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Abstract

An m-path cover Γ = {P`1 , P`2, . . . , P`r} of a simple graph G is

a set of vertex disjoint paths of G, each with `k ≤ m vertices, that

span G. With every P` we associate a weight, ω(P`), and define the

weight of Γ to be ω(Γ) =
∏r

k=1 ω(P`k
). The m-path cover polynomial

of G is then defined as Pm(G) =
∑

Γ ω(Γ), where the sum is taken

over all m-path covers Γ of G. This polynomial is a specialization of

the path-cover polynomial of Farrell. We consider the m-path cover

polynomial of a weighted path P (m−1, n), and find the (m+1)-term

recurrence that it satisfies. The matrix form of this recurrence yields

a formula equating the trace of the recurrence matrix with the m-

path cover polynomial of a suitably weighted cycle C(n). A directed

graph, T (m), the edge-weighted m-trellis, is introduced and so a third

way to generate the solutions to the above (m+ 1)-term recurrence is

presented. We also give a model for general term linear recurrences

and time dependent Markov chains.

* Corresponding author.
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1 Introduction, m-path cover polynomial, No-

tation

Let G be a graph with no loops or multiple edges, with vertex set V (G).

First we review some basic concepts to establish notation.

A path P` in G is a sequence of distinct vertices P` = [v1, v2, . . . , v`] where

each pair (vi, vi+1) for 1 ≤ i ≤ ` − 1 is an edge. The length of a path is the

number of vertices in it. Thus a path of length 1 is a vertex, and a path

of length 2 an edge, and P` has length `. Path P` begins at vertex v1, its

first vertex, and ends at vertex v`, its last vertex. The path [v1, v2, . . . , v`]

and its reverse [v`, v`−1, . . . , v1] are considered to be the same path. The set

of vertices in P` is V (P`) = {v1, v2, . . . , v`}. Two paths P` and P`′ in G are

disjoint if V (P`)∩ V (P`′) = ∅. The empty path has 0 vertices. Finally, recall

that a subgraph of G spans G if it has the same vertex set as G.

Now we introduce the central concept of this paper.

An m-path P` has ` ≤ m, i.e., it is a path of length at most m for some

fixed m with 1 ≤ m ≤ |V (G)|.

An m-path cover Γ = {P`1 , P`2 , . . . , P`r} of G is a set of pairwise disjoint

m-paths of G that span G. Thus each `k satisfies 1 ≤ `k ≤ m, and every

vertex of G lies in exactly one m-path, i.e., V (G) = ∪r
k=1V (P`k

) is a partition

of V (G).

With every m-path P` we associate a weight , ω(P`), and then the weight

of Γ is ω(Γ) =
∏r

k=1 ω(P`k
).

Definition 1.1 The m-path cover polynomial of G, Pm(G), is the sum of

the weights of all m-path covers of G, i.e.,

Pm(G) =
∑

Γ

ω(Γ),

where Γ is an m-path cover of G.

The path-cover polynomial (or path polynomial) of a graph G is a spe-

cialization of the F -cover polynomial of Farrell [4] where F is restricted to be
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a path, see Farrell [5]. Thus our m-path cover polynomial Pm(G) is a further

specialization to paths of length ` ≤ m. See also Chow [2], and D’Antona

and Munarini [3].

It seems that this research is the first direct consideration of the m-path

cover polynomial of a graph. See McSorley, Feinsilver, and Schott [7] for

specialization to the case m = 2, where all classical orthogonal polynomials

are generated as 2-path cover polynomials of suitably weighted paths. For

related work see the theory of weighted linear species, developed in Joyal [6]

and Bergeron, Labelle, and Leroux [1]. In particular, Munarini [8] uses the

m-filtered linear partitions of a linearly ordered set to achieve some similar

results, see especially our Sections 7 and 8.

In Section 2 we introduce a weighted path P (m − 1, n), and find the

(m + 1)-term recurrence that its m-path polynomial satisfies. In Section 3

the matrix form of this recurrence is presented and yields a trace formula that,

in Section 4, gives the m-path cover polynomial of a suitably weighted cycle

C(n). Section 5 interprets our results in terms of a model for time-dependent

Markov chains. In Section 6 a directed graph, T (m), the edge-weighted m-

trellis, is introduced and so a third way to generate the solutions to the

above recurrence and trace is found. In Section 7 we model general constant

coefficient linear recurrences, and we derive various relevant formulas with

both algebraic and combinatorial proofs. Finally, in Section 8, we obtain a

relevant new integer sequence and relate this sequence to known sequences

in the literature.

Notation We write Pm[v1, v2, . . . , v`], instead of Pm([v1, v2, . . . , v`]), for the

m-cover polynomial of the path [v1, v2, . . . , v`]; similarly we write ω[v1, v2, . . . , v`]

instead of ω([v1, v2, . . . , v`]), etc.

Vertices in P (m − 1, n) (Section 2) and in subpaths of P (s, n) will be

labelled ui; vertices in C(n) (Section 4) will be labelled vi; and vertices in

T (m) (Section 6) will be labelled wi.

For 1 ≤ ` ≤ m we use indeterminate x`,i as the weight of a path of

length ` in G. Throughout the paper m ≥ 1 is fixed. In all Examples we set
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m = 3, and many Examples have n = 4.

2 Weighted path P (m − 1, n)

For m ≥ 1 and n ≥ 0 the path P (m − 1, n) has m − 1 + n vertices

{u1, u2, . . . , um−1+n}. The first m − 1 vertices are weighted with weight 1

and the remaining n vertices are weighted, one by one, with the indetermi-

nates from the set {x1,1, x1,2, . . . , x1,n}. Thus all vertices, i.e., all paths of

length ` = 1, in P (m− 1, n) are weighted. For 2 ≤ ` ≤ m a path of length `

in P (m−1, n) is weighted with 0 if its last vertex has weight 1, and with x`,i

if its last vertex has weight x1,i. The path P (0, 0) is the empty path with no

vertices.

Definition 2.1 For n ≥ 1 let fm,n be the m-path cover polynomial of the

weighted P (m − 1, n).

Starting conditions are: fm,n = 1 for −(m− 1) ≤ n ≤ 0.

As mentioned in Section 1, throughout this paper the path [ua, ua+1, . . . , ub]

is a subpath of the weighted P (m − 1, n).

We now derive our main (m + 1)-term recurrence:

Theorem 2.2 For a fixed m ≥ 1 and any n ≥ −(m − 1),

fm,n = x1,nfm,n−1 + x2,nfm,n−2 + · · · + xm,nfm,n−m =
m∑

`=1

x`,nfm,n−`. (1)

Proof. The last vertex um−1+n of P (m − 1, n) lies in every m-path cover

of P (m − 1, n). Suppose, in such an m-path cover, it is present as the last

vertex in an m-path of length `. Then this m-path has weight x`,n and begins

at um+n−`. The sum of the weights of all such m-path covers is therefore

x`,nPm[u1, u2, . . . , um−1+n−`] = x`,nfm,n−`,

5



where [u1, u2, . . . , um−1+n−`] is a subpath of P (m− 1, n). Now summing over

` gives the result. The initial conditions fm,n = 1 for −(m − 1) ≤ n ≤ 0

ensure that this equation holds when ` ≥ n.
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Example 2.3 For m = 3 the weighted path P (2, 3) is

1
•
u1

1
•
u2

x1,1

•
u3

x1,2

•
u4

x1,3

•
u5

0 x2,1 x2,2 x2,3

                          

x3,1

                          

x3,2
                          

x3,3

The weights of paths of length ` = 1 and 2 (vertices and edges) are shown

above the path. Vertex labels and weights of paths of length ` = 3 are shown

below the path.

` = 1: ω[u1] = ω[u2] = 1, ω[u3] = x1,1, ω[u4] = x1,2, ω[u5] = x1,3,

` = 2: ω[u1, u2] = 0, ω[u2, u3] = x2,1, ω[u3, u4] = x2,2, ω[u4, u5] = x2,3,

` = 3: ω[u1, u2, u3] = x3,1, ω[u2, u3, u4] = x3,2, ω[u3, u4, u5] = x3,3.

All 3-path covers of P (2, 3), and their weights, are shown below:

3-path cover weight

•
u1

•
u2

•
u3

•
u4

•
u5

x1,1x1,2x1,3

•
u1

•
u2

•
u3

•
u4

•
u5 0

•
u1

•
u2

•
u3

•
u4

•
u5

x1,2x1,3x2,1

•
u1

•
u2

•
u3

•
u4

•
u5

x1,3x2,2

•
u1

•
u2

•
u3

•
u4

•
u5

x1,1x2,3

•
u1

•
u2

•
u3

•
u4

•
u5 0

•
u1

•
u2

•
u3

•
u4

•
u5 0

•
u1

•
u2

•
u3

•
u4

•
u5

x2,1x2,3

•
u1

•
u2

•
u3

•
u4

•
u5

x1,2x1,3x3,1

•
u1

•
u2

•
u3

•
u4

•
u5

x1,3x3,2

•
u1

•
u2

•
u3

•
u4

•
u5

x3,3

•
u1

•
u2

•
u3

•
u4

•
u5

x2,3x3,1

•
u1

•
u2

•
u3

•
u4

•
u5 0



So f3,3 = x1,1x1,2x1,3 +x1,2x1,3x2,1 +x1,3x2,2 +x1,1x2,3 +x2,1x2,3 +x1,2x1,3x3,1 +

x1,3x3,2 + x2,3x3,1 + x3,3.

Example 2.4 Theorem 2.2 with m = 3 gives the 4-term recurrence for a

fixed n ≥ 1,

f3,n = x1,nf3,n−1 + x2,nf3,n−2 + x3,nf3,n−3.

Then the starting conditions f3,−2 = f3,−1 = f3,0 = 1 give,

f3,1 = x1,1 + x2,1 + x3,1,

f3,2 = x1,1x1,2 + x1,2x2,1 + x1,2x3,1 + x2,2 + x3,2,

f3,3 = x1,1x1,2x1,3 + x1,2x1,3x2,1 + x1,3x2,2 + x1,1x2,3

+ x2,1x2,3 + x1,2x1,3x3,1 + x1,3x3,2 + x2,3x3,1 + x3,3,

f3,4 = x1,1x1,2x1,3x1,4 + x1,2x1,3x1,4x2,1 + x1,2x1,3x1,4x3,1 + x1,1x1,2x2,4

+x1,1x1,4x2,3 + x1,2x2,1x2,4 + x1,2x2,4x3,1 + x1,3x1,4x2,2 + x1,3x1,4x3,2

+x1,4x2,1x2,3 + x1,4x2,3x3,1 + x1,1x3,4 + x1,4x3,3 + x2,1x3,4 + x2,2x2,4

+x2,4x3,2 + x3,1x3,4

...

We check f3,3 from Example 2.3.

Definition 2.5 For 0 ≤ r ≤ m−1 we define P (r, n) as above for P (m−1, n),

except that we have r vertices instead of m − 1 vertices of weight 1 at the

beginning of the path. Thus P (r, n) has r + n vertices, and is formed from

P (m−1, n) by truncating from the right. All m-paths in P (r, n) are weighted

as in P (m − 1, n). We let Pm(r, n) be the m-path cover polynomial of the

weighted P (r, n). We note that fm,n = Pm(m − 1, n).
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Example 2.6 For m = 3 and n = 4,

P3(0, 4) = x1,1x1,2x1,3x1,4 + x1,1x1,2x2,4 + x1,1x1,4x2,3 + x1,3x1,4x2,2

+x1,1x3,4 + x1,4x3,3 + x2,2x2,4,

P3(1, 4) = x1,1x1,2x1,3x1,4 + x1,2x1,3x1,4x2,1 + x1,3x1,4x2,2 + x1,1x1,4x2,3

+x1,1x1,2x2,4 + x1,4x2,1x2,3 + x1,2x2,1x2,4 + x1,3x1,4x3,2

+x1,1x3,4 + x1,4x3,3 + x2,1x3,4 + x2,2x2,4 + x2,4x3,2,

P3(2, 4) = f3,4, see Example 2.4.

For a fixed r with 0 ≤ r ≤ m − 1 we define the starting conditions

Pm(r, n) =







0, if −(m− 1) ≤ n ≤ −r − 1,

1, if −r ≤ n ≤ 0.
(2)

We then have the following recurrence; the proof is similar to the proof

of Theorem 2.2, and setting r = m − 1 recovers Theorem 2.2.

Theorem 2.7 For a fixed r with 0 ≤ r ≤ m − 1 and any n ≥ 1,

Pm(r, n) =
m∑

`=1

x`,nPm(r, n − `).

We now work with the fundamental solutions to recurrence (1):

For 1 ≤ j ≤ m let f
(j)
m,n denote the j-th fundamental solution to (1). Thus

the f
(j)
m,n obey the recurrence

f (j)
m,n =

m∑

`=1

x`,nf
(j)
m,n−`, (3)

with starting conditions

f
(j)
m,−(m−1)+k =







1, if k = m − j,

0, if k 6= m − j,

9



where 0 ≤ k ≤ m − 1.

We have

fm,n =
m∑

j=1

f (j)
m,n. (4)

Our next result expresses f
(j)
m,n as the difference of two m-path cover poly-

nomials. Consistent with (2) we set Pm(−1, n) = 0 for every n ≥ −(m− 1).

Lemma 2.8 For n ≥ 1 and 1 ≤ j ≤ m,

f (j)
m,n = Pm(j − 1, n) − Pm(j − 2, n). (5)

Proof. By induction on n, first consider n = 1. Now f
(j)
m,1−` = 1 when

` = j and f
(j)
m,1−` = 0 otherwise. Each f

(j)
m,n satisfies equation (3), so f

(j)
m,1 =

∑m

`=1 x`,1f
(j)
m,1−` = xj,1. Now consider the path P (j − 1, 1) shown below:

1
•
u1

1
•
u2

1
•

uj−1

x1,1

•
uj

· · ·
0 x2,1

                                                

xj,1

The first vertex u1 lies in every m-path cover of P (j − 1, 1) so, similar to the

proof of Theorem 2.2, we have

Pm(j − 1, 1) = ω[u1]Pm(j − 2, 1) + ω[u1, u2]Pm(j − 3, 1) + · · · + ω[u1, u2, . . . , uj]

= 1 · Pm(j − 2, 1) + 0 · Pm(j − 3, 1) + · · · + xj,1.

Thus, from above, f
(j)
m,1 = xj,1 = Pm(j − 1, 1) − Pm(j − 2, 1), i.e., equation

(5) is true for n = 1.
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Now we have

f
(j)
m,n+1 =

m∑

`=1

x`,n+1f
(j)
m,n+1−`

=
m∑

`=1

x`,n+1{Pm(j − 1, n + 1 − `) − Pm(j − 2, n + 1 − `)}

=
m∑

`=1

x`,n+1Pm(j − 1, n + 1 − `) −
m∑

`=1

x`,n+1Pm(j − 2, n + 1 − `)

= Pm(j − 1, n + 1) − Pm(j − 2, n + 1),

using equation (3) again at the first line, the induction hypothesis at the sec-

ond line and Theorem 2.7 at the last line. Hence the induction goes through

and equation (5) is true for all n ≥ 1.

Example 2.9 Using equation (3) and the starting conditions following

(3): For m = 3 and n = 4 the 3 fundamental solutions to recurrence (1) are,

f
(1)
3,4 = x1,1x1,2x1,3x1,4 + x1,1x1,2x2,4 + x1,1x1,4x2,3 + x1,3x1,4x2,2

+x1,1x3,4 + x1,4x3,3 + x2,2x2,4,

f
(2)
3,4 = x1,2x1,3x1,4x2,1 + x1,3x1,4x3,2 + x1,4x2,1x2,3 + x1,2x2,1x2,4

+x2,4x3,2 + x2,1x3,4,

f
(3)
3,4 = x1,2x1,3x1,4x3,1 + x1,4x2,3x3,1 + x1,2x2,4x3,1 + x3,1x3,4.

We check equation (4) using Example 2.4,

f3,4 = f
(1)
3,4 + f

(2)
3,4 + f

(3)
3,4 .

We also check Lemma 2.8 using P3(−1, 4) = 0 and Example 2.6,

f
(1)
3,4 = P3(0, 4) − P3(−1, 4) = P3(0, 4),

f
(2)
3,4 = P3(1, 4) − P3(0, 4),

f
(3)
3,4 = P3(2, 4) − P3(1, 4).
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By iteration of such formulas, we have Corollary 2.10; where (ii) is a

specialization of (i) with r = 0.

Corollary 2.10

(i) For 1 ≤ j ≤ m,

Pm(r, n) =
r+1∑

j=1

f (j)
m,n,

(ii) the first fundamental solution to recurrence (1) is given by

f (1)
m,n = Pm(0, n).

The following Corollary 2.11 is a useful technical result.

Corollary 2.11 For n ≥ 1 and 1 ≤ j ≤ m,

f
(j)
m,n+1−j =

m∑

`=j

x`,`+1−jPm[um+`+1−j , . . . , um+n−j ].

Proof. For j = 1 from Corollary 2.10(ii) we have f
(1)
m,n = Pm(0, n). Now

in the weighted path P (0, n) let vertex u1 be covered by a path Q` of length `

where 1 ≤ ` ≤ m. Then Q` begins at vertex u1 and ends at vertex u`, which

has weight x1,`; so ω(Q`) = x`,`. Now in every m-path cover of P (0, n) vertex

u1 must be covered by such a path Q`, so f
(1)
m,n =

∑m

`=1 x`,`Pm[u`+1, . . . , un],

which is the above formula for j = 1.

For any 2 ≤ j ≤ m the path [um+1−j , . . . , um−1+n] is a subpath of P (m−

1, n). In fact the weighted paths P (j−1, n) and [um+1−j , . . . , um−1+n] (except

for vertex labels) are identical, so Pm(j − 1, n) = Pm[um+1−j, . . . , um−1+n].

12



From Lemma 2.8 we have

f
(j)
m,n+1−j = Pm(j − 1, n + 1 − j) −Pm(j − 2, n + 1 − j)

= Pm[um+1−j, . . . , um+n−j ] − 1 · Pm[um+2−j , . . . , um+n−j ]

= sum of terms of Pm[um+1−j, . . . , um+n−j ] in which vertex

um+1−j is covered by a path whose weight is an indeterminate,

as opposed to a path with weight 1.

So let vertex um+1−j be covered by a path Q` of length ` ≥ 1. Then

Q` begins at vertex um+1−j and ends at vertex um+`−j , which has weight

x1,`+1−j. Hence ω(Q`) = x`,`+1−j . Furthermore, because Q` ends at um+`−j

if ` < j then m + `− j ≤ m− 1, hence w(Q`) = 0, a contradiction; so ` ≥ j.

Now, similar to above, the sum of the terms of Pm[um+1−j, . . . , um+n−j ]

that contain x`,`+1−j is x`,`+1−jPm[um+`+1−j , . . . , um+n−j ]. Finally, summing

over the lengths ` of all possible paths Q`, namely summing over ` with

j ≤ ` ≤ m, gives the result.

This completes study of the weighted path P (m − 1, n).

3 Matrix formulation and Trace

We set-up our (m + 1)-term recurrence (1) in matrix form.

Let Xm,0 = Im be the m × m identity matrix, and for n ≥ 1 let Xm,n be

the m ×m matrix

Xm,n =











0 1 · · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

xm,n xm−1,n xm−2,n · · · x1,n











. (6)

Let T denote transpose, and let Fm,n be the vector Fm,n = (fm,n−(m−1), . . . , fm,n)T.
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Then recurrence (1) can be written as:

Fm,n = Xm,n Fm,n−1,

where Fm,0 = (fm,−(m−1), . . . , fm,0)
T = (1, . . . , 1)T. By iterating this equation

we have Fm,n = Ym,n Fm,0, where

Ym,n = Xm,nXm,n−1 · · ·Xm,0 =











f
(m)

m,n−(m−1) · · · · · f
(1)

m,n−(m−1)

f
(m)
m,n−(m−2) · · · · · f

(1)
m,n−(m−2)

...
...

...
...

...

f
(m)
m,n−1 · · · · · f

(1)
m,n−1

f
(m)
m,n · · · · · f

(1)
m,n











. (7)

With tr denoting trace, we have,

Lemma 3.1 For n ≥ 1,

tr(Ym,n) =

m∑

j=1

f
(j)
m,n+1−j .

We now apply these results to the weighted cycle C(n).

4 Weighted cycle C(n) and Trace

We introduce the weighted cycle C(n) for n ≥ 1, shown in Fig. 1. It has n

vertices labelled {v1, v2, . . . , vn} and n edges.

It is weighted as follows: for 1 ≤ ` ≤ m, let P` be a path of length ` that

traverses C(n) clockwise and ends at vertex vi. We define ω(P`) = x`,i.

Thus the weighted cycle C(1) is an isolated vertex v1 with weight ω(v1) =

x1,1; and the weighted cycle C(2) has 2 vertices {v1, v2} with ω(v1) = x1,1

and ω(v2) = x1,2, and 2 edges: edge (v1, v2) with ω(v1, v2) = x2,2, and edge

(v2, v1) with ω(v2, v1) = x2,1.

In Fig. 1 only the weights of paths of lengths ` = 1 and 2 are shown.

14
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Figure 1: Weighted C(n)

Lemma 4.1 For 1 ≤ a ≤ b ≤ n the following m-path cover polynomials,

the first which comes from C(n) and the second from P (m− 1, n), are equal:

Pm[va, . . . , vb] = Pm[um−1+a, . . . , um−1+b].

Proof. Except for vertex labels, the weighted paths [va, . . . , vb] in C(n)

and [um−1+a, . . . , um−1+b] in P (m − 1, n) are identical. Hence the result.

Definition 4.2 For n ≥ 1 let Cm(n) be the m-path cover polynomial of the

weighted C(n).

In the following, when necessary, we reduce subscripts on u, v, and the

second subscript on x, all modulo n. We write un+t = ut, vn+t = vt, and

x`,n+t = x`,t, etc.

The following Theorem 4.3 is the main result of this section. Recall the

matrix Ym,n from equation (7).

Theorem 4.3 For n ≥ 1,

Cm(n) = tr(Ym,n).
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Proof. Consider the weighted C(n). Vertex v1 lies in every m-path cover

of C(n). Suppose, in such an m-path cover, it is covered by a path P` of length

` that begins at vn−p and ends at vn−p−1+`, for some p ∈ {−1, 0, 1, . . . , `−2}.

Now 1 ≤ ` ≤ m, i.e., p + 2 ≤ ` ≤ m. The sum of the weights of all such

paths is then
m∑

`=p+2

x`,n−p−1+`Pm[vn−p+`, . . . , vn−p−1].

But p ∈ {−1, 0, 1, . . . , m − 2}, so

Cm(n) =
m−2∑

p=−1

m∑

`=p+2

x`,n−p−1+`Pm[vn−p+`, . . . , vn−p−1]

=
m∑

j=1

m∑

`=j

x`,n+`+1−jPm[vn+`+2−j , . . . , vn+1−j]

=

m∑

j=1

m∑

`=j

x`,`+1−jPm[um+`+1−j , . . . , um−j]

=
m∑

j=1

f
(j)
m,n+1−j

= tr(Ym,n),

letting j = p + 2 at the second line, and using subscript reduction modulo n

and Lemma 4.1 at the third line, then Corollary 2.11 at the fourth line, and

Lemma 3.1 at the last line.

Example 4.4 For m = 3 and n = 4 consider the weighted C(4) in Fig 2.

The 3-paths are weighted as follows,

` = 1: ω[v1] = x1,1, ω[v2] = x1,2, ω[v3] = x1,3, ω[v4] = x1,4,

` = 2: ω[v1, v2] = x2,2, ω[v2, v3] = x2,3, ω[v3, v4] = x2,4, ω[v4, v1] = x2,1,

` = 3: ω[v1, v2, v3] = x3,3, ω[v2, v3, v4] = x3,4, ω[v3, v4, v1] = x3,1, ω[v4, v1, v2] = x3,2.
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Figure 2: Weighted C(4)

By considering all 3-path covers, the 3-path cover polynomial of the weighted

C(4) is

C3(4) = x1,1x1,2x1,3x1,4 + x1,1x1,2x2,4 + x1,2x1,3x2,1 + x1,3x1,4x2,2

+x1,1x1,4x2,3 + x1,3x3,2 + x1,4x3,3 + x1,1x3,4 + x1,2x3,1

+x2,1x2,3 + x2,2x2,4.

Similar to Example 2.9, the recurrence (3) and the starting conditions

following (3) give

f
(1)
3,4 = x1,1x1,2x1,3x1,4 + x1,1x1,2x2,4 + x1,1x1,4x2,3 + x1,3x1,4x2,2

+x1,1x3,4 + x1,4x3,3 + x2,2x2,4,

f
(2)
3,3 = x1,2x1,3x2,1 + x1,3x3,2 + x2,1x2,3,

f
(3)
3,2 = x1,2x3,1.

17



Together with the following matrices

Y3,4 = X3,4X3,3X3,2X3,1X3,0

=






0 1 0

0 0 1

x3,4 x2,4 x1,4











0 1 0

0 0 1

x3,3 x2,3 x1,3











0 1 0

0 0 1

x3,2 x2,2 x1,2











0 1 0

0 0 1

x3,1 x2,1 x1,1






=








x1,2x3,1 x1,2x2,1+x3,2 x1,1x1,2+x2,2

x1,2x1,3x3,1+x2,3x3,1
x1,3x3,2+x2,1x2,3

+x1,2x1,3x2,1

x1,1x2,3+x1,3x2,2

+x1,1x1,2x1,3+x3,3

x1,2x2,4x3,1+x1,2x1,3x1,4x3,1

+x1,4x2,3x3,1+x3,1x3,4

x1,2x2,4x2,1+x1,2x1,3x1,4x2,1+x1,3x1,4x3,2

+x1,4x2,1x2,3+x2,1x3,4+x2,4x3,2

x1,1x3,4+x1,1x1,2x2,4+x1,1x1,4x2,3

+x1,1x1,2x1,3x1,4+x1,3x1,4x2,2

+x1,4x3,3+x2,2x2,4








,

we may check the results from Lemma 3.1 and Theorem 4.3,

C3(4) = tr(Y3,4) =
3∑

j=1

f
(j)
3,5−j = f

(1)
3,4 + f

(2)
3,3 + f

(3)
3,2 .

5 Markov chain interpretation

In this section we consider an interesting special case, where in the matrix

formulation of the recurrence we have stochastic matrices. A matrix of the

form (6) can be considered a transition matrix for a Markov chain with m

states under the conditions
∑

j

xj,n = 1 , xj,n ≥ 0, ∀j .

Because the probabilities xj,n vary with n, these are the transition matrices

for a non-homogeneous Markov chain. Note also that, as transition matrices

are multiplied from left to right, the process is effectively time-reversed. In

fact,

P[jump at time ν from state m to state j] = xm−j+1,n−ν+1 .

This process is often referred to as a ladder process. From any state j, with

j < m, the process jumps with certainty to j +1, thence to j +2, etc., up the
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ladder, till it reaches state m. At that point it jumps randomly back down

the ladder to one of the intermediate states j, 1 ≤ j < m, and the procedure

repeats. Because all of the matrices are stochastic, the row sums of matrices

such as Ym,n, see equation (7), will all equal 1. Recall from Section 3 that






fm,n−m+1

...

fm,n




 = Ym,n






1
...

1






Thus,

Proposition 5.1 In the stochastic case, all of the path polynomials fm,n

evaluate to 1.

5.1 Homogeneous case

In the case of constant coefficients (see equation (6)), sending x`,i → x`, ∀i,

we drop the dependence on n and write

Xm =











0 1 · · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

xm xm−1 xm−2 · · · x1











,

with
∑

xj = 1. Now

Ym,n = (Xm)n

is the n-step transition matrix. It is easy to see that a row vector (on the

left) fixed by Xm is

(xm, xm + xm−1, . . . , xm + xm−1 + · · · + x2, 1) .

Furthermore, under the assumption xj > 0, ∀j, it is immediate that the chain

is irreducible and aperiodic, hence ergodic. That is,

lim
n→∞

Ym,n = Ω
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exists and has equal rows, each row proportional to the left-invariant vector

indicated above normalized to row sum 1.

Example 5.2 Take the uniform case xj = 1/m, 1 ≤ j ≤ m. Then we have

the fixed vector (1, 2, 3, . . . , m) and the limits

lim
n→∞

f (j)
m,n =

2(m − j + 1)

m(m + 1)
.

Thus, for large n, if we randomly choose an m-path cover of P (m−1, n) then

the probability that it belongs to the j-fundamental solution is 2(m−j+1)
m(m+1)

. In

particular, the first fundamental solution satisfies

lim
n→∞

f (1)
m,n =

2

m + 1
.

So the m-path cover polynomial model provides a combinatorial model

for non-homogeneous Markov chains. A closely related model, the trellis, is

discussed in detail below in Section 6.

6 Edge-weighted m-trellis T (m)

In this section we deal with the edge-weighted m-trellis, T (m), shown in Fig 3,

and give another method of generating f
(j)
m,n and Cm(n).

The vertices of T (m) are labelled {w1, w2, . . . , wm}. All edges in T (m)

are directed , with arrows as shown. All circuits in T (m) are directed, and

are traversed in the direction of the arrows. We use S to denote a directed

circuit in T (m), which we simply call a circuit. A circuit is based at vertex

wj if it begins and ends at vertex wj. A circuit may pass through the same

vertex more than once. The length of a circuit S is the number of edges in it.

The weights on the edges of T (m) are taken from {1, x1,d, . . . , xm,d} where

d ≥ 1, as shown. The weight of circuit S, w(S), is the product of the weights
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Figure 3: Edge-weighted m-trellis T (m)

of all the edges in S. If the edge with weight xj,d is traversed as the k-th edge

in S, then xj,k is a factor in w(S); thus the meaning of xj,d here is different

from that in Sections 2 and 4. We allow empty circuits with length 0.

Definition 6.1 Let Tm(wj, 0) = 1 and, for s ≥ 1, let Tm(wj, s) be the sum

of the weights of all circuits in T (m) that are based at vertex wj with length s.

Notation We use standard multiset notation: 1k = 1 · 1 · · · 1 · 1
︸ ︷︷ ︸

k

, and 10

means no occurrences of 1.

Theorem 6.2 For s ≥ 0,

Tm(w1, s) = Pm(0, s). (8)

Proof. By strong induction on s. Now Tm(w1, 0) = Pm(0, 0) = 1, hence

equation (8) is true for s = 0. We now assume that Tm(w1, s
′) = Pm(0, s′)

for all 0 ≤ s′ ≤ s. Consider any term in Tm(w1, s + 1), it is the weight

of some circuit S in T (m) based at vertex w1 with length s + 1. Clearly

S ends with a k-cycle based at vertex w1, for some k with 1 ≤ k ≤ m.

Thus the last edge of S is (wk, w1), with weight xk,s+1, and the previous
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k−1 edges are (wk, wk−1), (wk−1, wk−2), . . . , (w2, w1), each of weight 1. Hence

ω(S) = Tm(w1, s + 1 − k)1k−1xk,s+1. Thus

Tm(w1, s + 1) =

m∑

k=1

xk,s+1Tm(w1, s + 1 − k)

=

m∑

k=1

xk,s+1Pm(0, s + 1 − k) = Pm(0, s + 1),

using the strong induction hypothesis and then Theorem 2.7. So the induc-

tion goes through and equation (8) is true for all s ≥ 0.

Let T +c
m (w1, s) be the expression obtained when every indeterminate xa,b

in Tm(w1, s) is replaced by xa,b+c; similarly for other expressions.

Recall that [um, . . . , um−1+s] is a subpath of P (m − 1, n) for s ≥ 0; for

s = 0 the path [um, um−1] is the empty path P (0, 0), and Pm(0, 0) = 1.

Corollary 6.3 For s ≥ 0 and 0 ≤ c ≤ n − s,

T +c
m (w1, s) = Pm[um+c, . . . , um−1+s+c].

Proof. For s = 0 we have T +c
m (w1, 0) = Pm[um+c, um−1+c] = 1. For

s ≥ 1 then [um, . . . , um−1+s] is a subpath of P (m − 1, n) so, for every

n ≥ s, we have Pm(0, s) = Pm[um, . . . , um−1+s]. Now, from Theorem 6.2,

Tm(w1, s) = Pm(0, s), so T +c
m (w1, s) = P+c

m (0, s) = Pm[um+c, . . . , um−1+s+c],

as required.

We now connect Tm(wj, n) and the fundamental solutions of the (m +1)-

term recurrence (1).

Theorem 6.4 For n ≥ 0,

Tm(wj, n) = f
(j)
m,n+1−j .

22



Proof. Consider a circuit S in T (m) based at vertex wj with n edges.

Then, for some 0 ≤ k ≤ m − j, the first k edges in this circuit are

(wj, wj+1), (wj+1, wj+2), . . . , (wj+k−1, wj+k), followed by edge (wj+k, w1) end-

ing at vertex w1. These edges contribute 1kxj+k,k+1 to w(S). Now, starting at

vertex w1, the last j−1 edges traversed in S are (w1, w2), (w2, w3), . . . , (wj−1, wj),

contributing 1j−1 to w(S). Hence ω(S) = xj+k,k+1T
+(k+1)

m (w1, n − j − k).

Thus

Tm(wj, n) =

m−j
∑

k=0

xj+k,k+1T
+(k+1)

m (w1, n − j − k)

=
m∑

`=j

x`,`+1−jT
+(`+1−j)

m (w1, n − `)

=
m∑

`=j

x`,`+1−jPm[um+`+1−j , . . . , um+n−j ]

= f
(j)
m,n+1−j ,

putting ` = j+k at the second line, then using Corollary 6.3 with c = `+1−j

and s = n− ` at the third line, finally using Corollary 2.11 at the last line.

Example 6.5 Consider T (3), the edge-weighted 3-trellis, see Fig. 4.

 3,dx

x
x 2,d

1,d

w1
1 1

w2w3

Figure 4: Edge-weighted 3-trellis T (3)

(a) T3(w2, 5) = sum of weights of circuits of T (3) based at w2 with length 5

= x2,1x1,2x1,3x1,4 1 + x2,1x1,2 1x2,4 1 + x2,1 1 · 1x3,4 1

+x2,1 1x2,3x1,4 1 + 1x3,2x1,3x1,4 1 + 1x3,2 1x2,4 1 = f
(2)
3,4 ,
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as in Example 2.9.

(b) T3(w3, 6) = sum of weights of circuits based at w3 with length 6.

We observe that the first edge in such a circuit is edge (w3, w1) of weight

x3,1, hence x3,1 is a factor of every term in T3(w3, 6) = f
(3)
3,4 , consistent with

Example 2.9 again.

Finally, we bring the results from Lemma 3.1 and Theorems 4.3 and 6.4

together in the following Theorem 6.6.

Theorem 6.6 For 1 ≤ n ≤ m,

Cm(n) = tr(Ym,n) =
m∑

j=1

Tm(wj, n).

Example 6.7 Again, from T (3), we have, C3(4) =
∑3

j=1 T3(wj, 4).

T3(w1, 4) = x1,1x1,2x1,3x1,4 + x1,1x1,2 1x2,4 + x1,1 1x2,3x1,4 + x1,1 1 · 1x3,4

+1x2,2x1,3x1,4 + 1x2,2 1x2,4 + 1 · 1x3,3x1,4 = f
(1)
3,4 ,

T3(w2, 4) = x2,1x1,2x1,3 1 + x2,1 1x2,3 1 + 1x3,2x1,3 1 = f
(2)
3,3 ,

T3(w3, 4) = x3,1x1,2 1 · 1 = f
(3)
3,2 ,

which are consistent with the above definitions and results, and with Example 4.4.

7 Homogeneous case, x`,i → x`

In this section, we consider the case of constant coefficients, i.e., where the

indeterminates x`,i are independent of i.

Notation We use ∗ to modify a path or expression or matrix in which

weights or indeterminates x`,i are replaced with x`.

First we review some known properties of m-path polynomials using stan-

dard techniques. Then we show how our model recovers these results combi-

natorially.
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7.1 Constant coefficient recurrences

This subsection mainly establishes notation and recalls basic results of inter-

est.

Consider the recurrence

yn =
m∑

i=1

xi yn−i (9)

We begin with the first fundamental solution. The following is standard

and readily derived via geometric series and multinomial expansion.

Proposition 7.1 We have the generating function and formula

∑

n≥0

hn tn =
1

1 −
m∑

i=1

xi t
i

=
∑

n≥0

∑

P

`s`=n

(
s1 + s2 + · · · + sm

s1, s2, . . . , sm

)

xs1

1 xs2

2 · · · xsm

m tn

giving the (first) fundamental solution, hn, to the recurrence, i.e., with initial

values hi = 0, −(m − 1) ≤ i < 0, h0 = 1.

The matrix Xm takes the form, cf. Section 5.1,

Xm =












0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0
. . . 1

xm xm−1 xm−2 · · · x1












.

so that det(I−tXm) = 1−
m∑

i=1

xi t
i. Define the (r+1)st fundamental solution

to recurrence (9) to be the one with initial conditions

yi = 0, for − (m− 1) ≤ i ≤ 0, i 6= −r

y−r = 1,
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and denote this fundamental solution by h
(r+1)
n , with hn = h

(1)
n . Then the

entries in the bottom row of (Xm)n are exactly the values

((Xm)n)(m,j) = h(m−j+1)
n .

In general,

((Xm)n)(i,j) = h
(m−j+1)
n−m+i . (10)

The fundamental solutions for r > 0 can be expressed in terms of the first

fundamental solution as follows.

Proposition 7.2 The (r + 1)st fundamental solution to the recurrence (9)

is given by

h(r+1)
n = hn+r −

r−1∑

k=0

hn+kxr−k,

where hn denotes the first fundamental solution.

Proof. We will illustrate for r ≤ 2 that shows how the general case works.

We have

h(1)
n = hn,

h(2)
n = hn+1 − x1 hn,

h(3)
n = hn+2 − x1 hn+1 − x2 hn.

For r = 1, we obtain 0 for nonpositive n, except for n = −1, as required.

Similarly, for r = 2, for nonpositive n we obtain 1 precisely for n = −2,

otherwise we get 0. Note that the subtractions are necessary to cancel off

terms when 0 ≥ n > −r. Since the coefficients are independent of n, these

are indeed solutions to the recurrence. Thus the result.

Now for the trace,

Proposition 7.3 The trace of (Xm)n is given by

tr(Xm)n =
m∑

j=1

j hn−j xj.
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Proof. From (10), we have, using the above Proposition 7.2,

tr(Xm)n =
m∑

i=1

h
(m−i+1)
n−m+i

=
m−1∑

i=0

h
(i+1)
n−i

=
m−1∑

i=0

[

hn −
i−1∑

k=0

hn−i+k xi−k

]

=
m−1∑

i=0

[

hn −
i∑

j=1

hn−j xj

]

= m hn −
m−1∑

i=0

i∑

j=1

hn−j xj

(next, interchanging the order of summation)

= m hn −
m−1∑

j=1

m−1∑

i=j

hn−j xj

= m hn −
m−1∑

j=1

(m− j)hn−j xj

= m

[

hn −
m−1∑

j=1

hn−j xj

]

+

m−1∑

j=1

j hn−j xj

=
m∑

j=1

j hn−j xj (by the recurrence for {hn}).

Remark 7.4 These are a variation on Newton’s Identities relating power

sum symmetric functions and elementary symmetric functions. Here, the

homogeneous symmetric functions, hn, play a rôle as well.
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7.2 Combinatorial proofs

We now show how these formulas may be derived combinatorially by our

model with the specialization x`,i → x`. The weighted path P ∗(2, 3) looks

like

1
•
u1

1
•
u2

x1

•
u3

x1

•
u4

x1

•
u5

0 x2 x2 x2

                          
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Notation. Consistent with the above, we use h or H to represent expres-

sions in which we have replaced x`,i with x`. Thus Hm(r, n) = P∗
m(r, n), for

0 ≤ r ≤ m − 1, see Definition 2.5 of weighted path P (r, n).

7.2.1 First fundamental solution

Proposition 7.1 is readily seen from the weighting of path P ∗(m− 1, n). For

the first fundamental solution, there are no vertices with weight 1, and no

edges weighted 0. The first vertex has weight x1, and so on. In an m-path

cover the exponent s` is the number of paths of length `, for each 1 ≤ ` ≤ m,

and the multinomial coefficient counts the number of m-path covers obtained

from any fixed set of m-paths. So this model gives a visual interpretation to

the analytic formula.



7.2.2 Higher fundamental solutions

Start with

Lemma 7.5 For a fixed r with 1 ≤ r ≤ m − 1 and any n ≥ 1,

Hm(r, n) −Hm(r − 1, n) =
m∑

`=r+1

x`Hm(0, n + r − `).

Proof. For r ≥ 1, consider the weighted path P ∗(r, n). The first vertex

u1 must lie in every m-path cover of this path, say on a path Q` of length

` for 1 ≤ ` ≤ m, starting at u1. If ` = 1 then ω(Q1) = ω(u1) = 1, and the

sum of all such m-path covers is thus 1 · Hm(r − 1, n). If 2 ≤ ` ≤ r then Q`

finishes at vertex u` where ω(u`) = 1, so ω(Q`) = 0. And if r + 1 ≤ ` ≤ m

then Q` finishes at vertex u` where ω(u`) = x1 and so ω(Q`) = x`, and

the sum of all such m-path covers is x`Hm(0, n + r − `). Hence Hm(r, n) =

Hm(r − 1, n) +
∑m

`=r+1 x`Hm(0, n + r − `), and so the result.

Now for a combinatorial proof of Proposition 7.2.

Theorem 7.6 For the fundamental solutions to the recurrence for the ho-

mogeneous path polynomials, we have

h(r+1)
n = hn+r −

r∑

`=1

x`hn+r−` .

Proof. By our definitions and Corollary 2.10 (ii) we have hn = f
(1)∗
m,n =

P∗
m(0, n) = Hm(0, n). And, from Lemmas 2.8 and 7.5, we have

h(r+1)
n = Hm(r, n) −Hm(r − 1, n) =

m∑

`=r+1

x`hn+r−`. (11)
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Now

hn+r = Hm(0, n + r)

=

m∑

`=1

x`hn+r−`

=

r∑

`=1

x`hn+r−` +

m∑

`=r+1

x`hn+r−`

=
r∑

`=1

x`hn+r−` + h(r+1)
n ,

where, at the second line, we note that in every m-path cover of the weighted

path P ∗(0, n + r) vertex un+r must lie on a path Q` of length ` and weight

x` where 1 ≤ ` ≤ m, and at the last line we use equation (11). This gives

the result.

7.2.3 Trace formula

We now give a combinatorial derivation of the trace formula, Proposition 7.3.

First let Tm(n) be the sum of the weights of all circuits of length n in

T ∗(m), the m-trellis with edge-weights x`,i replaced by x`, i.e., Tm(n) =
∑m

j=1 T
∗

m(wj, n), see Section 6.

Theorem 7.7 For any n ≥ 1,

tr(Xm)n =
m∑

j=1

jxjhn−j .

Proof. We recall that the indeterminates in any term of Tm(n) are initially

ordered according to the edges traversed in the corresponding circuit, see

Example 6.7. Let X = xjx`1x`2 · · ·x`r be a typical ordered term in Tm(n)
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with all 1’s removed and with first indeterminate xj. We first show that term

X occurs j times in Tm(n).

When there are two successive indeterminates x` and x`′ in X then, in

the corresponding circuit, the edges traversed are: first (w`, w1) of weight x`,

followed by the `′−1 edges (w1, w2), (w2, w3), . . . , (w`′−1, w`′) each of weight 1,

then finishing with the edge (w`′, w1) of weight x`′ . Hence pair x`x`′ becomes

x`1
`′−1x`′ when the indeterminates are considered as weights on edges in a

circuit in T ∗(m).

Now, because the first indeterminate in X is xj, any circuit corresponding

to X must be based at vertex wj′ for some j′ ∈ {1, 2, . . . , j}. Hence X will

appear in Tm(n) as

1j−j′xj1
`1−1x`11

`2−1x`21
`3−1 · · · 1`r−1x`r1

j′−1,

for each j′ ∈ {1, 2, . . . , j} in Tm(n). There are j such j′, so there are j oc-

currences of term X in Tm(n).

Now consider an occurrence of X in which j′ = j, namely,

xj1
`1−1x`11

`2−1x`21
`3−1 · · · 1`r−1x`r1

j−1.

So,
X

xj1j−1
= 1`1−1x`11

`2−1x`21
`3−1 · · · 1`r−1x`r = Z, say.

Then the sequence of edges traversed in T ∗(m) corresponding to Z begins at

w1 and ends at w1, and so is a circuit based at w1, with length n−1−(j−1) =

n − j. Thus Z ∈ T ∗
m(w1, n − j). Conversely given any Z ∈ T ∗

m(w1, n − j)

then xjZ 1j−1 is an occurrence of term X starting with 10 and ending with

1j−1. Thus

∑

j′=j X

xj

= T ∗
m(w1, n − j), and

∑

j′=j X = xjT ∗
m(w1, n − j).

Now we can partition the weighted circuits of T ∗(m) of length n by their

first indeterminate xj, (ignoring the edges of weight 1 preceding this first

indeterminate). That is, we can partition the terms of Tm(n) by their first
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indeterminate xj. So, using the above arguments we have,

Tm(n) =
m∑

j=1

jxjT
∗

m(w1, n − j).

Furthermore, T ∗
m(w1, n−j) = P∗

m(0, n−j) = f
(1)∗
m,n−j = hn−j , the first equality

is Theorem 6.2 and the second is Corollary 2.10(ii), and the third is by

definition of hn. So finally,

tr(Xn
m) = Tm(n) =

m∑

j=1

jxjT
∗

m(w1, n − j) =

m∑

j=1

jxjhn−j .

Example 7.8 See Examples 4.4 and 6.7. Here m = 3 and n = 4.

tr(X4
3 ) = T3(4) = x4

1 + 4x2
1x2 + 4x1x3 + 2x2

2

= x1(x
3
1 + 2x1x2 + x3) + 2x2(x

2
1 + x2) + 3x3(x1)

= x1(f
(1)∗
3,3 ) + 2x2(f

(1)∗
3,2 ) + 3x3(f

(1)∗
3,1 )

= x1h3 + 2x2h2 + 3x3h1,

where, at line 2, we have rearranged the terms according to their first inde-

terminate xj, using Example 6.7, and combined like terms.

Remark 7.9 From Theorem 6.6, and our definitions of matrices Ym,n and

Xm from Sections 3 and 5.1 respectively, we have the following equalities:

C∗
m(n) = tr(Y ∗

m,n) =

m∑

j=1

T ∗
m(wj, n) and tr(Y ∗

m,n) = tr(Xn
m).

Thus, from Theorem 7.7,

m∑

j=1

T ∗
m(wj, n) =

m∑

j=1

jxjT
∗

m(w1, n − j).
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8 Sequences, x`,i → 1

In Section 7 we specialized by replacing weights x`,i with x`. In this section

we specialize further by replacing all weights x`,i with 1. We denote this

operation by #. We then use these # matrices to count m-path covers of

the path and cycle.

Recall matrix Xm,n from equation (6), we define matrix Zm:

Zm = X#
m,n =











0 1 · · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

1 1 1 · · · 1











.

Similarly, let cm(n) = C#
m(n) be the expression Cm(n) evaluated when all

x`,i = 1. So Y #
m,n = Zn

m, and cm(n) = tr(Y #
m,n) = tr(Zn

m). Thus cm(n) counts

the number of m-path covers of the weighted C(n), or of an arbitrary n-cycle.

(Cf., Corollary 11.1, Section 8, Farrell [5].)

Theorem 8.1 For 1 ≤ n ≤ m, we have cm(n) = 2n − 1.

Proof. Let [n] = {1, 2, . . . , n} and let C [n] denote the cycle whose vertices

are the elements of [n] arranged clockwise in a circle. Now n ≤ m so any

path cover of C [n] will be an m-path cover. We show that the number of

path covers of C [n] is 2n − 1:

Given a subset {i1, i2, . . . , ik} of [n] with {i1 < i2 < · · · < ik} we define a

path cover [i1, i1 +1, . . . , i2−1], [i2, i2 +1, . . . , i3−1], . . . , [ik, ik +1, . . . , i1−1]

of C [n]. Conversely, given a path cover [i1, i1+1, . . . , i2−1], [i2, i2+1, . . . , i3−

1], . . . , [ik, ik +1, . . . , i1−1] of C [n] we take the first vertex from each path to

form a subset {i1, i2, . . . , ik} of [n], and then rearrange its elements to form

a subset of [n] with increasing elements. These two operations illustrate a

bijection from the set of non-empty subsets of [n] to the set of m-path covers

of C [n]. Hence cm(n) = 2n − 1.
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From recurrence (1), Lemma 3.1 and Theorems 4.3 and 8.1: for n ≥ m+1

we see that cm(n) obeys the m-anacci recurrence,

cm(n) = cm(n − 1) + cm(n − 2) + · · · + cm(n −m) =
m∑

`=1

cm(n − `),

with starting conditions cm(n) = 2n − 1 for 1 ≤ n ≤ m.

In the square array below cm(n) is the (n, m) entry, for n, m ≥ 1. Column

m is determined by the above m-anacci recurrence. We observe that the

(m, m) main diagonal entry is cm(m) = 2m − 1.

n\m 1 2 3 4 5 6 7 8 9 10 · · ·
1 1 1 1 1 1 1 1 1 1 1 · · ·
2 1 3 3 3 3 3 3 3 3 3 · · ·
3 1 4 7 7 7 7 7 7 7 7 · · ·
4 1 7 11 15 15 15 15 15 15 15 · · ·
5 1 11 21 26 31 31 31 31 31 31 · · ·
6 1 18 39 51 57 63 63 63 63 63 · · ·
7 1 29 71 99 113 120 127 127 127 127 · · ·
8 1 47 131 191 223 239 247 255 255 255 · · ·
9 1 76 241 367 439 475 493 502 511 511 · · ·
10 1 123 443 708 863 943 983 1003 1013 1023 · · ·
...

...
...

...
...

...
...

...
...

...
...

Consider the triangle, in bold, where cm(n) is the (n, m) entry for all

n ≥ 1 and 1 ≤ m ≤ n, it counts the number of m-path covers of a cycle

with n vertices. We have entered the sequence obtained from reading this

triangle row-by-row to the Online Encyclopedia of Integer Sequences [9]; it

is sequence A185722.

Each of the 10 columns of the above square array appears as a sequence in

[9]; e.g., the second column (m = 2) gives sequence A000204, and the third

column (m = 3) gives A001644, etc.. Thus we have a new combinatorial

interpretation for each of these sequences, and a connection between them.

A closely related sequence is A126198 (replace ‘k’ by ‘m’ in its descrip-

tion): Let T (n, m) be the (n, m) entry of the triangle corresponding to
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A126198, then T (n, m) counts the number of compositions of integer n into

parts of size ≤ m. Now consider n vertices arranged in a path. A composi-

tion of n into parts of size ≤ m corresponds naturally to an m-path cover of

this path with n vertices by identifying a part of size ` in the composition

with a path of length ` in the corresponding m-path cover. This correspon-

dence can also be reversed. Thus in our terminology, T (n, m) is the number

of m-path covers of a path with n vertices; and, from Corollary 2.10(ii) and

our operation #, we have T (n, m) = f
(1)#
m,n = P#

m(0, n). The (m, m) main

diagonal entry in this triangle is T (m, m) = 2m−1, (as is well-known, there

are 2m−1 compositions of m), and column m of this triangle is determined

by the m-anacci recurrence,

T (n, m) = T (n− 1, m)+ T (n− 2, m) + · · ·+ T (n−m, m) =

m∑

`=1

T (n− `, m),

for n ≥ m + 1, with starting conditions T (n, m) = 2n−1 for 1 ≤ n ≤ m.

The (n, m) entry in our triangle, cm(n), counts the number of m-path

covers of a cycle with n vertices. We have starting conditions cm(n) = 2n −1

as opposed to T (n, m) = 2n−1 above, for 1 ≤ n ≤ m.

Furthermore, from above and the definition of matrix Ym,n from equa-

tion (7), we have T (n, m) = f
(1)#
m,n = the (m, m) entry of matrix Y #

m,n = Zn
m.

Thus both

cm(n) = tr(Zn
m) and T (n, m) = (Zn

m)(m,m),

can be obtained from matrix Zn
m. This gives a new derivation of T (n, m),

and so of sequence A126198.

Example 8.2 m = 3 and n = 4.

Z3 =

(
0 1 0
0 0 1
1 1 1

)

and Z4
3 =

(
1 2 2
2 3 4
4 6 7

)

,

gives

c3(4) = tr(Z4
3 ) = 11 and T (4, 3) = (Z4

3)(3,3) = 7,

see Examples 4.4 and 6.7, and 2.6.
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