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AN ABSTRACT OF THE THESIS OF 

Andrew Mellinger, for the Master of Science degree in Forestry, presented on July 30, 

2015, at Southern Illinois University Carbondale. 

Title: THE EFFECT OF CONSERVATION TILLAGE AND TOPOGRAPHIC 

POSITION ON SOIL PROPERTIES IN CENTRAL ILLINOIS 

Major Professor: Dr. Jon E. Schoonover 

Since agriculture began, field management has been at the forefront of expanding food 

production beyond previous limitations. Agricultural productivity is closely related to the 

physical, chemical, and biological properties of the soil. Landscape position and field 

management are among primary factors affecting these soil properties. Delineation of 

topographic positions of the field surface by shape (i.e., convex, concave, and linear) 

characterizes areas that may accumulate or lose soil and nutrients either during a discrete event 

or cumulatively over several growing seasons. Increased soil compaction, degradation of soil 

structure, and erosion have all been attributed to declining agricultural production. In addition to 

the physical disturbance from cultivation, erosion and deposition of soil components in different 

landscape positions explain a large part of the heterogeneity of soil properties across an 

agriculture field. In response to this, conservation tillage techniques, precision agriculture, and 

other novel management strategies have been developed to reduce negative impacts conventional 

row crop production such as nutrient pollution and compaction while optimizing farmer inputs. 

The objective of this project was to evaluate effects of topographic position and conservation 

tillage techniques on soil physical, chemical, and biological properties on the field scale as well 

as correlate certain soil attributes with suspended soil runoff collected during the sprinkle 

infiltration test. Soil fertility sampling was completed every fall from 2011 to 2014 and 

additional sampling of soil physical properties was taken in the spring between 2013 and 2014. 

Differences between fall conservation tillage treatments, no-till (NT), AerWay® aerator (AA), 
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and Great Plains Turbo-Till® (GP), and topographic positions, concave, convex and linear were 

analyzed. Sediment runoff and earthworm biomass were also collected in the fall in 2014. 

Results indicated a significant increase of soil organic matter (12%-24%), water stable 

aggregates (78%-98%), phosphorus (43%-76%), and cation exchange capacity (28%-35%) 

within concave over the convex landscape positions. Soil strength was significantly lower in the 

field managed with the GP vertical tillage disk compared with the AA field to a depth of 27.5 cm 

and the NT field to depth of 17.5 cm. Crop residue coverage (percent covered) was more 

complete in the NT field (12%) and the GP field (3%) compared with the AA field. Suspended 

sediment runoff was negatively correlated with water-stable aggregates, Ca, and Mg, but 

positively correlated with earthworm biomass. Extractable nutrients and soil physical properties 

were also strongly affected by air temperature and precipitation throughout the study period. 

Characterizing soil properties within topographic positions has potential applications in precision 

agriculture management, such as reducing excessive fertilization, and identifying areas of 

increased pollution potential. Evaluation of the tandem effects of conservation tillage tools and 

topographic position within central Illinois is important in order for the optimization of 

production and conservation of resources. Physical disturbance from tillage and the transport of 

sediment from eroded areas to depositional topographic positions are key factors influencing the 

variability of soil properties, crop productivity, and potential sediment-borne nutrient pollution 

within individual agricultural fields. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Background 

 The beginnings of agriculture, which included cultivation and domestication of species 

around 10,000 years ago, fundamentally changed the relationship between humans and our 

natural environment (Brown et al., 2009). Continuing intensification of agriculture has allowed 

our culture and population to grow. Recently, we have become increasingly aware of 

consequences associated with our agricultural intensification and disturbance of more of the 

landscape. In order to reduce the financial and ecological costs of agriculture production, 

conservation agriculture techniques, specifically reduced tillage and no- till, were developed to 

conserve and increase the efficiency of agricultural resources (Hobbs et al., 2008). These 

management techniques retain more crop residue on the soil surface and optimize physical 

disturbance; conditions associated with reduced compaction and erosion which are primary 

determinants of soil function and stability. 

Evaluation of no-till techniques and conservation tillage compared to conventional tillage 

has attracted the attention of soil scientists and agronomists for many years. However, the effects 

of topographic position and how topographic position interacts with tillage management to affect 

variation in soil properties receives much less attention. While there were a few examples of 

interaction between conservation tillage effects and topographic position effects in this study, 

topographic position was found to be an important factor affecting soil variability independently 

from conservation tillage treatments. Topsoil, which holds much of the nutrients necessary for 

agricultural productivity as well as unique physical properties, tends to be eroded from convex 

positions and is deposited in concave positions even in landscapes with subtle topographic 
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positions which may affect these differences (Papiernik et al., 2009). Soil erosion from convex 

landscape positions and deposition in concave positions is widely understood conceptually, but it 

is rarely used to characterize fertility and other soil attributes within field sites with 0-2% slope. 

Analyzing elevation data on the field scale allows the user to delineate subtle changes in surface 

topography that is difficult to observe at the ground level. This classification was completed by 

analyzing a digital elevation map (DEM) using a topographic position index and automated 

using GIS software (Jenness, 2006; Wiess, 2001). Soil samples taken in each of these positions 

in this study indicate that these slopes independently affect soil properties or interact with other 

variables to affect soil properties over a single season. Characterizing soil properties within each 

topographic position could also be useful for precision agriculture tools as well as identifying 

critical source areas of nutrient loss.  

Purpose 

 This research project comprised two parts. First, the influence of three conservation 

tillage practices and topographic position on soil physical and chemical properties were 

quantified over multiple cropping seasons in a corn-soybean rotation in central Illinois. Soil 

strength, soil bulk density (Bd), water-stable aggregates (WSA), volumetric water content, and 

crop residue coverage were quantified before and after tillage treatments were completed to 

determine the effects on soil properties. Differences in conservation tillage management and 

topographic position were considered independent fixed effects. Second, relationships between 

stability of soil aggregates in water (WSA), total suspended solids of runoff water, earthworm 

biomass, soil organic matter (SOM), and soil chemical properties were assessed. The relationship 

between these soil properties and total suspended solids of runoff water were evaluated to 

determine if WSA, earthworm biomass, SOM, compaction, and soil chemistry were useful 
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indicators of soil erodibility. Data collected in this study provides evidence of how field 

management and topographic position may interact or independently affect soil attributes or 

relationships between soil properties within this site and their impacts on soil movement 

dynamics as overland flow. Few research projects attempt to quantify the joint influence of 

topographic position and different conservation tillage practices on soil properties in row-crop 

agriculture in central Illinois. A co-assessment of the suspended solids by collecting runoff water 

from the Cornell sprinkle infiltrometer and investigating the relationships between soil attributes 

and this erosion is also unique. Objectives of the study are as follows: 

1. Determine the effect of soil topographic position and vertical tillage 

management on soil physical and chemical properties.  

2. Investigate correlations between water stable aggregate percentage of soil, 

earthworm biomass of soil, and erodibility through the analysis of total 

suspended solids from runoff. 

3. Assess relationships among soil properties and how they are influenced by 

climate topographic position, fertilization rates, and vertical tillage. 

Tillage 

Tillage has many applications in many farming systems. Weed control, pore space, 

incorporation of residue, tilth, nutrient mineralization, compaction, pest control, seedbed 

preparation, soil moisture, and soil temperature can be improved by tillage in the short term but 

are not always sustained for the long term (Hobbs et al., 2008). The advantages and 

disadvantages can be complicated. For example, temporary relief of compaction from tillage is 

accompanied by increases in compaction from the additional passes across the field and can 
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create root-restricting “plow-pans.” (Daum, 1996). An increase of soil organic matter (SOM) 

mineralization due to exposure and aeration is accomplished by more effective residue 

incorporation from tillage (Kay et al., 2002; Frey et al., 1999). However, the losses of aggregates 

and SOM from physical disturbance negatively affects soil tilth in the long term which 

influences ease of tillage and seedling emergence. (Soil Science Society of America, 2008) 

which is a primary justification for tillage (Beare et al., 1994). Evidence from many studies 

suggest short-term benefits of physical and chemical function of soils from tillage are typically 

undermine long-term productivity with continual, and/or excessive disturbance. 

No-till and conservation tillage strategies are alternatives to conventional tillage which 

reduce the amount of soil disturbance. Conservation tillage is defined as more than 30 percent 

crop residue left on the soil surface after all fieldwork has been completed (Soil Science Society 

of America, 2008). Conversely, conventional tillage is defined as any practice that retains less 

than 30 percent of crop residue on the soil surface and employs both primary and secondary 

tillage operations (CTIC, 2002; Soil Science Society of America, 2008). According to studies 

done by Houx et al., (2011); Logsdon (2013); Roger-Estrade et al., (2010) and many others, 

Excessive soil disturbance increases erosion directly through physical disturbance, and indirectly 

influencing chemical characteristics, and disturbing biodiversity. Tillage has also been shown to 

affect the stability of soil aggregates in water, potentially leading to increased erosion and 

instability (Barthes & Roose, 2002). For example, stable aggregates formed by macro-organisms 

and fungal hyphae are often more delicate than other forms and more susceptible to physical 

destruction by tillage (Zhang & Schrader, 1993; Tisdall, 1994). Comparisons between 

conventional tillage and conservation tillage were not evaluated in this study however, these 

comparisons were helpful when evaluating the difference between the two conservation tillage 
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implements used in this study. Similar to differences between conservation tillage and 

conventional tillage, differences in soil disturbance between conservation tillage methods may 

also have implications for soil quality and sustainable crop production (DeLuane & Sij, 2012; 

Brummer et al, 1999).  

Conservation tillage retains some of the benefits from tillage while limiting the costs of 

excessive soil disturbance from conventional practices. Specifically evaluated in this research, 

vertical tillage is a conservation tillage strategy that is primarily used for soil aeration, seedbed 

levelling and residue management in the spring or fall. This is different from disc harrows, a 

secondary tillage tool used in conventional tillage, which angles each disk bank in order to turn 

the soil more aggressively covering more residue (Thilges, 2010; Figure 2). No-tillage, 

effectively removes tillage activities and is sometimes completed in conjunction with occasional 

subsoiling in the Midwest (Soil Science Society of America, 2008).  

Soil Organic Matter  

Wander et al. (2000) suggested SOM as an index of soil quality because it is a factor in 

most soil physical and chemical characteristics. Nichols et al. (2011) also suggested that SOM is 

strongly correlated to aggregate stability content of the soil. Soil quality monitoring of changes 

in key parameters over time is important for the formation of sustainable farming practices 

(Baldock et al., 2009). Soil pH and SOM were determined to be the greatest indicators of soil 

health by Baldock et al., (2009). Additionally, SOM was found to be useful in determining the 

extent of soil erosion as well as being indicative of general soil productivity (Papiernick et al., 

2009; Wang et al., 2014). Nutrient dynamics and soil physical structure vary widely depending 

on the area and climate, but tracking changes in some indicators such as SOM, is useful for all 

areas (Cotching et al., 2010).  
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Crop Residue 

 Surface residue was found by many studies to be an important factor in decreasing 

erosion. Truman et al. (2005) found that no-tillage practices in the southeast United States 

increased water stable aggregates by 21 percent, infiltration soil strength by 3.5 times and 

decreased sediment yield compared to conventional practices. They also found that 38 percent of 

erosion in the first 60 minutes of a simulated rainfall and 76 percent of erosion after 120 minutes 

was due to the presence of surface residue in both conventionally tilled and no-tillage sites. The 

amount of surface residue and sediment yield from the no-tillage sites were also positively 

correlated (Truman et al., 2005). Mulumba and Lal (2008) found that 8 Mg/ha residues in central 

Ohio increased porosity up to 46 percent and available water capacity up 35 percent. They also 

determined water stable aggregates had a strong correlation to amounts of residue. In a long term 

study by McVay et al. (2006) aggregate stability increased with less tillage but water holding 

capacity was not affected. Most of the differences observed in many tillage studies occur in the 

first five cm of soil (McVay et al. 2006; Mulumba & Lal 2008). Also, many tillage studies stress 

the importance of precipitation and temperature at the research site (McVay et al., 2006; Houx et 

al., 2011). 

Earthworms  

There are few terrestrial ecosystems, with the exception of deserts, that do not have 

earthworms as part of the ecosystem (Blakemore, 2007). Groups of worms can be separated into 

epigeic and endogenic species. Epigeic worms are small and t can tolerate a highly variable 

environment and thrive in high levels of organic matter like compost piles. Endogenic species 

live slightly deeper, derive nutrition from soil while burrowing horizontally and leaving 

extensive casts; and anecic species which are large worms that feed on litter they pull into deep, 
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semi-permanent burrows (Haynes et al, 2003). These groups have distinct functions in soil and 

affect soil conditions in different ways (Lavelle et al, 1998). For example, Zhang and Schader 

(1993) found the earthworm ingestion reduced water stability of aggregates and aggregate tensile 

strength after drying than natural soil with the exception of Lumbricus terrestris casts and while 

the tensile strength of the burrow was higher its stability in water was lower. Aporrectodea 

caliginosa casts, an endogeic species and common in the study area, exhibited similar water 

stability to natural soil like Lumbricus terrestris, but the burrow walls were less stable in water. 

The authors suggested that the selection of higher quality food of these species caused the 

slightly higher water stability of the cast due to an increase in organic carbon. Furthermore, that 

casts of both these species decreased WSA particularly in clay and silt soils like the soil textures 

found at this study site (Zhang and Schader 1997). Despite disturbing stability of aggregates in 

water, earthworms have been found to be useful as reliable indicators of soil quality, 

productivity, and potential toxicity (Bartz et al., 2013; Stork et al., 1991; Birkas et al., 2004).  

Soil Aggregate Formation  

 A soil aggregate is a collection of soil particles/materials that agglomerate more strongly 

compared to the surrounding material (Kemper & Rosenau, 1986). There are two general size 

classifications of soil aggregates, microaggregates, classified as less than 250 μm, and 

macroaggregates, classified as larger than 250 μm. Macroaggregates are typically more loosely 

associated conglomerates of microaggregates and other materials (Edwards et al., 1967; Oades et 

al., 1991). The strength of coherence and size of aggregates is determined by chemical and 

physical properties of the materials and is mediated by moisture content (Tisdall et al., 1982; 

Tisdall, 1994; Kemper & Rosenau, 1986). Inorganic chemical processes are more common in the 

formation of smaller aggregates and are typically stronger than macroaggregates (Tisdall et al., 
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1982). Plants and fungal organism interactions such as vesicular arbuscular mycorrhizal 

associations also facilitate formation of soil aggregates by physically connecting smaller 

aggregates and establishing a macroaggregate structure. Polysaccharides released by roots, 

macrofauna (earthworms) and hyphae also chemically contribute to binding particles and 

microaggregates into larger structures (Tisdall, 1994; Fonte et al., 2012).  

Destruction of Soil Aggregates 

Physical soil disturbance and aggregate destruction by physical disturbance provides a 

good example of how properties that form aggregates are interrelated. Destruction of loosely 

associated macroaggregates through a disturbance, such as tillage, destabilizes the natural soil 

structure and may decrease water infiltration and aeration (Bronick et al., 2005). Macropores 

stabilized by delicate root and fungal hyphae networks are easily destroyed by tillage (Tisdall, 

1994). Besides the destruction of existing macroaggregate structure, soil disturbance by tillage 

increases aeration and exposed particle surface area and subsequently bacterial mineralization of 

SOM as well as rapidly changing soil moisture (Beare et al., 1994; Bronick et al., 2005).  

Loss of SOM is particularly important because many cultivated soil series are found to 

have macroaggregates stabilized by SOM and biological activity (Tisdall, 1994; Six et al, 2000). 

The formation of soil aggregates helps preserve SOM and protect it from mineralization 

(Bronick et al., 2005; Beare et al., 1994). The movement and concentration of organisms, organic 

structures, and inorganic crystalline bonds in an aggregate is controlled by moisture content and 

pH. These tend also to be variable in a cultivated landscape because of chemical inputs and, of 

course, physical disturbance.  
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Finally, moisture content may be the most critical variable mediating all of these 

processes, but moisture content disturbs aggregates directly in two ways. First, since neither 

wetting nor clay mineral structure is homogenous in the soils found at this site, interspersed 2:1 

clay minerals and/or aggregates swell while 1:1 illite clay minerals do not, causing larger 

aggregates to shear into smaller aggregates (Kemper & Rosenau, 1986). Rapid wetting also 

causes gases within the aggregate to be trapped, leading to physical rupturing of the aggregate 

(Kemper et al., 1985). Second, soluble bonding agents holding aggregates together also dissolve 

6and move as moisture contents rise. As moisture leaves soil aggregates, particles begin to 

contract and solutes concentrate cementing adjacent particles together. Further drying causes the 

aggregates to become brittle and if they are broken, moisture must be reintroduced to remobilize 

cementing agents to reform them (Kemper & Rosenau, 1986). 

Soil Moisture and Infiltration  

Soil moisture content is important in determining the variability of water aggregate 

stability, and has a considerable influence on soil compaction, plant productivity, and erosion. 

Likewise, soil temperature and water infiltration are critical determinants of soil moisture and 

thus are important for most soil processes and are among s the primary factors influencing 

erosion (Ben-Hur et al., 1992; Wang et al., 2014). Soil physical attributes, such as soil texture 

and structure also determine base soil infiltration and, ultimately moisture. Fine textured, mineral 

soils have increased surface area which increases water holding capacity and decreases 

conductivity. The mineral portions have high initial absorption, but slow adsorption once 

saturation is attained (Rawls et al., 2004). Similar to fine textured mineral fraction, soils with 

high SOM levels also have high surface area and high initial absorption; however, since organic 

materials are not symmetrical, macropores are conserved allowing for greater infiltration rates 
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even after saturation (Reeves, 1997). These carbon-based structures also encourage increased 

formation of macroaggregates (Tisdall, 1994; Beven et al., 1982). Plants and macrofauna also 

help create large macropores that act as conduits for water flow (Shipitalo et al., 2004; Beven et 

al., 1982). 

Disrupted aggregates slake into fine particles, which when mobilized clog pore space, 

causing surface sealing. (Yan et al., 2008; Lado et al., 2004) As more particles are exposed to 

chemical and physical dispersion, they continue to become finer which allows them to move 

further and more effectively clog pore space (Wakindiki &Ben-Hur., 2002). The decrease in 

infiltration rates increases potential for surface runoff and subsequent sediment transport. Lado 

and others (2004) observed strong evidence that soil aggregates are both stabilized by SOM and 

are highly related to the extent of erosion. This was due mainly to lower surface sealing and less 

chemical dispersion of clay particles within soil aggregates. Plants and macrofauna also help 

create large macropores that act as conduits for water flow (Shipitalo et al., 2004). 

Erosion Processes 

 Raindrop and sheet erosion are typically observed on a smaller scale compared to 

sediment transport via rills and gullies and also predominating in this study. Although secondary 

in volume, raindrop and wash processes still represent an important source of sediment and may 

predispose more advanced erosion. Soil detachment by raindrops are destabilized chemically by 

introducing dispersing solutes and physically by the force of impact (Planchon et al., 2000). 

Dispersed and separated particles may be entrained or may contribute to surface crusting (Lado 

et al., 2004). Deposition and erosion of fine textured material is easily observed after a storm. 
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 Development of microtopography is also primarily influenced by sheet erosion as well. 

Planchon and others (2000) found that raindrop erosion explained much of the change of 

microtopography in agricultural watersheds over time and the progression may be represented by 

the diffusion equation. This microrelief also may affect the formation of larger relief formations. 

Planchon and Mouche (2010) were eventually successful in creating a unique physical model 

describing evolution of microtopography that is validated by field data and laboratory 

experiments. The model parameters are detachment rate, projection distance, and an anisotropy 

coefficient which expresses slope dependency of the other two parameters. The model accurately 

predicts surface roughness and size of mounds developing under shelter such as the retention of 

material underneath small stones and vegetation.  

 Rain drop erosion is best understood by analyzing the processes after impact (Planchon et 

al., 2010). Ghadiri (2004) observed cratering of the raindrop is dependent nearly exclusively on 

raindrop size while crater shape depends on the soil properties. It was determined that cratering 

absorbs 13 to 23 percent of the energy post impact. Additionally, the rim of entrained particles 

around the center of the impact is larger on the downslope side suggesting a general downward 

movement of soil particles. Sediment can be propelled by these impacts far distances, average of 

10 cm-20cm and as far as 1 m, depending on sediment size and is also oriented downslope 

(Leguédois, 2005). Continuing rain drop impacts also create a thin layer of water heavily laden 

with entrained sediment on the surface (Planchon et al., 2010). 

Surface crusting by the sorting of finer particles and submersion by this film also protects 

underlying materials from being transported. This promotes overland flow or sheet flow and 

eventually more advanced erosion structures (Lado et al, 2004). Barthes & Roose (2002) 

observed a relationship between the stability of aggregates and subsequent overland flow and 
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erosion both by analyzing slaking characteristics of soil samples and in a simulated rainfall 

study. Runoff, soil loss, and solids discharge all had very significant negative correlations with 

macroaggregates while runoff intensity and solid discharge were negatively correlated with soil 

carbon. This agrees with other studies looking at SOM and WSA to estimate erosion potential of 

a landscape (Yan et al., 2008; Barthes et al., 2002; Ritchie et al., 2007; Le Bissonnais et al., 

1998).  

Soil Deposition  

Erosion fundamentally affects the chemical, biological, and physical aspects of soil in all areas of 

the world (Changere & Lal, 1997; Taylor et al, 2010; Doran & Zeiss, 2000). Topographic 

position and slope indicate locations of deposition and erosion areas and n fundamentally affects 

the chemical, biological, and physical aspects of soil (Weesies et. al., 1994; Langdale et al., 

1982; Ritchie et al., 2007). Characterization of the depositional areas is also completed by 

tracking Cesium-137 with areas of higher activity located within the depositional areas and lower 

activity in eroded areas (Lowrance et al., 1988; Ritchie et al., 2007). The burial of entrained fine 

particles within the depositional areas also may have negative effects on infiltration rate and 

aeration which protect SOM from mineralization. Other studies have shown that sediment 

transported via runoff is both easily mineralized, dispersed and no longer aggregated, therefore, 

SOM is not conserved within these depressions (Lal, 2003; Polyakov & Lal, 2004). Whether 

erosion is a sink or source of carbon is a matter of debate between soil scientists and 

sedimentologists (Lal, 2005; Kirkels et al., 2014).  

 Despite the disagreement on the final fate of soil carbon, these studies provide evidence 

for the preferential movement of the productive, finely textured soil materials moving 

downslope. In a study by Papernik and others (2009), soil organic carbon clearly eroded towards 
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lower slope positions where it accumulated causing consistently higher amounts. Increased crop 

productivity was observed on the upland slopes when deposited soil was pushed back up the 

slope. However, more research was deemed necessary by the authors to determine the long term 

consequences of soil relocation. Another study by Polyakov and Lal (2004) observed similar soil 

carbon movement but also observed an increase in soil carbon mineralization. Depositional areas 

emitted 26 percent more carbon than control sites suggesting carbon deposition is not a sink but 

increased with exposure from erosion. Carbon content and erosion were also related to rainfall 

and topography consistent with most other studies mentioned previously. 

The influence of erosion on the global carbon flux, which has increased attention due to 

global warming, is not always agreed upon amongst different disciplines. Sedimentologists view 

erosion as a carbon sink, while soil scientists refer to it as a source of emissions (Lal, 2005). In a 

study by Ritchie and colleagues (2007) a very similar relationship was observed between soil 

organic carbon and elevation and depositional areas; however, soil organic carbon distribution by 

erosion was analyzed within the context of topographic position and morphology. Upland slopes 

were found to contain less soil organic carbon similar to what was observed by Polyakov and Lal 

(2004), and concave, toe slopes were found to have higher levels soil carbon and toe slopes also 

had deep accumulations of these materials (Ritchie et al., 2007).  

Project Justification  

Agriculture in the Midwest is typically large-scale, intensive, row-crop production on 

large, level fields. The increasing scale of production, mono-cropping, and the size of equipment 

poses new challenges for management of heterogeneous soils. In the past, farmers worked small 

fields, inputs were limited, and they relied on careful adjustments of their crop rotation, and 

diversification in order remain productive. Technology supported by research are currently the 
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primary means to increase agriculture production and efficiency. New tillage techniques and 

equipment are beginning to be adopted and evaluated which limits soil disturbance and optimize 

field passes. For example, Global Positioning Systems (GPS) technology in the last 25 years 

have allowed farmers and researchers to spatially relate data at the field scale (Stafford, 2000). 

GPS tools provide the ability to record continuous elevation data, create yield maps, and apply 

variable rates of fertilizer and seed based on location (Brisco et al., 1998). Improvements in 

technology, and the development of tools to assist the farmer in understanding spatial variability 

within their fields and adjust accordingly. Evaluation of some of these tools at the field scale by 

the scientific community is also necessary and is especially valuable to the farmer when 

completed at the field scale.  

Topsoil erosion is strongly influenced by the intensity of runoff water and the shape of 

the landscape. The accumulation of topsoil and nutrients in concave deposition areas and 

depletion in convex eroded areas for a variety of reasons is well documented and supported by 

considerable research (Nearing et al., 1989; Lobb et al., 1995; Lowrance et al., 1988). 

Additionally, the connection between these dynamics, soil properties, and ultimately productivity 

is also well established (Changere & Lal, 1997; Kravchenko & Bullock, 2000; Kravchenko et al., 

2005; Papiernik et al., 2009). Whether dissolved or bound to soil particles, mobile nutrients 

influence the productive capacity and the potential for nutrient pollution. This is especially true 

for agriculture fields where additional nutrients are applied regularly and often at a constant rate 

over large areas without taking soil heterogeneity into account (Vitousek et al., 2009). 

Knowledge of different management zones, areas that have increased or decreased capacity for 

production, is important for optimization. Despite this, much of the research on the effect of 

topographic position has been based either on subjective characterization of the landscape or 
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specific components of the topography (eg. curvature, percent slope, flow accumulation; 

Changere and Lal, 1997; Kravchenko and Bullock, 2000). In large, level fields it is difficult to 

correctly identify these positions at eye level due to the increased scale of the landform shapes.  

 Several different geospatial tools and methods have been used to assist identification of 

topographic positions and the effect of these topographic positions (De Reu et al., 2013; 

Kravchenko et al, 2005; Weiss, 2001; Mitasova et al., 1995). This study utilizes a method 

automated by Weiss (2001) analyzing the difference from mean elevation within a set 

neighborhood called topographic position index (TPI). Jenness (2006) further automated 

landscape identification by creating an extension in ArcView that uses negative and positive TPI 

values to characterize slope positions, and values near zero are considered level. This method 

was adapted to fit the gradual rolling landscape found at the research site. 7.2 percent of the cells 

were identified as linear surfaces with slopes greater than two percent, and were therefore 

omitted from the analysis. 

Soil is not a homogenous mixture of materials. The collection of materials that make up 

soil have different physical attributes and abilities to store nutrients. Official soil series 

descriptions, topography, land management, soil texture, fertility, and climate region are all good 

tools for placing soils into general classifications describing how they behave, however, 

investigating specific soil properties and interactions between soil properties within these 

classifications is complicated. To simplify these relationships, it is necessary to investigate 

general behaviors of soil at a smaller scale. Specifically, a primary determinant of chemical and 

physical dynamics is particle size distribution and surface area (Tiessen et al., 1983).  

Both cation exchange capacity (CEC) and SOM content are useful indicators of particle surface 

area and charge (Sollins et al., 1996). Fine textured mineral soil and SOM typically have high 
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surface area and charge, which is related to the capacity of the particle to hold onto soil nutrients 

and directly related to CEC (Gaines et al., 1994). SOM is also composed of organic forms of 

important nutrients, such as nitrogen (N) and phosphorus (P), which can be converted into plant 

usable forms over time. Additionally, SOM also has a low particle density because of the 

complex shapes of the organic materials which allows SOM to erode and deposit readily within 

agricultural fields (Ritchie et al., 2007; Baldock and Nelson, 2000). While comparatively dense, 

finely textured mineral soil is easily suspended in water because of its tiny particle size making it 

susceptible to erosion during runoff events (Lado et al., 2004).  

Data presented in this thesis, as well as several other studies investigating soil erosion 

and deposition, suggest fine soil material preferentially moving from upland areas to lower areas 

of the field (Papernik et al., 2009; Polyakov & Lal, 2004; Ritchie et al., 2007). Due to the 

capacity of these materials to store nutrients, any of the soil properties investigated here, 

especially for extractable nutrients in soil tests, are affected by this preferential relocation of fine 

mineral soil fractions and SOM. The accumulation of fine textured mineral soil is also 

susceptible to runoff due to suspension, crusting, and generally poor drainage causing increased 

surface runoff, however, some of these properties are alleviated in soils with high SOM content 

(Lado et al., 2004). It is important that natural processes and formations such as soil texture, 

topographic position, temperature, and precipitation are not omitted from an analysis. Both 

management, landscape, and climate are very important. For example, in a soil runoff 

experiment of several watersheds over 28 years, 50 percent of the total soil loss was attributed to 

three storms, however, only 30 percent of the average soil loss was collected in watersheds with 

fields contoured with slope (Edwards & Owens, 1991).    
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CHAPTER 2  

METHODS 

Study Area 

The 100 hectare study site is located along the southern border of Macon County in 

central Illinois and is approximately 1,200 meters (m) long by 800 m wide. Adjacent areas 

around the study site are also large scale row-crop agriculture occasionally bordered by small 

farm roads. Each of the three experimental fields within the study site were approximately 30 

hectares and were separated by a 2.5 m wide grass buffer strip (Figure 3). The fields had similar 

soils, were under the same corn soybean rotation, fertilizer application, and pesticide application 

schedules. The first and northernmost field was tilled with the AerWay® Aerator (AA) after corn 

harvest, the center field is under no-till management, and the third field is tilled with the Great 

Plains Turbo-Till® (GP) after corn harvest (Figure 1). .  

 

 

 

Figure 1. Aerway® Aerator, Great Plains Turbo-Till®, and John Deere 1775NT Planter 
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Figure 2. The effect of bank angle on soil shear and disturbance using the Great Plains and 

Aerway Aerator. 

The dominant soil order in these fields and the surrounding area is Mollisol, a very deep 

soil with a thick, dark, surface horizon and at least 5.8 g kg-1 organic carbon (Soil Science 

Society of America, 2008). The parent material of the soils found in this region is primarily loess 

caps on glacial till or outwash. Drummer (Fine-silty, mixed, superactive, mesic Typic 

Endoaquolls) and Milford (Fine, mixed, superactive, mesic Typic Endoaquolls) soil series are 

very similar, have fine textures and moderately to high amounts of clay (Soil Survey Staff, n.d.). 

Both series are highly chemically active and are located in a temperate climate regime. These 

soils are often located in the concave slopes and are often wet with possible redox colorations 

due to very poor drainage. Flanagan (Fine, smectitic, mesic Aquic Argiudolls) soil series have 

less clay, are located in convex slope positions, and are better drained, although are still 

considered “poorly drained” (Soil Survey Staff, n.d.). Both of these soil series are common in the 

region, typically cultivated, and are considered “prime farmland” or “prime farmland if drained” 

(Soil Survey Staff, 2012). Maximum daily air temperatures were higher in 2011 compared to 
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2013 and 2014 but were lower than in 2012. The final year of the study was the coolest, followed 

by 2013 and then 2011. During the period of drought in 2012, the highest maximum daily 

temperatures and the lowest daily precipitation amounts were recorded. Daily precipitation 

amounts were lower in 2013 than 2014 and 2011, but all years were considerably higher than 

2012 (Table 4). 

Sampling Design  

The field design is based on a 0.4 ha grid square with GPS coordinates marking a sample 

point within each sample plot outlined by the grid. Sample plots for chemical analysis were 

separated into strata based on the topographic position and an equal number of samples were 

randomly selected from each strata. The differences in the parameters were analyzed between 

the different strata and field management but not in the context of the entire field. Soil sampling 

for water stable aggregates (WSA), soil strength, residue coverage, soil temperature, soil 

volumetric water content (VWC), and soil bulk density (Bd) were systematically sampled within 

every ninth sample plot within each field. The location of the soil samples collected for physical 

and chemical analysis is presented in Figure 4.  

 



20 
 

  

  

 

 

 

Figure 3. Location of research fields and study site with soil series boundaries 

Flanagan silt loam (154A) Drummer-Milford silty clay loam (722A) 
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Field and Lab Procedures 

Fields were all ripped before the initiation of the study in 2010. The vertical tillage 

implements, the AerWay® Aerator (AA) and the Great Plains Turbo-Till® (GP), were used on 

fields one and three, respectively, following corn harvest in 2011 and 2013. No other tillage was 

done in any study field over the four years of this study. The GP had an approximate working 

depth between four and six centimeters and the AA had an approximate working depth of 20 cm 

(USDA-NRCS2, 2010). A John Deere 1770 no-tillage planter (Deere and Company, Moline, IL) 

was used for planting on all the fields. The Aerator utilizes pointed Shattertine® paddles that 

vertically mix the soil to break up compaction. Optional 250 kg concrete ballasts were added to 

help increase the penetration depth of the tines (Saf-Holland Equipment Ltd., Norwich, Ontario). 

The GP utilizes two rows of vertical coulters spaced at ten inches for leaving five inch total 

spacing between till lines followed by a rolling harrow and reel (Great Plains Manufacturing, 

Salina, KS). Anhydrous ammonia mixed with N-serve® was applied in the fall following 

soybean harvest. Diammonium phosphate (DAP) was also applied in the fall of 2010 and in the 

spring before corn planting in 2013. Fall applications of anhydrous ammonia + N-serve®, DAP, 

and potash were applied using variable rate technology (VRT). An additional application of 

nitrogen fertilizer (28-0-0) was applied during corn planting in 2011. Lime was applied late in 

the fall of 2011 and potash was broadcast in the winter of 2012 (Table 1). Fertilization was 

completed after soil samples were collected. Rates and application methods were widely 

representative for the region. 
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Table 1. Fertilizer application rates and date of application 

 Application  Avg. N-P-K  Lime  Season Total 

Fall 2010 251-41-0   

Spring 2011 56-0-0  307-41-0 

Fall 2011  2466  

Spring 2012 0-0-91  0-0-91 

Fall 2012 230-0-0   

Spring 2013 7-8-0   237-8-0 

All rates are average application over the entire site presented in kg ha-1 

Soil Physical Property Analysis  

 Soil physical properties (i.e., VWC, temperature, soil strength, bulk density, residue 

coverage, and WSA) were measured at every ninth sample point in the spring before planting 

corn (2013) and before planting soybeans (2014). Soil VWC was measured with a Spectrum 

Technologies WaterScout SM 100 soil moisture sensor, and external temperature sensor at a 

depth of four centimeters connected to Spectrum Technologies WatchdogTM data loggers 

(Spectrum Technologies, Aurora, IL). Continuous VWC and soil temperatures were measured at 

all 9 sample points in each of the three fields during the 2013 and 2014 growing seasons. The 

sensors remained in the field only during the growing season and were removed over the winter 

months and during periods of heavy vehicle traffic. Soil strength was determined using a RIMIK 

CP40II penetrometer (ICT International, Toowoomba, Australia). Soil strength measurements 

were repeated nine times at each of the selected sites. Bulk density was determined to a depth of 

15 cm using an AMS bulk density core with 292 cm3 sleeves. Soil compaction was evaluated by 

analyzing both bulk density and soil strength data. Residue coverage was determined by taking a 

photo of a framed, 1-m2 plot and the photos were analyzed using WinDIAS image software 

(Delta T, Cambridge, UK).  
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Samples for WSA were taken to a depth of 10 cm. After drying and sieving the samples, 

water stable aggregates were quantified using a wet sieving technique adapted from Kemper and 

Rosenau (1986). Infiltration and soil runoff rates were measured at every third of the selected 

sample points for a total of three per field using Cornell Sprinkle Infiltrometer (Ogden et. al, 

1997). During the infiltration test for MN in the fall of 2014, the runoff water was collected to 

analyze the total suspended solids. Due to the small size of the ring and the low velocity of the 

rain drops, this runoff test was limited to soil entrained by suspension only and was not affected 

by slope or flow energy. Additional WSA analysis of the soil surface was collected by gently 

scraping the soil surface in an area similar to the area of the infiltration ring. Runoff water was 

collected at six minute intervals for 30 minutes allowing the timing and magnitude of soil runoff 

to be observed. The first time interval sample, the final time interval sample and a composite of 

all the samples were used in the correlation matrix. Earthworm biomass was collected from four 

20 cm by 20 cm square by 20 cm deep in four cardinal directions around the runoff tests. 

Soil Chemical Analysis  

A composite sample of nine soil samples taken for chemical analysis at each sample point 

to 15 cm soil depth after harvest each year. Samples were analyzed for soil organic matter 

(SOM), total CEC by summation (CECsum), Melich III extractable phosphorus, potassium, sulfur, 

calcium, and magnesium as well as ammonium and nitrate via 1.0 N KCl extraction with 

cadmium reduction (Mehlich, 1984; Dahnke, 1990). Soil samples were air-dried, ground to pass 

a 2 mm sieve, and analyzed by Brookside laboratories. CECsum was estimated by combining the 

amount of extracted cations assuming there is no exchangeable acidity (Ross, 1995). SOM was 

determined by loss at ignition when heated to 360 degrees Celsius. .  
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Topographic Position Analysis 

The analysis of a digital elevation model (DEM) using values from the TPI and 

automated in ArcView (ESRI, 1996) by Jenness (2006) and was completed in ArcMap 10.2.2 

(ESRI, 2014). The topographic positions were separated into regions classified concave 

positions, linear positions, and convex positions. A circular neighborhood analysis of elevation 

100 pixels around each 10 m by 10 m pixel within the DEM for this analysis. Rectangular 

neighborhood shapes, and different neighborhood sizes were compared, however, the 10 m x 10 

m cell size and 100 m2 produced the most clearly defined delineations between topographic 

positions. TPI values were calculated by taking the mean elevation of each neighborhood with 

the subject cell as the center. The elevation of subject cell is subtracted from the mean elevation 

of the neighborhood cells. Every cell is defined in relation to its surrounding cells position is 

assigned based on whether the TPI value is positive (convex), negative (concave) or near zero 

(linear Soil sample plots were randomly or systematically selected with each topographic 

position within each field so that there was an equal amount of topographic positions in each 

field.  

Data Analysis 

Data were organized with Microsoft Excel and analyzed using the PROC MIXED 

command in SAS version 9.4 (SAS Institute Cary, NC). A mixed model repeated measures 

analysis was used to test differences between topographic position, time, field, field*time 

interaction, and topographic position*time interaction. Significance was measured at 0.05 

significance level. Tukey’s multiple comparisons adjustment of the p-values for the least-squares 

means was completed for the fixed effects in order to get the best pairwise comparisons despite 

unequal sample sizes. Log and square root transformations were used where necessary to achieve 
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an acceptable level of normality and equality of variance. Normality of the model was 

determined by analyzing the linearity of Q-Q plots. Equal variance, linear relationships between 

data points, and absence of outliers for each model was determined by analyzing estimated 

versus residual plots. Field, time, and topographic position were considered fixed effects and the 

sample plots were repeated in time.  

The mixed models repeated measures analysis was chosen due to its ability to handle 

missing values and to account for the same subjects (i.e., sample plots) being sampled at each 

time in the longitudinal analysis. The repeated measures procedure assigns a covariance structure 

to each time that each of the subjects were sampled. This accounts for any correlation of the 

response variables due to the same subjects being sampled over time (Littell, 2007). Compound 

symmetry (CS) and autoregressive (AR(1)) variance/covariance structures were used in the 

analysis based on the structure that returned the lowest Akaike’s Information Criterion (AIC). 

Compound symmetry is the simplest structure with all variances in the matrix assumed to be 

homogenous and correlations constant regardless of the distance between the samples. AR(1) 

structure also assumes homogenous variances but the correlations decrease exponentially as 

samples become more variable (Kincaid, 2005). Compound symmetry fit the best for most 

variables in this study.  

Pearson’s R correlation matrix was used to analyze the correlations between yield, WSA, 

SOM, earthworm biomass, soil nutrients, and total suspended solids of runoff water. The 

Corrttest function in Microsoft Excel© was used to determine the significance of the correlations 

at a 0.01 significance level. Correlation between variables were analyzed without assuming 

causation. 
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CHAPTER 3  

RESULTS 

Compaction  

Soil physical properties were primarily affected by the tillage operations, soil moisture 

levels, and crop of the previous season. Largely due to the drought during the 2012 growing 

season, results of soil physical properties were limited to the 2013 and 2014 growing seasons. 

Soil bulk density was not significantly different between treatments or topographic positions 

(Figure 5), but it was significantly different during the spring after fall tillage (2014) compared 

with the previous spring (2013). Additionally, interactions were present between topographic 

position and time, as well as field treatment and time, but not between topographic position and 

field treatment (Table 2). The spring season following tillage (2014), both the AA GP had 

reduced bulk density and the no-till (NT) field was reduced only slightly (Figure 5). Both linear 

and concave topographic positions were also reduced by a greater amount in the spring following 

tillage and convex positions were reduced less, however, the effect was insignificant (Figure 5). 

All three fields and all topographic positions were similar for the spring (2013) that was not 

preceded by any tillage operations (Figure 5). 

Differences in soil strength (resistance to penetration) between fields were more apparent 

in the 2013 season when tillage was not completed the previous fall (Figure 6). AA and NT 

fields showed an increase in soil strength compared to the GP between the soil surface and 20 cm 

depth (Figure 6). The field treated with the AA had significantly higher soil strength than both 

GP and NT between 20 cm and 30 cm (Table 3). Soil strength was affected by topographic 

position only in top five centimeters with concave positions having a lower soil strength than 
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linear positions (Table 3). There was also a significant interaction between field treatment and 

topographic position at the surface to 2.5 cm depth and 2.5 cm to 5 cm depth intervals (Table 3).  

Pre-plant 2013 Pre-plant 2014

g 
 c

m
-3

1.30

1.35

1.40

1.45

1.50

1.55

Aerway
No-till
Great Plains
Root Limiting 

Pre-plant 2013 Pre-plant 2014

g 
cm

-3

1.30

1.35

1.40

1.45

1.50

1.55

Concave 

Convex 

Linear

Root Limiting 

a

a

a
a a

a

a

a

a

a

a

a

A

B

a b

a b

Letters above bars indicate significant differences between treatments over both seasons.

Letters beside season indicate significant differences between seasons.
 

Figure 5. Soil bulk density in 2013 before tillage and 2014 after vertical tillage (A) and 

within each topographic position (B)  
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Figure 6. Penetration resistance and depth before tillage spring 2013 (A and B) and after vertical tillage spring 2014 (C and D)  
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Table 2. Treatment effect p-values in the least squares means for soil test results from 0 to 15 cm soil depth  
   

Soil 

Property AA vs GP AA vs NT GP vs NT 

Concave vs. 

Convex 

Concave 

vs. Linear 

Convex vs. 

Linear Field*Position Position*Time  Time*Field  

CEC 0.3655 0.6125 0.0614 <0.0001 0.0006 0.0006 0.4070 0.9342 0.8261 

SOM 0.9365 0.5696 0.7813 <0.0001 0.0127 0.0368 0.3921 0.0546 0.4505 

P  0.9019 0.7590 0.4919 <0.0001 0.0045 0.1886 0.1850 0.2292 0.2111 

Ca 0.9912 0.4093 0.4829 <0.0001 0.0065 0.0034 0.2398 0.7895 0.6713 

Mg 0.4055 0.6990 0.8800 <0.0001 0.0086 <.0001 0.2175 0.9719 0.3451 

K 0.2508 0.0569 0.7409 <0.0001 0.0015 0.0084 0.0013 0.5599 0.4281 

NO3 0.9997 0.0214 0.0202 0.3406 0.8969 0.5997 0.1870 0.0224 0.0032 

NH4 0.8610 0.2290 0.4949 <0.0001 0.0229 0.0346 0.1694 0.2060 0.1410 

WSA 0.9158 0.5839 0.8381 <0.0001 0.0090 0.0160 0.0729 0.5676 0.1317 

Bd 0.9995 0.8702 0.8617 0.4091 0.9358 0.2313 0.8280 0.0505 0.0302 

Residue 0.0478 0.0013 0.2862 0.9816 0.9994 0.9735 0.9159 0.3335 0.0999 

 

 

 

 

 

 

 

 

 

 

* AA =AerWay Aerator, GP = Great Plains Turbo-till, NT = no-till. All values presented are p values (α=.05) 
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Table 3. Treatment effect significance and differences in the least squares means for soil strength results     

Depth 

(cm) 
AA vs GP* AA vs NT GP vs NT 

Concave 

vs. Convex 

Concave vs. 

Linear 

Convex vs. 

Linear 

Field*Position 

Interaction  
 

 

2.5 <.0001 0.8604 <.0001 0.2274 0.0104 0.2693 0.0059   

5 <.0001 0.9968 <.0001 0.0996 0.0052 0.3425 0.0089   

7.5 <.0001 0.3019 0.0002 0.5569 0.1177 0.5495 0.1996   

10 <.0001 0.0813 0.0062 0.989 0.6059 0.6833 0.7476   

12.5 0.0001 0.0743 0.0144 0.7415 0.8419 0.3929 0.8222   

15 0.0001 0.1436 0.0079 0.6733 0.6986 0.2269 0.9493   

17.5 0.0004 0.066 0.0514 0.7125 0.7784 0.3103 0.7812   

20 0.001 0.0291 0.228 0.9391 0.6108 0.399 0.441   

22.5 0.0011 0.0214 0.2916 0.8871 0.4645 0.7387 0.5134   

25 0.0005 0.0296 0.1186 0.3326 0.3806 0.9925 0.9024   

27.5 0.0026 0.0867 0.192 0.057 0.3182 0.5609 0.815   

30 0.5041 0.0691 0.4004 0.0185 0.361 0.2314 0.6801   

 * AA =AerWay Aerator, GP = Great Plains Turbo-till, NT = No-till. All values presented are p values (α=0.05)    
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Crop Residue Coverage 

Residue coverage was not different over time or topographic position. In the spring 

following tillage of corn residue, the NT field was significantly greater than the GP field 

(p=0.0478) and highly significantly greater than the AA field (p=0.0013). Sampling in 2013, 

which included soybean residue coverage without tillage and after the drought was also generally 

lower than corn residue coverage with tillage except for the AA field where it was reduced 

(Figure 7). Fields sampled in 2013 also were relatively similar. There were no interactions 

between time and topographic position, time and field treatment, or field treatment and 

topographic position (Table 2). 
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Figure 7. Crop residue cover in 2013 before tillage and 2014 after vertical tillage (A) and 

within each topographic position (B) 

Water Stable Aggregates 

 Water stable aggregates were not different between fields for both 2013 and 2014, but 

topographic positions were different. Concave positions had considerably more stable aggregates 

than both linear (p=0.009) and convex surfaces (p<0.0001). Linear surfaces had an intermediate 

level of water stable aggregates, less than concave surfaces, but greater than convex surfaces 
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(p=0.016). There were no significant interactions between time and topographic position, time 

and field treatment, or field treatment and topographic position (Figure 8). 
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Figure 8. Water stable aggregates before tillage in 2013 and after vertical tillage in 2014 

(A) and within each topographic position (B) 
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Soil Temperature and Moisture  

 The 2013 growing season average soil temperature was approximately one degree 

Celsius higher than 2014 average growing season soil temperature (Figure 9). Soil volumetric 

moisture content was also higher in the 2014 growing season (Figure 10). Soil temperature and 

moisture are closely related to the maximum daily air temperature and precipitation data from a 

nearby weather station (Decatur Regional Airport, IL). The GP field was more poorly drained in 

the 2014 season while the NT field and the AA field drained more completely between each 

precipitation event. The surface VWC of the GP field remained very wet (i.e. above 35 percent) 

and the other fields dropped below 30 percent (Figure 10). There were also some instances of 

sudden increase in soil moisture without an accompanying precipitation event with the most 

notable increase on the 23rd of August in 2013 (Figure 10). This was most likely due to isolated 

precipitation in the field that was not indicated at the weather station. 
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Figure 9. Daily maximum air temperature and soil temperature during the growing season 

in 2013 (A) and growing season in 2014 (B). 
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Figure 10. Soil volumetric water content and daily precipitation in 2013 (A) and 2014 (B) 
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Table 4. Annual precipitation, average maximum daily air temperature, volumetric water content*, and soil temperature*.  

Year Precipitation 

(mm) 

Max Daily 

Temperature 

(Co) 

VWC 

AerWay 

(%) 

VWC 

No-till 

(%) 

VWC  

Great Plains  

(%) 

Soil Temp 

AerWay 

(Co) 

Soil Temp   

No-till 

(Co) 

Soil Temp 

Great Plains 

(Co) 

2011 899.9 17.92 . . . . . . 

2012 664.8 19.94 . . . . . . 

2013 856.1 16.93 30.02 36.45 29.79 71.30 71.66 71.48 

2014 974.9 16.04 35.39 32.20 40.54 69.74 69.83 69.98 

* Soil temperature and volumetric water content were only observed during the growing season.  

  

Table 5. Average maximum and minimum temperatures and total precipitation from November through March. 

Year 

Maximum Daily 

Temperature (Co) 

Minimum Daily 

Temperature (Co) Precipitation (mm) 

2011-2012 10.7 -6.3 269 

2012-2013 6.8 -2.8 218 

2013-2014 4.1 -7.0 170 
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Soil Cations and Exchange Capacity  

 Cation Exchange Capacity by summation (CECsum) indicates highly significant increases 

in the amounts of major soil cations in the concave positions compared to both the convex 

(p<0.0001) and linear positions (p=0.0006) and linear positions are also significantly greater than 

the convex positions (p=0.0006). Conversely, there were no significant field treatment effects 

(Figure 11). Because this is a summation of all the major soil cations determined by standard soil 

tests, the amounts of these cations in the soil should be generally consistent with this result to 

varying degrees.  

Calcium (Ca), magnesium (Mg), and potash (K), were all highly related to CECsum 

between the topographic positions. All three of these cations were significantly greater in the 

concave positions compared to the convex positions (p<0.0001). For potassium, concave 

positions were significantly greater than both linear (p=0.0015) and convex positions (p<0.0001) 

and linear was greater than convex positions (p=0.0084). While Ca, and Mg had no interactions 

between time, field, or topographic position, potassium had a significant interaction (p=0.0013) 

between field and topographic position and a significant three way interaction between field, 

topographic position, and time (p=0.0023). This was likely due to a sudden decrease in the no-till 

field in 2013 which was very close to being significantly higher (p=0.0569); however, the field 

portion of the model was not significant (p=0.0638; Table 2). The means for Ca and Mg were 

more similar between fields, differences between topographic positions were much clearer, and 

were more stable over time (see appendix). 
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Figure 11. CEC post-harvest within each field (A) and within each topographic position 

(B). 
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SOM, Nitrogen, Phosphorus, and Crop Yield 

 Similar to the relationship between cations and CECsum, soil cations, mineral and organic 

phosphorus as well as ammonium were positively associated with organic matter content of the 

soil in most years. Soil organic matter content (SOM) is presented as a percentage of total soil 

weight and was significantly higher in the concave positions compared to convex positions 

(p<0.0001) and linear positions (p=0.0127). Convex positions were also significantly lower than 

the linear positions (p=0.0368). There were no significant differences between the fields (Figure 

12). There was, however, a significant interaction between time and topographic position which 

was most likely due to the drought in 2012 where all nutrients increased except for nitrate 

(Figure 15). The increase in SOM over the drought was primarily in the concave positions 

slightly in linear positions and convex positions remained stable throughout all years (Figures 13 

& 15).  

Soil test phosphorus (P) was similar to SOM except that the linear and the convex 

positions were not different (p=0.1886) and there was no interaction between time and 

topographic position. Soil P was closely related to SOM content over all four years and also had 

similar dynamics between topographic positions and the drought (Figure 14). Ammonium (NH4) 

behaved similar to soil P and to other soil cations with accumulations in the concave topographic 

positions and decreased amount in the convex positions with no effect due to differences in 

conservation tillage, however, the differences were not as distinct as the others. Nitrate (NO3), 

was affected by field treatment and was not affected by topographic position, but similar NH4, 

SOM, and P there was also a significant difference in time (Figure 13). Nitrate was significantly 

lower in the NT plots compared to the plots treated with vertical tillage, however, there were 

interactions between field and time, topographic position and time, and a three-way interaction 
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between time, topographic position, and tillage treatment (Table 2). Total residual nitrogen was 

generally higher in the 2011 season which was more heavily fertilized, however, the difference 

between fertilization rates and the difference between residual nitrogen were not similar (Figure 

11). Yield was not significantly greater between treatments but was different over time due to 

crop rotation (Figure 16). 

Table 6. Correlations between SOM and yield within each year and between years. 

  

Yield 

2011 

Yield 

2012 

Yield 

2013 

Yield 

2014 

SOM 

2011 

SOM 

2012 

SOM 

2013 

Yield 2011        

Yield 2012 0.31*       

Yield 2013 0.14 -0.02      

Yield 2014 0.25 0.15 0.01     

SOM 2011 0.04 0.16 -0.12 0.13    

SOM 2012 -0.03 0.10 -0.26 0.11 0.77**   

SOM 2013 -0.26 -0.05 0.00 -0.11 0.49** 0.47**  

SOM 2014 0.01 0.05 -0.16 0.22 0.76** 0.87** 0.46** 

* Indicates significant at α=0.01 ** Indicates highly significant α=0.001 
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Figure 12. Soil organic matter content after harvest within each field (top) and within each 

topographic position (bottom).  
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Figure 13. Applied and residual nitrogen and phosphorus for 2011 and 2013 corn seasons 

 

 

 

 

 

 

 

 

 

 

 



45 
 

Fall 2011 Fall 2012 Fall 2013 Fall 2014

P
h

o
sp

h
at

e 
(p

p
m

)

0

20

40

60

80

100

120

Concave 

Convex

Linear

Recommended*

* No fertilization required for 11.3 Mg ha-1 corn yield (Vitosh et al., 2000)

a

b

c

a

b

c

a

b

c

a

b
c

Letters indicate significant treatment differences over time.  

Figure 14. Residual phosphorus within each topographic position.  

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

Fall 2011 Fall 2012 Fall 2013 Fall 2014

N
it

ra
te

 (
p
p
m

)

0

2

4

6

8

10

12
Aerway
No-till
Great Plains

Fall 2011 Fall 2012 Fall 2013 Fall 2014

N
it

ra
te

 (
p
p
m

)

0

2

4

6

8

10

12
Concave 
Convex

Linear

a

b a

a

b

a

a

b

a

a

b

a

a

a

a

a

a

a a

a

a

a

a
a

Interactions between time and tillage, topographic position and time, and three-way between time, 
topogrpahic position, and tillage were all significant.  Letters indicate significant treatment 
differences over time.

A

B

 
Figure 15. Residual nitrate within each tillage treatment (A) and topographic position (B). 
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Figure 16. Crop yield within each field (A) and within each topographic position (B). 
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Soil properties related to TSS of runoff water 

Soil runoff decreased in each successive time interval for the concave and convex 

locations, but linear positions did not follow the same trend during the infiltration test and was 

more varied between time intervals (Figure 18; see appendix). Total suspended solids (TSS) 

eroded from convex positions was greater than linear and concave positions (Figure 17). 

Earthworm biomass, percent water stable soil aggregates (WSA), yield, and data from the soil 

chemical samples were collected to analyze correlations with TSS and time interval (Table 7). 

Results suggest that WSA content, Ca, CEC, were negatively correlated with TSS; however, 

earthworm biomass was found to be highly positively correlated (Table 7). Yield was negatively 

correlated with the WSA sample and the final interval that TSS was collected. Earthworm 

biomass was also negatively correlated with CEC (Table 7). 
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Figure 17. Soil runoff over time within each topographic position (A) and total runoff, first 

time interval and final time interval (B). 
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Figure 18. Correlations between WSA and TSS (left) and earthworm biomass and TSS 

(right). 

Table 7. Correlations between soil properties and total suspended solids.  

  Total  

First 

Interval  

Final 

Interval    

SOM -0.63 -0.38 -0.35    

Earthworm 

biomass 0.95** 0.90** 0.70*    

CEC -0.68* -0.46 -0.35    

Ca -0.69* -0.57 -0.45    

WSA -0.76* -0.59 -0.51    

Yield 0.55 0.60 0.67*    

* Indicates significant at α=0.01 ** Indicates highly significant α=0.001 

 

Relationships between soil chemical properties over time 

 SOM was positively correlated to most soil nutrients, with the exception of nitrate and 

soil phosphorus during the 2013 season following the drought (Table 8). Ca, Mg, and K were all 

positively correlated to each other in all years. Soil K was also positively correlated with soil 

phosphorus in all years. Ca and Mg were also positively correlated to soil phosphorus except for 

the 2013 season. Ammonium was not related to nitrate during any year or soil K except for 2014. 
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Nutrients were also all positively correlated to each other solely in 2014, but ammonium, K, and 

soil P were also positively correlated in all years (Table 8). Nitrate, however, was only positively 

correlated to soil K and soil P following the drought in 2012, and soil Ca and Mg in 2013. 

Nitrate was negatively correlated with yield after corn years, but positively correlated during 

2014 soybean year (Figures 20 & 21). Yields were also negatively correlated with soil Ca, and 

Mg in 2013 following the drought, but were positively correlated during 2014. Yields were not 

significantly correlated to any soil nutrient during 2012. Positive correlations between SOM and 

CEC, P, Ca, Mg, and ammonium were all weakened or not significant during the 2013 year 

(Table 8; Figure 21).    

  

Figure 19. Correlations between residual nitrate and corn yield in 2011 (left) and 2013 

(right). 
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Figure 20. Correlations between residual nitrate and soybean yield in 2012 (left) and 2014 

(right) 
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Figure 21. Correlations between SOM and CEC in 2011 (A), 2012 (B), 2013 (C), and 2014 

(D) 
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Table 8. Soil chemical property relationships over time and rotation    

Soil 

Property 
Year Rotation  SOM CEC K Ca Mg P NH4 NO3 

SOM 2011 corn 1              

 2012 soybean 1        

 2013 corn  1        

 2014 soybean 1        

CEC 2011 corn 0.62** 1       

 2012 soybean 0.78** 1       

 2013 corn  0.35* 1       

 2014 soybean 0.60** 1       

K 2011 corn 0.46** 0.47** 1      

 2012 soybean 0.50** 0.53** 1      

 2013 corn  0.50** 0.33* 1      

 2014 soybean 0.43** 0.67** 1      

Ca 2011 corn 0.71** 0.87** 0.40** 1     

 2012 soybean 0.75** 0.86** 0.50** 1     

 2013 corn  0.20 0.64** 0.60** 1     

 2014 soybean 0.58** 0.86** 0.67** 1     

Mg 2011 corn 0.56** 0.87** 0.34* 0.89** 1    

 2012 soybean 0.69** 0.53** 0.40** 0.87** 1    

 2013 corn  0.13 0.67** 0.50** 0.86** 1    

 2014 soybean 0.57** 0.85** 0.56** 0.87** 1    

P 2011 corn 0.51** 0.51** 0.47** 0.52** 0.35* 1   

 2012 soybean 0.51** 0.54** 0.62** 0.45** 0.36* 1   

 2013 corn  0.24 0.19 0.44** 0.28 0.20 1   

 2014 soybean 0.40** 0.53** 0.61** 0.50** 0.41** 1   

NH4 2011 corn 0.29 0.38** 0.19 0.46** 0.37** 0.21 1  

 2012 soybean 0.47** 0.42** 0.14 0.31* 0.42** 0.06 1  
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 2013 corn  0.14 0.51** 0.28 0.48** 0.47** 0.22 1  

 2014 soybean 0.54** 0.57** 0.34* 0.48** 0.57** 0.33* 1  

NO3 2011 corn 0.05 -0.10 0.10 -0.18 -0.23 -0.03 -0.11 1 

 2012 soybean 0.22 0.22 0.36* 0.16 0.02 0.47** -0.18 1 

 2013 corn  -0.01 0.40** 0.16 0.48** 0.52** 0.16 0.12 1 

 2014 soybean 0.19 0.03 0.11 -0.07 -0.10 -0.02 0.14 1 

Yield 2011 corn 0.08 0.16 0.17 0.21 0.23 0.16 0.10 -0.36* 

 2012 soybean 0.11 0.16 -0.19 0.07 0.15 0.09 0.16 -0.20 

 2013 corn  <0.01 -0.32* -0.15 -0.34* -0.30* -0.05 -0.24 -0.43** 

  2014 soybean 0.24 0.22 0.16 0.32* 0.32* 0.08 0.19 0.29* 

* Indicates significant at α=0.01 ** Indicates highly significant at α=0.001      
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CHAPTER 4  

DISCUSSION 

Compaction and Crop Residue Disturbance  

Bulk density was not significantly different between fields or topographic positions; 

however, the vertical tillage plots, concave, and linear positions were all reduced in the second 

year of sampling. Both the NT field and the convex positions in all the fields remained constant 

and similar in both sample times. The differences between these were also discrete because there 

was no interaction between the field and topographic position. While an overall decrease in bulk 

density of soils in the AA and GP fields are obviously affected by vertical tillage operations, 

lower bulk densities in the concave and linear positions may suggest temporary deposition of 

light, easily eroded materials within these lower positions. It should be noted that bulk densities 

in all topographic positions are considered high (between 1.38 g cm-3 and 1.49 g cm-3) for plant 

production for these soils (USDA-NRCS1, 1996).  

Working depth of the tillage tool and length of time from the tillage being applied is 

important to distinguish when analyzing the differences in soil strength between the fields. The 

vertical tillage treatments are only completed after corn harvest (e.g., every other year) and the 

AA disturbs the soil to depth of 20 cm, whereas the GP only disturbs the top five or six cm 

(NRCS-USDA2, 2010). Data between the field treatments suggest lower soil strengths in the 

spring following the fall when the tillage was completed. Both the AA field and the GP field 

become more similar to the intermediate NT field the spring after tillage was completed, but the 

AA field is still highest and the GP is still the lowest at most of the depth intervals (Figure 6). In 

a study by Wiatrak and colleagues (2009), using the same penetrometer, they determined that 

changes in soil strength are influenced differently by tillage depending on the electrical 
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conductivity of the soil which was used as an indicator of soil texture. Soil texture analysis, 

moisture content at each depth, and sampling over a longer period may be necessary in order to 

determine how much these differences are affected by clay content and tillage individually and 

how these may interact. An analysis of the electrical conductivity of the field may have been 

useful in this study as an indicator of soil texture. 

The AA had the highest soil strength at all levels for both sampling periods, but was not 

different than the NT plot until approximately 20 cm, directly beneath the working depth of the 

tines. Higher soil strengths persisted for another 7.5 cm after which the soil strengths were again 

no longer different than NT. This may suggest the formation of a weak plow pan underneath the 

tillage depth for the AA compared to the GP and NT. This could be due to the focused pressure 

exerted by the points of the triangular tines. It is also important to note that there also was no 

reduction in compaction on either the surface or at any depth in either sampling period (Figure 

6). When comparing the field differences in soil strength between NT and GP, data indicated that 

NT was more compacted to a depth of 20 cm. After this depth, both NT and GP were not 

different and both had lower soil strength than the AA. AA management did not produce 

improved results compared to no-till, but these results depend greatly on how the implement is 

used (e.g., bank angle, depth, ballast) and the soil conditions during tillage (Brummer et al. 1999; 

Delaune & Sij, 2012). The AA implement has an adjustable bank angle which increases soil 

disturbance of the implement and incorporation of residue (Figure 2). 

Differences in soil strength between the topographic positions in the first five cm depth of 

soil and the last five cm of soil were also significant (Table 3). Concave positions were lower 

than the linear positions in the first five cm and lower than the convex in the last five cm. Not 

surprisingly, there also was an interaction between the tillage and topographic position for the 
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first five cm, which complicates an explanation of the differences at these depth intervals. The 

convex topographic positions also were higher in bottom five cm (i.e. 25cm-30cm) with no 

tillage treatment interaction and could be due to soil texture changes associated with entering a 

subsurface soil horizon. Increased erosion from the convex positions and increased deposition 

across the linear and concave positions could decrease the distance from the surface to these less 

fertile subsurface horizons (Indorante et al., 2014). 

In terms of soil compaction and residue disturbance, the GP vertical tillage seems to be 

the most beneficial within relatively heavy Flannigan, Drummer, and Drummer-Milford soil 

series compared with NT and the AA. Klingberg and Weisenbeck (2011) noticed a very low 

level of soil disturbance and residue conservation with the GP as long as only one pass was 

completed. Delaune and Sij (2012) also confirmed that aeration with the Aerway does not 

improve infiltration or soil runoff compared to no-till in no-till wheat systems, but it was an 

improvement over conventional tillage. In a study of the effect of aeration and nitrogen 

application rates on pasture production and quality, Brummer and colleagues (1999) found that 

aeration did not improve forage quality or yield overall, but added that field response to aeration 

depended on soil conditions. They suggested that any tillage in wet, low-lying areas decreased 

production significantly (Brummer et al., 1999). A combination of ample precipitation, soil 

moisture, and fine soil textures may have made these fields more susceptible to the issues 

mentioned in these studies.   

There are several limitations to this analysis related to the data available and the number 

of times samples were taken. For example, soil texture analysis at every sample point would 

allow for a comparison between soil texture and other soil properties, and increased sampling 

over a longer time would capture differences which take more time to develop and would also 



59 
 

help normalize variation due to climate. Crop rotation likely also affected variation in soil 

properties and was not represented in the model. Soil nutrients and SOM were more closely 

related following soybean harvest and were more weakly related following corn harvest (Figure 

21). Different root structures of corn and soybeans were also found to affect the soil strength and 

moisture content differently even with similar precipitation. Alberts and colleagues (1985) 

observed an increase of soil loss in soybean cultivation compared to corn, which they attributed 

to both protection from the increased residue coverage, and “C factors” of which differences in 

the root morphology of the two species were a part. Corn roots were observed to “encapsulate 

and hold tightly” underlying soil instead of pushing through it and they also observed that the 

root structure, as well as the residue, were much more recalcitrant (Alberts et al., 1985). This 

tendency of corn roots may contribute to the decrease in soil loss as well as a possible increase in 

compaction. Increased soil moisture in the second sampling period also could have reduced soil 

strength at sampling (Vazquez et al., 1991). In addition to increased rainfall, VWC of the soil in 

2014 that the GP managed field was more poorly drained compared to the other fields (Figure 

11, Table 5). A longer sample period is necessary to accurately evaluate the differences between 

these management techniques and topographic positions.  

Crop residue coverage was very clearly dependent on the tillage application. The GP and 

NT fields both had the similar amounts of residue in corn and soybean years. The AA 

incorporated crop residue more aggressively than GP which exposed more of the soil surface. 

Increased soil contact with the residue caused faster decomposition and prevented residue 

buildup, which is an important factor in preventing soil loss (Henriksen et al., 2002; Alberts et 

al., 1985). Both NT and the GP had higher coverage even in the years where tillage was not 

completed which could be due to the buildup of residue from previous years. Increased residue 
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coverage did not affect soil properties for the duration of this study; however, if the study was 

continued for a longer time (e.g., ten years) and treatments included more aggressive tillage, 

differences may be more apparent (Edwards & Owens, 1991; Alberts et al., 1985). 

Soil Organic Matter, CEC, and WSA  

 Contrary to residue coverage and compaction, WSA seemed to be primarily influenced 

by the topographic position within which the sample was collected and no tillage. Evidence of 

stabilization of soil aggregates by organic materials and cations, which are more available in the 

concave and linear positions compared to the convex positions, was indicated by several 

researchers (Papiernick et al., 2009; Tisdall, 1994). Alternatively, SOM may be protected from 

mineralization within soil aggregates increasing SOM content with increasing aggregate stability 

(Beare et al., 1994, Oades, 1984). Even if soil aggregates are initially disturbed by physical 

destruction, they reform quickly in the presence of these materials. . High CEC and organic 

materials will be preferentially sorted by high particle surface area within accumulation areas 

(Changere and Lal, 1997; Papiernik, 2009). After drying, these fine particles reform into stronger 

microaggregates and macroaggregates, which have increased resistance to slaking (Tisdall and 

Oades, 1982; Lado et al., 2004). In short, these data suggest that the stability of soil aggregates in 

central Illinois soils seem to be more influenced by chemical dynamics than changes in physical 

attributes. 

Unlike soil physical properties, most soil chemical properties were primarily affected by 

topographic position within this study. Generally, soil cations were highest in the concave 

positions, intermediate in the linear positions, and lowest in the convex positions without any 

significant interactions between field, time, and topographic position. Separately, tillage effects, 

topographic position and time all interact to affect soil test K, however, which suggests a more 
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complex relationship between soil test results and soil moisture content (Schneider, 1997). The 

reliability of the soil test K is a matter of debate among soil science researchers, but the 

importance of this nutrient for plant function is undeniable (Bar-Yosef et al., 2015; Khan et al., 

2013). Anions, such as nitrate and sodium (not presented) were not affected by topographic 

position at all. Overall, Trends in extractable cations within each topographic position are 

consistent and are well summarized by the CECsum. The levels of these cations are all high 

enough that soil fertility is most likely not a limiting factor and none of the cations tested are 

considered pollutants. However, they are important for the formation of soil microaggregates 

and, therefore, have implications for soil erosion and delivery of nutrients that are considered 

potential pollutants (Kemper et al., 1985; Tisdall and Oades, 1982). While they also are present 

in the organic fraction, cations such as K, Ca, Mg, and NH4 are strongly affected by and 

associated with the mineral fraction of the soil (Sawhney, 1972).  

In addition to fine textured mineral soil, high CEC may also indicate high levels of SOM 

(Baldock & Nelson, 2000). Nichols (1984) found organic carbon to be strongly correlated to fine 

soil fractions (r2= 0.86) and especially clay in Mollisols (r2= 0.90). SOM not only contains plenty 

of exchange sites, but also are considered an important source of many important soil nutrients. 

It is generally accepted that SOM is five percent nitrogen although some research has suggested 

that this is higher in some cases (Kapland and Estes, 1985). While not correlated with nitrate and 

only correlated with ammonium after soybean years in this study, other research has found 

organic nitrogen forms and SOM to be highly related (Kapland and Estes, 1985; Stevenson, 

1982). Available nitrogen and P from the mineralization of SOM represent an important source 

of nutrients for plant production and a potential source of nitrogen pollution (Carpenter et al, 

1998). Available P is closely associated with SOM content with organic P being the primary 
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source of P for plants (Sharpley, 1995). Erosion and deposition of SOM in different landscape 

positions represent an important source and sink for soil nutrients (Changere & Lal 1997). 

Poor plant nutrient uptake and slow mineralization of organic materials during the 2012 

growing season likely affected the sudden increase in SOM in that year. Nichols (1984) 

suggested that mean annual precipitation was indeed a predictor of organic carbon (r2= 0.45), 

however, his analysis was taken only at one point in time and on a regional scale. In this broad 

analysis, a positive correlation existed between organic carbon and rainfall because only one 

observation was made in several different locations rather than in one location over a period of 

time. The positive correlation in the regional case could be attributed to greater vegetative 

production in areas that have greater precipitation (Stevenson, 1994). Both VWC of the soil, and 

vegetative production were unreliable indicators of SOM due to sampling restricted to a single 

field with high SOM and samples being related over several consecutive seasons. The mobility 

of SOM and its tendency to accumulate in some areas and erode in others weakened these 

associations and even caused the reversal of the relationship between soil moisture and organic 

materials. Additionally, VWC at the soil surface was neither related to topographic position nor 

any other attribute, and was highly variable and not useful. Differences caused by microsite 

conditions around the probe, and the shallow depth of the probe could explain some of the 

variance. For example, some probes were more sheltered from the sun than others, some were 

closer to plant roots, and others were disturbed or dislodged by fauna under and above ground. 

Leaving the sensors in the field for the entire growing season and only having one probe per area 

proved to be problematic for this study. 

The connections between precipitation, SOM content, and available nutrients in this 

dataset are also complex. In this study, high SOM contents were sampled immediately after the 
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drought in 2012 followed by a sudden depletion of SOM content in the 2013 growing season. 

This may suggest, among other factors, poor SOM mineralization in 2012 due to lack of 

moisture followed by increased mineralization in 2013. Poor or negative correlation between 

many soil nutrients and SOM and negative correlations between yield and soil nutrients in the 

2013 season could have been due to lower N and P fertilizer application rates in the previous fall 

and the improved yields in that year suggesting greater nutrient uptake. The increased utilization 

of organic nutrients following that season was also accompanied by a sudden decrease in SOM 

in the linear and concave topographic positions, but not in the convex positions. Additionally, 

SOM content and relationships between soil chemical properties and SOM seemed to rebound 

suddenly in the final season of the study. The sudden decrease of SOM in 2013 from the gains 

made in 2012 season suggests that the SOM can accumulate and mineralize quickly mainly in 

the concave and linear topographic positions. A strong positive relationship between the sum of 

the exchangeable cations (CEC) and SOM was weakened during the 2013 growing season, but 

quickly returned in 2014 (Figure 19). Fertilization rates, crop rotation, and precipitation all 

strongly influence SOM content (Johnson et al., 2006).   

SOM and yield relationships were even more complex than the relationship between 

SOM and nutrients. Much research focus in the relationship between SOM (more specifically 

soil organic carbon) and yield has been centered around carbon sequestration potential and not 

the effect SOM on yield directly (Kong et al., 2005; Johnson et al., 2006) Quantification of the 

replacement of organic carbon by crop residue and the mineralization on carbon and nitrogen has 

proved difficult and variable dependent on crop residue quality, climate, and management 

(Johnson et al., 2006; Nicolardot et al, 2001). Bauer and Black (1994) found an increase of aerial 

biomass of 35.2 kg ha-1 and 15.6 kg ha-1 yield in wheat increases SOM by 1 Mg ha-1. In a study 
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by Johnson and colleagues (2006) presented projected organic carbon return to the soil by total 

crop residue including roots and exudates separated by crop type and study location. The model 

results varied considerably but were primarily based on yield. For example, the authors 

calculated a possible return of 8.52 Mg C ha-1 for corn verses only 2.47 Mg C ha-1 for soybeans 

in Illinois. Instead of estimating the amounts of SOM returned by crop residue, this study 

attempted to find a relationship between SOM content and yield within a single year or between 

different years of the study. Interestingly, yield was rarely correlated to yield in another year the 

same position and was not correlated to SOM within any one year or between any of the 

previous years. SOM content of the soil, however, was always directly related to the SOM 

content of all the other years (Table 6).  

A possible explanation for the consistent areas of high SOM content in certain areas 

despite inconsistent yield relationships is that SOM accumulates consistently in certain areas and 

there are many more factors influencing yield each season. Whether the sample point was 

located in a source or a sink area influences these amounts more than plant production and 

surface residue. Reduced fertilization rates and greater yield in 2013 were also accompanied by 

lower SOM content, a weaker relationship between SOM contents that year and the contents in 

the other years, as well as weaker relationship between exchangeable nutrients and SOM content 

(Table 6; Figure 19). This may indicate an increased utilization of organic nutrients in that year 

and the immobilization of nutrients in others influenced by higher fertilization (2011), the 

drought (2012), and the productive soybean crop (2014).  

Erosion and Deposition  

 The erosion and preferential accumulation of fine textured soil materials has been 

observed at a variety of spatial scales (Papiernik et al., 2009; Jacinthe et al., 2004; Rhoton et al., 
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2002). Topographic positions were shown to have an effect on soil chemical and physical 

properties on the field scale. Total soil runoff collected from the infiltration test was also related 

to these properties within each site. For example, WSA, Ca, CEC had significant inverse 

relationship and SOM nearly had a significant inverse relationship with the total soil runoff 

collected over thirty minutes (Table 7). Barthes & Roose (2002) also observed a negative 

relationship between soil resistance to slaking and soil runoff in many locations. For example, in 

a study by Lado and collegues (2004) it was found that an increase of approximately one percent 

SOM soils exhibited both increased aggregate stability, decreased dispersivity, and reduced 

surface crusting. The effect SOM content has on soil erosion, however, is complex and clay 

mineralogy and percentage may influence soil erosion more strongly than SOM content 

especially if SOM content is generally high (Krull et al., 2004; Lado et al., 2004; Wakindiki & 

Ben-Hur, 2002). It is clear from these results that CEC is a much more reliable indicator of 

suspended soil runoff than SOM, even though SOM has a strong influence on CEC (Figure 16; 

Table 7). 

 While WSA, CEC, and Ca were reasonably inversely related to the total soil runoff via 

suspension, earthworm biomass was even more closely directly related to total soil runoff and 

runoff in any single time interval (Figure 16). Furthermore, earthworm biomass was negatively 

related to WSA and CEC. Using earthworm biomass as an indicator of increased soil runoff and 

factor in aggregate stability has been debated in literature (Blanchart et al, 2004; Hedde et al, 

2013). Schrader and Zhang (1993, 1997) have consistently demonstrated a mostly negative effect 

of endogeic earthworm activity on water stability of aggregates and tensile strength of cast 

formed and burrow wall aggregates compared with non-disturbed aggregates. The discussion of 

the effects of earthworms has mostly focused on the development of large macropores, WSA, 
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and compaction by burrowing on soil and the influence this has on water infiltration, which 

directly influences the amount of overland flow (Bastardie et al, 2004, Blanchart et al, 2004).  

Another common conclusion of many earthworm experiments has been that differences 

in stability of soil aggregates in water and SOM content have been observed depending on worm 

functional group (i.e., epigeic, endogeic, and anecic), diet, and soil characteristics (Hedde et al, 

2013; Schrader & Zhang, 1997). Schrader and Zhang (1997) found that A. caliginosa (endogeic) 

casts were less stable in water within soils with higher clay contents, and slightly higher in low 

clay soils. Palm and colleagues (2013) also found decreases in organic carbon, clay content, and 

increases in soil moisture to be highly associated with the presence of endogeic earthworms. 

Samples collected in this study were exclusively endogeic species, Lumbricus rubellus and 

Aporrectodea caliginosa, which helps explain the associated decrease in soil water stability 

similar to the results presented by Schrader and Zhang. Because these species consume mineral 

soil and the soils have a relatively high clay content, their casts may have a negative effect on 

water stability. Alternatively, earthworm biomass may only be an indicator of favorable habitat 

conditions, which also may be vulnerable to suspension in water and have little effect on the soil 

itself. 

Sediment and Nutrient Pollution  

 Sedimentation of surface water can be detrimental for surface water quality and ecology 

for several reasons. Physically, sediment clouds water and can reduce sunlight and oxygen 

transfer for organisms. Sediment coats food sources, decreases prey abundance, and spawning 

ground (Zuazo et al., 2009; Wood et al., 1997). Eutrophication of surface water from excess 

nutrients also greatly effects both the ecology and quality of surface water. Excessive growth of 

algae and other primary producers because of the available nutrients causes a sudden increase of 
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oxygen demand as they decompose (Carpenter, 1998). Neurotoxins and other toxic compounds 

are also released from after the death of these algae blooms. These compounds pose a significant 

risk to aquatic organisms, and in some extreme cases, livestock and humans (Carmichael, 2001).   

Organic forms of nitrogen and P are considered relatively stable in the soil compared to 

dissolved forms, however, these immobilized nutrients can become labile quickly particularly in 

high concentrations (Sharpley et al., 1992; Allen et al., 2002; Carpenter et al., 1998). Typically, 

organic sources of nitrogen and phosphorus do not hold much weight when determining 

fertilization rates due to uncertainty relating to its rate of mineralization. In order to reduce 

uncertainty, many farmers will apply nutrients without fully considering the amounts released by 

organic material. This may lead to over fertilization in areas where these nutrients are 

accumulating which may worsen nutrient loading in waterways. The concentration of SOM in 

low areas of the field may also lead to greater amounts of dissolved nutrients, which are more 

easily transported by runoff even if the sediment stays in place (McDowell & Sharpley, 2001; 

Kleinman et. al., 2000). This is potentially further compounded by poor plant uptake in saturated 

areas. Poorly drained soils with high levels of organic material, as were present in this study, are 

particularly prone to surface runoff and transport of either dissolved nutrients or sediment (Zuazo 

et al., 2009). 

Despite the stability of nitrogen and phosphorus within SOM, SOM accumulating in low 

lying topographic positions still represents an accumulation of these nutrients. This is supported 

by elevated levels of extractable P and ammonium accumulating in these positions (see app.). As 

suggested above, SOM content is associated with increased extractable nutrients in every year 

however it was weaker in 2013 with decreased fertilization and higher yields and nitrate. Also, 

levels of SOM, P, and ammonium were not associated with yield in any year. Conversely, nitrate 
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indicated negative associations with yield in corn years and a weak positive association in the 

soybean year with normal precipitation and yield. Ca and Mg exhibited similar behavior as 

nitrate but positive associations were weak in the first year of the study (Table 8). Organic forms 

of nitrogen, which could become available and/or eventually move into surface water, and P 

(Carpenter, 1998).  

A possible indicator of excessive fertilization, especially in 2011, was that soil nutrient 

availability in the fall soil samples were rarely associated with yield. Residual soil nutrients 

should be affected in areas where there were greater yields. Decreased residual nitrate was more 

strongly associated with areas of high yields during the 2013 corn season where there was 

reduced fertilization, and was less associated in the 2011 season when fertilization rates were 

higher (Table 8). For example, it is recommended to apply fertilizer nitrogen at rates 

approximately 1 kg ha-1 N per 63 kg ha-1 potential corn yield of the following year for corn 

(Vitosh et al., 2000). In the fall of 2010, a total of 307 kg ha-1 of nitrogen was applied, and corn 

yield ranged between 10.6 and 11.2 MT ha-1 (Table 1; Figure 14). According to 

recommendations by Vitosh and colleagues (2000), the fertilizer requirement for that yield was 

actually between 168 kg ha-1 N and 178 kg ha-1 of applied nitrogen fertilizer. Nitrogen 

fertilization was approximately 42 percent higher than the aforementioned crop fertilizer 

recommendation for that year. The following corn season, only 237 kg ha-1 was applied, and 

residual nitrogen decreased in a similar ratio to the decrease in fertilization (i.e., 33 percent). 

Even taking into account considerable loss from the fall application, 2011 fertilization rate was 

excessive and likely contributed to significant nutrient loss.  

Applications of phosphorus to this soil were also excessive as even convex topographic 

positions had greater than 40 ppm soil phosphorus and concave positions were nearly 80 ppm 
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(Figure 12). For residual phosphorus levels at or above 40 ppm, no fertilizer application is 

recommended (Vitosh et al., 2000). These results suggest the farmer managing this field has an 

incentive to apply fertilizer in excess of crop recommendations even with this information, 

however, the reasons for this are beyond the scope of this research. Before the 2013 corn season, 

spring applications of nitrogen fertilizer were removed completely, less than a third of the 

amount of DAP applied in the spring instead of the fall, and corn yields were approximately 20 

percent higher than 2011 (Figure 15; see app.). Additionally, despite a slight increase in available 

nutrients and SOM content determined from soil tests were relatively similar each fall over all 

time periods suggesting that applied N in excess of crop demand had little effect on residual N, 

P, and SOM content as well as crop yield.  

There was considerable potential for losses of N and P throughout 2011, and to a lesser 

extent during the winter months of 2012-2013, due to excessive N and P fertilization and warmer 

winters with higher rates of precipitation (Shipley et al., 1992; Tables 3 and 4). During the 

growing season in 2012, there was very little precipitation, which led to the accumulation of 

organically immobilized nutrients (i.e., SOM) and soil P, especially within the concave and 

linear topographic positions. The sudden release of these organic nutrients over one growing 

season in 2013, indicated by the decrease in SOM and the decrease in the association between 

the nutrients and SOM content accompanied by lower fertilization and higher yields, suggest that 

SOM represents a considerable amount of quickly and slowly released nutrients. As previously 

noted, the moisture content was the primary factor affecting nearly all soil processes and crop 

production during 2012 and likely indirectly affected 2013 as well. Exceedingly dry conditions 

prevented SOM from mineralizing, and caused high residual P due to poor plant production and 

uptake. Interestingly, the increase of residual P in the concave topographic positions was similar 
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to the reductions in the linear and convex positions (Figure 12). Residual nitrogen (i.e., 

ammonium and nitrate) was low during the drought in 2012 and in 2013, which had reduced 

fertilization rates and high yields, and high during the productive soybean year and 2011, which 

received more nitrogen fertilizer (Figure 14; Figure 12; see appendix). This suggests poor 

nutrient return and possible ammonium fixation during the drought, accompanied by slow 

mineralization of the immobilized organic nutrients, which caused the general increase in SOM 

but resulted in low extractable residual nitrogen (Rovira & Vallejo, 2002; Figure 10). Excellent 

yields and improved crop uptake in 2013, as well as a reduction in applied fertilizer would 

suggest reduced nutrient loss compared to the 2011 growing season and possibly the 2014 

growing season (Figure 11). 

Productivity and Yield  

 Precipitation is one of the primary factors controlling yield and soil properties (which 

also directly influence yield). The driest season affected both production in the season and also 

the relationship between soil nutrients and yield in the next season, which received relatively 

normal precipitation. Although residual nutrient levels and SOM content are important indicators 

of fertility over the growing season, they were not the best indicators of yield differences. Only 

nitrate, Ca, and Mg were related to yield in any of the years, and they were only related in the 

final (most productive) seasons of the study (Table 8). Yield also was not correlated directly to 

SOM in any year, likely because the release of organic nutrients can be affected by differences in 

soil moisture and weather conditions. Additionally, the mobility of SOM makes it difficult to 

spatially link increased yield with organically sourced nutrients and the increased return of these 

organic nutrients over multiple seasons (Leavitt et al., 1996). Some soil nutrients became 

negatively correlated with yield and more weakly correlated to SOM content in 2013, possibly 
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because of changes in nitrogen and phosphorus fertilization and/or increased utilization or 

mineralization of organic nutrients.  

SOM and yield relationships were difficult to observe. Bauer and Black (1994), Johnson 

and colleagues (2006), and many others used crop yield and residue production to predict 

contributions to SOM. As noted previously, the distribution of SOM content, regardless of yield 

in the previous seasons, suggests that the relationship between crop production and the level of 

SOM in the soil is complex. Sample point location in a source or a sink area (i.e., concave or 

convex topographic position) influenced SOM content more than the annual replacement by 

crops. Fertilization rate also affects SOM content. In 2011 and 2012, there was a significant 

build-up of SOM with high residual nutrient levels and slow mineralization during the drought, 

followed by reduced fertilization rates and declining SOM content in 2013 (Figure 10). In the 

2014 soybean season, SOM content, residual nutrients, and the positive relationship between soil 

nutrients and SOM returned (Figure 13; Figure 21). The sudden reduction in SOM, and fewer 

nutrients associated with the SOM that remained, supports the utilization of immobilized organic 

nutrients as applied inorganic nutrients became scarcer. (Figure 21). It was unclear how much of 

the nutrient requirement was provided by the organic nutrients provided from mineralization of 

SOM to crop production, but there is evidence that the relationship between SOM and soil 

nutrients was affected during the year that there were reduced fertilization and high yields. 

Soybean yield, SOM mineralization, and mobility were likely limited by lack of moisture in 

2012, which may have also delayed the effects until the following season. 

 Other soil nutrient relationships with yield were also affected by crop rotation. During the 

productive soybean year in 2014, nitrate is weakly positively correlated with yield, likely due to 

nitrogen fixation by the soybeans. Patterson and LaRue (1983) also reported similar findings, 
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noting significant nitrogen fixation in soils that were not fertilized with nitrogen. Soybeans are 

also more responsive to the presence of Ca and Mg in the soil than corn, which was also 

indicated by a positive relationship between these cations and soybean yield; however, there was 

a negative correlation between these cations and yield in the previous corn year (Vitosh et al., 

2000). Both of these years were more productive than the previous two years (Figure 16).  

 Yield was also rarely associated with a certain topographic position or volumetric water 

content of the soil in this study. However, Kravchenko and Bullock (2000) found a modest 

association between higher SOM and lower elevation positions with higher yields. A micro-scale 

analysis by Kapland and Estes (1985) also confirmed higher above- and below-ground plant 

production within pots of greater SOM content. Variable precipitation within each of the 

growing seasons in this study may have affected the speed at which SOM was mineralized and 

how nutrients such as K and ammonium were fixed or made available under dry conditions 

(Rovira et al, 2002; Liu and Barak, 1997). This also may have blurred the connection between 

SOM accumulation and yield. Yield was also much more affected by overall lack of moisture in 

2012 than the amounts of available nutrients or presence of SOM.  

Limitations 

 The primary limitations of this study are the amount of sample times that were collected, 

length of time, variability in weather, and number of fields. In order to accurately determine the 

effects of tillage management, crop rotation, and topographic position, data need to be collected 

over a longer period of time to account for uncontrollable climatic variability (e.g., 

precipitation). Soil chemical properties seemed to be affected by the lack of precipitation in two 

of the four seasons and soil physical properties were only collected in two seasons. An analysis 
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of only two seasons is not sufficient to determine if the changes are consistent over time and 

between crops.  

Additionally, there was only one annual sampling for both physical and chemical soil 

properties, which were not collected at similar points in the season. Not taking the samples at the 

same time made it difficult to observe any interactions between soil physical and chemical 

properties. More sampling periods, instead of annual collections, would allow a more focused 

analysis of trends in soil properties over single seasons. The large, field scale design of the 

project and the distance of the fields from the university prohibited the additional sampling 

necessary for a more focused time analysis. More fields and sampling periods would allow for a 

more robust analysis of the potential effects of time, management, and topographic position.  
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CHAPTER 5  

CONCLUSIONS 

Synthesis 

Differences in conservation tillage management and topographic position were found to 

have an effect on soil chemical and physical properties. With the exception of soil strength, soil 

physical properties were affected by differences between the fields, more so than by topographic 

positions. Conservation tillage was clearly a factor affecting soil compaction and burying crop 

residue. Topographic position, on the other hand, affected samples which isolated shallow soil 

depths, as was possible with the soil strength results. Most of the samples for soil physical 

properties were a generalization of the soil to 15 cm, which may have diluted the differences at 

the soil surface that were effected by topographic position. This is not to suggest that topographic 

position has no indirect effect on physical attributes. For example, while not affected by 

topographic position at all depths, topographic position interacted significantly with time to 

affect bulk density and soil strength at shallow depth intervals (Table 2).  

In contrast to compaction and residue coverage, WSA samples were primarily affected by 

topographic position and less so by disturbance from conservation tillage. The WSA portion of 

soil represents an important connection in which chemical properties, such as exchangeable soil 

nutrients, texture, and SOM, influence physical attributes of soil especially in the absence of 

excessive physical disturbance. Soil chemical properties were also primarily associated with 

topographic position rather than management or other field differences. Soil nutrients and SOM 

accumulate and deplete even in level, poorly drained fields influenced by topographic position. 

Three topographic positions (i.e. concave, convex, and linear) delineated by TPI analysis 
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designed by Wiess (2001) and automated by Jenness (2006) were found to be an effective 

method for delineating zones characterized by soil chemical properties for this study.  

Soil nutrients in both the mineral soil fraction and SOM are also affected by weather 

conditions and rate and timing of fertilization. For example, poor yield after over-fertilization in 

the spring of the first year of the study resulted in high residual nitrate and P. The drought in 

2012 lifted SOM between 0.3% in linear areas and nearly a half of a percent in concave areas 

due slow mineralization in the dry 2012 growing season. The following corn year, 2013, yields 

were above average, and while they applied a similar amount of fertilizer N in the fall, the 

application rate of diammonium phosphate (DAP) was reduced and applied in the spring. The 

spring application of urea-ammonium nitrate solution (UAN) that was completed in 2011 was 

omitted in this year. In contrast to 2011, negative residual nitrate correlations with yield, 

generally low residual N and P, as well as pre-drought levels of SOM were determined from the 

soil samples. SOM was also not positively associated with all of the cations, as it was in previous 

and following years. This suggests that corn yields do affect residual nitrate, P, and SOM content 

particularly when fertilization is more in line with crop demand. Both inorganic nutrients held by 

SOM exchange sites or organic nutrients slowly mineralized from SOM are a considerable 

portion of available nutrients, and particularly in soils which five percent or higher SOM is 

common (Table 2.3). The rapid response of SOM content to fertilization rates may also provide 

evidence for the existence of quickly mineralized and slowly mineralized fractions of SOM 

(Leavitt et al., 1996; Rovira, 2002). 

The agronomic importance of the accumulation and depletion of soil nutrients due to 

surface runoff is well established in the literature and holds implications on soil physical 

properties and nutrient pollution (Sharpley, 1995; Kleinmann et al., 2000; Ritchie et al., 2007). 
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Additionally, this study suggests that failing to account for organic delivery of nutrients, crop 

requirement, and movement of nutrients leads to considerable losses of resources. Much of the 

excess nutrients applied before the first planting of corn in this study was likely lost to the 

atmosphere or water bodies, and therefore did not provide a yield benefit. An analysis of the 

speed and quantity of suspended soil runoff and associations between suspended soil runoff, 

yield, and soil properties suggests that valuable soil materials suspend and move quickly during a 

precipitation event with overland flow. Also, earthworm biomass and WSA were observed to be 

excellent indicators of the risk of soil suspension in this study (Figure 18). It is clear from this 

study that most soil processes and attributes are closely associated and the outcome of their 

interactions is dependent on differences in management and weather dynamics over several 

years. 

Management Implications 

 Soil disturbance from tillage and fertilizer application is an important factor in the 

optimization of crop production and soil quality. Among the conservation tillage methods 

evaluated here, it was determined that the GP tillage treatment was the most beneficial in terms 

of soil compaction and residue conservation. The field treated with the AA was slightly more 

resistant to penetration below 20 cm than NT and at any depth compared to the GP. Data suggest 

that there is no benefit of using the AA over NT as a conservation tillage practice in this site. 

Additionally, it may or may not be beneficial to use the GP over NT depending on the cost of 

application. An analysis of bulk density between two seasons also suggested the potential benefit 

of tillage; however, natural variation in bulk density is also present in the NT field. An 

evaluation of more seasons would be necessary in order to improve accuracy of the analysis as 

well as to evaluate benefits of each tool compared to NT. 
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 The effects of fertilization rates and timing on residual nutrients and crop yield also have 

many implications for management. Excessive fertilization in the fall of 2010 and spring of 2011 

had little effect on crop yield and residual nutrients in the fall of 2011. The next season that corn 

was planted, 2013, all fertilization was greatly reduced. However, yields were 20 percent higher, 

likely due to more favorable weather. While the residual nutrients were reduced compared to the 

previous 2011 corn season, they were not reduced by the same ratio as fertilization. This 

suggests that excessive fertilization does not increase yields, is a poor use of resources, and is 

probably a pollution concern. While it is impossible to predict favorable and non-favorable 

conditions a crop will face beyond nutrient availability, it is prudent to apply fertilizer in 

amounts close to a realistic estimation of crop uptake. Therefore, maintaining detailed records of 

the effects of tillage and fertilizer management, and awareness of topographic position on field 

conditions are necessary for efficient and sustainable levels of production.  

Future Research  

These findings should be substantiated by further research, particularly in the areas of soil 

nutrient availability, loss, and erosion and how these affect crop yield. In order to better analyze 

the relationships between soil physical attributes and fertility, additional soil samples should be 

taken in the spring and possibly during the growing season. The addition of spring soil samples 

would allow the evaluation of potential losses of fall applied fertilizer over the winter as well as 

crop response to higher soil fertility. A trend analysis of physical and chemical dynamics as well 

as how rapidly soils respond to changes in management with more sampling times per season. 

For example, during the drought year it would be possible to see how fast SOM accumulates and 

how fast it was released the following season. This would also be useful for determining how 

SOM and soil nutrients are eroding and accumulating in different topographic positions. 



78 
 

Further elucidation of the connection between earthworm biomass and suspended soil 

runoff as well as other important soil attributes would also be beneficial. This research suggests 

that earthworm biomass was an excellent indicator of soil instability in water; however, more 

samples would be needed to determine causality and to increase the strength of the test. To that 

end, more evaluation of the soil runoff test would further determine if this is a useful method for 

determining soil susceptibility to runoff via suspension. Despite a clear connection between 

WSA and total suspended solids within each sample site, more tests and testing in different 

periods of the season would be needed to establish this tests validity as well. 

Finally, more research at the field scale could be accomplished using the topographic 

positions delineated by TPI values as designed by Wiess (2001) and automated by Jenness 

(2006). Analysis of soil samples within these topographic position boundaries suggests that this 

method is an effective way to model soil characteristics in regards to productivity and pollution 

risk. There are many applications for this tool particularly with research on the field scale. For 

example, SOM and nutrient movement and deposition could be easily demonstrated using these 

positions as separate plots. Also, this tool is useful for determining these positions in level areas 

like the Midwest where it is difficult to correctly distinguish a concave area from a convex area. 

Understanding soil data within a spatial context at the field scale is important for the 

continuation of informed research and more efficient and sustainable farming practices. 
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A 1. Daily maximum air temperature and precipitation for 2011(top), and 2012 (bottom) 



91 
 

Month

Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec  

T
em

p
er

at
u
re

 (
C

o
)

0

20

40

60

80

P
re

ci
p
it

at
o
n
 (

m
m

)

0

20

40

60

80

100

120

140

Month

Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec  

T
em

p
er

at
u
re

 C
o

0

20

40

60

80

P
re

ci
p
it

at
io

n
 (

m
m

)

0

20

40

60

80

100

120

140

Daily Maximum Temperature 

Precipitation 

Daily Maximum Temperature 

Precipitation 

 

A 2. Daily maximum air temperature and precipitation for 2013(top), and 2014 (bottom) 
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A 3. Means of soil physical properties with standard errors   

Year Aerway No-till Great Plains Linear  Concave Convex 

WSA (%)       

2013 49.98±8.34 55.71±8.40 61.64±4.43 56.29±5.93 75.10±3.71 37.97±6.17 

2014 49.06±5.96 39.53±8.07 42.95±4.34 40.11±4.85 53.27±3.95 29.85±4.52 

Bd (g cc-1)       

2013 1.49±0.01 1.47±0.01 1.49±0.02 1.49±0.01 1.48±0.01 1.48±0.02 

2014 1.40±0.01 1.43±0.02 1.39±0.01 1.39±0.01 1.44±0.02 1.39±0.01 

Crop Residue Coverage 

(%)      

2013 67.99±7.58 76.08±2.61 74.00±1.72 77.57±2.66 69.48±6.88 71.67±3.42 

2014 61.44±5.71 92.00±2.67 80.44±2.48 73.50±9.52 75.38±4.52 82.20±2.72 

 

A 4 Means of soil chemical properties with standard errors 
  

Year Aerway No-till Great Plains Linear  Concave Convex 

CEC (meq 100-1)      

2011 36.46±1.57 36.11±1.55 37.89±1.29 37.01±1.54 42.15±1.03 31.3±0.8 

2012 36.09±1.14 35.13±1.36 37.43±1.13 35.96±0.92 41.43±0.86 31.26±0.82 

2013 36.67±1.13 35.8±1.65 39.13±1.33 37.32±1.11 42.11±1.13 32.17±1.18 

2014 39.64±1.35 38.16±1.84 42.05±1.72 39.04±1.28 46.37±1.44 34.43±1.28 

SOM (%)       

2011 5.4±0.13 5.32±0.15 5.44±0.12 5.38±0.12 5.78±0.12 5±0.11 

2012 5.62±0.13 5.58±0.22 5.58±0.15 5.58±0.13 6.2±0.14 5±0.12 

2013 5.39±0.17 5.13±0.17 5.41±0.14 5.26±0.14 5.62±0.21 5.04±0.11 

2014 5.56±0.11 5.31±0.18 5.32±0.11 5.38±0.11 5.8±0.13 5.02±0.12 

P (kg ha-1)       

2011 97.94±7.74 90.71±6.42 106.58±7.86 97.42±7.68 116.49±7.33 81.32±5.37 

2012 99.4±6.9 91.35±8.23 111.71±9.88 93.63±6.48 133.23±8.69 75.6±5.4 
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2013 93.39±6.45 93.86±7.14 94.27±8.5 88.61±6.08 118.36±7.43 74.55±5.4 

2014 78.75±7.54 71.98±5.66 80.5±6.62 69.48±5.16 97.88±6.11 63.88±6.45 

K (kg ha-1)       

2011 336.29±13.06 327.48±15.56 330.05±15.51 324.45±14.12 362.78±13.23 306.6±14.47 

2012 381.27±15.97 350.88±18.45 370.88±16.47 363.01±13.52 420.93±17.12 319.08±13.57 

2013 371.58±12.36 332.62±16.96 325.73±13.64 340.14±9.73 384.77±12.49 305.03±17.02 

2014 296.45±10.65 278.78±15.42 285.08±11.37 280.64±8.92 327.89±9.46 251.77±13.77 

Ca (kg ha-1)       

2011 4324.19±170.12 4213.3±195.77 4438.58±145.56 4396.47±169.21 4857.71±130.38 3721.9±124.7 

2012 4653.6±1.14 4437.24±187.84 4646.54±138.73 4612.24±121.43 5115.19±132.85 4009.95±131.54 

2013 4565.4±1.13 4262.24±207.27 4388.18±121.94 4349.51±116.13 4960.14±122.43 3906.18±151.83 

2014 4824.4±1.35 4577.36±218.01 4807.6±153.57 4738.24±128.64 5332.37±160.42 4138.75±160.61 

Mg (kg ha-1)       

2011 673.17±44.45 668.38±42.18 638.63±31.89 675.44±35.82 799.63±34.38 505.11±20.89 

2012 701.63±1.14 660.33±38.56 634.14±29.46 677.19±29.12 796.66±30.38 522.26±22.75 

2013 690.61±1.13 655.38±45.51 606.49±27.09 656.95±31.56 789.25±34.17 506.28±25.99 

2014 702.45±1.35 686.82±45.42 651.23±34.5 686.88±35.05 829.15±35.91 524.48±25.86 

NO3 (kg ha-1)       

2011 7.09±0.49 6.53±0.45 6.48±0.45 7.13±0.57 6.16±0.43 6.8±0.36 

2012 3.2±0.81 3.23±0.16 4.75±0.51 3.5±0.25 4.58±0.51 3.1±0.17 

2013 3.65±0.81 3.19±0.3 3.46±0.54 3.42±0.53 3.84±0.39 3.05±0.24 

2014 7.38±0.97 5.35±0.26 6.55±0.23 6.63±0.29 6.18±0.34 6.47±0.33 

NH4 (kg ha-1)       

2011 6.98±0.35 6.92±0.52 7.42±0.31 7±0.35 7.79±0.41 6.53±0.41 

2012 4.45±0.81 3.76±0.26 3.68±0.32 3.82±0.28 4.31±0.28 3.76±0.22 

2013 5.44±0.81 5.41±0.27 5.66±0.22 5.78±0.28 6.08±0.24 4.66±0.27 

2014 7.14±0.97 6.55±0.41 7.02±0.28 6.85±0.24 8.05±0.33 5.81±0.21 

Yield (MT ha-1)      
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2011 11.07±0.41 10.72±0.29 10.69±0.33 11.12±0.27 11.18±0.44 10.63±0.3 

2012 2.72±0.14 2.89±0.11 3.04±0.11 2.95±0.1 3.07±0.13 2.75±0.14 

2013 13.52±0.31 12.75±0.38 12.97±0.37 13.26±0.36 12.82±0.4 13.7±0.28 

2014 5.92±0.16 4.98±0.14 5.3±0.1 5.38±0.14 5.53±0.2 5.5±0.09 

 

A 5. Area of each of the topographic positions in hectares    

Field Concave Convex  Linear  Linear > 2% slope 

Aerway 6.84 7.7 14.99 4.34   

No-till 8.45 7.5 20.89 1.83   

Great Plains 7.41 6.55 17.61 1.05   

Total  22.7 21.8 53.49 7.22    

 

A 6. Soil runoff, yield, earthworm biomass and chemical properties  

Plot 

ID 

WSA 

(%) 

Composite 

(mgL-1) 

First 

Interval 

(mgL-1) 

Final 

Interval 

(mgL-1)  

SOM 

(%) 

Earthworm 

Biomass 

(g) 

Yield 

(bu ha-1) 

Ca  

(kg ha-1) 

Mg 

(kg ha-1) 

P  

(kg ha-1) 

CEC  

(meq 100 g-1) 

27 69.2 611.5 349.5 20.5 4.1 1.5 70.3 3258 594 23 28.4 

45 39.2 1651.5 627.5 173.5 4.08 3.3 87.0 3293 404 30 25.6 

54 59.2 1212.5 391.5 263.5 3.94 1.8 78.0 3826 633 75 29.8 

85 30.5 4288.5 1481.5 467.5 3.44 7.7 87.0 2766 415 43 24.4 

129 56.0 745.5 283.5 80.5 4.95 0.0 72.6 4375 835 87 38.9 

149 38.4 1966.5 194.5 24.5 3.31 3.0 75.5 3020 371 55 22.7 

202 47.7 498.5 246.5 44.5 4.31 1.9 83.2 3969 564 55 34.6 

213 47.8 1034.5 380.5 248.5 3.95 0.9 84.4 3502 491 35 31.8 

222 55.2 529.5 210.5 43.5 3.91 0.3 68.7 4923 824 79 35.5 
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A 7. Correlations between soil properties during the Cornell infiltration test 

  SOM 

Earthworm 

Biomass  CEC WSA Phosphorus  Infiltration  

SOM       

Earthworm 

biomass -0.63      

CEC 0.81** -0.73*     

WSA 0.53 -0.74* 0.53    

Phosphorus 0.34 -0.39 0.61 0.19   

Infiltration  -0.16 -0.04 -0.09 0.35 0.27  

Yield  -0.23 0.61 -0.39 -0.72* -0.46 -0.10 

* Indicates significant at α=0.01 ** Indicates highly significant α=0.001 
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A 8. Residual ammonium within each tillage treatment (A) and each topographic position (B) 
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A 9. Potassium within each tillage treatment (A) and each topographic position (B) 
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A 10. Calcium within each tillage treatment (A) and each topographic position (B) 
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A 11. Magnesium within each tillage treatment (A) and each topographic position (B) 
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