1 ≤ h ≤ bn
2 c, rhomb ρh is a parallelogram with all

sides of unit length and with smaller face angle equal to h× π
n radians.

An Oval is a centro-symmetric convex polygon all of whose sides
are of unit length, and each of whose turning angles equals ` × π

n
for some positive integer `. An (n, k)-Oval is an Oval with 2k sides
tiled with rhombs ρ1, ρ2, . . . , ρbn

2
c; it is defined by its Turning Angle

Index Sequence, a k-composition of n. For any fixed pair (n, k) we
count and generate all (n, k)-Ovals up to translations and rotations,
and, using multipliers, we count and generate all (n, k)-Ovals up to
congruency. For odd n if an (n, k)-Oval contains a fixed number λ of
each type of rhomb ρ1, ρ2, . . . , ρbn

2
c then it is called a magic (n, k, λ)-

Oval. We prove that a magic (n, k, λ)-Oval is equivalent to a (n, k, λ)-
Cyclic Difference Set. For even n we prove a similar result. Using
tables of Cyclic Difference Sets we find all magic (n, k, λ)-Ovals up to
congruency for n ≤ 40.

Many related topics including lists of (n, k)-Ovals, partitions of the
regular 2n-gon into Ovals, Cyclic Difference Families, partitions of tri-
angle numbers, u-equivalence of (n, k)-Ovals, etc., are also considered.

Keywords: rhomb; tiling; polygon; oval; cyclic difference set; multiplier.
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1 Introduction

An (n, k)-Oval is a centro-symmetric convex polygon all of whose sides are of
unit length, and which is tiled by rhombs; see p.141 of Ball and Coxeter [1]
and Section 3.1 of Schoen [8]. In this paper we investigate (n, k)-Ovals; it
appears that this is the first significant piece of research concerning (n, k)-
Ovals to be published in the mathematical literature. A preliminary version
of some of this research first appeared in Schoen [8]. See Fig. 1 for an example
of a (15, 6)-Oval.
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Figure 1: A (15, 6)-Oval, X , its TAIS and RIV.

In Section 2 of this paper we define an (n, k)-Oval using its Turning
Angle Index Sequence (TAIS); we count all (n, k)-Ovals equivalent up to
translations and rotations. We introduce the concept of a multiplier for an
(n, k)-Oval and show how to generate all (n, k)-Ovals using multipliers.

In Section 3 we show the geometrical meaning of multiplier −1 for an
(n, k)-Oval. We count those (n, k)-Ovals with multiplier −1, and those with-
out multiplier −1. We define congruency for (n, k)-Ovals and count (n, k)-
Ovals up to congruency.
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In Section 4 we define the Rhombic Inventory Vector (RIV) of an (n, k)-
Oval. This vector contains the number of each type of rhomb that an (n, k)-
Oval contains. For each 2 ≤ n ≤ 10 we list all (n, k)-Ovals up to congruency,
and compute their RIVs.

In Section 5 we study magic (n, k, λ)-Ovals. For odd n a magic (n, k, λ)-
Oval contains a fixed number λ ≥ 1 of each type of rhomb ρ1, ρ2, . . . , ρbn

2
c;

there is a similar definition for even n. We prove that a magic (n, k, λ)-
Oval is equivalent to a (n, k, λ)-Cyclic Difference Set. Using tables of Cyclic
Difference Sets we find all non-trivial magic (n, k, λ)-Ovals up to congruency
for n ≤ 40.

In Section 6 the rhombs of the regular 2n-gon are partitioned into Ovals.
Cyclic Difference Families are introduced and are shown to be equivalent to
various Oval partitions; we also consider relevant integer partitions of the
triangular number

(
n
2

)
.

In Section 7 we define u-equivalence for (n, k)-Ovals. The RIV’s of two u-
equivalent (n, k)-Ovals are closely related to each other. For each 2 ≤ n ≤ 10
we list all (n, k)-Ovals up to u-equivalence .

2 (n, k)-Ovals, TAIS, the number of (n, k)-Ovals,

multipliers, generating all (n, k)-Ovals

Each fixed integer n ≥ 2 has associated with it bn
2
c rhombs: ρ1, ρ2, . . . , ρbn

2
c.

For each 1 ≤ h ≤ bn
2
c rhomb ρh is a parallelogram with all sides of unit

length and with smaller face angle equal to h× π
n

radians; h is the principal
index of the rhomb. The index of an adjacent face angle is n − h. The 7
rhombs for n = 15 are shown in Fig. 2.
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Definitions 2.1 Centro-symmetric, turning angle, Oval

(1) A polygon is centro-symmetric if it is unchanged by a rotation of π
radians (half a circle).

(2) The turning angle at a vertex of a polygon is the supplement of the
interior angle at that vertex.

(3) An Oval is a centro-symmetric convex polygon all of whose sides are of
unit length, and each of whose turning angles equals ` × π

n
for some

positive integer `.

Every Oval necessarily has an even number of sides, which are arranged
in k parallel pairs.

Definitions 2.2 (n, k)-Oval, Turning Angle Index Sequence –TAIS

(1) An (n,k)-Oval is an Oval with 2k sides; it is described by the pair (n, k)
and by its

(2) Turning Angle Index Sequence (TAIS), a list of the turning angle indices
for any k consecutive vertices.

We denote an arbitrary (n, k)-Oval by O and specify a stem vertex of O;
the TAIS of O is then the list of turning angle indices at the k consecutive
vertices taken in a counter-clockwise direction starting from the first vertex
after the stem vertex.

Remark 2.3 The TAIS T of an (n, k)-Oval is simply a k-composition of
n, i.e., an ordered list of k positive integers that sum to n: T = [t1 t2 · · · tk]
with each ti ≥ 1 and

∑k
i=1 ti = n.

ρ1

1

ρ2

2

ρ3

3

ρ4

4

ρ5

5

ρ6

6

ρ7

7

Figure 2: The 7 rhombs, and their principal indices, corresponding to n = 15.
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Example 2.4 The regular 2n-gon, {2n}, is an (n, n)-Oval with TAIS=[1 1 · · · 1]︸ ︷︷ ︸
n

.

See Fig. 5 for a picture of the regular 12-gon, {12}.

Example 2.5 (n, k) = (15, 6). In Fig. 3(a) we show the (15, 6)-Oval X
with TAIS T = [4 3 2 1 4 1]. We write X = O(T ) = O([4 3 2 1 4 1]). In (b)
the turning angle index at each vertex of X is shown, as well as all indices
of the

(
6
2

)
= 15 rhombs in X . Note that the indices along the straight line

at an ‘external’ vertex sum to n = 15, and the indices around an ‘internal’
vertex sum to 2n = 30.
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Figure 3: See Fig. 1. The (15, 6)-Oval X with TAIS T = [4 3 2 1 4 1].
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Let S = {s1, s2, . . . , sk} where 0 ≤ s1 < s2 < · · · < sk be a k-subset of
Zn with increasing elements. Throughout this paper the elements of S will
always be written in increasing order.

Let U(n) denote the group of units modulo n, i.e., the multiplicative
group of elements relatively prime to n.

Definitions 2.6 uS+z, z−equivalent and ≡z, cyclically-equivalent and ≡cyc

(1) uS + z = {us1 + z, us2 + z, . . . , usk + z} ⊆ Zn for u ∈ U(n) and z ∈ Zn.

(2) Two k-subsets S and S ′ of Zn are z-equivalent , S ≡z S ′, if there exists
z ∈ Zn such that S = S ′ + z.

(3) Two TAIS’s T and T ′ are cyclically-equivalent , T ≡cyc T ′, if T ′ is a cyclic
permutation of T .

Remark 2.7 As an example of (3) above:

[t1 t2 t3 t4] ≡cyc [t4 t1 t2 t3] ≡cyc [t3 t4 t1 t2] ≡cyc [t2 t3 t4 t1].

Sometimes we use = in place of ≡z or ≡cyc for convenience.

Let S∗(n, k) denote the set of all k-subsets S = {s1, s2, . . . , sk} ⊆ Zn

where 0 ≤ s1 < s2 < · · · < sk. Then ≡z is an equivalence relation on
S∗(n, k). We denote the set of equivalences classes of ≡z by S∗≡z

(n, k). In
an equivalence class [S]≡z or [S] we often use as representative the lowest
member of [S] in lexicographic ordering.

Let T ∗(n, k) denote the set of all k-compositions of n, i.e., the set of TAIS
T for all (n, k)-Ovals. Then ≡cyc is an equivalence relation on T ∗(n, k). We
denote the set of equivalences classes of ≡cyc by T ∗≡cyc

(n, k), and a typical
equivalences class by [T ]≡cyc or [T ].

Theorem 2.12 below gives a bijection between the sets S∗≡z
(n, k) and

T ∗≡cyc
(n, k).

Definitions 2.8 α(S) and O(α(S)) or O(T ), β(T )
Let S = {s1, s2, . . . , sk} ⊆ Zn where 0 ≤ s1 < s2 < · · · < sk.
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(1) α(S) is the ordered k-tuple

α(S) = [s2 − s1, s3 − s2, . . . , sk − sk−1, s1 − sk],

(note that s1−sk will be negative, it must be replaced with n−s1+sk).
Then O(α(S)) = O(T ) is the (n, k)-Oval with TAIS α(S) = T .

Let T = [t1 t2 · · · tk] be the TAIS of an (n, k)-Oval.

(2) β(T ) is the increasing k-subset of Zn

β(T ) = β([t1 t2 · · · tk]) = {0, t1, t1 + t2, . . . , t1 + t2 + · · · + tk−1}.

Remark 2.9 See similar definitions on p.221 of Beth, Jungnickel, and
Lenz [3].

Example 2.10 (n, k) = (15, 6). For the (15, 6)-Oval X of Example 2.5 with
TAIS T = [4 3 2 1 4 1] we have X = S = β(T ) = {0, 4, 7, 9, 10, 14}, then
α(X) = T .

Compare the following Theorem with Lemma 9.8, p.221 of [3].

Theorem 2.11 Let S and S ′ be k-subsets of Zn. Then S ≡z S ′ if and
only if α(S) ≡cyc α(S ′).

Proof. Necessity: as usual let S = {s1, s2, . . . , sk} where 0 ≤ s1 < s2 <
. . . < sk and α(S) = [s2 − s1, . . . , sk − sk−1, s1 − sk]. Suppose S ≡z S ′ then
there exists z ∈ Zn with

S ′ = S + z = {s1 + z, s2 + z, . . . , sk + z}
= {si + z, si+1 + z, . . . , sk + z, s1 + z, s2 + z, . . . , si−1 + z}

where 0 ≤ si + z < si+1 + z < . . . < si−1 + z is an increasing sequence for
some i = 1, 2, . . . , k. So

α(S ′) = [si+1 − si, . . . , s1 − sk, s2 − s1, . . . , si−1 − si−2, si − si−1]

≡cyc [s2 − s1, . . . , si−1 − si−2, si − si−1, si+1 − si, . . . , s1 − sk]

= α(S), as required.
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Sufficiency: if α(S) ≡cyc α(S ′) then α(S ′) is a cyclic permutation of α(S).
Without loss of generality let α(S) = [t1 t2 · · · tk] and α(S ′) = [ti ti+1 · · · tk t1 · · · ti−1]
for some i = 1, 2, . . . , k. Then β(α(S)) = {0, t1, t1 + t2, . . . , t1 + · · · + tk−1}
and

β(α(S ′)) = {0, ti, ti + ti+1, . . . , ti + · · · + tk + t1 + · · · + ti−2}
= β(α(S)) + (ti + · · · + tk)

≡z β(α(S)).

So β(α(S ′)) ≡z β(α(S)), but from Definitions 2.8 we have β(α(S)) = S −
s1 ≡z S for any S, and so S ≡z S ′ as required. �

Theorem 2.12 Let α≡ : S∗≡z
(n, k) ↔ T ∗≡cyc

(n, k) be given by α≡([S]) ↔
[α(S)]. Then α≡ is a bijection, and |S∗≡z

(n, k)| = |T ∗≡cyc
(n, k)|.

Remark 2.13 Geometrically speaking, if two TAIS’s T and T ′ are cyclically-
equivalent, then the Ovals O(T ) and O(T ′) can be ‘moved’ to one another
in the plane using translations and rotations, a reflection is not required; we
write O(T ) = O(T ′). The converse is also true. Thus T ≡cyc T ′ if and only
if O(T ) = O(T ′).

Definitions 2.14 O∗(n, k), O(n, k)

(1) O∗(n, k) is the set of (n, k)-Ovals equivalent up to translations and
rotations.

(2) O(n, k) = |O∗(n, k)| is the number of (n, k)-Ovals equivalent up to
translations and rotations.

Each Oval in O∗(n, k) has associated with it an equivalence class [T ] in
T ∗≡cyc

(n, k), and conversely each equivalence class [T ] in T ∗≡cyc
(n, k) gives an

Oval O(T ) in O∗(n, k). So O(n, k) = |T ∗≡cyc
(n, k)|. This function is well-

known to be the number of necklaces of size n with k white and n − k
black beads; for an explicit calculation of O(n, k) see p.468 of Van Lint and
Wilson [10]. Thus, letting gcd(n, k) denote the greatest common divisor of
n and k, and φ(x) denote Euler’s totient function, we have the following.

Theorem 2.15 For n ≥ 2 and k ≥ 2, the number of (n, k)-Ovals is

O(n, k) =
1

n

∑

d|gcd(n,k)

φ(d)

(n
d
k
d

)
. (1)
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2.1 Multipliers, generating all (n, k)-Ovals

We wish to generate all Ovals in O∗(n, k). To do this we find a representative
of each equivalence class [S] in S∗≡z

(n, k) and then use Theorem 2.12 to find
a representative of each equivalence class [T ] in T ∗≡cyc

(n, k).

Definitions 2.16 multiplier m and mult(S), mult(O)
Let S be a k-subset of Zn:

(1) m ∈ U(n) is a multiplier of S if S ≡z mS, i.e., if there exists z ∈ Zn

with S = mS + z. The set of multipliers of S is mult(S).

Let O(T ) be a (n, k)-Oval with TAIS T :

(2) m ∈ U(n) is a multiplier of O(T ) if m is a multiplier of S = β(T ). The
set of multipliers of O(T ) is mult(O(T )) = mult(S).

Remark 2.17 See Chapter VI of [3] for examples of how multipliers are
used in the theory of Cyclic Difference Sets; see also Section 5 of this paper.
The set mult(S) is a subgroup of U(n), and if S ≡z S ′ then mult(S) =
mult(S ′). Let T and T ′ be two different TAIS of an (n, k)-Oval O. Then
T ≡cyc T ′ and so β(T ) ≡z β(T ′) by Theorem 2.11, and then mult(β(T )) =
mult(β(T ′)). Hence mult(O) is independent of the TAIS of O.

Example 2.18 (n, k) = (15, 6). For the (15, 6)-Oval X of Examples 2.5
and 2.10 we have X = {0, 4, 7, 9, 10, 14} and so mult(X ) = mult(X) = {1},
the trivial group. For an example of a 6-set of Z15 with non-trivial multiplier
group consider Y = {0, 1, 4, 7, 10, 13}, here mult(Y ) = {1, 4, 7, 13}.

Now m ∈ mult(S) if and only if S ≡z mS. Hence the number of z-
inequivalent sets in {uS : u ∈ U(n)} equals the index of mult(S) in U(n),

i.e., equals |U(n) : mult(S)| = |U(n)|
|mult(S)|.

As an example of how to generate all Ovals in O∗(n, k) we generate all
Ovals in O∗(7, 3).

We have U(7) = {1, 2, 3, 4, 5, 6} and so |U(7)| = 6.
Start with A = {0, 1, 2}. So mult(A) = {1,−1} and |U(7) : mult(A)| = 3.

The 3 cosets of mult(A) in U(7) are mult(A), 2mult(A), and 3mult(A).
Hence the 3 z-inequivalent sets in {uA : u ∈ U(n)} are A1 = A,A2 = 2A =
{0, 2, 4}, and A3 = 3A = {0, 3, 6} ≡z {0, 1, 4}.

10



Then choose A′ = {0, 1, 3} from S∗(7, 3)\([A1] ∪ [A2] ∪ [A3]). We have
mult(A′) = {1, 2, 4} and |U(7) : mult(A′)| = 2. The 2 cosets of mult(A′)
in U(7) are mult(A′) and 3mult(A′). Hence the 2 z-inequivalent sets in
{uA′ : u ∈ U(n)} are A′1 = A′ and A′2 = 3A′ = {3, 5, 6} ≡z {0, 1, 5}.

Now S∗(7, 3)\([A1] ∪ [A2] ∪ [A3] ∪ [A′1] ∪ [A′2]) = ∅, so we stop. See
Example 2.19.

Example 2.19 (n, k) = (7, 3). Equation (1) gives O(7, 3) = |T ∗≡cyc
(7, 3)| =

1
7
φ(1)

(
7
3

)
= 5. Representatives of the 5 equivalence classes in both S∗≡z

(7, 3)
and T ∗≡cyc

(7, 3), and the bijection between them, are given in the table be-
low. The 5 (7, 3)-Ovals up to translations and rotations are O∗(7, 3) =
{O(T1),O(T2),O(T3),O(T4),O(T5)}, see Fig. 4 below. We will see that mul-
tiplier −1 plays an important role in this paper. We use ‘Ai’ for a set with
multiplier −1, and ‘Bi’ for a set without multiplier −1.

S T mult(S) |U(7)|
|mult(S)|

A1 = {0, 1, 2} ↔ T1 = [1 1 5] {1,−1} 3
A2 = {0, 2, 4} ↔ T2 = [2 2 3] {1,−1}
A3 = {0, 1, 4} ↔ T3 = [1 3 3] {1,−1}
B1 = {0, 1, 3} ↔ T4 = [1 2 4] {1, 2, 4} 2
B2 = {0, 1, 5} ↔ T5 = [1 4 2] {1, 2, 4}

O([1 1 5])

1 1

O([2 2 3])

2 2

O([1 3 3])

1
3

O([1 2 4])

1 2

 congruent

O([2 1 4])

2 1

Figure 4: The O(7, 3) = 5 (7, 3)-Ovals up to translations and rotations. The
last 2 form a congruent enantiomorphic pair.
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It is clear how to generalize Example 2.19 to generate all Ovals in O∗(n, k),
i.e., all (n, k)-Ovals up to translations and rotations, for an arbitrary (n, k)
starting with A = {0, 1, . . . , k − 1}.
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3 Multiplier −1, reversible T , congruent Ovals,

various counts

In this Section we consider multiplier −1 of an (n, k)-Oval O. We will return
to consideration of multiplier −1 in Section 5.

Let T = [t1 t2 · · · tk] be a TAIS of an (n, k)-Oval O.

Definition 3.1
←
T= [tk tk−1 · · · t1] is the reverse of T .

Lemma 3.2 Let S and S ′ be k-subsets of Zn. Then

(i) α(−S) ≡cyc

←−
α(S).

(ii) S ≡z −S ′ if and only if α(S) ≡cyc

←−
α(S ′).

Proof. (i) Let S = {s1, s2, . . . , sk}, where 0 ≤ s1 < s2 < · · · < sk. Then
−S = {−s1,−s2, . . . ,−sk} = {n − s1, n − s2, . . . , n − sk} = {n − sk, n −
sk−1, . . . , n− s2, n− s1}, in increasing order. So α(−S) = [sk − sk−1, . . . , s2−
s1, s1 − sk] ≡cyc [s1 − sk, sk − sk−1, . . . , s2 − s1] =

←−
α(S).

(ii) Necessity: let S ≡z −S ′ then α(S) ≡cyc α(−S ′) ≡cyc

←−
α(S ′) using Theo-

rem 2.11 and then part (i) above.

Sufficiency: let α(S) ≡cyc

←−
α(S ′) then α(S) ≡cyc α(−S ′) by part (i) applied to

S ′, and so S ≡z −S ′ by Theorem 2.11. �

Definition 3.3 TAIS T is reversible if it is cyclically-equivalent to its

reverse, i.e., if T≡cyc

←
T , (equivalently, T ∈

[←
T

]
or
←
T∈ [T ]).

Theorem 3.4 Let S be a k-subset of Zn. Then −1 ∈ mult(S) if and only
if α(S) is reversible.

Proof. Now −1 ∈ mult(S) if and only if S ≡z −S, if and only if

α(S) ≡cyc

←−
α(S), if and only if α(S) is reversible. �

Definitions 3.5 O(n, k;−1), O(n, k;−1)

13



(1) O(n, k;−1) is the number of (n, k)-Ovals with −1 as a multiplier.

(2) O(n, k;−1) is the number of (n, k)-Ovals without −1 as a multiplier.

A k-reverse of n is a reversible k-composition of n. In McSorley [6]
using Polya Theory we count the number of k-reverses of n up to cyclic
permutation; this number is denoted by R≡(n, k). From Theorem 3.4 above
we have O(n, k;−1) = R≡(n, k).

Theorem 3.6 For n ≥ 2 and k ≥ 2, the number of (n, k)-Ovals with −1
as a multiplier is

O(n, k;−1) =





(n−2
2

k−1
2

)
, if n is even and k is odd;

(n−1
2

k−1
2

)
, if n is odd and k is odd;

(n
2
k
2

)
, if n is even and k is even;

(n−1
2
k
2

)
, if n is odd and k is even.

For a given TAIS T we obtain Oval O
(←
T

)
from Oval O(T ) by reflecting

O(T ) in a straight line that (for simplicity) does not intersect O(T ). We

denote the reflection of O by
←
O.

When Ovals O(T ) and O
(←
T

)
cannot be moved to one another using only

translations and rotations, we say they are enantiomorphs of each other. In

this case O(T ) 6= O
(←
T

)
and a reflection is required to move O(T ) to O

(←
T

)

and vice-versa. (Oval O(T ) is congruent to O
(←
T

)
; see Section 3.1.) These

comments and Theorem 3.4 give the following.

Theorem 3.7 Let O(T ) be an (n, k)-Oval.

(i) O(T ) has multiplier −1 if and only if T is reversible, if and only if

O(T ) = O
(←
T

)
.

(ii) O(T ) does not have multiplier −1 if and only if T is not reversible,

if and only if O(T ) 6= O
(←
T

)
. Such Ovals occur in {O(T ),O

(←
T

)
}

(congruent) enantiomorphic pairs in O∗(n, k). (Hence there is an even
number of Ovals in O∗(n, k) without multiplier −1.)

14



Example 3.8 (n, k) = (7, 3). See Example 2.19.
O∗(7, 3) = {O(T1),O(T2),O(T3),O(T4),O(T5)}, and Theorem 3.6 gives
O(7, 3;−1) =

(
3
1

)
= 3.

If i = 1, 2, or 3, then −1 ∈ mult(O(Ti)) and so Ti≡cyc

←
Ti; eg., for i = 1

we have [1 1 5]≡cyc[5 1 1](=
←−

[1 1 5]).

If i = 4, or 5, then −1 6∈ mult(O(Ti)) and so Ti 6≡cyc

←
Ti; eg., for i = 4 we

have [1 2 4] 6≡cyc[4 2 1](=
←−

[1 2 4]).

The pair {O(T4),O(T5)} = {O(T4),O
(←
T4

)
} is a (congruent) enantiomor-

phic pair referred to in Theorem 3.7(ii).

3.1 Congruent Ovals

Definitions 3.9 congruent and ≡c

(1) Two k-subsets S and S ′ of Zn are congruent, S ≡c S ′, if S ≡z S ′ or
S ≡z −S ′.

(2) Two TAIS T and T ′ are congruent, T ≡c T ′, if T ≡cyc T ′ or T ≡cyc

←−
T ′ .

(3) Two (n, k)-Ovals O and O′ are congruent, O ≡c O′, if O = O′ or O =
←
O′,

i.e., if O can be moved to O′ by a sequence of translations, rotations,
or reflections, (isometries).

Then, from Theorem 2.11 and Lemma 3.2, we have the following.

Theorem 3.10 Let S and S ′ be k-subsets of Zn. Then S ≡c S ′ if and
only if α(S) ≡c α(S ′), if and only if O(α(S)) ≡c O(α(S ′)).

Definition 3.11 Mult(S) = mult(S) ∪ −mult(S).

Remark 3.12 It is straightforward to show that Mult(S) is a subgroup
of U(n). If −1 ∈ mult(S) then Mult(S) = mult(S), and if −1 6∈ mult(S)
then |Mult(S)| = 2 |mult(S)|.

Definitions 3.13 O∗c(n, k), Oc(n, k)

15



(1) O∗c(n, k) is the set of (n, k)-Ovals up to congruency.

(2) Oc(n, k) = |O∗c(n, k)| is the number of (n, k)-Ovals up to congruency.

In order to generate the set O∗c(n, k) for an arbitrary (n, k) we may use
the procedure in Section 2.1 to find O∗(n, k) and then combine congruent
enantiomorphic pairs of Ovals; see Theorem 3.7(ii). Alternatively, we may
use this procedure with the group mult(S) replaced by Mult(S).

Example 3.14 (n, k) = (7, 3). See Examples 2.19 and 3.8.
To find O∗c(7, 3) using the first method mentioned above we start with

O∗(7, 3) = {O(T1),O(T2),O(T3),O(T4),O
(←
T4

)
} and combine the last 2 Ovals

into a single congruency class to giveO∗c(7, 3) = {O(T1),O(T2),O(T3),O(T4)}.
Using the second method, the procedure of Section 2.1 with mult(S)

replaced by Mult(S) gives the following table:

S T Mult(S) |U(7)|
|Mult(S)|

A1 = {0, 1, 2} ↔ T1 = [1 1 5] {1,−1} 3
A2 = {0, 2, 4} ↔ T2 = [2 2 3] {1,−1}
A3 = {0, 1, 4} ↔ T3 = [1 3 3] {1,−1}
B1 = {0, 1, 3} ↔ T4 = [1 2 4] U(7) 1

This also gives O∗c(7, 3) = {O(T1),O(T2),O(T3),O(T4)}, the set of all (7, 3)-
Ovals up to congruency.

3.2 Oc(n, k), Oc(n, k;−1), and Oc(n, k;−1)

Definitions 3.15 Oc(n, k;−1), Oc(n, k;−1)

(1) Oc(n, k;−1) is the number of (n, k)-Ovals with −1 as a multiplier, up
to congruency.

(2) Oc(n, k;−1) is the number of (n, k)-Ovals without −1 as a multiplier,
up to congruency.

Lemma 3.16

Oc(n, k) =
1

2

(
O(n, k) + O(n, k;−1)

)
.

16



Proof.

Oc(n, k) = Oc(n, k;−1) + Oc(n, k;−1)

= O(n, k;−1) +
1

2
O(n, k;−1)

= O(n, k;−1) +
1

2
(O(n, k) −O(n, k;−1))

=
1

2
(O(n, k) + O(n, k;−1)).

At the second line we use O(n, k;−1) = Oc(n, k;−1) because if O and
O′ both have −1 as a multiplier then, from Definitions 3.9(3) and Theo-
rem 3.7(i), we have O = O′ if and only if O ≡c O′. And Oc(n, k;−1) =
1
2
O(n, k;−1) comes directly from Theorem 3.7(ii). �

Recall that O(n, k) is given explicitly in Equation (1).

Theorem 3.17 For n ≥ 2 and k ≥ 2, the number of (n, k)-Ovals up to
congruency is

Oc(n, k) =





1
2

(
O(n, k) +

(n−2
2

k−1
2

))
, if n is even and k is odd;

1
2

(
O(n, k) +

(n−1
2

k−1
2

))
, if n is odd and k is odd;

1
2

(
O(n, k) +

(n
2
k
2

))
, if n is even and k is even;

1
2

(
O(n, k) +

(n−1
2
k
2

))
, if n is odd and k is even.

Theorem 3.6 now gives the following.

Theorem 3.18 For n ≥ 2 and k ≥ 2, the number of (n, k)-Ovals without
−1 as a multiplier up to congruency is

Oc(n, k;−1) =





1
2

(
O(n, k) −

(n−2
2

k−1
2

))
, if n is even and k is odd;

1
2

(
O(n, k) −

(n−1
2

k−1
2

))
, if n is odd and k is odd;

1
2

(
O(n, k) −

(n
2
k
2

))
, if n is even and k is even;

1
2

(
O(n, k) −

(n−1
2
k
2

))
, if n is odd and k is even.
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n\k 2 3 4 5 6 7 8 9 10 Oc(n)
2 1 1
3 1 1 2
4 2 1 1 4
5 2 2 1 1 6
6 3 3 3 1 1 11
7 3 4 4 3 1 1 16
8 4 5 8 5 4 1 1 28
9 4 7 10 10 7 4 1 1 44
10 5 8 16 16 16 8 5 1 1 76
...

...
...

...
...

...
...

...
...

...
...

(a) Oc(n, k)

n\k 2 3 4 5 6 7 8 9 10 Oc(n;−1) n\k 2 3 4 5 6 7 8 9 10 Oc(n;−1)
2 1 1 2 0 0
3 1 1 2 3 0 0 0
4 2 1 1 4 4 0 0 0 0
5 2 2 1 1 6 5 0 0 0 0 0
6 3 2 3 1 1 10 6 0 1 0 0 0 1
7 3 3 3 3 1 1 14 7 0 1 1 0 0 0 2
8 4 3 6 3 4 1 1 22 8 0 2 2 2 0 0 0 6
9 4 4 6 6 4 4 1 1 30 9 0 3 4 4 3 0 0 0 14
10 5 4 10 6 10 4 5 1 1 46 10 0 4 6 10 6 4 0 0 0 30
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

(b) Oc(n, k;−1) (c) Oc(n, k;−1)

Table 1: Values of Oc(n, k), Oc(n, k;−1), and Oc(n, k;−1) for 2 ≤ k ≤ n ≤
10, and of Oc(n), Oc(n;−1), and Oc(n;−1) for 2 ≤ n ≤ 10.

See Table 1(a). The triangle of values of Oc(n, k) when read row-by-row
gives sequence A052307 in the Online Encyclopedia of Integer Sequences [7].

See Table 1(b). The triangle of values of Oc(n, k;−1) = O(n, k;−1) (see
Theorem 3.6) is equal to the triangle of sequence A119963 in [7] (with the
first two columns of 1’s removed). So Oc(n, k;−1) gives the first combi-
natorial interpretation of sequence A119963 in [7]. Thus (ignoring the first
two columns of 1’s) the (n, k) term in the triangle of sequence A119963 is
the number of (n, k)-Ovals with −1 as a multiplier, up to congruency. For
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the sequence of row sums of the triangle of sequence A119963 see sequence
A029744, and the comment ‘Necklaces with n beads that are the same when
turned over’.

See Table 1(c). When the triangle of values of Oc(n, k;−1) is read row-by-
row we obtain a new sequence, see sequence A180472 in [7]. For the sequence
of row sums of this triangle see sequence A059076: ‘Number of orientable
necklaces with n beads and two colors; i.e., turning over the necklace does
not leave it unchanged’.

Example 3.19 (n, k) = (7, 3). From Example 3.14 the number of (7, 3)-
Ovals up to congruency is 4. Theorem 3.17 gives Oc(7, 3) = 1

2
(O(7, 3)+

(
3
1

)
) =

1
2
(5 + 3) = 4, also. Of these 4 Ovals, 3 have −1 as a multiplier, and 1

does not. Theorem 3.6 gives Oc(7, 3;−1) =
(
3
1

)
= 3, and Theorem 3.18

gives Oc(7, 3;−1) = 1
2
(O(7, 3) −

(
3
1

)
) = 1

2
(5 − 3) = 1. Thus all counts for

(n, k) = (7, 3) from Example 3.14 are confirmed.

4 Rhombic Inventory Vector, all (n, k)-Ovals

for n ≤ 10

We use ⊆m to denote containment in multisets. For example, if multiset
M = {1, 1, 1, 2, 3, 3, 4, 4, 4, 4} then L = {1, 1, 1, 2, 4, 4} ⊆m M but L′ =
{1, 1, 1, 2, 2} 6⊆m M . We say that L is a multisubset of M . Further, we
replace a, a, . . . , a︸ ︷︷ ︸

b

by ab, so M = {13, 21, 32, 44}.

On p.141 of Ball and Coxeter [1] it is proved that every (n, k)-Oval O,
with 2 ≤ k ≤ n, can be tiled by a multiset of

(
k
2

)
rhombs chosen from

ρ1, ρ2, . . . , ρbn
2
c.

The regular 2n-gon, {2n}, is an (n, n)-Oval with TAIS=[1 1 · · · 1]︸ ︷︷ ︸
n

.

Definition 4.1 The Standard Rhombic Inventory, SRI2n, is the multiset
of

(
n
2

)
rhombs that tile {2n}.

There are bn
2
c different shapes of rhombs in SRI2n; see Section 2. When

n is odd, SRI2n contains n copies of each of the n−1
2

= bn
2
c shapes of rhomb,
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ρ1, ρ2, . . . , ρn−1
2

. When n is even, SRI2n contains n copies of each of the n
2
−1

non-square rhombs, ρ1, ρ2, . . . , ρn
2
−1, but only n

2
copies of the square ρn

2
.

For a fixed (n, k)-Oval O let λh equal the number of rhombs in O with
principal index h.

Definition 4.2 The Rhombic Inventory Vector (RIV) of Oval O, RIV(O),
is the vector (λ1, λ2, . . . , λbn

2
c) of length bn

2
c.

The sum of the components in RIV(O) equals
(

k
2

)
.

Example 4.3 (n, k) = (15, 6). See Figs. 1 and 3. The (15, 6)-Oval X is
tiled by

(
6
2

)
= 15 rhombs. The rhomb ρ4 occurs twice in X , so λ4 = 2. We

have RIV(X ) = (2, 1, 2, 2, 4, 2, 2).

The RIV of an (n, k)-Oval can be derived from its TAIS by constructing
its Oval Index Triangle, (OIT). The construction of an OIT is described
below for our (15, 6)-Oval X .

First we define the function r : Zn\{0} 7→ Zn\{0}:

r(a) =

{
a if a ≤ bn

2
c,

−a or n − a if a > bn
2
c.

(2)

We extend the definition of r to multisets M as follows: r(M) = {r(a) | a ∈ M}.

The TAIS for X is [4 3 2 1 4 1]. To compute RIV(X ):

(i) Delete the last turning angle index from the TAIS, thereby obtaining the
sequence of indices for the upper interior face angles of the rhombs in
the receptacle — the cluster of k − 1 rhombs that are incident on the
stem vertex of the Oval. (‘Receptacle’ is the term used by botanists to
denote the part of a plant that holds the fruit.) We call this sequence
the ‘truncated TAIS’. The truncated TAIS for X is [4 3 2 1 4].

(ii) The first row of the OIT equals the truncated TAIS. Below each pair of
consecutive indices in the first row enter their sum in the second row:

4 3 2 1 4
7 5 3 5
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(iii) Let hi,j denote the index in row i and position j of the triangle, where
i ≥ 3, and j = 1, 2, . . . , k−i, counting from the left. Now the indices at
each interior vertex of an (n, k)-Oval sum to 2n, so simple trigonometry
gives:

hi+1,j = hi,j + hi,j+1 − hi−1,j+1.

See the left-hand triangle in (iv) below.

(iv) Apply function r to the indices of the left-hand triangle, i.e., replace
index h > bn

2
c by n − h. The OIT is now complete.

4 3 2 1 4
7 5 3 5

9 6 7 r→
10 10

14

4 3 2 1 4
7 5 3 5

6 6 7
5 5

1

OIT

(v) Now count the frequency of each principal index in the OIT to obtain
RIV(X ) = (2, 1, 2, 2, 4, 2, 2), as above.

Recall the definition of α(S) from Definitions 2.8(1).

Definitions 4.4 δ(S), OIT(α(S)) or OIT(T )
Let S = {s1, s2, . . . , sk} ⊆ Zn.

(1) δ(S) = {sj−si : 1 ≤ i < j ≤ k} is a multiset of non-zero differences of S.

Note that |δ(S)| =
(

k
2

)
.

(2) OIT(α(S)) = OIT(T ) is the multiset of indices in the OIT with first
row [s2 − s1, s3 − s2, . . . , sk − sk−1], the truncation of α(S) = T .

Lemma 4.5 Let S = {s1, s2, . . . , sk} ⊆ Zn. Then OIT(α(S)) = r(δ(S)).
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Proof. Consider the triangle formed previously with hi,j as the index in
row i and position j, counting from the left, and let H denote the multiset
of all such hi,j.

We show for i = 1, 2, . . . , k−1, and j = 1, 2, . . . , k−i that hi,j = si+j−sj ∈
δ(S), i.e., that the indices in row i of this triangle are the difference of two
s’s ∈ S whose subscripts differ by i.

By definition of the triangle this is clearly true for i = 1, 2. Assume that
the hypothesis is true for rows 1, 2, . . . , i. Then, for i ≥ 3:

hi+1,j = hi,j + hi,j+1 − hi−1,j+1

= (si+j − sj) + (si+(j+1) − sj+1) − (s(i−1)+(j+1) − sj+1)

= s(i+1)+j − sj ∈ δ(S),

using strong induction at the second line. Hence the induction goes through,
and H ⊆m δ(S), but |H| =

(
k
2

)
= |δ(S)|, and so H = δ(S). Now apply r to

both sides of this equation to give the result. �

Example 4.6 (n, k) = (15, 6). Our (15, 6)-Oval X has TAIS T = [4 3 2 1 4 1].
So X = β(T ) = {0, 4, 7, 9, 10, 14}, giving δ(X) = {11, 21, 32, 42, 52, 61, 72, 91, 102, 141},
and r(δ(X)) = {12, 21, 32, 42, 54, 62, 72}. So RIV(X ) = (2, 1, 2, 2, 4, 2, 2), as
above.

Remark 4.7 It is straightforward to show that the multiset OIT(T ) doesn’t
depend on how we truncated T to form the first row of the OIT.

4.1 All (n, k)-Ovals and their RIV’s for n ≤ 10

In Tables 2 and 3 below we list and number all (n, k)-Ovals up to congruence,
and their RIV’s, for 2 ≤ n ≤ 10. We refer to these Ovals by their numbers
in later Sections.
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Oi k TAIS RIV
O1 2 [1 1] (1)

n = 2

Oi k TAIS RIV
O1 2 [1 2] (1)
O2 3 [1 1 1] (3)

n = 3

Oi k TAIS RIV
O1 2 [1 3] (1, 0)
O2 2 [2 2] (0, 1)
O3 3 [1 1 2] (2, 1)
O4 4 [1 1 1 1] (4, 2)

n = 4

Oi k TAIS RIV
O1 2 [1 4] (1, 0)
O2 2 [2 3] (0, 1)
O3 3 [1 1 3] (2, 1)
O4 3 [1 2 2] (1, 2)
O5 4 [1 1 1 2] (3, 3)
O6 5 [1 1 1 1 1] (5, 5)

n = 5

Oi k TAIS RIV
O1 2 [1 5] (1, 0, 0)
O2 2 [2 4] (0, 1, 0)
O3 2 [3 3] (0, 0, 1)
O4 3 [1 1 4] (2, 1, 0)
O5 3 [1 2 3] (1, 1, 1)
O6 3 [2 2 2] (0, 3, 0)
O7 4 [1 1 1 3] (3, 2, 1)
O8 4 [1 1 2 2] (2, 3, 1)
O9 4 [1 2 1 2] (2, 2, 2)
O10 5 [1 1 1 1 2] (4, 4, 2)
O11 6 [1 1 1 1 1 1] (6, 6, 3)

n = 6

Oi k TAIS RIV
O1 2 [1 6] (1, 0, 0)
O2 2 [2 5] (0, 1, 0)
O3 2 [3 4] (0, 0, 1)
O4 3 [1 1 5] (2, 1, 0)
O5 3 [1 2 4] (1, 1, 1)
O6 3 [1 3 3] (1, 0, 2)
O7 3 [2 2 3] (0, 2, 1)
O8 4 [1 1 1 4] (3, 2, 1)
O9 4 [1 1 2 3] (2, 2, 2)
O10 4 [1 2 1 3] (2, 1, 3)
O11 4 [1 2 2 2] (1, 3, 2)
O12 5 [1 1 1 1 3] (4, 3, 3)
O13 5 [1 1 1 2 2] (3, 4, 3)
O14 5 [1 1 2 1 2] (3, 3, 4)
O15 6 [1 1 1 1 1 2] (5, 5, 5)
O16 7 [1 1 1 1 1 1 1] (7, 7, 7)

n = 7

Table 2: All (n, k)-Ovals up to congruence and their RIV’s for 2 ≤ n ≤ 7.

5 Magic Ovals, cyclic difference sets, multi-

plier −1, all magic (n, k, λ)-Ovals for n ≤ 40

Recall S = {s1, s2, . . . , sk} ⊆ Zn, and r : Zn\{0} 7→ Zn\{0} from Equation
(2), and δ(S) from Definitions 4.4(1); let M be a multiset with elements from
Zn\{0}. We need two more definitions.

Definitions 5.1 fM (a), ∆(S)

(1) fM(a) is the frequency of a ∈ M .

(2) ∆(S) = δ(S) ∪ −δ(S) is the multiset of non-zero differences of S.
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Oi k TAIS RIV
O1 2 [1 7] (1, 0, 0, 0)
O2 2 [2 6] (0, 1, 0, 0)
O3 2 [3 5] (0, 0, 1, 0)
O4 2 [4 4] (0, 0, 0, 1)
O5 3 [1 1 6] (2, 1, 0, 0)
O6 3 [1 2 5] (1, 1, 1, 0)
O7 3 [1 3 4] (1, 0, 1, 1)
O8 3 [2 2 4] (0, 2, 0, 1)
O9 3 [2 3 3] (0, 1, 2, 0)
O10 4 [1 1 1 5] (3, 2, 1, 0)
O11 4 [1 1 2 4] (2, 2, 1, 1)
O12 4 [1 1 3 3] (2, 1, 2, 1)
O13 4 [1 2 1 4] (2, 1, 2, 1)
O14 4 [1 2 2 3] (1, 2, 2, 1)
O15 4 [1 2 3 2] (1, 2, 3, 0)
O16 4 [1 3 1 3] (2, 0, 2, 2)
O17 4 [2 2 2 2] (0, 4, 0, 2)
O18 5 [1 1 1 1 4] (4, 3, 2, 1)
O19 5 [1 1 1 2 3] (3, 3, 3, 1)
O20 5 [1 1 2 1 3] (3, 2, 3, 2)
O21 5 [1 1 2 2 2] (2, 4, 2, 2)
O22 5 [1 2 1 2 2] (2, 3, 4, 1)
O23 6 [1 1 1 1 1 3] (5, 4, 4, 2)
O24 6 [1 1 1 1 2 2] (4, 5, 4, 2)
O25 6 [1 1 1 2 1 2] (4, 4, 5, 2)
O26 6 [1 1 2 1 1 2] (4, 4, 4, 3)
O27 7 [1 1 1 1 1 1 2] (6, 6, 6, 3)
O28 8 [1 1 1 1 1 1 1] (8, 8, 8, 4)

n = 8

Oi k TAIS RIV
O1 2 [1 8] (1, 0, 0, 0)
O2 2 [2 7] (0, 1, 0, 0)
O3 2 [3 6] (0, 0, 1, 0)
O4 2 [4 5] (0, 0, 0, 1)
O5 3 [1 1 7] (2, 1, 0, 0)
O6 3 [1 2 6] (1, 1, 1, 0)
O7 3 [1 3 5] (1, 0, 1, 1)
O8 3 [1 4 4] (1, 0, 0, 2)
O9 3 [2 2 5] (0, 2, 0, 1)
O10 3 [2 3 4] (0, 1, 1, 1)
O11 3 [3 3 3] (0, 0, 3, 0)
O12 4 [1 1 1 6] (3, 2, 1, 0)
O13 4 [1 1 2 5] (2, 2, 1, 1)
O14 4 [1 1 3 4] (2, 1, 1, 2)
O15 4 [1 2 1 5] (2, 1, 2, 1)
O16 4 [1 2 2 4] (1, 2, 1, 2)
O17 4 [1 2 3 3] (1, 1, 3, 1)
O18 4 [1 2 4 2] (1, 2, 2, 1)
O19 4 [1 3 1 4] (2, 0, 1, 3)
O20 4 [1 3 2 3] (1, 1, 2, 2)
O21 4 [2 2 2 3] (0, 3, 1, 2)
O22 5 [1 1 1 1 5] (4, 3, 2, 1)
O23 5 [1 1 1 2 4] (3, 3, 2, 2)
O24 5 [1 1 1 3 3] (3, 2, 3, 2)
O25 5 [1 1 2 1 4] (3, 2, 2, 3)
O26 5 [1 1 2 2 3] (2, 3, 2, 3)
O27 5 [1 1 2 3 2] (2, 3, 3, 2)
O28 5 [1 1 3 1 3] (3, 1, 2, 4)
O29 5 [1 2 1 2 3] (2, 2, 4, 2)
O30 5 [1 2 2 1 3] (2, 2, 3, 3)
O31 5 [1 2 2 2 2] (1, 4, 2, 3)
O32 6 [1 1 1 1 1 4] (5, 4, 3, 3)
O33 6 [1 1 1 1 2 3] (4, 4, 4, 3)
O34 6 [1 1 1 2 1 3] (4, 3, 4, 4)
O35 6 [1 1 1 2 2 2] (3, 5, 3, 4)
O36 6 [1 1 2 1 1 3] (4, 3, 3, 5)
O37 6 [1 1 2 1 2 2] (3, 4, 4, 4)
O38 6 [1 2 1 2 1 2] (3, 3, 6, 3)
O39 7 [1 1 1 1 1 1 3] (6, 5, 5, 5)
O40 7 [1 1 1 1 1 2 2] (5, 6, 5, 5)
O41 7 [1 1 1 1 2 1 2] (5, 5, 6, 5)
O42 7 [1 1 1 2 1 1 2] (5, 5, 5, 6)
O43 8 [1 1 1 1 1 1 1 2] (7, 7, 7, 7)
O44 9 [1 1 1 1 1 1 1 1 1] (9, 9, 9, 9)

n = 9

Oi k TAIS RIV

O1 2 [1 9] (1, 0, 0, 0, 0)
O2 2 [2 8] (0, 1, 0, 0, 0)
O3 2 [3 7] (0, 0, 1, 0, 0)
O4 2 [4 6] (0, 0, 0, 1, 0)
O5 2 [5 5] (0, 0, 0, 0, 1)
O6 3 [1 1 8] (2, 1, 0, 0, 0)
O7 3 [1 2 7] (1, 1, 1, 0, 0)
O8 3 [1 3 6] (1, 0, 1, 1, 0)
O9 3 [1 4 5] (1, 0, 0, 1, 1)
O10 3 [2 2 6] (0, 2, 0, 1, 0)
O11 3 [2 3 5] (0, 1, 1, 0, 1)
O12 3 [2 4 4] (0, 1, 0, 2, 0)
O13 3 [3 3 4] (0, 0, 2, 1, 0)
O14 4 [1 1 1 7] (3, 2, 1, 0, 0)
O15 4 [1 1 2 6] (2, 2, 1, 1, 0)
O16 4 [1 1 3 5] (2, 1, 1, 1, 1)
O17 4 [1 1 4 4] (2, 1, 0, 2, 1)
O18 4 [1 2 1 6] (2, 1, 2, 1, 0)
O19 4 [1 2 2 5] (1, 2, 1, 1, 1)
O20 4 [1 2 3 4] (1, 1, 2, 1, 1)
O21 4 [1 2 4 3] (1, 1, 2, 2, 0)
O22 4 [1 2 5 2] (1, 2, 2, 0, 1)
O23 4 [1 3 1 5] (2, 0, 1, 2, 1)
O24 4 [1 3 2 4] (1, 1, 1, 2, 1)
O25 4 [1 3 3 3] (1, 0, 3, 2, 0)
O26 4 [1 4 1 4] (2, 0, 0, 2, 2)
O27 4 [2 2 2 4] (0, 3, 0, 3, 0)
O28 4 [2 2 3 3] (0, 2, 2, 1, 1)
O29 4 [2 3 2 3] (0, 2, 2, 0, 2)
O30 5 [1 1 1 1 6] (4, 3, 2, 1, 0)
O31 5 [1 1 1 2 5] (3, 3, 2, 1, 1)
O32 5 [1 1 1 3 4] (3, 2, 2, 2, 1)
O33 5 [1 1 2 1 5] (3, 2, 2, 2, 1)
O34 5 [1 1 2 2 4] (2, 3, 1, 3, 1)
O35 5 [1 1 2 3 3] (2, 2, 3, 2, 1)
O36 5 [1 1 2 4 2] (2, 3, 2, 3, 0)
O37 5 [1 1 3 1 4] (3, 1, 1, 3, 2)
O38 5 [1 1 3 2 3] (2, 2, 2, 2, 2)
O39 5 [1 2 1 2 4] (2, 2, 3, 2, 1)
O40 5 [1 2 1 3 3] (2, 1, 4, 3, 0)
O41 5 [1 2 2 2 3] (1, 3, 2, 3, 1)
O42 5 [1 2 2 3 2] (1, 3, 3, 1, 2)
O43 5 [1 2 2 1 4] (2, 2, 2, 2, 2)
O44 5 [1 2 3 1 3] (2, 1, 3, 3, 1)
O45 5 [2 2 2 2 2] (0, 5, 0, 5, 0)
O46 6 [1 1 1 1 1 5] (5, 4, 3, 2, 1)
O47 6 [1 1 1 1 2 4] (4, 4, 3, 3, 1)
O48 6 [1 1 1 1 3 3] (4, 3, 4, 3, 1)
O49 6 [1 1 1 2 1 4] (4, 3, 3, 3, 2)
O50 6 [1 1 1 2 2 3] (3, 4, 3, 3, 2)
O51 6 [1 1 1 2 3 2] (3, 4, 4, 2, 2)
O52 6 [1 1 1 3 1 3] (4, 2, 3, 4, 2)
O53 6 [1 1 2 1 1 4] (4, 3, 2, 4, 2)
O54 6 [1 1 2 1 2 3] (3, 3, 4, 3, 2)
O55 6 [1 1 2 1 3 2] (3, 3, 4, 4, 1)
O56 6 [1 1 2 2 1 3] (3, 3, 3, 4, 2)
O57 6 [1 1 2 2 2 2] (2, 5, 2, 5, 1)
O58 6 [1 1 3 1 1 3] (4, 2, 2, 4, 3)
O59 6 [1 2 1 2 1 3] (3, 2, 5, 4, 1)
O60 6 [1 2 1 2 2 2] (2, 4, 4, 3, 2)
O61 6 [1 2 2 1 2 2] (2, 4, 4, 2, 3)
O62 7 [1 1 1 1 1 1 4] (6, 5, 4, 4, 2)
O63 7 [1 1 1 1 1 2 3] (5, 5, 5, 4, 2)
O64 7 [1 1 1 1 2 1 3] (5, 4, 5, 5, 2)
O65 7 [1 1 1 1 2 2 2] (4, 6, 4, 5, 2)
O66 7 [1 1 1 2 1 1 3] (5, 4, 4, 5, 3)
O67 7 [1 1 1 2 1 2 2] (4, 5, 5, 4, 3)
O68 7 [1 1 2 1 1 2 2] (4, 5, 4, 6, 2)
O69 7 [1 1 2 1 2 1 2] (4, 4, 6, 5, 2)
O70 8 [1 1 1 1 1 1 1 3] (7, 6, 6, 6, 3)
O71 8 [1 1 1 1 1 1 2 2] (6, 7, 6, 6, 3)
O72 8 [1 1 1 1 1 2 1 2] (6, 6, 7, 6, 3)
O73 8 [1 1 1 1 2 1 1 2] (6, 6, 6, 7, 3)
O74 8 [1 1 1 2 1 1 1 2] (6, 6, 6, 6, 4)
O75 9 [1 1 1 1 1 1 1 1 2] (8, 8, 8, 8, 4)
O76 10 [1 1 1 1 1 1 1 1 1 1] (10, 10, 10, 10, 5)

n = 10

Table 3: All (n, k)-Ovals up to congruence and their RIV’s for 8 ≤ n ≤ 10.
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Note that −δ(S) = {si−sj : 1 ≤ i < j ≤ k}, and |−δ(S)| = |δ(S)| =
(

k
2

)
,

and |∆(S)| = k(k − 1).

Lemma 5.2 Let M be a multiset with elements from Zn\{0}. Then r(M) =
r(−M).

Proof. Let n be even. Consider an occurrence of a ∈ M .
Suppose a ≤ bn

2
c. First, if a = n

2
then r(a) = n

2
. Now −a = n

2
∈ −M

and r(−a) = n
2

also. Thus element n
2
∈ M ‘contributes’ the same element n

2

to both multisets r(M) and r(−M). Second, if a < bn
2
c then r(a) = a. Now

−a ∈ −M satisfies −a > bn
2
c so r(−a) = −(−a) = a. So, again, element

a ∈ M contributes the same element a to both r(M) and r(−M).
Suppose a > bn

2
c. Then r(a) = −a. Now −a ∈ −M satisfies −a < bn

2
c ≤

bn
2
c so r(−a) = −a. Thus, element a ∈ M contributes the same element −a

to both r(M) and r(−M).
In conclusion, any occurrence of a ∈ M contributes the same element to

both multisets r(M) and r(−M). Thus r(M) = r(−M). The proof for odd
n is similar. �

Definition 5.3 The Short Frequency Vector (SFV) of r(M) is the vector
(fr(M)(1), fr(M)(2), . . . , fr(M)(bn

2
c)) of length bn

2
c.

Remark 5.4 From Lemma 4.5 we have RIV(O(α(S))) = SFV(r(δ(S))).

Example 5.5 (n, k) = (15, 6). See Example 4.6. Here X = {0, 4, 7, 9, 10, 14}
⊆ Z15 and δ(X) = {11, 21, 32, 42, 52, 61, 72, 91, 102, 141}, and
r(δ(X)) = {12, 21, 32, 42, 54, 62, 72}. So RIV(O(α(X))) = SFV(r(δ(X))) =
(2, 1, 2, 2, 4, 2, 2).

Lemma 5.6 Let S ⊆ Zn. Then SFV (r(∆(S))) = 2 × SFV (r(δ(S))).

Proof. Now ∆(S) = δ(S)∪−δ(S), and so r(∆(S)) = r(δ(S))∪−r(δ(S)) =
r(δ(S)) ∪ r(δ(S)) using Lemma 5.2. Hence for any a ∈ r(δ(S)) we have
fr(∆(S))(a) = 2 × fr(δ(S))(a), and so the result. �

Example 5.7 (n, k) = (15, 6). See Example 5.5. Again, X = {0, 4, 7, 9, 10, 14}
⊆ Z15 and ∆(X) = {12, 22, 34, 44, 54, 62, 74, 92, 104, 142}, and
r(∆(X)) = {14, 22, 34, 44, 58, 64, 74}. So SFV(r(∆(X))) = (4, 2, 4, 4, 8, 4, 4) =
2 × (2, 1, 2, 2, 4, 2, 2) = 2× SFV(r(δ(X))).
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5.1 Magic Ovals and cyclic difference sets

Definition 5.8 A (n, k, λ)-cyclic difference set – (n, k, λ)-CDS – is a k-
subset D ⊆ Zn with the property that ∆(D) contains every non-zero element
of Zn exactly λ times.

In a (n, k, λ)-CDS straightforward counting gives:

λ(n − 1) = k(k − 1), (3)

this shows that λ is even if n is even.

Example 5.9 (n, k) = (7, 3). D = {0, 1, 3} is a (7, 3, 1)-CDS. We have
δ(D) = {1, 3, 2} and −δ(D) = {−1,−3,−2} = {6, 4, 5}, giving ∆(D) =
{11, 21, 31, 41, 51, 61}.

Recall that, when n is odd, there are n copies of each of the bn
2
c distinct

rhombs in SRI2n, i.e., RIV({2n}) = (n, n, . . . , n, n), and, when n is even,
there are n copies of each of the n

2
− 1 non-square rhombs in SRI2n, but only

n
2

copies of the square, i.e., RIV({2n}) = (n, n, . . . , n, n
2
).

Definition 5.10 A magic (n, k, λ)-Oval is, for odd n, an (n, k)-Oval that
contains exactly λ copies of each of the bn

2
c distinct rhombs of SRI2n, i.e.,

that has RIV= (λ, λ, . . . , λ, λ), and is, for even n, an (n, k)-Oval that contains
exactly λ copies of each of the n

2
− 1 non-square rhombs in SRI2n, but only

λ
2

copies of the square, i.e., that has RIV= (λ, λ, . . . , λ, λ
2
).

The following Theorem 5.11 is a main result, it proves equivalence of a
magic (n, k, λ)-Oval and a (n, k, λ)-CDS.

Theorem 5.11 Let S = {s1, s2, . . . , sk} ⊆ Zn. Then O(α(S)) is a magic
(n, k, λ)-Oval if and only if S is a (n, k, λ)-CDS. Moreover, λ is equal to the
number of 1’s in TAIS α(S).

Proof. Necessity: let O(α(S)) be a magic (n, k, λ)-Oval.
For odd n: for each h = 1, 2, . . . , bn

2
c, there are λ occurrences of h in

OIT(α(S)) so, by the proof of Lemma 4.5, the multiset δ(S) contains λ
occurrences from {h, n − h}. Suppose h occurs λ′ times in δ(S) then n − h
will occur λ− λ′ times in δ(S), so h will occur λ− λ′ times in −δ(S). Hence
h will occur exactly λ times in ∆(S) = δ(S) ∪ −δ(S). For h = bn

2
c +
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1, bn
2
c + 2, . . . , n − 1, we argue in a similar way with h replaced by n − h to

conclude that these h also occur λ times in ∆(S). Now ∆(S) is the multiset
of differences defined by S; hence S is a cyclic difference set with repetition
number λ, i.e., S is a (n, k, λ)-CDS.

For even n: arguing as above each h 6= n
2

occurs λ times in ∆(S). Also
h = n

2
occurs λ

2
times in OIT(α(S)), i.e., λ

2
times in r(δ(S)) and so λ

2
times

in δ(S), and thus λ times in ∆(S) using Lemma 5.6. Hence, for even n also,
S is a (n, k, λ)-CDS.

Sufficiency: let S = {s1, s2, . . . , sk} be a (n, k, λ)-CDS. So, for odd n, we have
SFV(r(∆(S))) = (2λ, 2λ, . . . , 2λ, 2λ), and, for even n, we have SFV(r(∆(S))) =
(2λ, 2λ, . . . , 2λ, λ). Hence, from Lemma 5.6, for odd n, we have SFV(r(δ(S))) =
(λ, λ, . . . , λ, λ), and, for even n, we have SFV(r(δ(S))) = (λ, λ, . . . , λ, λ

2
). But

RIV(O(α(S))) = SFV(r(δ(S))) and so O(α(S)) is a magic (n, k, λ)-Oval.
Let µ be the number of 1’s in TAIS α(S) = [s2 − s1, s3 − s2, · · · , sk −

sk−1, s1 − sk]. Recall that the elements in S = {s1, s2, . . . , sk} are in increas-
ing order and satisfy 0 ≤ s1 < s2 < · · · < sk. There are λ 1’s in ∆(S);
hence there are λ solutions to sj − si ≡ 1 (mod n), where i, j ∈ {1, 2, . . . , k},
i 6= j. Now if sj − si = 1 or −(n − 1) then j = i + 1 for 1 ≤ i ≤ k − 1,
or j = 1 and i = k (respectively), and thus sj − si is an element of α(S).
Hence µ ≥ λ. Conversely, because there are µ 1’s in the TAIS α(S) and every
element of this TAIS is also an element of ∆(S), then µ ≤ λ. Hence λ = µ. �

Example 5.12
(a) The regular 2n-gon {2n} has TAIS= [1 1 · · · 1]︸ ︷︷ ︸

n

, which contains n 1’s. It

is a magic (n, n, n)-Oval with corresponding (n, n, n)-CDS D = {0, 1, . . . , n−
1}. For odd n we have RIV({2n}) = (n, n, . . . , n, n), and for even n RIV({2n}) =
(n, n, . . . , n, n

2
).

(b) If we remove the right-hand strip of rhombs in {2n} we produce a magic
(n, n − 1, n − 2)-Oval {2n}′ with TAIS= [1 1 · · · 1 2]︸ ︷︷ ︸

n−1

, containing n − 2 1’s.

For odd n we have RIV({2n}′) = (n−2, n−2, . . . , n−2, n−2), and, for even
n, we have RIV({2n}′) = (n − 2, n − 2, . . . , n − 2, n−2

2
). The corresponding

(n, n − 1, n − 2)-CDS is D′ = {0, 1, . . . , n − 2}. See Fig. 5 for an example
with n = 12.

If we remove another strip of rhombs we obtain an (n, n−2)-Oval but only
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1
1 1 1

1
1
1 1

1

Figure 5: The regular 12-gon {12}, and the magic (6, 5, 4)-Oval {12}′ ob-
tained by removing the right-hand strip of rhombs from {12}.

non-integer values of λ result from Equation (3), and so such an Oval is not magic.

(c) (n, k) = (7, 3). See Example 5.9. The set D = {0, 1, 3} is a (7, 3, 1)-CDS,
and so O(α(D)) is a magic (7, 3, 1)-Oval with TAIS α(D) = [1 2 4], which

contains one 1. The OIT for O(α(D)) is
1 2
3 and so RIV(O(α(D))) = (1, 1, 1).

See the fourth (7, 3)-Oval in Fig. 4.

(d) (n, k) = (15, 7). See Fig. 6. The set D = {0, 1, 2, 4, 5, 8, 10} is a (15, 7, 3)-
CDS. We have α(D) = [1 1 2 1 3 2 5], which contains 3 1’s, and the (15, 7)-
Oval O(α(D)) is a magic (15, 7, 3)-Oval with OIT

1 1 2 1 3 2
2 3 3 4 5

4 4 6 6 and RIV (3,3,3,3,3,3,3).

5 7 7
7 6

5
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1
1 2 1

3

2

Figure 6: The magic (15, 7, 3)-Oval O([1 1 2 1 3 2 5]).

Remark 5.13 The CDS’s D and D′ in Examples 5.12(a) and (b) above
are usually considered to be ‘trivial’ CDS; see p.298 of [3]. We ignore the
other two trivial CDS, namely ∅ and {si}, because k ≥ 2. Thus non-trivial
magic (n, k, λ)-Ovals have 2 ≤ k ≤ n − 2.

Both these trivial CDS’s have mult(D) = mult(D′) = U(n), so both
have −1 as a multiplier. Let D be a non-trivial (n, k, λ)-CDS. Then it is
combinatorial folklore that −1 is not a multiplier of D; see the discussion on
p.60 of Baumert [2]. Thus −1 is not a multiplier of the non-trivial magic
(n, k, λ)-Oval O(α(D)). Then Theorem 3.7(ii) gives Theorem 5.14 below
which is a geometrical interpretation of this fact.

Theorem 5.14 Let O(α(D)) be a non-trivial magic (n, k, λ)-Oval. Then
−1 is not a multiplier of O(α(D)), so O(α(D)) 6= O(α(−D)) and
{O(α(D)),O(α(−D))} is a congruent enantiomorphic pair in O∗(n, k).

Example 5.15 (n, k) = (7, 3). See Examples 3.8 and 5.12(c). The (7, 3)-
Oval O(α(D)) with D = {0, 1, 3} is a non-trivial magic (7, 3, 1)-Oval, so −1 6∈
mult(O(α(D))) and {O(α(D)),O(α(−D))} is a congruent enantiomorphic
pair in O∗(7, 3).

To the end of this Section we assume our CDS’s are non-trivial.
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Definition 5.16 A (n, k, λ)-CDS is planar if λ = 1.

We now give a new proof that −1 is not a multiplier of a planar CDS.

Theorem 5.17 Let D be a planar (n, k, 1)-CDS with k ≥ 3. Then −1 6∈
mult(D).

Proof. Let T = α(D) = [t1 t2 · · · tk] be the TAIS of O(α(D)). Then
O(α(D)) is a magic (n, k, 1)-Oval. Suppose that two parts of T are equal,
say ti = tj = h for 1 ≤ i < j ≤ k and 1 ≤ h ≤ bn

2
c. Now form OIT(T )

using any truncated TAIS containing both ti and tj, this is possible because
k ≥ 3. Then OIT(T ) will contain at least 2 copies of rhomb ρh, i.e., λh ≥ 2
in RIV(O(α(D))), a contradiction because λ = λh = 1. So the k parts of
T = [t1 t2 · · · tk] are distinct.

Suppose that T is reversible, so T ≡cyc

←
T where

←
T= [tk tk−1 · · · t1]. Now,

because the parts of T are distinct, we have
←
T≡cyc [t1 tk · · · t2] = [t1 t2 · · · tk],

so tk = t2, a contradiction. Hence T is not reversible, and, by Theorem 3.4,
we have −1 6∈ mult(D). �

5.2 All magic (n, k, λ)-Ovals, n ≤ 40

See p.2 of Baumert [2].

Definition 5.18 Two k-subsets S and S ′ of Zn are (u,z)-equivalent , S ≡u,z

S ′, if there exists u ∈ U(n) and z ∈ Zn such that S = uS ′ + z.

Table 6.1, p.150 of [2] contains a complete list of the 74 (n, k, λ) triples
with k ≤ 100 for which a (n, k, λ)-CDS exists, with at least one example of
such a CDS for each triple.

Moreover, for the 12 (n, k, λ) triples with n ≤ 40, see our Table 4 be-
low, the (n, k, λ)-CDS examples in Table 6.1 of [2] are all the examples
up to (u, z)-equivalence. To confirm this statement for these 12 triples see
Hall [5]. As a double-check for the 8 triples: (7, 3, 1), (13, 4, 1), (15, 7, 3),
(19, 9, 4), (21, 5, 1), (23, 11, 5), (31, 6, 1), and (37, 9, 2) see the explicit ex-
amples on pp.306–308 and p.327 of [3]. The remaining 4 triples: (11, 5, 2),
(31, 15, 7), (35, 17, 8), and (40, 13, 4) were also double-checked by the authors
using computer searches and Theorem 2.9 on p.306 of [3].
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Amongst these 12 triples, for just one triple, namely (31, 15, 7), there is
more than one inequivalent (n, k, λ)-CDS: there are two inequivalent (31, 15, 7)-
CDS’s, these are labelled ‘31A’ and ‘31B’ in Table 6.1 of [2], and ‘A’ and
‘B’ in our Table 4.

We stopped at n = 40 in our Table 4 to indicate that magic (n, k, λ)-Ovals
with n even can occur.

Remark 5.19 Now −1 6∈ mult(D); hence Mult(D) = mult(D)∪−mult(D)
and |Mult(D)| = 2 |mult(D)| from Definition 3.11 and Remark 3.12.

Example 5.20 (n, k) = (13, 4). The unique (13, 4, 1)-CDS up to (u, z)-
equivalence is D = {0, 1, 3, 9}.

We have mult(D) = {1, 3, 9} and Mult(D) = {1, 3, 4, 9, 10, 12}. Now
|U(13)| = 12 so |U(13) : Mult(D)| = 2. A set of 2 coset representatives for
Mult(D) in U(13) is {1, 2}. Then the 2 incongruent (13, 4, 1)-CDS’s that are
each (u, z)-equivalent to D are D and 2D = {0, 2, 5, 6} ≡z {0, 1, 8, 10}, with
corresponding TAIS’s [1 2 6 4] and [1 3 2 7] respectively. Thus there are 2
magic (13, 4, 1)-Ovals up to congruency; see our Table 4.

A similar procedure applied to each (n, k, λ)-CDS of Table 6.1 of [2] for
n ≤ 40 produces our Table 4.

Example 5.21 (n, k) = (16, 6). There does not exist a (16, 6, 2)-CDS;
see Example 14.20(a) on p.425 of [3]. So there does not exist a magic
(16, 6, 2)-Oval, i.e., a (16, 6)-Oval with RIV (2, 2, 2, 2, 2, 2, 2, 1). Consider
the (16, 6)-Oval O = O([1 1 2 1 5 6]). Then RIV(O) = (3, 2, 2, 2, 2, 2, 1, 1)
which is the ‘closest’ that the RIV with λ8 = 1 of a (16, 6)-Oval can be to
(2, 2, 2, 2, 2, 2, 2, 1), i.e., Oval O is the ‘closest’ that a (16, 6)-Oval with one
square rhomb can be to a magic (16, 6, 2)-Oval. Oval O has λ1 = 3 (instead
of λ1 = 2 for a magic (16, 6, 2)-Oval), and λ7 = 1 (instead of λ7 = 2). Al-
ternatively, S = β([1 1 2 1 5 6]) = {0, 1, 2, 4, 5, 10} is the ‘closest’ that a
6-subset S ′ of Z16 with the frequency in ∆(S ′) of 8 equal to 2 can be to a
(16, 6, 2)-CDS. In ∆(S) the frequencies of 1 and 15 are 3 (instead of 2), and
the frequencies of 7 and 9 are 1 (instead of 2).
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(n, k, λ) D TAIS
(7, 3, 1) {0, 1, 3} [1 2 4]
(11, 5, 2) {0, 1, 2, 6, 9} [1 1 4 3 2]
(13, 4, 1) {0, 1, 3, 9} [1 2 6 4]

[1 3 2 7]
(15, 7, 3) {0, 1, 2, 4, 5, 8, 10} [1 1 2 1 3 2 5]
(19, 9, 4) {0, 1, 2, 3, 5, 7, 12, 13, 16} [1 1 1 2 2 5 1 3 3]
(21, 5, 1) {0, 1, 6, 8, 18} [1 5 2 10 3]
(23, 11, 5) {0, 1, 2, 3, 5, 7, 8, 11, 12, 15, 17} [1 1 1 2 2 1 3 1 3 2 6]
(31, 6, 1) {0, 1, 3, 8, 12, 18} [1 2 5 4 6 13]

[1 3 6 2 5 14]
[1 5 12 4 7 2]
[1 7 3 2 4 14]
[1 10 8 7 2 3]

(31, 15, 7)–A {0, 1, 2, 3, 5, 7, 11, 14, 15, 16, 22, 23, 26, 28, 29} [1 1 1 2 2 4 3 1 1 6 1 3 2 1 2]
[1 1 1 3 1 2 1 6 4 1 1 2 2 3 2]
[1 1 1 4 1 3 6 2 1 1 2 1 2 2 3]

(31, 15, 7)–B {0, 1, 2, 3, 7, 9, 11, 12, 13, 18, 21, 25, 26, 28, 29} [1 1 1 4 2 2 1 1 5 3 4 1 2 1 2]
(35, 17, 8) {0, 1, 2, 3, 5, 6, 10, 16, 17, 18, 22, 24, 25, 27, 28, 31, 33} [1 1 1 2 1 4 6 1 1 4 2 1 2 1 3 2 2]
(37, 9, 2) {0, 1, 3, 7, 17, 24, 25, 29, 35} [1 2 4 10 7 1 4 6 2]

[1 3 2 4 5 2 1 7 12]
(40, 13, 4) {0, 1, 2, 4, 5, 8, 13, 14, 17, 19, 24, 26, 34} [1 1 2 1 3 5 1 3 2 5 2 8 6]

[1 1 7 1 3 2 1 2 2 4 6 7 3]

Table 4: All non-trivial (n, k, λ)-CDS’s (up to (u, z)-equivalence) and the cor-
responding TAIS’s of all non-trivial magic (n, k, λ)-Ovals (up to congruency)
for n ≤ 40 and 2 ≤ k ≤ bn

2
c.

6 Oval-partitions of {2n}p, cyclic difference

families, triangle-partitions of
(
n
2

)

See Section 3.9 of Schoen [8] for a preliminary version of some of the research
in this Section; see also Schoen and McK Shorb [9].

Let Op denote p copies of Oval O, in particular {2n}p denotes p copies of
the regular 2n-gon {2n}.

Definition 6.1 An Oval-partition of {2n}p is a partition of the rhombs
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from {2n}p into q (n, ki)-Ovals, Oi, for various q ≥ 1 and various ki ≥ 2:

{2n}p → O1 ∪ O2 ∪ · · · ∪ Oq. (4)

Clearly (4) is equivalent to

p × RIV({2n}) =

q∑

i=1

RIV(Oi). (5)

We focus on p = 1 and sometimes shorten O1∪O2∪ · · ·∪Oq to O1O2 · · · Oq.

Remark 6.2 Because the regular 2n-gon {2n} is a magic (n, n, n)-Oval
then, along the lines of Theorem 5.11, we can prove that in Oval-partition
(4) with p = 1 the total number of 1’s in the TAIS’s of the Ovals in
O1 ∪ O2 ∪ · · · ∪ Oq equals n.

Definitions 6.3 distinct Oval-partition, OP(n), DOP(n)

(1) An Oval-partition is distinct if it contains distinct Ovals.

(2) OP(n) is the total number of Oval-partitions of {2n}, for n ≥ 2; we
define OP(1) = 1.

(3) DOP(n) is the total number of distinct Oval-partitions of {2n}, for
n ≥ 2; we define DOP(1) = 1.

See Table 5 for all Oval-partitions of {2n} and the corresponding triangle-
partition of

(
n
2

)
(see Section 6.3), for n = 2, 3, 4, and 5.
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n
(
n
2

)
q O-p of {2n} ∆-p of

(
n
2

)
OP(n) Distinct? DOP(n)

2 1 1 O1 1 1 Yes 1
3 3 1 O2 3 2 Yes 1
3 3 3 O3

1 13 No
4 6 1 O4 6 4 Yes 1
4 6 2 O2

3 32 No
4 6 4 O2

1O2O3 133 No
4 6 6 O4

1O2
2 16 No

5 10 1 O6 [10] 12 Yes 3
5 10 3 O1O4O5 136 Yes
5 10 3 O2O3O5 136 Yes
5 10 4 O1O3O2

4 133 No
5 10 4 O2O2

3O4 133 No
5 10 5 O2

1O2
2O5 146 No

5 10 6 O3
1O2O2

4 1432 No
5 10 6 O2

1O2
2O3O4 1432 No

5 10 6 O1O3
2O2

3 1432 No
5 10 8 O4

1O3
2O4 173 No

5 10 8 O3
1O4

2O3 173 No
5 10 10 O5

1O5
2 110 No

Table 5: All Oval-partitions (O-p) of {2n} and the corresponding triangle-
partition (∆-p) of

(
n
2

)
(see Section 6.3); the values of OP(n) and DOP(n),

for 2 ≤ n ≤ 5. The Oval numbering Oi refers to Table 2.

Example 6.4 n = 5. See Fig. 7. As an example with n = 5, we check
Equation (5) for the Oval-partition O1O3O2

4 of {10} from Table 5:

(5, 5) = (1, 0) + (2, 1) + 2 (1, 2).
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U U U

{10} → O([1 4]) ∪ O([1 1 3]) ∪ O([1 2 2]) ∪ O([1 2 2])

Figure 7: The Oval-partition O1O3O2
4 of {10}.

Observe that the total number of 1’s in the TAIS’s of the Ovals in the above
Oval-partition equals n = 5, in agreement with Remark 6.2.

See Table 2, n = 5. In total there are 6 (5, k)-Ovals: {O1,O2,O3,O4,O5,O6}.
Let RIV(5) = {RIV(O1),RIV(O2),RIV(O3),RIV(O4),RIV(O5),RIV(O6)} =
{(1, 0), (0, 1), (2, 1), (1, 2), (3, 3), (5, 5)}. Then to find all Oval-partitions of
{10} is equivalent to finding all sums of elements of RIV(5) which are equal
to RIV({10}) = (5, 5), where elements can be used more than once.

Remark 6.5 Similarly, to find all Oval-partitions of {2n} is equivalent to
finding all sums of elements of the multiset of RIV’s of all (n, k)-Ovals which
are equal to RIV({2n}), where elements can be used more than once.

The values of OP(n) and DOP(n) for 2 ≤ n ≤ 5 are given in Table 5,
we have also computed OP(6) = 58, DOP(6) = 7, DOP(7) = 42, and
DOP(8) = 334. The sequences {OP(n) |n ≥ 1} = {1, 1, 2, 4, 12, 58, . . .}
and {DOP(n) |n ≥ 1} = {1, 1, 1, 1, 3, 7, 42, 334, . . .} now appear in [7] as
sequences A177921 and A181148 respectively.

We may also think about the Oval-partition {2n} → O1∪O2∪· · ·∪Oq in
terms of subsets S ⊆ Zn. From Example 5.12(a) the regular 2n-gon {2n} is a
magic (n, n, n)-Oval with corresponding (n, n, n)-CDS D = {0, 1, . . . , n− 1}.
We modify the proof of Theorem 5.11 to give the following.

Theorem 6.6 The Oval-partition {2n} → O1 ∪ O2 ∪ · · · ∪ Oq exists if
and only if there exists q subsets D1,D2, . . . ,Dq ⊆ Zn with the property that
∆({0, 1, . . . , n − 1}) = ∆(D1) ∪ ∆(D2) ∪ · · · ∪ ∆(Dq).
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Example 6.7 n = 5. See Example 6.4. We have D = {0, 1, 2, 3, 4} and
∆(D) = {15, 25, 35, 45}, and subsets of Z5: D1 = {0, 1}, D2 = {0, 1, 2}, and
D3 = D4 = {0, 1, 3}.

6.1 Homologous Oval-partitions, isopart triples, cyclic
difference families

Here we consider Oval-partitions of {2n}p in which the Ovals Oi are (n, k)-
Ovals, where k is fixed.

Definition 6.8 A homologous Oval-partition of {2n}p is a partition of the
rhombs from {2n}p into q (n, k)-Ovals, Oi, for a fixed k ≥ 2:

{2n}p → O1 ∪ O2 ∪ · · · ∪ Oq.

Note that the (n, k)-Ovals Oi need not be congruent.

When p = 1 for a homologous Oval-partition of {2n} to exist we require(
k
2

)
|
(
n
2

)
. There is a homologous Oval-partition of {2n} into q = 1 (n, n)-Oval,

namely into {2n} itself, and another into q =
(

n
2

)
(n, 2)-Ovals, namely into

the
(

n
2

)
rhombs of {2n}. We consider these two partitions as trivial, and so

in the following restrict ourselves to 2 ≤ q ≤
(

n
2

)
− 1.

Definitions 6.9 [(n, k), q] isopart triple, realizable

(1) The ordered triple [(n, k), q] is an isopart triple if

(
n

2

)
= q

(
k

2

)
for some 2 ≤ q ≤

(
n

2

)
− 1,

so k ≥ 3.

(2) The isopart triple [(n, k), q] is realizable if there exists a homologous
Oval-partition of {2n} into q (not necessarily congruent) (n, k)-Ovals.

Example 6.10
(a) [(n, k), q] = [(4, 3), 2]. See Table 2. The smallest isopart triple which
is realizable is [(4, 3), 2]. The relevant homologous Oval-partition is {8} →
O2

3 = O([1 1 2])2.
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(b) [(n, k), q] = [(6, 3), 5]. See Table 2. The smallest isopart triple which is
not realizable is [(6, 3), 5].

Suppose there is a homologous Oval-partition

{12} → Oq1
4 ∪ Oq2

5 ∪ Oq3
6

where each qi ≥ 0. Then the system of equations containing the equation
q1 + q2 + q3 = 5 together with the RIV Equations (5):

(6, 6, 3) = q1(2, 1, 0) + q2(1, 1, 1) + q3(0, 3, 0)

must have a solution in the non-negative integers. That is, the system

q1 + q2 + q3 = 5, 2q1 + q2 = 6, q1 + q2 + 3q3 = 6, q2 = 3,

must have a solution in the non-negative integers, a contradiction. Hence
the isopart triple [(6, 3), 5] is not realizable.

See Table 6 for all isopart triples [(n, k), q] for 2 ≤ n ≤ 16. All are
realizable except [(6,3),5] and [(10,3),15].
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[(n, k), q] Example of a homologous Oval-partition realizing [(n, k), q]

[(4, 3), 2] O([1 1 2])2 (magic)
[(6,3),5] Not realizable
[(7, 3), 7] O([1 2 4])7 (magic, see Table 4 row (7, 3, 1), and Example 6.19(b))

[(9, 3), 12] O([1 1 7])3 O([1 4 4])3 O([2 2 5])3 O([3 3 3])3

[(9, 4), 6] O([1 1 2 5])3 O([1 3 2 3])3

[(10,3),15] Not realizable
[(10, 6), 3] O([1 1 1 1 3 3])O([1 1 2 1 1 4])O([1 2 1 2 2 2]) (see §3.9 p.22 of [8] and Fig. 8)
[(12, 3), 22] O([1 2 9])4 O([1 3 8])4 O([1 4 7])4 O([2 4 6])4 O([2 5 5])4 O([3 3 6])2

[(12, 4), 11] O([1 1 3 7])O([1 2 1 8])O([1 2 4 5])O([1 2 5 4])O([1 2 2 7])O([1 3 1 7])
O([1 4 1 6])O([1 4 2 5])O([2 2 2 6])O([2 2 3 5])O([3 3 3 3])

[(13, 3), 26] O([1 3 9])13O([2 5 6])13

[(13, 4), 13] O([1 2 6 4])13 (magic, see Table 4 row (13, 4, 1))
[(15, 3), 35] O([1 1 13])5 O([1 7 7])5 O([2 2 11])5 O([3 3 9])5 O([3 6 6])5O([4 4 7])5 O([5 5 5])5

[(15, 6), 7] O([1 1 2 1 6 4])O([1 1 2 3 2 6])O([1 1 2 3 6 2])O([1 2 2 7 1 2])
O([1 2 4 1 2 5])O([1 2 4 1 4 3])O([1 3 2 4 1 4])

[(15, 7), 5] O([1 1 2 1 3 2 5])5 (magic, see Table 4 row (15, 7, 3), and Example 6.19(c))
[(16, 3), 40] O([1 2 13])8 O([1 7 8])8 O([2 4 10])8 O([3 4 9])8 O([5 5 6])8

[(16, 4), 20] See §3.9 p.23 of [8]
[(16, 5), 12] See Example 6.11
[(16, 6), 8] O([1 1 2 1 5 6])4 O([1 5 2 2 3 3])4 (see Example 6.20)

Table 6: All isopart triples [(n, k), q] for 2 ≤ n ≤ 16, and an example
of a homologous Oval-partition realizing the triple. Triples [(6,3),5] and
[(10,3),15] are not realizable.
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O([1 1 1 1 3 3]) O([1 1 2 1 1 4]) O([1 2 1 2 2 2])

Figure 8: The homologous Oval-partition of {20} for isopart triple [(10, 6), 3]
from Table 6.

Example 6.11 (n, k) = (16, 5). Isopart triple [(16, 5), 12]. See §3.9 p.24
of [8]. Here each of the 12 (16, 5)-Ovals are distinct, i.e., incongruent. The
Table below gives the TAIS’s and RIV’s of these 12 Ovals.

TAIS RIV
[1 1 1 3 10] (3, 2, 2, 1, 1, 1, 0, 0)
[1 2 9 1 3 ] (2, 1, 2, 2, 1, 1, 1, 0)
[1 5 2 3 5 ] (1, 1, 1, 0, 3, 2, 1, 1)
[1 4 3 2 6 ] (1, 1, 1, 1, 2, 1, 2, 1)
[1 2 5 1 7 ] (2, 1, 1, 0, 1, 1, 2, 2)
[2 2 2 3 7 ] (0, 3, 1, 2, 1, 1, 2, 0)
[2 2 3 2 7 ] (0, 3, 1, 1, 2, 0, 3, 0)
[1 2 3 6 4 ] (1, 1, 2, 1, 2, 2, 1, 0)
[1 3 1 3 8 ] (2, 0, 2, 3, 1, 0, 1, 1)
[1 1 3 3 8 ] (2, 1, 2, 1, 1, 1, 1, 1)
[2 4 2 4 4 ] (0, 2, 0, 3, 0, 4, 0, 1)
[1 3 5 1 6 ] (2, 0, 1, 1, 1, 2, 2, 1)

(16,16,16,16,16,16,16, 8)

Homologous Oval-partitions are closely related to another class of com-
binatorial objects, (cf., Theorem 6.6):

Definition 6.12 A (n, k, λ)-cyclic difference family – (n, k, λ)-CDF – is a
collection of q k-subsets D1,D2, . . . ,Dq ⊆ Zn with the property that
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∆(D1) ∪ ∆(D2) ∪ · · · ∪ ∆(Dq) contains every non-zero element of Zn exactly
λ times.

Remark 6.13 See Equation (3). In a (n, k, λ)-CDF we have

λ(n − 1) = q k(k − 1),

hence q = λ(n−1)
k(k−1)

is an integer.

From Definition 6.8 of a homologous Oval-partition of {2n} and Defini-
tion 6.12 of a (n, k, λ)-CDF and Theorem 6.6 we have the following result.

Corollary 6.14 There exists a homologous Oval-partition of {2n} into q
(n, k)-Ovals if and only if there exists a (n, k, n)-CDF.

Clearly, by taking unions of CDF’s, there exists a (n, k, n)-CDF if and
only if there exists a collection of (n, k, λi)-CDF’s with

∑
i λi = n. Hence,

another main result follows.

Theorem 6.15 There exists a homologous Oval-partition of {2n} into q
(n, k)-Ovals (i.e., isopart triple [(n, k), q] is realizable) if and only if there
exists a collection of (n, k, λi)-CDF’s with

∑
i λi = n.

Example 6.16
(a) (n, k) = (9, 4). See Example 1.6(a) p.470 of [3] for the (9, 4, 3)-CDF
with D1 = {0, 1, 2, 4} and D2 = {0, 3, 4, 7}. Using 3 copies of this CDF we
produce the following homologous Oval-partition of {18} into 6 (9, 4)-Ovals:
O(α(D1))

3 O(α(D2))
3 = O([1 1 2 5])3 O([1 3 2 3])3. This realizes isopart

triple [(9, 4), 6] with the same partition as given in Table 6.

(b) (n, k) = (16, 3). Conversely, we may take a partition which realizes an
isopart triple from Table 6 and produce a CDF. For example, the 5 (16, 3)-
Ovals from row [(16, 3), 40]: O([1 2 13])O([1 7 8])O([2 4 10])O([3 4 9])O([5 5 6])
produce a (16, 3, 2)-CDF with D1 = {0, 1, 3},D2 = {0, 1, 8},D3 = {0, 2, 6},
D4 = {0, 3, 7}, and D5 = {0, 5, 10} which is not (u, z)-equivalent to the
(16, 3, 2)-CDF in Examples 16.13, p.394 of Colbourn and Dinitz [4].

(c) (n, k) = (6, 3). From Table 6 we see that isopart triple [(6,3),5] is not
realizable, so, from Theorem 6.15, there does not exist a (6, 3, 6)-CDF nor a
(6, 3, 2)-CDF; see Table II.2.29, p.61 of [4].

(d) (n, k) = (10, 3). Similarly, isopart triple [(10,3),15] is not realizable, so
there does not exist a (10, 3, 10)-CDF nor a (10, 3, 2)-CDF; see Table II.2.29,
p.61 of [4] again.
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6.2 Magic Oval-partitions

Recall that in a (n, k, λ)-CDS we have λ(n − 1) = k(k − 1).
As mentioned in Section 1 this research was partially motivated by Ques-

tion (iii) on p. 10 of Schoen [8].
Fix n ≥ 2, for which integers p and q can the rhombs contained in p

copies of {2n} be partitioned to tile q congruent Ovals?

Definition 6.17 A magic Oval-partition of {2n}p is a partition of the
rhombs contained in {2n}p into q congruent (n, k)-Ovals, O:

{2n}p → Oq. (6)

We now show that if such a magic Oval-partition of {2n}p exists, then O
is magic.

Theorem 6.18 The partition {2n}p → Oq exists if and only if there exists
a (n, k, pn

q
)-CDS, (O will then be a magic (n, k, pn

q
)-Oval).

Proof. For odd n. Necessity: suppose that such a partition (6) exists.
Consider ρh, the rhomb of SRI2n with principle index h, for any fixed h =
1, 2, . . . , n−1

2
. It appears pn times on the left in partition (6) and qλh times

on the right, i.e., it appears λh = pn
q

times in O. Thus λh is independent

of h, and so O is a magic (n, k, pn
q

)-Oval, (for some suitable k satisfying

k(k − 1) = pn
q

(n − 1)).

Sufficiency: conversely given a magic (n, k, pn
q

)-Oval O it contains pn
q

copies
of each rhomb ρh. So Oq contains pn copies of each ρh, but this is exactly
the number of copies of ρh in {2n}p.

For even n. The proof is similar to the above, but we consider the non-
square rhombs ρh for h = 1, 2, . . . , n

2
−1, and the square rhomb ρn

2
as separate

cases. �

We can find a partition where p and q are the smallest by considering:

p

q
=

λ

n
=

λ∗

n∗

where gcd(λ∗, n∗) = 1. This gives the partition:

{2n}λ∗ → On∗
.
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Any other partition with the same O is a ‘multiple’ of this one.
Note that if λ∗ = 1 and 2 ≤ n∗ ≤

(
n
2

)
− 1 then [(n, k), n∗] is a realizable

isopart triple.

Example 6.19
(a) See Examples 5.12(a) and (b). Oval {2n}′ is a magic (n, n − 1, n − 2)-
Oval obtained from the regular 2n-gon {2n} by removing its right-hand strip
of rhombs. For odd n we have λ

n
= n−2

n
= λ∗

n∗ , so the smallest magic Oval-
partition is

{2n}n−2 → {2n}′ n.

For even n = 2m the smallest magic Oval-partition is

{2n}m−1 → {2n}′ m.

(b) See Example 5.12(c). Oval O([1 2 4]) is a magic (7, 3, 1)-Oval with RIV
(1, 1, 1). Now λ

n
= 1

7
= λ∗

n∗ , so we have the following magic Oval-partition

{14}1 → O([1 2 4])7.

The decomposition of 1 × RIV({14}) is 1 × (7, 7, 7) → 7 × (1, 1, 1), and the
relevant realizable isopart triple is [(7, 3), 7]; see Table 6.

(c) (n, k) = (15, 7). See Example 5.12(d). Oval O([1 1 2 1 3 2 5]) is a magic
(15, 7, 3)-Oval. Here λ

n
= 3

15
= 1

5
so λ∗ = 1 and n∗ = 5, this gives

{30}1 → O([1 1 2 1 3 2 5])5.

The RIV decomposition is 1×(15, 15, 15, 15, 15, 15, 15) → 5×(3, 3, 3, 3, 3, 3, 3)
and [(15, 7), 5] is the corresponding realizable isopart triple.

(d) (n, k) = (11, 5). The (11, 5)-Oval O([1 1 4 3 2]) is a magic (11, 5, 2)-Oval.
Here λ

n
= 2

11
so λ∗ = 2 and n∗ = 11. This gives us the following magic

Oval-partition where p 6= 1:

{22}2 → O([1 1 4 3 2])11.

The RIV decomposition is 2 × (11, 11, 11, 11, 11) → 11 × (2, 2, 2, 2, 2).

Example 6.20 (n, k) = (16, 6). From Example 5.21 there does not exist
a magic (16, 6, 2)-Oval, i.e., there does not exist a (16, 6)-Oval with RIV
(2, 2, 2, 2, 2, 2, 2, 1). Now RIV({16}) = (16, 16, 16, 16, 16, 16, 16, 8), so {16} 6→
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O8 where O is a fixed (16, 6)-Oval. In row [(16, 6), 8] of Table 6 we gave the
homologous Oval-partition

{16} → O([1 1 2 1 5 6])4 O([1 5 2 2 3 3])4,

with RIV decomposition

(16, 16, 16, 16, 16, 16, 16, 8) = 4 (3, 2, 2, 2, 2, 2, 1, 1) + 4 (1, 2, 2, 2, 2, 2, 3, 1).

We now show that for every homologous Oval-partition {16} → Oq1
1 Oq2

2

into exactly 2 incongruent (16, 6)-Ovals O1 and O2, we have q1 = q2 = 4.
Suppose q1 = 1 and q2 = 7. Let RIV(O1) = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8)

and RIV(O2) = (µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8). Then

(16, 16, 16, 16, 16, 16, 16, 8)
= (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) + 7 (µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8),

and λh + 7µh = 16 for h = 1, 2, . . . , 7. Hence for a fixed h = 1, 2, . . . , 7 we
have either λh = µh = 2, or λh = 9 and µh = 1, or λh = 16 and µh = 0.
In particular λh ≥ 2 for every h = 1, 2, . . . , 7. Now O1 is a (16, 6)-Oval so∑8

h=1 λh =
(
6
2

)
= 15. Thus if λh = 2 for every h = 1, 2, . . . , 7 then λ8 = 1

and O1 is a magic (16, 6, 2)-Oval, a contradiction. Hence for some h with
h = 1, 2, . . . , 7 we must have λh = 9 or λh = 16, so

∑7
h=1 λh ≥ 6×2+9 = 21.

But
∑7

h=1 λh ≤ 15, a contradiction. Hence there is no homologous Oval-
partition {16} → O1

1 O7
2. Similarly, the other possible homologous Oval-

partitions {16} → O2
1 O6

2 or {16} → O3
1 O5

2 do not exist. Hence the only
homologous Oval-partition {16} → Oq1

1 Oq2
2 has q1 = q2 = 4; an explicit

example is given above.

6.3 Triangular-partitions of
(

n
2

)

Recall the triangular numbers: {
(

n
2

)
, n ≥ 2} = {1, 3, 6, 10, 15, 21, 28, . . .}.

Definitions 6.21 Triangular-partition (∆-partition) of
(

n
2

)
, realizable

(1) A triangular-partition (∆-partition) of
(

n
2

)
is an integer partition of

(
n
2

)

with each part a triangular number.

(2) A ∆-partition of
(

n
2

)
with q parts in which the i-th part is

(
ki

2

)
is realizable

if there exists an Oval-partition of {2n} into q Ovals Oi in which Oi is
a (n, ki)-Oval, for each i = 1, 2, . . . , q.
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Remark 6.22 The ∆-partition of
(

n
2

)
corresponding to isopart triple [(n, k), q] is

(
k
2

)q
.

Table 7 lists all ∆-partitions of
(
n
2

)
for n = 2, 3, . . . , 8. For a fixed n the

∆-partitions are given with increasing q, and then in lexicographic order for
constant q. The ∆-partition 35 of

(
6
2

)
= 15 is the only ∆-partition in Table 7

which is not realizable; see Example 6.10(b), and row [(6,3),5] of Table 6.

n
(

n
2

)
∆-partitions of

(
n
2

)

2 1 1
3 3 3, 13

4 6 6, 32, 133, 16

5 10 [10], 136, 133, 146, 1432, 173, 110

6 15 [15], 362, 123[10], 336, 1362, 35, 15[10], 13326, 1334, 1636,
1633, 196, 1932, 1123, 115

7 21 [21], 6[15], 1[10]2, 32[15], 363, 133[15], 123 6[10], 3362, 1363,
1233[10], 356, 16[15], 156[10], 133262, 37, 1532[10], 13346,
16362, 1336, 183[10], 16336, 1962, 1635, 111[10], 19326, 1934,
11236, 11233, 1156, 11532, 1183, 121

8 28 [28], 16[21], 3[10][15], 132[21], 162[15], 63[10], 13[10][15],
126[10]2, 1326[15], 3262[10], 143[21], 1232[10]2, 134[15],
1364, 346[10], 1436[15], 13362[10], 13363, 36[10], 17[21],
153[10]2, 1433[15], 1464, 13336[10], 13562, 176[15], 1662[10],
143263, 1335[10], 1376, 18[10]2, 1732[15], 16326[10], 143462,
139, 17363, 1634[10], 14366, 1103[15], 1936[10], 173362, 1438,
11063, 1933[10], 17356, 113[15], 1126[10], 1103262, 1737,
11232[10], 110346, 113362, 11036, 1153[10], 113336, 11662, 11335,
118[10], 116326, 11634, 11936, 11933, 1226, 12232, 1253, 128

Table 7: All ∆-partitions of
(
n
2

)
for 2 ≤ n ≤ 8. All are realizable except 35,

for n = 6.
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Example 6.23 2 ≤ n ≤ 6. See Table 5 for realizations of all ∆-partitions
of

(
n
2

)
for 2 ≤ n ≤ 5. See Table 8 for all ∆-partitions of

(
6
2

)
= 15 and, except

for 35, an Oval-partition of {12} which realizes it. The ∆-partition 35 is not
realizable. The Oval numbering Oi refers to Table 2.

∆-p of
(
6
2

)
O-p of {12} ∆-p of

(
6
2

)
O-p of {12} ∆-p of

(
6
2

)
O-p of {12}

[15] O11 35 Not realizable 1633 O3
2O3

3O3
4

3 62 O4O8O9 15[10] O2
1O2

2O3O10 196 O3
1O4

2O2
3O7

123[10] O1O2O5O10 13326 O2O2
3O2

4O8 1932 O2
1O4

2O3
3O2

4

336 O4O2
5O8 1334 O3

3O3
4O6 1123 O4

1O5
2O3

3O4

1362 O2
2O3O2

7 163 6 O1O3
2O2

3O4O7 115 O6
1O6

2O3
3

Table 8: All ∆-partitions (∆-p) of
(
6
2

)
= 15 and, except for 35, an Oval-

partition (O-p) of {12} which realizes it.

We have extended our results on ∆-partitions of
(

n
2

)
up to n = 10.

Example 6.24 For n = 2, 3, . . . , 10 all ∆-partitions of
(

n
2

)
are realizable

except 35 for n = 6 (see Examples 6.10(b) and 6.16(c)), and 315,38[21],35[10]3,33[36],
and 3[21]2 for n = 10. The unrealizable ∆-partitions for n = 10 were shown
to be unrealizable along the lines of Example 6.10(b) using MAPLE; see also
Example 6.16(d).

7 u-equivalent Ovals

In this Section we explain why 2 incongruent (n, k)-Ovals can have RIV’s
that are permutations of each other. For example, see Table 2 n = 7, there
are 4 incongruent (7, 3)-Ovals: {O4,O5,O6,O7}, but 3 of them: {O4,O6,O7}
have RIV’s that are permutations of (2, 1, 0).

Recall the operations α and β from Definitions 2.8, and the function r
from Equation (2). Recall also that S = {s1, s2, . . . , sk} where 0 ≤ s1 <
s2 < · · · < sk is a k-subset of Zn with elements in increasing order. For
u ∈ U(n), when we form uS = {us1, us2, . . . , usk} we will always rearrange
the elements of uS in increasing order also, so that we may apply α to uS.

Further, we let [bn
2
c] = {1, 2, . . . , bn

2
c}.
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Lemma 7.1 Let principal index h occur λh times in OIT(α(S)) = r(δ(S)).
Then for any u ∈ U(n) principal index uh occurs λh times in OIT(α(uS)) =
r(δ(uS)).

Proof. Let principal index uh occur λuh times in OIT(α(uS)) = r(δ(uS)).
We must show that λh = λuh.

First we show λh ≤ λuh: principal index h occurs λh times in OIT(α(S)) =
r(δ(S)), so there are λh pairs {sj, si} where 1 ≤ i < j ≤ k for which sj −
si ∈ {h,−h}. Consider uS = {us1, us2, . . . , usk} = {v1, v2, . . . , vk} where
0 ≤ v1 < v2 < · · · < vk. Suppose pair {sj, si} satisfies sj − si ∈ {h,−h}
with sj − si = h. Then usj − usi = uh, i.e., v` − v`′ = uh where v` = usj

and v`′ = usi. If ` > `′ then pair {v`, v`′} satisfies v` − v`′ = uh and so
v` − v`′ ∈ {uh,−uh} and 1 ≤ `′ < ` ≤ k, and if ` < `′ then pair {v`′, v`}
satisfies v`′ −v` = −uh and so again v`′ −v` ∈ {uh,−uh} and 1 ≤ ` < `′ ≤ k.
Thus, in either case, a pair {sj, si} for which sj − si = h where 1 ≤ i < j ≤ k
gives rise to a pair {va, vb} for which va−vb ∈ {uh,−uh} and 1 ≤ a < b ≤ k.
Similarly if sj − si = −h. Thus λh ≤ λuh.

To show that λh ≥ λuh, i.e., λuh ≤ λh we start with V = uS =
{us1, us2, . . . , usk} = {v1, v2, . . . , vk} and argue as above with u replaced
by u−1.

The above two paragraphs give λh = λuh as required. �

Definitions 7.2 uO, permutation Pu

Let O be an (n, k)-Oval with TAIS T , and let u ∈ U(n).

(1) uO is the (n, k)-Oval with TAIS α(uβ(T )).

(2) Permutation Pu is the permutation of [bn
2
c] given by Pu(h) = r(uh), for

every h ∈ [bn
2
c] and u ∈ U(n).

Theorem 7.3 Let O be an (n, k)-Oval and let u ∈ U(n). Then RIV(uO) =
Pu(RIV(O)).

Proof. For each h ∈ [bn
2
c] let the h-th entry of RIV(O) be λh then, from

Lemma 7.1, the uh-th entry of RIV(uO) is also λh. Hence RIV(uO) is a per-
mutation of RIV(O) where, for each h ∈ [bn

2
c], the h-th entry (of RIV(O))

is moved to the uh-th entry (of RIV(uO)), i.e., is moved by the application
of permutation Pu. Thus the result. �
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Example 7.4
(a) For every n ≥ 2 we have −1 ∈ U(n) and P−1 is the identity permutation
of [bn

2
c]. Hence RIV(−O) = RIV(O). Confirming this, see Lemma 3.2(i), we

have TAIS(−O) ≡cyc

←−
TAIS(O) and hence RIV(−O) = RIV(O).

(b) (n, k) = (15, 6). See Example 2.5. For the (15, 6)-Oval X with TAIS
T = [4 3 2 1 4 1] we have X = β(T ) = {0, 4, 7, 9, 10, 14}. Unit 2 ∈ U(15)
gives permutation P2 = (1 2 4 7)(3 6)(5) of [7]. Now 2X = {0, 3, 5, 8, 13, 14},
and so 2X = O([3 2 3 5 1 1]). We check: RIV(2X ) = P2(RIV(X )) =
P2(2, 1, 2, 2, 4, 2, 2) = (2, 2, 2, 1, 4, 2, 2), as required by Theorem 7.3.

(c) (n, k) = (16, 6). We show how we used Theorem 7.3 in Example 6.20.
In Example 6.20 it was required to find 2 (16, 6)-Ovals O1 and O2 for which
RIV(O1) + RIV(O2) = (4, 4, 4, 4, 4, 4, 4, 2). From Example 5.21 we had a
(16, 6)-Oval O = O([1 1 2 1 5 6]) with RIV(O) = (3, 2, 2, 2, 2, 2, 1, 1). We
observed that (4, 4, 4, 4, 4, 4, 4, 2) − RIV(O) = (1, 2, 2, 2, 2, 2, 3, 1) is a per-
mutation of RIV(O). Further, unit 7 ∈ U(16) gives permutation P7 =
(1 7)(3 5)(2)(4)(6)(8) of [8], and P7(RIV(O)) = (1, 2, 2, 2, 2, 2, 3, 1). Then
letting O1 = O and O2 = 7O = O([1 5 2 2 3 3]) gave the required Ovals.

Definition 7.5 Two (n, k)-Ovals O1 and O2 are u-equivalent , O1 ≡u O2,
if there is a u ∈ U(n) such that O1 = uO2.

It is clear that u-equivalence is an equivalence relation on O∗c(n, k), the
set of (n, k)-Ovals up to congruency.

Definitions 7.6 O∗c,≡u
(n, k), Oc,≡u(n, k)

(1) O∗c,≡u
(n, k) is the set of equivalence classes of ≡u in O∗c(n, k).

(2) Oc,≡u(n, k) = |O∗c,≡u
(n, k)| is the number of equivalence classes of ≡u in

O∗c(n, k).

Example 7.7 (n, k) = (7, 3). See Table 2, n = 7. Here O4 = 2O6 = 4O7,
and O5 = uO5 for every u ∈ U(7). Hence there are Oc,≡u(7, 3) = 2 ≡u-
equivalence classes in O∗c(7, 3), namely [O4] = {O4,O6,O7} and [O5] = {O5}.
We have O∗c,≡u

(7, 3) = {[O4], [O5]}. We say that there are 2 (7, 3)-Ovals up
to u-equivalence, namely Ovals O4 and O5; see Table 9.
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n k Oc,≡u(n, k) O∗c,≡u
(n, k)

2 2 1 O1

3 2 1 O1

3 3 1 O2

4 2 2 O1,O2

4 3 1 O3

4 4 1 O4

5 2 1 O1

5 3 1 O3

5 4 1 O5

5 5 1 O6

6 2 3 O1,O2,O3

6 3 3 O4,O5,O6

6 4 3 O7,O8,O9

6 5 1 O10

6 6 1 O11

7 2 1 O1

7 3 2 O4,O5

7 4 2 O8,O9

7 5 1 O12

7 6 1 O15

7 7 1 O16

n k Oc,≡u(n, k) O∗c,≡u
(n, k)

8 2 3 O1,O2,O4

8 3 4 O5,O6,O7,O8

8 4 6 O10,O11,O12,O13,O16,O17

8 5 4 O18,O19,O20,O21

8 6 3 O23,O24,O26

8 7 1 O27

8 8 1 O28

9 2 2 O1,O3

9 3 3 O5,O6,O11

9 4 4 O12,O13,O15,O17

9 5 4 O22,O23,O24,O29

9 6 3 O32,O33,O38

9 7 2 O39,O41

9 8 1 O43

9 9 1 O44

10 2 3 O1,O2,O5

10 3 4 O6,O7,O9,O10

10 4 9 O14,O15,O16,O17,O18,O19,O22,O26,O27

10 5 9 O30,O31,O32,O33,O34,O36,O37,O38,O45

10 6 9 O46,O47,O48,O49,O50,O51,O53,O57,O58

10 7 4 O62,O63,O65,O66

10 8 3 O70,O71,O74

10 9 1 O75

10 10 1 O76

Table 9: All (n, k)-Ovals up to u-equivalence for 2 ≤ n ≤ 10. The equivalence
class [Oi] is denoted by Oi; see Example 7.7.
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