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Past and future wind climates over the contiguous USA based
on the North American Regional Climate Change
Assessment Program model suite

S. C. Pryor,1 R. J. Barthelmie,1 and J. T. Schoof 2

Received 6 January 2012; revised 5 September 2012; accepted 9 September 2012; published 13 October 2012.

[1] Multiple descriptors of wind climates over the contiguous USA from a suite of
thirteen simulations conducted with five Regional Climate Models (RCMs) nested within
reanalysis data and four Global Climate Models are evaluated relative to the
North American Regional Reanalysis (NARR) and independent observations.
Application of the RCMs improves ‘forecasts’ of wind climates during 1979–2000 relative
to the driving reanalysis, and the RCMs exhibit some skill in depicting historical
wind regimes. However, the relative paucity of reference data sets for wind climates
represents a significant challenge to evaluation of the modeled wind climates. Simulation
of intense and extreme wind speeds by the RCMs are, to some degree, independent of
the lateral boundary conditions, and instead exhibit greater dependence on the RCM
architecture. RCMs that do not employ a hydrostatic formulation have higher skill
in manifesting the macro-scale variability of extreme (20 and 50 year return period) wind
speeds even when the RCM are applied at the spatial resolution of 50 km. Output from
RCM simulations conducted for the middle of the current century (2041–2062) indicate
some evidence of lower intense wind speeds particularly in the western U.S., but no
difference in extreme wind speeds, relative to 1979–2000.

Citation: Pryor, S. C., R. J. Barthelmie, and J. T. Schoof (2012), Past and future wind climates over the contiguous USA based
on the North American Regional Climate Change Assessment Program model suite, J. Geophys. Res., 117, D19119,
doi:10.1029/2012JD017449.

1. Introduction and Objectives

[2] Understanding how climate non-stationarity has been
manifest as changes in near-surface wind regimes in the past
and how near-surface wind speed regimes might alter in
the future is of great value to a number of socio-economic
sectors. For example, extreme wind speeds are used in design
standards to ensure structural integrity under extreme loading
cases [Cook, 1986] and high magnitude extreme wind speeds
(and gusts) have been linked to failures in the electricity
distribution network [Banik et al., 2010; Reed, 2008], infra-
structure damage and insurance losses [Schwierz et al.,
2010]. However, comparatively little research has explicitly
assessed the skill of Regional Climate Models (RCMs) in
simulating contemporary wind climates [Kunz et al., 2010;
Pryor et al., 2012a, 2012b;Winterfeldt et al., 2011]. Further,
relatively few studies have used multimodel suites to assess
the sensitivity of wind climates to the lateral boundary

conditions and global climate non-stationarity. Thus the
questions that motivate this research are threefold:
[3] 1. How skillful are the members of the North American

Regional Climate Change Assessment Program (NARCCAP)
RCM suite in reproducing the contemporary near-surface
wind speed climate over North America? Does the degree
of skill vary with wind speed metric (i.e., the distribution
parameter under consideration)?
[4] Model performance in reproducing the historical climate

is not per se indicative of skill in climate change detection
and attribution [Santer et al., 2009]. Previous analyses of
climate model output have indicated only a weak relationship
between ‘skill’ in reproducing features of the historical
and contemporary climate and the magnitude of predicted
change [Knutti et al., 2010]. Nevertheless, information regard-
ing model performance in the historical and contemporary
climate is one way to assess the ‘value added’ by dynam-
ical downscaling [Castro et al., 2005; Feser et al., 2011;
Winterfeldt et al., 2011]. Further, such assessments remain
a useful component of climate change analyses to contextu-
alize projected changes in geophysical parameters. They also
provide a mechanism to at least partially evaluate the ability
of models to simulate dynamical linkages responsible for
inducing variability in the historical period. Accordingly,
we present an evaluation of multiple aspects of the wind
climates as simulated by the NARCCAP models relative to
the NCEP-2 reanalysis [Kanamitsu et al., 2002], the North
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American Regional Reanalysis (NARR) [Mesinger et al.,
2006] and observational data sets. NARR was selected a
priori as the primary reanalysis product against which to
evaluate the NARCCAP simulations because it is the reanal-
ysis product with the highest spatial and temporal resolution
over the contiguous USA and because NARR uses NCEP-2
reanalysis to provide the lateral boundary conditions thus
enabling direct comparison with the NCEP-2 nested RCM
simulations. However, as described below, we also use other
observationally derived data sets to provide additional evalu-
ation of the RCM output.
[5] 2. How sensitive are varying metrics of the modeled

near-surface wind speed climate to the lateral boundary
conditions versus variations in RCM applied?
[6] There are multiple sources of uncertainty in down-

scaled climate projections including (but not limited to); those
deriving from the architecture of the model used to provide
the lateral boundary conditions and/or predictors for empirical
downscaling, the architecture of the (empirical or dynamical)
downscaling model, initial conditions (and internal climate
variability), and the radiative forcing. Understanding the mag-
nitude and origin of these uncertainties provides a mechanism
for potentially enhancing and improving climate projections
[Hawkins and Sutton, 2009]. In prior probabilistic down-
scaling of wind climates over Northern Europe, the coupled
Atmosphere-Ocean Global Climate Model (AOGCM) used
to provide the downscaling predictors was found to dominate
uncertainty in downscaled 90th percentile wind speeds for the
end of twenty-first century. Variations in initial conditions
and radiative forcing make lesser (but non-negligible) con-
tributions to the projection uncertainty [Pryor and Schoof,
2010]. Dynamical downscaling analyses of projected chan-
ges in extreme wind climates and lower moments of the wind
speed distribution over Northern Europe also exhibited a high
degree of dependence on the lateral boundary conditions
(AOGCM). The RCM applied additionally had a substantial
impact on the magnitude and direction of change in wind
speed metrics. Internal variability and initial conditions exert a
stronger impact on projected extreme wind climates through-
out the twenty-first century than is manifest in measures of the
wind speed central tendency [Pryor et al., 2005; Pryor et al.,
2012a]. The dominance of AOGCM architecture as a source
of uncertainty in climate projections over northern Europe
is consistent with a priori expectations since, for example,
the surface conditions used within RCM are typically held
constant. Lateral boundary conditions were also found to be
the leading source of uncertainty in climate projections in
analyses of thermal [Rowell, 2006] and hydrological [Kay et al.,
2009] regimes. Here we compare the sensitivity of wind
climates from the NARCCAP simulations in 1979–2000 to
variations in the lateral boundary conditions and the RCM
applied.
[7] 3. What do the simulations from the NARCCAP

model suite imply about possible changes in the near-surface
wind climate over North America?
[8] Within the midlatitudes the dynamical linkages between

a warming climate and the near-surface winds are complex
[O’Gorman, 2010]. In regions where the atmospheric flow
is not dominated by thermo-topographic effects, the wind
climate is principally determined by transitory synoptic-scale
anticyclone and cyclones [Weisse and von Storch, 2010].
Cyclone development is a baroclinic process, and thus it is

relatively insensitive to equator to pole temperature gradients,
since it is a function of smaller-scale variance of the temper-
ature field. Thus it may be more strongly influenced by
the likely increase in upper tropospheric thermal gradients
than possible decreases in near-surface temperature gradients
[Held, 1993]. The coupling between scales is reciprocal.
These ‘storm track’ cyclones and anticyclones are both steered
by the larger-scale flow and help to reinforce it [Woollings,
2010]. While steering of transitory synoptic scale systems is
also influenced by the large-scale thermal gradient, this link is
also indirect. There may be a strong influence of higher water-
holding capacity and energy availability due to the phase
transfer of water [Chang et al., 2002]. Additionally, the link
between the upper-level flow fields and near-surface wind
speeds is strongly mediated by factors such as atmospheric
stability and land cover that influence momentum transfer
from aloft.
[9] In contrast to other geophysical variables, analyses

designed to quantify historical evolution of wind climates
exhibit highly divergent results depending on the precise data
period considered and the data record analyzed. This may be
due in part to the complexities of dynamical linkages described
above. It may also be symptomatic of the lack of robust, long-
term and homogenized data sets for wind speeds. Analysis of
output from historical data sets, reanalysis products and
two RCMs found no consistency with respect to historical
tendencies of wind climates over the contiguous U.S. in the
latter part of the twentieth century (1973–2005) [Pryor et al.,
2009]. The observational data sets generally indicate declines
in both the 50th and 90th percentile wind speeds over the
eastern USA, while converse trends are seen in output from
NARR, global reanalysis data sets and simulations using
the Regional Spectral Model nested in NCEP-2 [Pryor et al.,
2009].
[10] The majority of prior research to develop wind climate

projections has tended to focus on mean wind speeds and has
indicated only modest changes in wind climates over the
USA. Analysis of direct output from previous generation
Canadian Climate Center and Hadley Center General Circu-
lation Models (GCMs) indicates reduced multiyear annual
mean wind speeds over North America in projections for
the twenty-first century, but the mean wind speed will likely
remain within �5% of historical values (and thus within
the envelope of current inter-annual variability) [Breslow and
Sailor, 2002]. Empirical downscaling of four CMIP-3 gen-
eration GCMs indicated summertime wind speeds in the
Pacific Northwest may decrease by 5–10%, while wintertime
wind speeds remained very close to current values [Sailor
et al., 2008]. High resolution modeling over California and
Nevada with the Weather Research and Forecasting (WRF)
model (applied at 4 km) nested within the Parallel Climate
Model (PCM) AOGCM for 2047–2056 and 1997–2006
found no change in the probability distribution of daily
wind speeds in the climate projection period relative to the
contemporary climate in either summer or winter [Pan et al.,
2011]. Small increases in projected wind speeds over the
next 30 years were detected in dynamical downscaling anal-
ysis of PCM over the Caribbean [Angeles et al., 2010].
Prior analyses of a suite of four AOGCM-RCM couplings
from the NARCCAP project indicate average annual mean
energy density in 2041–2062 for all grid cells over the
contiguous USA is within �25% of historical values
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(1979–2000) for all model simulations [Pryor and Barthelmie,
2011]. Here we draw from a wider array of AOGCM-RCM
couplings and examine a more extensive array of metrics of
the wind climate over North America for the middle of
the current century relative to those same metrics computed
for the end of the twentieth century to examine whether, and
where, there is evidence of a possible shift in wind climates,
and how consistent any projected changes are across the
model suite.

2. Data and Methods Used

[11] The RCM simulation output analyzed herein is drawn
from the North American Regional Climate Change Assess-
ment Program (NARCCAP) (see Figure 1 for a summary of
the simulations used) [Mearns et al., 2009]. The NARCCAP

program was designed to conduct a comprehensive suite
of RCM simulations necessary to systematically investigate
uncertainties in regional scale projections of future climate
over North America and generate climate change scenarios
for use in impacts research. A suite of RCMs were nested
within lateral boundary conditions from both ‘observed’
reanalysis data (NCEP-2) [Kanamitsu et al., 2002], and a
series of AOGCMs for a historical period and for a time slice
of the middle twenty-first century. The RCM were run at
a resolution of 50 � 50 km, and the wind components at
a nominal height of 10 m a.g.l. were archived at a temporal
resolution of 3 h. The future simulations are for the A2
emissions scenario which equates to global greenhouse gas
emissions of approximately 80 Gt carbon dioxide equivalents
(CO2-eq) per year (twice the emissions of 2000) by approx-
imately 2055 [Nakicenovic and Swart, 2000]. However,

Figure 1. Matrix of coupled Atmosphere-ocean General Circulation Model (AOGCM, or NCEP
reanalysis) and Regional Climate Model (RCM) simulations used here. NCEP-2 denotes the NCEP-
DoE reanalysis data [Kanamitsu et al., 2002]. The AOGCMs are: GFDL = Geophysical Fluid Dynamics
Laboratory model (CM2.1) [Delworth et al., 2006], CGCM3 = Canadian model [Scinocca et al., 2008],
HadCM3 = Hadley Centre model [Pope et al., 2000], CCSM = Community Climate SystemModel version
3 [Collins et al., 2006]. The RCMs are: RegCM3 = Regional Climate Model 3 used by UC-Santa Cruz
[Pal et al., 2007], CRCM = Canadian Regional Climate Model [Elía and Côté, 2010], HRM3 = Third gen-
eration Hadley Centre RCM [Jones et al., 2004], WRFG = Weather Research and Forecasting model (with
the Grell cumulus parameterization) [Skamarock et al., 2005], MM5I = Pennsylvania State University/
National Center for Atmospheric Research mesoscale model (version 5) [Grell et al., 1995]. The applica-
tion of spectral nudging, the hydrostatic/non-hydrostatic formulation and time step used in each RCM
simulation is noted in parentheses in the first column. The values in the grid cells indicate the availability
of model output for each AOGCM-RCM coupling for each period. The symbols shown in the figure
depict those used in Figures 4 and 5 in comparison of the simulations from the historical period relative
to NARR, and in Figure 7 for comparison with extreme wind speeds from station observations.

PRYOR ET AL.: NARCCAP WIND CLIMATES D19119D19119

3 of 17



given the future period considered is relatively near-term,
variations in climate states between different radiative forc-
ing scenarios is comparatively modest [Intergovernmental
Panel on Climate Change, 2007]. Hence results presented
herein are likely representative of the majority of possible
emission trajectories and thus climate forcing. The climate
sensitivity of the AOGCMs ranges from 2.7 to 3.4�C (with
CCSM showing the lowest global temperature response to
doubling of CO2 and the other three AOGCMs showing a
response of either 3.3 or 3.4�C) [Mearns et al., 2009].
[12] It has been suggested that the damage function of

climate change is likely to be strongly influenced by the
occurrence of low-probability, but high-impact, outcomes
[Weitzman, 2011]. Given the importance of metrics beyond
the central tendency to the impacts of climate change, we use
a range of metrics to evaluate the NARCCAP suite of
simulations and expand consideration beyond the ability to
capture the mean climatological state. Percentile values of
the wind speed distribution for any given RCM grid are
derived from rank ordering of model output. We estimate the
20- and 50-year return period wind speed by fitting of annual
maxima from each simulated or observational time series to
a double exponential cumulative probability distribution,
and computing the return period wind speed from:

UT ¼ �1

a
ln ln

T

T � 1

� �� �
þ b ð1Þ

where: UT is the wind speed for a given return period (T = 20
or 50 years) and the distribution parameters (a and b) are
derived from the mean and variance of the time series of
annual maximum values [Abild et al., 1992].
[13] Time series of near-surface wind measurements from

in situ stations are subject to inhomogeneities [Pryor et al.,
2009] and reflect conditions at spatial scales far below those
that characterize RCM output [Garratt, 1992]. Thus the pri-
mary data set used to provide the observational data against
which the RCM simulations are compared is the North
American Regional Reanalysis (NARR) [Mesinger et al.,
2006]. NARR wind speeds are archived with a 3-hourly
time step (equal to that of the NARCCAP simulations) and an
output grid resolution of approximately 32� 32 km, which is
slightly higher spatial discretization than the NARCCAP
RCM suite. The lateral boundary conditions from NARR are
drawn from NCEP-2 and thus are consistent with some of
those used for the ‘observationally’ driven NARCCAP RCM
simulations. We conduct an analysis in which NARR is used
as the ‘target’ and the NCEP-2 wind fields as a ‘reference’
forecast against which we compare the RCM output.
This analysis thus indicates the degree of “added value” in
applying the RCMs.
[14] In addition to the NARR data set we also examine

extreme wind speeds derived from the RCM output com-
pared to those obtained via extrapolation of daily maximum
observed (fastest mile) wind speeds at 35 stations contained
in the National Institute of Standards and Technology (NIST)
extreme wind data archive (www.itl.nist.gov/div898/winds/
daily.htm). The station observations from NIST originated
from the National Climate Data Center (NCDC) and were
collected at stations located in open terrain at a typical height
of approximately 6 m. These data were extrapolated to a
nominal height of 10 m a.g.l. using the logarithmic wind

profile and a roughness length of 0.05 m prior to being
archived by NIST. These data were transformed from one-
minute into 10-min sustained wind speeds using a scaling
factor 0.855 [Simiu and Scanlan, 1978], prior to determin-
ing the annual maxima and calculation of the extreme wind
speeds at each station. This scaling factor is also cited within
the ASCEManual ‘Guidelines for electrical transmission line
structural loading’ (3rd edition) as suitable for well-exposed
sites such as those in the NIST database. However, it should
be noted that prior work provides evidence that sites in
different climatological regimes (e.g., in tropical cyclone
prone areas, or in regions with strong topographic forcing)
may exhibit differential scaling with wind speed averaging
period. The observations derive from 1965 to 1990 and are not
subject to major discontinuities introduced by the transition
to the ASOS system (starting in the early 1990s). However,
the time period of the data records is partially offset from
the RCM simulations. Only years in which a given station
has more than 99% of observed fastest mile wind speeds
present were used to compute annual maximum wind speeds
for estimating extreme wind speeds. For all 35 stations over
15 years of data pass this threshold.
[15] We also evaluate NARCCAP output in terms of the

ability of the RCMs to reproduce the spatial variability of the
energy density in the wind (E = 0.5rU3, where r is the air
density and U is wind speed), using data from the National
Renewable Energy Laboratory’s (NREL) assessment of the
wind energy density over the contiguous USA [Elliott et al.,
1986]. In this analysis the time series of wind speeds in each
grid cell of the RCM simulations of 1979–2000 were mul-
tiplied by 1.258 to scale from a nominal height of 10-m to
50-m a.g.l. [Pryor and Barthelmie, 2011] and used to com-
pute an average energy density in each grid cell for com-
parison with grid cell categorical estimates of E from the
NREL wind power assessment (shown in Figure 2) [Elliott
et al., 1986].
[16] Given that the scales at which regional climate mod-

eling ‘adds value’ are likely to be coarser than the dimensions
of individual grid cells [Feser et al., 2011; Laprise,
2003], while we present some analyses of output from indi-
vidual grid cells, we also evaluate the model output integrated
over larger spatial scales. In these syntheses model perfor-
mance and climate projections are aggregated in six regions
that broadly represent those used in the National Climate
Assessment and that were used previously in Pryor and
Barthelmie [2011] (see Figure 2).
[17] Wind speeds in the midlatitudes exhibit a high degree

of both inter-annual and intraannual variability [Bärring and
Fortuniak, 2009; Weisse and von Storch, 2010; Pryor and
Ledolter, 2010].Thus, the inter-annual and intraannual vari-
ability of mean wind speeds for the contemporary climate in
each of the six regions shown in Figure 2 is also presented
for the NARR data set and each of the NCEP-RCM and
AOGCM-RCM couplings for 1979–2000. The variability is
characterized as the spatially averaged ratio of the grid-cell
specific standard deviation of mean wind speed (computed
across the seasonal cycle or across the years) to the mean
wind speed in that grid cell.
[18] The time period used for the analyses of the contem-

porary climate is 1979–2000 since it is the longest common
period for which all RCM simulations are available. An
exception is that the CCSM-driven runs end in 1999, thus
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for the CCSM nested RCM simulations the time series were
resampled to generate a 22nd year (conserving the appropri-
ate seasonality). For comparability, a 22 year future period
(2041–2062) is selected for the analysis of possible climate
change signals.
[19] We use six primary statistical metrics to depict

the degree of agreement between modeled and reanalysis/
observational data sets; the Pearson and Spearman correlation
coefficients (r), the root mean square difference (RMSD),
the mean bias (〈Bias〉), the t-test for difference of means, and
the Brier skill score (BSS). The BSS is computed using the
decomposition ofMurphy and Epstein [1989] as presented in
von Storch and Zwiers [1999]:

BSS ¼
r2F ′P′ � rF ′P′ �

sF ′

sP′

� �2

� P′h i � F ′h i
sP′

� �
þ P′h i

sP′

� �2

1þ P′h i
sP′

� �2 ð2Þ

where:
[20] F the ‘forecast’, i.e., wind speeds from RCMs nested

in the NCEP-2 (or AOGCM) lateral boundary conditions;
[21] P the ‘reference’ (NARR) wind climate;
[22] F′ the difference between the ‘forecast’ from a RCM

and NCEP-2;
[23] P′ the difference between NARR and the reference

NCEP-2.
[24] The BSS therefore quantifies the ‘added value’ of

the RCMs [Winterfeldt et al., 2011] in terms of the simulation

of near-surface wind speeds in the historical period (1979–
2000).
[25] To calculate the BSS, the spatial fields of each wind

speed metric from NCEP-2, NARR and the RCMs were
interpolated to a common 0.5 � 0.5� grid using a standard
point kriging algorithm. To avoid issues introduced by
interpolation of spatial fields with widely differing resolution
or direct comparison of grid cells that have comparatively
little common area, in the other analyses time series of
wind speeds in a given RCM grid cell are compared with
NARR time series from the nearest grid cell only if the RCM
grid cell centroid lies within 19 km of the NARR centroid.
Use of this distance threshold ensures >60% of the NARR
grid cell lies within the RCM grid cell. For the analysis of
the consistency of the climate change signal across RCM-
AOGCM coupling, a grid cell is only considered if all RCMs
have a grid cell centroid with 19 km of the NARR grid cell
center. In analyses of regionally integrated data output from
each of the RCMs are maintained on their original grid, and
the selection criteria is that the center of the model grid cell
must lie within the bounds of the region (where the regions
are as shown in Figure 2).

3. Results

3.1. Model Skill in the Historical Period Relative
to NARR and Observations

[26] All of the RCM simulations nested in NCEP-2 exhibit
higher spatial variability over the study domain than is

Figure 2. Spatial domain of the analyses presented herein. The colors denote the annual average wind
resource (expressed as an energy density in W m�2) at 50 m from a data driven assessment conducted
by the National Renewable Energy Laboratory (NREL) [Elliott et al., 1986]. The six regions shown are
used in regional analyses presented in Figures 5, 7, 9 and 10. The regions are: Pacific Northwest
(PNW), West (W), Central Plains (CP), Midwest (MW), Southeast (SE) and Northeast (NE). The solid
black squares denote the locations from which fastest run wind speeds are used and the internal symbol
indicates the 50-year return period wind speed derived from data collected at those stations.
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manifest in output from NARR for all of the wind speed
distribution descriptors (see Figures 3 and 4). This is partly
due to the fact that the RCM simulations exhibit higher
values in the Central Plains than is evident in the NARR
output. The Central Plains region exhibits both high wind
energy resource magnitudes (Figure 2) and penetration of
electricity generation from that source (see map of wind
energy deployments as of the end of 2010 provided in Pryor
and Barthelmie [2011]). This region does not exhibit com-
parable enhancement of wind speeds in NARR to those
manifest in wind resource assessments (Figure 2 and Lu et al.
[2009]), the NCEP-2 data set or the RCM output (e.g.,
Figure 3). As indicated by the BSS decomposition, this
appears to indicate a weakness in the NARR data set.
[27] The mean spatial fields for all wind speed metrics and

all AOGCM-RCM combinations exhibit Pearson correlation
coefficients (r) > 0.4, and all those for NCEP-2 nesting
exceed 0.5 indicating some commonality in the spatial vari-
ability of the wind climate (Figure 4). Consistent with the
example given in Figure 3, the spatial variability is uniformly
higher in the RCM simulated fields than in NARR for all six
wind speed metrics (i.e., sm/sr > 1). The RMSD between
spatial fields of the various wind metrics derived from
NCEP-2 nested RCM simulations and NARR, appears to be
slightly amplified as one considers increasingly extreme
(or rare) events (Figure 4). There is also greater divergence in
the spatial patterns of extreme wind speed values between the
RCM simulations (as indicated by the greater dispersion of
points in Figures 4e and 4f relative to Figure 4a). This is

consistent with physical reasoning. While the central ten-
dency of the wind speed distribution at a given site may be
largely a function of its location relative to the storm track
(and thus the midlatitude cyclones entering the domain from
the AOGCM or NCEP-2), the intensification (or not) of those
systems may be more strongly determined by the RCM.
[28] Prior to interpreting the terms in the BSS it is

important to note that NARR is not independent of NCEP-2.
NCEP-2 is used to provide the lateral boundary conditions
for NARR and the reanalysis systems and assimilated data
share many commonalities. Despite this, Figure 3 illustrates
that the wind climates over the study region differ markedly
between the NARR and NCEP-2 reanalyses. Specifically,
the 95th percentile wind speed at 10-m above ground level is
virtually uniformly higher in output from NCEP-2 than
NARR. In the BSS F′ is the difference between the ‘forecast’
from anRCM at a given location and the ‘reference’ (NCEP-2)
and P′ is the difference between NARR and the reference
(NCEP-2). If the BSS is positive then the forecast (from the
RCM) is a more accurate representation of the NARR
wind climate than the reference forecast (NCEP-2). Thus the
downscaling is ‘adding value’. If the BSS is negative, then
the accuracy of the forecast relative to NARR is lower than
the reference (NCEP-2). The first term in equation (2) is
referred to as a measure of ‘potential’ skill – it is the square
of the spatial anomaly correlation coefficient and, in the
NCEP-2 nested RCM fields considered herein, it is uniformly
highest for the WRFG simulations (i.e., 0.25 to 0.46 for all
six descriptors of the wind speed distribution). The second

Figure 3. Spatial fields of the mean annual 95th percentile wind speeds (m s�1) for 1979–2000 from
(a) NCEP-2, (b) NARR, (c) CRCM, (d) HadRM3, (e) MM5I, (f) RegCM3, and (g) WRFG. Simulations for
Figures 3c–3g are for simulations nested within NCEP-2.
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term is a measure of the conditional bias in the ‘forecast’
anomalies. It is the square of the difference between the
anomaly correlation coefficient and the ratio of the standard
deviation of the anomalies in the forecast fields (RCM output)
and NARR (the ‘reference forecast’) relative to NCEP-2.
This term is largest (and thus make a large negative contri-
bution to relative skill) for CRCM simulations for the lower
moments (mean and 50th percentile wind speeds), but is
largest for MM5I for the extremes (20 and 50-year return
period wind speeds). This implies that the relative conditional
bias from the different RCMs differs by wind speed metric.
The third term is a measure of the overall bias in the fore-
cast anomalies. It is proportional to the difference in the mean
anomaly from the forecast (RCM output) and the target
(NARR) relative to NCEP-2 divided by the standard deviation
of the anomalies in the target (NARR) relative to NCEP-2.
This term is smallest (contributing to increased skill) for
the CRCM simulations of the extreme wind speeds, and is
smallest for the MM5I fields for the metrics of central

tendency. The final term
P′h i
sP′

� �2

is an index of the degree of

agreement between the target (NARR) and the reference
(NCEP-2). It is the square of the ratio of the mean anomaly in
the analyzed wind speeds (NCEP-2 to NARR) to the stan-
dard deviation of the anomalies. As the reference ‘forecast’
increases in skill, this term decreases in magnitude. However,
in the analyses presented herein, this term is large (approxi-
mately 2–3), indicating that the NCEP-2 reanalysis output
differs substantially in terms of the wind climate from the
NARR (see the example given in Figure 3).

[29] The BSS for NCEP-2/RCM fields relative to NCEP-2
as a ‘fit’ to the NARR data set indicate that, with exception
of the 50th percentile wind speed from the RegCM3 RCM,
all of the NCEP-2 nested RCM simulations exhibit greater
skill in representing the spatial variability in NARR than
NCEP-2 (Figure 5a). This indicates that application of the
RCMs is indeed ‘adding value’ although the BSS for indi-
vidual RCM simulations exhibit considerable variability
with the wind speed metric. For example, MM5I nested in
NCEP-2 exhibits high skill scores for the lower moments of
the wind speed probability distribution, but relatively low
skill for the extremes (Figure 5a). Conversely, CRCM exhi-
bits only very modest enhancement of skill over NCEP-2
for the lower moments but relatively high skill for the
extreme metrics. This is also true for RegCM3. Consistent
with visual inspection of Figure 3, WRFG exhibits the
highest BSS for the 90th and 95th percentile wind speeds,
indicating greatest ‘forecast’ improvement over NCEP-2
for these aspects of the wind climate.
[30] Only HadRM3 exhibits negative mean bias for the

wind speed metrics relative to NARR. All other RCMs
exhibit positive mean bias (i.e., higher wind speeds) for all
of the metrics considered (Figure 5b). Consistent with the
relatively low BSS for RegCM3 simulations of the mean and
50th percentile wind speed, the bias is highest for this RCM
when nested in NCEP-2 for these measures of the central
tendency (Figure 5b). The spatially averaged mean bias in
the 20 and 50-year return period wind speeds is smallest for
the CRCM simulations, but is relatively high for the extreme
values derived from the MM5I simulation. The RMSD
between spatial fields from the NCEP-2/RCM couplings

Figure 4. Taylor diagrams of the spatial fields of (a) Mean, (b) 50th percentile, (c) 90th percentile
(d) 95th percentile, (e) 20-year return period and (f) 50-year return period wind speeds in simulations
conducted with the specified RCM nested within NCEP-2 (solid symbols) and each of the AOGCMs
(open symbols) versus fields computed from the NARR data set for 1979–2000. The statistics were
computed only for RCM data points where the grid cell centroid is within 19 km of a centroid in NARR.
The symbols used are as in Figure 1, and shown in Figures 4d–4f.
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and NARR is largest for HadRM3 except for the 50-year
return period wind speed, and is typically smallest for
NCEP-2/RegCM3 simulations (Figure 5c).
[31] The three summary statistics for comparison of spatial

fields of the six wind speed metrics presented in Figure 5
highlight three different aspects of RCM evaluation.
Figure 5a, the BSS, emphasizes the added value of applying
the RCMs and that the degree of value added is a strong
function both of the specific RCM and the metric under
consideration. While virtually all RCMs exhibit positive
skill scores, no RCM performs ‘best’ according to the BSS
for all wind speed metrics. Further, there is no clear evi-
dence that the added value is increased (or decreased) in
any specific aspect of the probability distribution. The for-
mer emphasizes the value of multimodel analyses, while the
latter indicates that the RCM are not exhibiting substantially
higher value in describing the spatial variability of mean
wind speeds relative to the right tail of the probability distri-
bution. Figure 5b re-emphasizes the positive bias of four of
the five RCMs relative to NARR when the lateral boundary
conditions are provided by NCEP-2. Indeed, as shown in
Figure 3, NARR is also negatively biased relative to wind
speeds from NCEP-2 (cf. Figure 3a versus Figure 3b).
Figure 5c shows the ratio of the spatial variability (described
using the spatial standard deviation) between RCMs and
NARR. This ratio of standard deviation exceeds 1 for all of
the RCM simulations indicating that the spatial fields from
the RCM simulations exhibit considerably more spatial

variability than is manifest in NARR. This taken in con-
junction with other evidence presented herein, may indicate
the NARR data set under-estimates both the magnitude of
wind speeds and the spatial variability in wind climates over
the contiguous USA.
[32] Virtually all simulations with NCEP2-nested RCMs

exhibit higher inter-annual variability of mean wind speeds
over all regions than is manifest in NARR. The intraannual
(month-to-month) variability shows more complex behavior
(Figure 6). There is a positive association between inter- and
intraannual variability in the RCM simulations. For exam-
ple, the MM5I simulations within NCEP-2 exhibit both
the highest inter- and intraannual variability for the Pacific
NW, Midwest, Northeast and the West regions. Equally,
lowest inter- and intraannual variability is generally observed
in the HadRM3 simulations. This may be partly the result
of the extremely low mean wind speeds as simulated by
HadRM3 and the resulting suppression of variability in a zero-
bounded variable.
[33] The majority of RCM simulations over the Pacific

NW exhibit higher intraannual variability (sU/〈U〉 of up to
30%) than is evident in the NARR data set (sU/〈U〉 � 10%).
Only simulations with HadRM3 nested in both the NCEP-2
and HadCM3 lateral boundary conditions indicate lower
intraannual variability in the Pacific NW than is evident
in NARR. The NCEP-2/MM5I fields indicate the largest
discrepancy with NARR in terms of regional seasonality,
while the NCEP-2/CRCM coupling indicates the highest

Figure 5. (a) Brier skill scores for the RCM simulations relative to NCEP-2 against NARR for the six
wind speed distribution metrics. (b) Mean bias and (c) ratio of the standard deviation of fields from the
RCM simulations relative to NARR. Note that for these comparative statistics the spatial fields from each
data source were interpolated using a kriging algorithm onto a common 0.5 � 0.5� grid.
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degree of agreement. The closest agreement between the
seasonality in mean wind speeds from the RCM simulations
and NARR is found for the Central Plains and Southeast
regions. In the Southeast the NARR data set indicates rela-
tively high intraannual variability of mean wind speeds of
approximately 16%, while the RCM simulations nested in

NCEP-2 cluster between 11 and 16% and simulations from
all RCM-AOGCM combinations lie in the range of 11–20%.
NARR indicates the lowest intraannual variability of mean
wind speeds in the Central Plains (�8%) and the RCM
simulations with lateral boundary conditions from NCEP-2
all lie between 8 and 12%, while results for the AOGCM-
RCM combinations fall in the range of 7 to 13%.
[34] At least some of the variations in reproducing the

inter-annual variability of wind speeds across the 13 simu-
lations of conditions during 1979–2000 (Figure 6) may be
a product of differences in the storm climates as simulated
by the models used to provide the RCM lateral boundary
conditions. Particularly for the two western regions the inter-
annual variability for simulations nested in NCEP-2 exceed
that from the AOGCMs. Although the CMIP-3 generation of
AOGCMs exhibit similar climatologies to those manifest in
NCEP-2 in terms of midlatitude storm tracks and numbers
there are subtle differences in those track and particularly the
frequency of intense cyclones [Ulbrich et al., 2008].
[35] Consistent with the inference that the NARR data set

tends to under-represent regional variations in wind climates,
and specifically the higher wind speeds in the Central Plains
(cf. Figure 2 and Figure 3b), there is no association between
extreme values (U50) derived from the NARR data set and the
station observations (Pearson r = 0.01, Spearman r = �0.13)
(Figure 7). We place greater emphasis on the Spearman rank
correlation coefficients (i.e., the association between two sets
of ranked values) because this metric is not based upon
an assumption of normality and is less sensitive to outliers
such as the single very high U50 estimate derived from the
NIST data set (Figure 7).
[36] Although the RCM derived extreme wind speeds are

biased low relative to estimates derived from the observa-
tional records (the negative bias in the spatially averaged
extreme wind speeds from the RCM relative to the station
estimates is �8 m s�1), extrapolation of the RCM output to

Figure 7. Scatterplot of 50-year return period wind speed at 10-m (computed using equation (1)) based
on output from the NARCCAP RCMs in 1979–2000 and from station observations obtained from the
National Institute of Standards and Technology (NIST) (see Figure 1 for a map of the station locations).
The comparison is for station specific extreme wind speeds and for the grid cells containing those stations.
The observed fastest mile wind speeds were transformed into 10-min sustained wind speeds using scaling
factors from Simiu and Scanlan [1978]. The station data for the fastest mile wind speeds were obtained
from the NIST WWW site; www.itl.nist.gov/div898/winds/daily.htm. The numbers shown in the legend
depict the Pearson and then Spearman correlation coefficients between the RCM or NARR derived
extreme values versus the station derived values.

Figure 6. Inter-annual and intraannual variability of mean
wind speed (1979–2000) from each of the RCM simulations
versus the reference data set (NARR) for each geographic
region shown in Figure 2 for 1979–2000. Asterisks denote
results from the NARR data set, and the filled symbols
for each RCM and region denote simulations in the NCEP-2
lateral boundary conditions. The open symbols denote RCM
simulations in the AOGCMs. Note the simulations nested in
the AOGCMs are shown by the open symbols, and there are
some RCMs that are subject to multiple AOGCM nestings.
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derive U50 exhibits some skill in manifesting the macro-
scale variability evident in extreme wind speeds across the
contiguous USA (Figure 7; see Figure 2 for location of
the stations from which the 50-year return period values
derive). The negative bias is consistent with prior research in
northern Europe that found increased extreme wind speeds
with higher RCM resolution (the fifty-year return period wind
speed at 10-m increased by �24% as the model resolution
increased from 50� 50 km to 6� 6 km), and that simulations
at the higher resolution more closely approximated extreme
wind speeds derived from in situ observations away from
topographically complex locations [Pryor et al., 2012b].
[37] While CRCM generates spatial fields of the various

descriptors of the wind climate that exhibit least agreement
with NARR for the lower moments of the wind speed
probability distribution (Figure 5), estimates of U50 derived
from in situ observations indicates relatively good agreement
for CRCM nested within both NCEP-2 and the AOGCMs.
As shown in Figure 7, both the Pearson and Spearman cor-
relation coefficients between grid-cell average U50 from
the RCM and estimates from in situ observations is highest
for CRCM simulations in all three sets of lateral boundary
conditions. However, there is also comparatively high
degree of agreement for the MM5I and WRFG simulations
conducted within the NCEP-2 lateral boundary conditions
(i.e., Pearson (parametric) correlation coefficients ≥ 0.3, and
Spearman (nonparametric) correlation coefficients ≥ 0.4).
These RCMs (CRCM, MM5I and WRFG) do not use a
hydrostatic formulation and might, therefore, be better able to
simulate at least some of the dynamics associated with
extreme near-surface wind speeds.
[38] Simulations withWRFG nested in NCEP-2 and CCSM

generate extreme wind climates that exhibit a relatively high
degree of association with the observationally derived extreme
wind fields, but extreme values from the WRFG-CGCM3
coupling do not (Figure 7). This is contrary to results from the
other two RCMs that were nested in CGCM3 – CRCM and
RegCM3, and the source of the discrepancy apparent in the
extreme value estimates derived from the WRFG-CGCM3
coupling remains unresolved.
[39] To provide a second independent evaluation of the

NARCCAP output, each of the RCM simulations of 1979–
2000 were used to compute an average energy density in
each grid cell which was scaled to 50 m as described in
section 2 and compared to the grid cell categorical estimates
from the NREL assessment (shown in Figure 2). It should be

acknowledged that applying a single coefficient to scale
the RCM output to 50-m neglects the spatial variability in
vertical wind shear (and thus the role of phenomena such as
low-level jets [Rife et al., 2010]). However, it is consistent
with the manner in which the NREL assessment was con-
ducted. The fraction of grid cells for which the RCM output
showed the same ‘class’ of wind resource as that manifest in
the NREL estimate, ranges from 9% for the NARR data set
to 30% in simulations from NCEP-2/RegCM3 (Table 1).
Given that the energy density scales with the cube of the
wind speed, it is strongly influenced by the higher percentiles
of the wind speed distribution. In addition to examining
the degree of fit between the energy density classes, we also
report the fraction of grid cells for which the RCM esti-
mate differed from the NREL class. Only simulations from
RegCM3 and CRCM exhibit approximately equal fraction of
higher and lower estimates than NREL (Table 1). All other
data sets –most notably NARR – exhibit substantial negative
bias. This finding adds credence to inferences drawn above
that CRCM better simulates the upper portion of the wind
speed probability distribution than the central tendency, and
that there is a negative bias in intense wind speeds as manifest
in the NARR. Since only limited evaluation of the 10-m wind
speeds from the NARR data set has been conducted, and has
focused largely on the lower moments of the distribution
[Kanamaru and Kanamitsu, 2007; Mesinger et al., 2006;
Pryor et al., 2009], the lack of correspondence with station
observations derived U50 and the energy density values
may indicate that the NARR data set may not represent all
features of the wind climate with absolute fidelity. One pos-
sible source of inaccuracies in the NARR representation of
the wind fields is interpolation of the output from native
E-grid of the NARRmodel to a Northern Lambert Conformal
Conic projection before the data are archived (see discus-
sion at http://www.atmos.albany.edu/facstaff/rmctc/narr/).
This reaffirms the need for further investment in developing
robust wind speed climatologies for use in multiple aspects
of climate change research including, but not limited to;
model evaluation such as that conducted here, and detection
and attribution analyses.

3.2. Sensitivity of Simulated Wind Climates to Lateral
Boundary Conditions Versus RCM Architecture

[40] Brier skill scores for RCM simulations nested in the
AOGCMs are uniformly lower than when NCEP-2 was used
as the lateral boundary conditions (Figure 5a). However,

Table 1. Fraction of Grid Cells (Expressed in Percent) in Each RCM Simulation (on Its Native Grid) That Exhibits the Same Wind Power
Class in the 1979–2000 Period Simulations as Manifest in the NREL Wind Resource Assessmenta

RCM

Lateral Boundary Conditions: AOGCM

NCEP-2 CGCM3 CCSM GFDL HadCM3

CRCM 14 (57%) 12 (49%) 12 (49%)
HadRM3 16 (91%) 16 (88%)
MM5I 13 (88%) 17 (84%)
RegCM3 30 (68%) 29 (59%) 29 (59%)
WRFG 9 (93%) 18 (70%) 18 (69%)
NARR 9 (96%)

aElliott et al. [1986]. The classes used and the NREL estimates for wind power class are as shown in Figure 2. The energy density was computed using
E = 0.5rU3 where the wind speed time series of U had been multiplied by 1.258 to scale from 10-m to 50-m a.g.l. The first number cited is the fraction of
grid cell E values from the RCM simulations and NARR that exhibit the same class as those from the NREL resource assessment (wind power classes 2–7).
The number in parentheses indicates the fraction of the incorrect WP class estimates that exhibit lower values in the RCM estimates than the NREL
assessment. The statistics were computed only for RCM data points where the grid cell centroid is within 19 km of a centroid in the NREL assessment.
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the RMSD between pairs of RCM simulations with a common
RCM but varying lateral boundary conditions are smaller
than those computed for common lateral boundary conditions
and varying RCM (Figure 8). This finding is true for metrics
of the central tendency, intense wind speeds and extreme wind
speeds. Thus, at least when aggregated to the regional level,
it appears that the wind climate is relatively insensitive to the
specific lateral boundary conditions used compared to either
the influence of the specific RCM applied, or the magnitude of
discrepancies with fields from NARR (Figure 4). For exam-
ple, the RMSD computed by comparing the spatial fields of
90th percentile wind speeds from a given RCM nested in each
AOGCM relative to the field deriving from the same RCM
nested in NCEP-2 ranges from 0.56 to 1.16 ms�1. The range
of RMSD is smaller than that comparing the five simulations
from RCM nested in NCEP-2 (RMSD = 0.53 to 1.73 ms�1),
or comparison of the NCEP-2 nested RCM simulations rela-
tive to NARR (RMSD = 1.75 to 1.98 ms�1). This is true

irrespective of whether the RMSD is computed over the entire
study domain or sub-regions thereof (Figure 8).
[41] RCM simulations in the NCEP-2 lateral boundary

conditions generally do not indicate a uniform tendency
toward greater or lesser accord with the regionally averaged
inter- and intraannual variability computed from the NARR
data set than do the simulations nested within the AOGCMs
(Figure 6). Results shown in Figure 6 and Figure 8b imply
that, for the North American study domain, either (i) the
AOGCMs are generating similar storm climates (both to each
other and NCEP-2) [Ulbrich et al., 2008] and/or (ii) the RCMs
are generating conditions associated with wind climates that
are to some degree independent of the driving lateral boundary
conditions. Note that all AOGCM-RCM simulations exhibit
higher average values for all metrics than characterize RCM
simulations conducted with lateral boundary conditions
supplied by NCEP-2 (Figure 5b). This implies that the RCM
simulations are not independent of the lateral boundary
conditions, and that the AOGCMs are generating a more

Figure 8. Root mean squared difference (RMSD) between spatial fields of the specified metrics for
(a and c) simulations conducted with different RCM nested within the same lateral boundary conditions,
and (b and d) for simulations conducted with the same RCM but varying the lateral boundary conditions.
Thus, there are results from 10 simulation pairings given in Figures 8a and 8c and eight simulation parings
in Figures 8b and 8d. In each case the vertical bars indicate the upper and lower bounds of the RMSD and
the horizontal bar shows the arithmetic mean RMSD calculated from the eight or ten AOGCM-RCM
pairings. The RMSD for each simulation pairing is computed for the entire study domain and for each
of the sub-regions shown in Figure 2.
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active storm climate than is manifest in NCEP-2. For CCSM
this is consistent with prior analyses that have indicated that
CAM3 (the atmospheric portion of CCSM) exhibits positive
bias in wind speeds off the west coast of the USA relative to
QuickScat [Capps and Zender, 2008]. Nevertheless, for all
metrics and all regions, the mean RMSD between spatial
fields from the different RCMs exceeds that deriving from
variations in the lateral boundary conditions (cf. Figures 8a
and 8b). The role of the RCM in causing variations in the
spatial fields of intense wind speeds (the 90th and 95th
percentile values) appears to be most marked in the West
and Central Plains and for entire study domain (Figure 8a).
The latter finding appears to result from large discrepancies
in high wind speed, offshore areas (Figure 3). The impact of
variations in both the RCM and lateral boundary conditions
are more marked for the extreme values (Figures 8c and 8d).
However, with the exception of the Southeast region, the
RCM architecture appears to exhibit a more profound influ-
ence on extreme wind speeds than the lateral boundary con-
ditions. One reason why this may not be true for the Southeast,
is that the driving AOGCM (or NCEP-2) are playing a critical
role in the development and tracking of tropical cyclones
which are responsible for the majority of extreme wind events.
[42] The CRCM is subject to spectral nudging throughout

the domain, but while there is a slight tendency toward
higher average extreme wind speeds from CRCM nested in
either CCSM or CGCM3, this tendency is much lower that
the statistical uncertainty on the U50 and U20 estimates due
to extrapolation from the annual maxima (see description in
Pryor et al. [2012a]), and is smaller than variations in

extreme wind climates developed from the different RCMs
(Figure 8).

3.3. Climate Change Signal

[43] Averaging model output (with or without weighting
factors) to generate ensemble projections presents significant
challenges, particularly in cases where the number of model
simulations is small (such as in this analysis where n = 8)
[Knutti et al., 2010]. In this analysis we first examined
whether there was coherence in the sign of difference for
the mean, 50th percentile, 90th percentile, 95th percentile,
and 20 and 50 year return period wind speeds. Spatial fields
of a given wind speed metric computed for 2041–2062
were compared with those from 1979 to 2000. Using the
criterion that seven of the eight AOGCM-RCM couplings
must indicate the same sign of difference between the future
(2041–2062) and historical period (1979–2000) as a threshold
to identify coherence, this analysis indicates only weak con-
sistency in the climate change signal in any of the descriptors
of the wind speed distribution. Almost 18% of grid cells
exhibit a lower mean wind speed in all eight of the RCM
simulations of the future period relative to the past. It may be
worthy of note that the grid-cells that generally indicate
increased mean wind speeds are in the region of highest
wind energy penetration – in and around northern Texas
(Figure 9a). There is greater consistency in terms of the sign
of differences between 2041 and 2062 and 1979–2000 for
the 90th and 95th percentile wind speeds. Approximately
22% of grid cells exhibit a lower 90th percentile wind speed in
all of the RCM simulations (Figure 9c). Although many of

Figure 9. Consistency of the sign of the climate change signal as determined by the number of the RCM
simulations that exhibit higher (or lower) values for (a) Mean, (b) 50th percentile, (c) 90th percentile,
(d) 95th percentile, (e) 20-year return period and (f) 50-year return period wind speed in 2041–2062 versus
1979–2000. The statistics were computed only for data points where the grid cell centroid for all RCMs is
within 19 km of a centroid in NARR. The solid symbols indicate all eight RCM simulations exhibited
higher (lower) values in the future period, while the open circles indicate that seven of the eight simulations
exhibited higher (lower) values in 2041–2062. Note that the symbols do not depict that magnitude of
difference (2041–2062 versus 1979–2000), rather the symbols indicate the number of model simulations
that show a difference of a given sign (positive or negative).
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the grid cells that exhibit a coherent signal of lower intense
wind speeds in the future period, are located offshore (e.g.,
in the Caribbean and off both the southwest and southeast
of the USA), where the impact on infrastructure may be
comparatively modest. Only 1% of grid cells indicate a
consistent signal of either higher or lower values of either the
20- or 50-year return period wind speed in the future period
(Figures 9e and 9f). This is consistent with the findings
articulated above, that the RCMs are generally developing
wind climates that are to some degree independent of the
lateral boundary conditions, and that this is particularly true
for extreme wind speeds from the non-hydrostatic models.
[44] Spatial cumulative density functions (CDF) for the

various wind speed metrics in each region were also com-
pared for the historical and future periods. In accord with
expectations, while the evaluation of the RCM derived wind
climates during the historical period generally indicate that
the skill is determined largely by the choice of RCM, the
CDF for projected changes in the 90th percentile wind speeds
across the contiguous USA indicate differences in the future
relative to the past are determined predominantly by the
nesting AOGCM (Figure 10).
[45] RegCM3 simulations in either CGCM3 or GFDL

indicate only rather modest changes in the spatial cumulative
density function (CDF) of 90th percentile wind speeds in
each region in the future versus historical period. Conversely,
the MM5I-CCSM simulations indicate largest magnitude

differences in the CFD and the highest frequency of reduced
wind speeds in all regions (Figure 10). Consistent with
the importance of the AOGCMs in dictating the climate
change response in storm climates, this tendency toward lower
90th percentile wind speeds in all regions (in 2041–2062
versus 1979–2000) is also observed (though is much less
marked) in simulations withWRFG and CRCM nested within
CCSM. Conversely, all three RCM simulations (CRCM,
RegCM3 and WRFG) within CGCM3 exhibit lower magni-
tude changes in the spatial CDF and a greater frequency of
higher 90th percentile wind speeds in the future period.
[46] The GFDL AOGCM has been shown to exhibit a

poleward shift in the major Northern Hemisphere Pacific
storm track under warming scenarios [Wu et al., 2011]. Con-
sistent with that tendency, the RegCM3-GFDL simulations
indicate modest magnitude increases in 90th percentile wind
speeds in the Pacific Northwest. Conversely, simulations with
MM5I nested in CCSM indicate that over 75% of grid cells
in the West and Pacific Northwest regions exhibit lower
values of the 90th percentile wind speed in the future period
(Figure 10). The other RCM-AOGCM combinations exhibit
almost equal numbers of grid cells with declining and
increasing values in most of the regions.With the exception of
the WRFG and MM5I simulations for the Pacific Northwest
and the MM5I simulations for the other regions, >99% of
grid cells in any region exhibit differences of less than �20%
relative to the historical period (Figure 10). Similar results

Figure 10. Cumulative probability density functions for the difference in the 90th percentile wind speed;
2041–2062 versus 1979–2000 in each of the six regions (a) Pacific Northwest, (b) West, (c) Central
Plains, (d) Midwest, (e) Northeast and (f) Southeast for each of the AOGCM-RCM combinations. The
CDF are computed from the spatial fields and thus show the fraction of the grid cells in a given sub-region
that exhibits a difference in p90 that has a value less than or equal to that shown on the abscissa.

PRYOR ET AL.: NARCCAP WIND CLIMATES D19119D19119

13 of 17



were found for the two measures of central tendency
(mean and 50th percentile wind speed), although the frac-
tional changes in the central tendency are generally smaller
than those in the 90th percentile values.
[47] The spatial CDF for differences in the 50-year return

period wind speed exhibit greater divergence between the
eight sets of simulations. There is some weak evidence for
consistency in the magnitude and dominant change of sign
in simulations with differing RCM nested in the same
AOGCM. All three of the CGCM3 nested simulations
indicate increased U50 over parts of the Central Plains
(Figure 11c). Nevertheless, the climate change signal is not
uniform across all AOGCM-RCM couplings in a given
region or across regions. The HadRM3-HadCM3 simulation
indicates over 80% of grid cells in the Northeast will exhibit
increased extreme wind speeds in contrast with WRFG-
CCSM and WRFG-CGCM3 simulations that indicate up to
two-thirds of grid cells will exhibit decreased values in the
future (Figure 11e). Additionally while the extreme values
derived from simulations with MM5I and WRFG in CCSM
generally indicate a dominance of lower values in the future
period over the Midwest (Figure 11d), the CRCM-CCSM
simulations indicate almost equal fraction of grid cells
with higher and lower values. This indicates that the RCM
is also mediating the climate change signal. For example,
CRCM in both CCSM and CGCM3 indicate a tendency

toward increased extreme wind speeds in the Southeast
(Figure 11f).
[48] There is no evidence that the weaker climate change

response of CCSM with respect to temperatures is associated
with an amplification or suppression of the difference in wind
regimes over the contiguous USA in the future period relative
to 1979–2000.
[49] Consistent with differences in the mechanisms

responsible for dictating the extreme and 90th percentile
wind speed values, projected changes in the regional CDFs
for 90th percentile and 50-year return period wind speeds
indicate some evidence for divergent trajectories in these
twometrics from individual RCMs. For example, output from
the HadCM3-HadRM3 coupling indicates approximately
equal areas with increased and decreased 90th percentile wind
speeds in the Northeast (Figure 10e) while over three-quarters
of the Northeast region exhibit higher extreme wind speeds
in the future period (Figure 11e).
[50] The ranges of projected differences in 90th percentile

and 50-year return period wind speeds expressed in Figures 10
and 11 are not representative of the full range of plausible
differences in wind climates in 2041–2062 versus 1979–
2000. It is likely that these simulations under-sample the
true uncertainty space. In keeping with the prior analyses
summarized in section 1, the results tend to imply that while
this suite of RCM simulations indicates some consistency
in projecting declines in the 90th percentile wind speed

Figure 11. Cumulative probability density functions for the difference in the 50-year return period wind
speed; 2041–2062 versus 1979–2000 in each of the six regions (a) Pacific Northwest, (b) West, (c) Central
Plains, (d) Midwest, (e) Northeast and (f) Southeast for each of the AOGCM-RCM combinations.
The CDF are computed from the spatial fields and thus show the fraction of the grid cells in a given
sub-region that exhibits a difference in U50 that has a value less than or equal to that shown on the abscissa.
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particularly in the western USA, those tendencies are likely
to be of comparatively modest magnitude and to exhibit
sub-regional variability in sign and magnitude (Figure 10).
It is also important to note that the wind climate exhibits large
inherent variability at a range of time scales from minutes to
decades. Analyses of a single future time period of only
22 years duration precludes extrapolation to infer possible
trends in any aspect of the wind climate, only differences in
two temporal windows.

4. Concluding Remarks

[51] A key question in regional downscaling of climate
information may be phrased as ‘does higher resolution
modeling add value when compared to global model results?’
To determine whether the dynamical downscaling under-
taken within NARCCAP leads to greater validity of output
fields of wind climate descriptors, the RCM output was
evaluated relative to NARR and the wind climate as simu-
lated in the NCEP-2 reanalysis which was used to provide
lateral boundary conditions. Wind climates as simulated by
the five RCMs nested in the NCEP-2 reanalysis along with
output from the NCEP-2 reanalysis itself and station data
exhibit greater spatial variability than is manifest in the
NARR data set. All RCM simulations nested in NCEP-2 out-
perform those from AOGCM-RCM couplings when NARR
is used as the target. No RCM exhibits uniformly ‘best’
performance relative to NARR for all similarity metrics
(RMSD, correlation coefficients, bias, and ratio of spatial
variability) and all wind speed distribution descriptors (mean,
median, 90th and 95th percentiles and 20 and 50 year return
period wind speeds) (Figure 5). Using the NARR data set as
the ‘target’ and NCEP-2 reanalysis as the reference forecast
it is demonstrated that application of the RCMs almost uni-
formly ‘adds value’ to depiction of the wind climate over the
contiguous USA. That implies that when the RCMs are
applied in type 2 dynamical downscaling contexts (wherein
the RCM is nested in reanalysis data Castro et al. [2005]),
perhaps by virtue of the more detailed description of surface
boundary forcing, they generate more realistic atmospheric
variability at the meso/synoptic scale. The BSS for simula-
tions conducted in type 4 dynamical downscaling (where
the lateral boundary conditions are supplied from AOGCM
Castro et al. [2005]) also exhibit some evidence for value-
added in simulation of extreme wind speeds across the
contiguous USA.
[52] With the exception of the NCEP-2/HadRM3 simula-

tions all 12 other RCM-AOGCM couplings exhibit a positive
mean bias relative to NARR for all six of the descriptors of
the wind climate during 1979–2000. Estimated over all six
descriptors of the wind speed probability distribution and all
performance metrics NCEP-2/WRFG simulations exhibit
highest agreement with respect to the NARR data set,
although NCEP-2/WRFG performs less well for the extreme
wind speeds (Figure 5).
[53] There is a positive association between inter- and

intraannual variability in the RCM simulations of the 1979–
2000 period, and some evidence that RCMs that exhibit high
intra and inter-annual variability in the historical period may
be more likely to exhibit a stronger climate change signal. For
example, MM5I simulations in the historical period exhibit

high inter- and intraannual variability across all regions of the
contiguous USA and both sets of lateral boundary conditions
(NCEP-2 and CCSM) (Figure 6). Simulations for the CCSM-
MM5I coupling also exhibit some evidence for a particularly
strong climate change signal (i.e., larger difference in the
2041–2062 versus 1979–2000 periods) (Figure 10).
[54] Analysis of output from the non-hydrostatic models

does not appear to demonstrate clear ‘improvement’ in char-
acterization of the wind climate as manifest in NARR. How-
ever, output from CRCM does perform ‘best’ relative to
extreme values in situ observations (Figure 7). This may
imply that a non-hydrostatic formulation and/or the spectral
nudging applied to the CRCM throughout the domain
improves the simulation of extreme wind speeds even when
the RCM is applied at 50 km resolution.
[55] Based on analyses presented herein it appears that

the RCMs employed generate wind climates at a nominal
height of 10-m across the contiguous USA that are, to
some degree, independent of the lateral boundary conditions.
Although Brier Skill Scores for simulations wherein the
RCM is nested in AOGCM output indicate lower agreement
with NARR than simulations conducted within NCEP-2,
the RMSD between fields of the wind climates for the entire
study domain and sub-regions thereof show higher values
for variations between RCM than for simulations within a
single RCM nested in a variety of lateral boundary conditions
(Figures 5 and 8). Indeed the mean RMSD between spatial
fields of each of the wind speed metrics is almost twice as
large for variations in the RCM applied as for variations in
the lateral boundary conditions.
[56] Wind climates from eight RCM simulations for the

middle-twenty-first century (2041–2062) are compared to
those for the historical period (1979–2000). The results indi-
cate some evidence for lower values of the central tendency
and the 90th and 95th percentile wind speeds in the future
period, but the degree of agreement in the sign of the climate
change signal between the simulations is relatively low.
No change is observed in the extreme wind speeds.
[57] Returning to the questions that motivated this research,

the primary findings of these analyses indicate:
[58] 1. The NARCCAP RCM suite exhibits clear ‘value

added’ in depicting wind climates across the contiguous
USA relative to NCEP-2. The degree of skill in reproducing
the contemporary wind climate as manifest in NARR varies
considerably with wind speed metric for a given AOGCM-
RCM coupling. No AOGCM-RCM coupling exhibits uni-
formly ‘best’ performance relative to NARR, station-based
extreme wind speed estimates or the NREL grid wind power
classes. Given this, it would appear prudent to consider
the full suite of model combinations for impact analyses,
although there appears to be some justification for use of
the non-hydrostatic models for extreme wind speeds.
[59] 2. Simulations of the contemporary wind climate

exhibit greater variations with the RCM than due to variations
in the lateral boundary conditions. However, generally RCM
simulations nested in NCEP-2 exhibit greater accord with
NARR, station-based extreme wind speed estimates or the
NREL grid wind power classes.
[60] 3. Comparing various metrics of the wind climates

as simulated for 2041–2062 with those from 1979 to 200
indicates some evidence for lower values of the central
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tendency and the 90th and 95th percentile wind speeds in
the future period, particularly in the western USA. However,
all eight of the AOGCM-RCM combinations exhibit at least
some grid-cells with higher, central tendency, intense and
extreme winds in all six study regions. There is also some
evidence that AOGCM-RCM combinations that exhibit high
inter- and intraannual variability in the 1979–2000 period
exhibit the largest magnitude changes in wind regimes.
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