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Abstract 27 

We examine the effects of geographic distribution of wind power plants (WPPs) on the 28 

reliability of electrical output within the Midwestern United States.  North American Regional 29 

Reanalysis (NARR) data are extrapolated to 80 m using the power law and used to characterize 30 

the wind resource at 108 NARR grid points corresponding to existing WPPs.  These sites are 31 

then organized, on the basis of nearest neighbors, into networks ranging from single WPPs to the 32 

full network of 108 WPPs.  For each network, a suite of statistics is computed and used to 33 

characterize energy reliability as it relates to the number of WPPs within, and the area enclosed 34 

by, the network.  The results demonstrate that WPP dispersion reduces variability and thereby 35 

improves the reliability of electrical output from WPPs.  As scale increases, marginal 36 

improvements in reliability diminish, but there is no saturation of benefits on the scales 37 

considered here.  The results are combined with wind resource information to identify sites that 38 

can further improve reliability for aggregated wind power in the study region.  39 

 40 

Keywords:  wind, power, energy, reliability, geographic, distribution 41 

 42 
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1. Introduction 50 

Global wind energy resources far surpass current energy demand (Kempton et al. 2010).   51 

Wind power is the fastest growing energy source in the world with an annual growth rate of 52 

approximately 35% (Sathyajith and Philip 2011).  However, the variability of wind, and the 53 

resulting intermittency of the wind power resource, is frequently cited as an obstacle to provision 54 

of baseload power by wind and its further penetration into the electricity market (DeCarolis and 55 

Keith 2005; Sovacool 2008).  As an alternative to siting wind power plants (WPPs) only in 56 

regions with low wind variability, interconnection of WPPs through the transmission grid shows 57 

great promise for improving the reliability of electricity generated from wind (Khan 1979; Carlin 58 

and Haslett 1982; Simonsen and Stevens 2004; Archer and Jacobson 2007; Kempton et al. 2010). 59 

At a single site, or over the area occupied by a typical commercial WPP, wind speeds are highly 60 

variable.  However, autocorrelation of wind speed decreases with distance (Robeson and Shein 61 

1997), so that as area increases, average wind speed is less variable.  Over a sufficiently large 62 

area, meteorological and topographic conditions vary enough to produce a balance between areas 63 

with high and low wind speeds, and more importantly, a reduction in the frequency of calm 64 

conditions throughout the network.   65 

Kahn (1979) was the first to suggest that geographically dispersed WPPs could improve the 66 

reliability of wind power.  He analyzed networks of two to 13 WPPs and found that instances of 67 

zero power decreased as sites were added to the network.  Archer and Jacobson (2003) analyzed 68 

surface measurements at 1327 weather stations and sounding measurements from 87 stations 69 

from the National Climatic Data Center and found that the standard deviation of wind speed was 70 

consistently greater at individual locations than when averaged over multiple locations.  They 71 

also found that, in an eight-site, 385,000 km2 area stretching across parts of New Mexico, 72 
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Oklahoma, and Texas, average wind speed at 80 m never fell below 3 m s-1, which is significant 73 

because 3 m s-1 is a common cut-in speed for wind turbines (GE Energy 2010).  Simonsen and 74 

Stevens (2004) analyzed one year of wind speed data at 28 sites across Iowa, North Dakota, 75 

Kansas, and Minnesota, and found that connecting the sites reduced the variability of power 76 

output by a factor of 1.75 to 3.4.  Archer and Jacobson (2007) analyzed wind speed data at 19 77 

sites spanning across parts of Kansas, New Mexico, Oklahoma, and Texas to determine if wind 78 

could be used as baseload power.  They found that, on average, 33% of yearly averaged wind 79 

power could be used as baseload and that the standard deviation of wind power produced 80 

decreased by 35% from one site to 19 aggregated sites.  Kempton et al. (2010) examined the 81 

power output of a hypothetical network of 11 offshore WPPs along the Eastern Seaboard.  They 82 

found that compared to individual sites, hourly fluctuations of capacity factor of the entire 83 

network were dramatically reduced. 84 

While the studies cited above have analyzed aggregated wind power over large geographic 85 

areas, the effects of aggregated wind power within an area corresponding to an Independent 86 

System Operator (ISO; the organization that manages the operation of the electrical power 87 

system within a region) have not been considered.  Furthermore, existing studies have focused on 88 

either the number of aggregated WPPs or the area enclosed by a network of WPPs, but not both, 89 

resulting in confusion regarding the source of improvement in reliability.  This study addresses 90 

these issues by examining the effects of aggregating the energy production of existing WPPs 91 

within the area corresponding roughly to the United States component of the Midwest ISO and 92 

evaluating the role of the number of WPPs relative to the geographic area covered by the WPPs.  93 

We also use our findings in conjunction with wind resource data to identify new areas for wind 94 

power development aimed at improving reliability.  95 
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2. Study area, data, and methods 96 

The study area includes Illinois, Indiana, Iowa, Michigan, Minnesota, Nebraska, North 97 

Dakota, Ohio, South Dakota, and Wisconsin (Figure 1).  The outline of the Midwest ISO is 98 

irregular and includes spatial discontinuities.  Therefore, although sections of Illinois, Indiana, 99 

Iowa, Michigan, Nebraska and Ohio are not part of the Midwest ISO, they were included to 100 

simplify the organizational aspect of the study.  Existing WPPs within in the study area with a 101 

nameplate capacity of at least 10 MW (n=116) were catalogued and are also shown in Figure 1.   102 

Wind speed data from the North American Regional Reanalysis (NARR) (Mesinger et al. 103 

2006) for the months of January and July 1979 - 2010 were used to assess the wind resource.  104 

January and July were chosen because they effectively represent the winter and summer wind 105 

regimes in the Midwest, and because they are at the extremes of electricity consumption due to 106 

heating (January) and cooling (July) (Energy Information Administration 2011).  NARR consists 107 

of three-hourly meteorological data on a 32 × 32 km grid at the surface (10 m for winds) and 29 108 

pressure levels from 1000 to 100 mb, covering the North American sector.  It is the highest 109 

resolution reanalysis data set with complete coverage of the study region.  Because the proximity 110 

of several WPP pairs was beyond the spatial resolution of the NARR, the 116 catalogued WPPs 111 

correspond to 108 unique NARR grid points.  In the context of this research, the term ‘WPP’ will 112 

be used to refer to any NARR grid point that corresponds to an actual wind power plant. 113 

NARR wind speeds were extrapolated to 80 m using the power law: 114 

 115 

                                                      𝑣2 = 𝑣1 (𝑧2
𝑧1

)
𝛼

                                                              (1) 116 

 117 
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where 𝑣1 and 𝑣2 are wind speeds (m s-1) at heights 𝑧1 and 𝑧2 (m), and α is the roughness 118 

exponent (Arya 1988).  Rather than extrapolate from 10 m, extrapolation distance was reduced 119 

by locating the pressure level nearest to, but below 80 m, and extrapolating from that height.  120 

Only rarely was the distance greater than 70 m.  The roughness exponent (α) was calculated at 121 

each point for every time step: 122 

 123 

                                                 𝛼 =
ln(𝑣𝑏80/𝑣a80)

ln(𝑧𝑏80/𝑧𝑎80)
                        (2) 124 

 125 

where 𝑣b80 is the wind speed at the pressure level nearest to, but below 80 m, 𝑣a80 is the wind 126 

speed at the pressure level nearest to, but above 80 m, and 𝑧𝑏80 and 𝑧𝑎80 are the heights of those 127 

respective pressure levels (Oke 1987) (Figure 2).   128 

The 80 m wind speeds derived from the NARR data were used to calculate the wind power at 129 

each three-hourly time step, assuming a single turbine at each WPP-associated NARR grid point.  130 

We also assume use of the GE 1.5 MW turbine, which was used in the study by Archer and 131 

Jacobson (2007).  The GE 1.5 MW turbine has a cut-in speed of 3 m s-1 and a cutout speed of 25 132 

m s-1.  It achieves its rated power output at 12 m s-1.  Between 3 m s-1 and 12 m s-1 the power 133 

output is described by two third-order polynomials: 134 

 135 

𝑃 = {
𝑣3 + 8𝑣2 − 53𝑣 + 60                                       𝑖𝑓  𝑣 ≥ 3 𝑎𝑛𝑑 𝑣 < 8

−11.25𝑣3 + 307.5𝑣2 − 2520𝑣 + 6900          𝑖𝑓  𝑣 ≥ 8 𝑎𝑛𝑑 𝑣 < 12
          (3) 136 

 137 

where P is power output in (kW) and v is wind speed in m s-1 (Figure 2). 138 
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To evaluate the effect of wind variability on power generated at various scales of 139 

aggregation, the WPPs were organized into networks by combining nearest neighbors.  For 140 

example, if we consider the smallest networks formed by combining two WPPs, there are 85 141 

unique networks.  However, there are only 29 unique networks of 100 WPPs.   Including the 142 

individual sites, there were 7704 unique networks.  The area of each network was computed as 143 

the area of the convex hull defined by the points, accounting for the spherical shape of the 144 

underlying surface.  145 

For each network, wind resource and the wind resource reliability statistics were computed.  146 

These included the mean and standard deviation of the wind speeds averaged over the network, 147 

the mean, standard deviation, and the capacity factor (the actual power output divided by the 148 

rated power output), the distribution of capacity factor fluctuations, and the firm capacity (the 149 

amount of power guaranteed to be available, also termed capacity credit) 70%, 80%, and 90% of 150 

the time.  For example, if a 5000 MW WPP network has a firm capacity of 0.1 at 80% 151 

probability, then it can be relied upon for up to 500 MW 80% of the time.  These three 152 

probabilities were chosen to compare varying degrees of WPP network dependability; they fall 153 

within the range of reliability of coal, gas, and nuclear power plants taking into consideration 154 

downtime for maintenance (North American Electric Reliability Corporation 2012). 155 

3. Results  156 

The variability of network-averaged wind speed is inversely related to both the number of 157 

WPPs in the network and the network area in both January and July (Figure 3).  Greater 158 

variability during the winter is associated with generally higher winter wind speeds and 159 

enhanced synoptic activity as described by Klink (1999) and Coleman and Klink (2009).  For the 160 

108 locations considered here, the January mean 80 m wind speed is 6.4 m s-1 compared to 4.8 m 161 
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s-1 during July.  We therefore use the coefficient of variation (CV = standard deviation / mean) to 162 

describe wind variability.  To quantify the strength of the relationships between wind speed and 163 

network size and area, we used the nonparameteric Spearman rank correlation, which is defined 164 

as the Pearson correlation between the ranked variables (Wilks 2011).  Using the ranks rather 165 

than the raw data provides an extension of correlation analysis to cases where the relationship is 166 

nonlinear.  The Spearman rank correlation coefficients (all significant with p < 0.001 and shown 167 

in Figure 3) suggest that the relationship between network size and variability of network-168 

averaged wind speed are stronger in January than July and stronger as a function of network area 169 

relative to the number of WPPs in the network.  While most of the reduction of wind speed 170 

variance is due to connection of WPPs over relatively small distances (e.g., between individual 171 

WPPs and networks with areas of 200,000 km2 as shown in Figure 3b and Figure 3d) there is no 172 

saturation of benefits present at the scales considered in this paper.  In other words, increasing 173 

the area beyond the bounds presented here would likely result in some additional reduction in 174 

variability, albeit small.  The variability of wind speeds is lower in the complete 108-WPP 175 

network than in any sub-network (Figure 3).  176 

For assessment of wind power reliability via aggregation, it is necessary to consider industry-177 

relevant statistics, such as those described in Section 2.  Generation duration curves provide a 178 

graphical summary of the effects of aggregation on wind power (Figure 4).  The frequency on 179 

the x-axis represents the percentage of time that the capacity factor is greater than or equal to the 180 

corresponding capacity factor on the y-axis.  Note that in both January and July, larger networks 181 

have very high capacity factors less frequently, but also are able to provide power more reliably 182 

as evidenced by fewer instances with low or zero capacity factors.  The generation duration 183 

curves have a gentler slope during January as a result of the higher average wind speeds during 184 
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winter as previously described.   Firm capacity improves as the network size increases (Figure 185 

4).  For small networks, the 70%, 80%, and 90% firm capacities are near zero; the networks 186 

cannot be relied upon for power at these time percentages.  The average 70%, 80%, and 90% 187 

firm capacities increase with network size reaching maximum values for the 108-WPP network 188 

of 15%, 11%, and 7% for January and 6%, 4%, and 3% for July.                   189 

The capacity factor exhibits similar network behavior as the underlying wind speeds (Figure 190 

5), with slightly stronger relationships between network size and variability, especially during 191 

January.  In January, the CV for individual WPPs ranges from 0.94 to 1.39 while the value for 192 

the 108-WPP network is 0.70.  In July, the numbers are slightly higher, ranging from 1.2 to 2.0 193 

for individual WPPs and decreasing to 0.88 for the 108-WPP network (Figure 5).  Like the wind 194 

speeds (Figure 3), the rate at which capacity factor variations decrease diminishes with scale. 195 

The advantage of aggregation is also manifest as fewer instances of zero power output.  At 196 

the site of a single WPP, there is an average of 11.9% and 24.4% of three-hour periods during 197 

January and July, respectively, when no power is produced.  For networks with ten WPPs, these 198 

averages are reduced to 2.6% and 7.1%.  For the larger networks, periods when no power is 199 

produced account for less than 1% of the observations.  For the 108-WPP network, periods with 200 

no power disappear altogether.   201 

Lastly, short-term reliability of wind power was improved by aggregation (Figure 6).  As the 202 

scale of aggregation increases, the magnitude of short-term fluctuations in capacity factor 203 

decreases, and the frequency of periods of steady power output increases.  For a single WPP 204 

(Figure 5a), three-hourly fluctuations in power output greater than 40% of capacity factor are 205 

rare, but do occur, while the network containing all 108 WPPs never experienced a fluctuation 206 

larger than 40%.   207 
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 208 

4. Siting new WPPs to maximize the benefits of aggregation 209 

For the benefits of aggregation to be realized, wind power developers must consider the 210 

locations of existing WPPs in their development plans.  Within a region (e.g. the Midwest ISO), 211 

an ideal location for a WPP might be identified as a site with a good wind resource that is distant 212 

enough from other WPPs to improve network reliability.  The former can be assessed by simply 213 

computing the annual average wind speed.  The National Renewable Energy Laboratory (NREL 214 

2012) considers 6.9 m s-1 (Class 3) to be the minimum annual mean wind speed for a site to be 215 

economically feasible for wind energy development.  However, recent studies (e.g., Pryor et al. 216 

2012) have reported a potential underestimation of near-surface winds in the NARR data set.  217 

We therefore considered the resource to be “poor” if the annual mean wind speed was less than 218 

4.9 m s-1, “fair” if the annual mean wind speed was between 4.9 m s-1 and 5.9 m s-1 and “good” if 219 

the mean annual wind speed exceeded 5.9 m s-1.  To categorize the saturation of WPPs in the 220 

study area, it was necessary to determine a threshold network area beyond which marginal 221 

benefits of network expansion are less pronounced, and then determine a standard distance to 222 

measure WPP saturation.  Figure 5 suggests that, beyond an area of approximately 200,000 km2, 223 

reduction of the standard deviation of capacity factor is marginal.  The mean distance separating 224 

WPPs within networks of this size is around 200 km, which was subsequently used as the 225 

standard distance for improving WPP reliability within the study area.  To reduce saturation to a 226 

categorical variable, we classified areas as having high saturation if they were within the 227 

standard distance (200 km) of at least six WPPs, low saturation if they were within the standard 228 

distance of one to five WPPs, and no saturation if they were within the standard distance of zero 229 

WPPs.   230 
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The wind resource and saturation information were combined to produce a map of ideal 231 

locations for wind power development to improve reliability assuming aggregation within the 232 

study area (Figure 6).  The map shows that there are vast areas of unexploited wind power 233 

potential in the study region, particularly in the Great Plains and over the Great Lakes.  We must 234 

note, however, that areas with low saturation would likely require greater investments in 235 

transmission line expansion than areas with high saturation.  These two factors thus present a 236 

trade-off in locating new WPPs, with saturation becoming more important as the proportion wind 237 

energy on the grid increases.  238 

At present, the likelihood of the implementation of large-scale WPP aggregation within the 239 

study region, particularly for large WPP networks, is limited due to the cost of new 240 

infrastructure.  However, projects designed to improve the power infrastructure and power 241 

transfer capabilities in other regions are already underway.  For example, the Tres Amigas 242 

Electricity Superstation will connect the United States’ three isolated power grids:  the Eastern, 243 

Texas, and Western Interconnections.  It will particularly aid in the distribution of renewable 244 

energy that is typically generated in rural areas remote from urban load centers (Tres Amigas 245 

LLC 2010).  As part of the American Recovery and Reinvestment Act of 2009, the federal 246 

government allocated $4.5 billion for electric grid modernization, which was matched with $5.5 247 

billion from the private sector (White House Press Secretary 2011).  Much of that money is 248 

being used by ISOs to lay thousands of kms of new transmission lines, and to add sophisticated 249 

devices to existing lines that give grid operators more control over the system (Weeks 2010).  As 250 

the existing power grid is updated and electricity can be more readily shared and transmitted 251 

over larger regions, the prospect of large aggregated WPP networks improves.  As the U.S. grid 252 

is improved, it is foreseeable that in coming decades WPP networks will span beyond the 253 
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boundaries of any single ISO.  If balancing authorities were enlarged and/or merged, this would, 254 

in essence, interconnect WPPs so that within the system they will behave as if directly linked.  255 

Larger balancing authorities would also provide a greater mix of other energy sources to improve 256 

overall system reliability (Dragoon 2010).  The results of this study imply that improvements to 257 

wind power reliability would continue to accrue if the analysis was extended beyond its current 258 

domain (e.g. the Eastern Interconnection) because there was no saturation in benefits identified 259 

(see Figures 3 and 5).  Further research is required to determine how low the standard deviation 260 

of capacity factor must become to achieve various levels of wind penetration (20%, 35%, 50%, 261 

etc.). This also depends on the mix of other sources, with peaking power sources such as natural 262 

gas and hydropower having greater ability to counterbalance variations in wind power output 263 

than nuclear or coal, which are more often used as baseload. 264 

 265 

5. Summary 266 

The main objective of this study was to model the effect of aggregating WPPs on the 267 

reliability of generated power within a large region of the Midwestern United States 268 

corresponding roughly to the United States portion of the Midwest ISO.  The data used for the 269 

study were wind speed data from the North American Regional Reanalysis (NARR) for 1979-270 

2010 extrapolated to 80 m using the power law to match the hub height of the GE 1.5 MW 271 

turbine.  Existing WPP locations within the region (n=116) were associated with their nearest 272 

NARR grid point (n=108) (see Figure 1) and then the NARR-derived 80 m wind speed data were 273 

aggregated into nearest neighbor networks ranging from pairs to a single network containing all 274 

108 WPPs.  January and July wind power statistics were calculated from NARR wind speeds and 275 

the power curve for the GE 1.5 MW turbine.  It was found that, as scale increases, the variability 276 
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in wind power output diminishes rapidly and continues to diminish at all scales up to and 277 

including the largest networks considered here.  Wind variability, and therefore the variability of 278 

aggregated wind power, is more strongly related to the geographic area of the network than the 279 

number of WPPs in the network.  The analysis provides support for the findings of previous 280 

studies (e.g., Robeson and Shein 1997; Simonsen and Stevens 2004; Archer and Jacobson 2007; 281 

Cassola et al. 2008; Milligan et al. 2009; Kempton et al. 2010) and contributes to a growing body 282 

of literature on the benefits of wind power aggregation.  We additionally identified locations for 283 

new WPP development, with the goal of reducing the variability of extracted wind power.  These 284 

locations, which have an adequate wind resource but are sufficiently distant from existing WPPs 285 

to reduce wind power variability across the network of aggregated WPPs, were located primarily 286 

across the Northern Great Lakes region and along the western edge of the study area (parts of 287 

Nebraska, South Dakota, and North Dakota).      288 

It should be noted that a number of factors influence WPP siting, ranging from site access 289 

and the availability of transmission lines with spare capacity to local, state, and federal 290 

regulations and policies (Bohn and Lant 2008; Mann et al.).  This study has demonstrated that 291 

large improvements to wind power reliability are possible through aggregation and has identified 292 

locations within the Midwestern USA that could provide further reliability improvements.  The 293 

potential benefits of aggregation should be considered along with other factors that govern WPP 294 

siting decisions.  Further research is needed to determine how much reliability improves at larger 295 

scales of electrical interconnectivity, such as the Eastern Interconnection or the entire North 296 

American system through Tres Amigas.      297 
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 385 

Figure 1.  Map of the study area showing the locations of NARR grid points (small dots) and 386 

NARR grid points co-located with existing WPPs as larger black dots.   387 
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 401 

Figure 2. Schematic diagram showing the derivation of 80 m wind power from the nearest 402 

vertical layers in the NARR data.  In this case, the NARR layer below and closest to 80 m (b80) 403 

is 1000 mb and the NARR layer above and closest to 80 m (a80) is 975 mb.  At other times, 80 404 

m lies between the 10 m level and the 1000 mb level.  These levels are used in Equations 1 and 2 405 

to derive the 80 m wind speed.  Wind speed at 80 m is then used with the power curve (Equation 406 

3) for the GE 1.5 MW turbine (right) to derive 80 meter wind power. 407 

 408 



20 
 

 409 

Figure 3.  The coefficient of variation (CV) of network-averaged wind speed for January (a and 410 

b; top) and July (c and d; bottom).  The CV is presented as a function of the number of WPPs in 411 

the network (a and c; left) and the network area (b and d; right).  Also shown are the Spearman 412 

rank correlation coefficients (rs), which are significant with =0.01. 413 
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 422 

Figure 4.  Generation duration curves for WPP networks during a) January and b) July.  Points 423 

on the x-axis represent the percentage of hours in a year that capacity factor is greater than or 424 

equal to the value at the corresponding point on the y-axis.  Areas between curves represent the 425 

difference in power production characteristics among different-sized networks.  The firm 426 

capacities at 70%, 80%, and 90% can be determined by following the vertical lines at 0.7, 0.8, 427 

and 0.9, respectively, to the y-axis. 428 
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 439 

Figure 5.  The coefficient of variation (CV) of network capacity factor (CF) for January (a and 440 

b; top) and July (c and d; bottom).  The CV is presented as a function of the number of WPPs in 441 

the network (a and c; left) and the network area (b and d; right).  Also shown are the Spearman 442 

rank correlation coefficients (rs), which are significant with =0.01. 443 
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 452 

Figure 6. Short term (three-hourly) power fluctuations from individual WPPs in January (a) and 453 

July (c) compared to those from the 108-WPP network (b, d).  Variability of power output for the 454 

108-WPP is markedly reduced. 455 
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 465 

Figure 7.  Map of the study area categorizing NARR grid points based on mean annual wind 466 

speed and proximity to existing WPPs.  Mean annual wind speed must be less than 4.9 m s-1 to 467 

be classified as “poor,” between 4.9 and 5.9 m s-1 to be “fair,” and greater than 5.9 m s-1 to be 468 

“good.”  Grid points must be within 200 km of six or more WPPs or contain a WPP to be 469 

classified as having “high saturation,” one to five WPPs to have “low saturation,” and zero 470 

WPPs to have “no saturation.”  Grid points with good wind and no saturation are the optimal 471 

locations for future wind power development if reduction of wind power variability is the goal.   472 
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