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Statistical Downscaling in Climatology 27 

 28 

Abstract 29 

Downscaling is a term that has been used to describe the range of methods that are used 30 

to infer regional- or local-scale climate information from coarsely resolved climate models.  The 31 

use of statistical methods for this purpose is rooted in both operational weather forecasting and 32 

synoptic climatology and has become a widely applied method for development of regional 33 

climate change scenarios.  This article provides an overview of statistical downscaling with a 34 

focus on assumptions, common predictors and predictands, and methodological approaches 35 

ranging from interpolation and scaling to regression-based methods, weather pattern-based 36 

techniques, and stochastic weather generators.  Suggestions are made for improved assessment of 37 

the fundamental downscaling assumptions as well as reduction of uncertainty associated with 38 

application of downscaled climate information across models and greenhouse gas emissions 39 

scenarios.   40 

 41 

1. Introduction 42 

Atmosphere-ocean general circulation models (AOGCMs) are the primary tools used to 43 

assess climate system behavior in response to changes in natural or anthropogenic forcing. With 44 

resolution that rarely exceeds 1 × 1, AOGCMs are unable to explicitly resolve small-scale 45 

processes such as convection or the topography of the underlying land surface, resulting in a lack 46 

of fidelity at small spatial scales.  Downscaling is a term that has been used to describe a range of 47 

methods that are used to infer regional- or local-scale climate information from coarsely resolved 48 

AOGCMs.  When AOGCMs are used with different forcings (e.g., sea-surface temperatures, 49 
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land surface characteristics, or projected changes in greenhouse gases) downscaling can be used 50 

with impact-specific models (e.g., hydrological models) to assess the effects of these forcings on 51 

various aspects of climate.  52 

Climate downscaling approaches can be broadly classified as dynamical or statistical 53 

with a small number of studies using dynamical-statistical approaches (e.g., Fuentes and 54 

Heimann 2000, Boé et al. 2006, Svoboda et al. 2012).  Studies comparing statistical and 55 

dynamical downscaling approaches have generally found similar skill in reproducing historical 56 

climate statistics, although the ability of statistical downscaling to provide point estimates may 57 

be an addition consideration for some applications, such as those in hydrology (see, for example, 58 

Chiew et al. 2010, Frost et al. 2011).  As noted by Murphy (1999), this does not necessarily 59 

imply that downscaled estimates of future climate from these methods possess equal skill.   60 

Dynamical downscaling can be conducted by using an AOGCM with variable resolution 61 

(i.e., low resolution generally, but high resolution over the region of interest) as in Déqué and 62 

Piedelievre (1995), but is most commonly done by using lateral boundary conditions from an 63 

AOGCM to force a higher resolution regional climate model (RCM), which is run for a smaller 64 

domain.  The greatest advantage of dynamical downscaling is the physical consistency with the 65 

driving AOGCM.  However, the direct boundary forcing from the AOGCM can also lead to 66 

inherited bias.  Dynamical downscaling is also computationally demanding, which typically 67 

precludes application to large suites of AOGCMs with varying greenhouse gas emissions 68 

trajectories.  To date, the largest coordinated dynamical downscaling experiments have been the 69 

North American Regional Climate Change Assessment Program (NARCCAP; Mearns et al. 70 

2009; Mearns et al. 2012) which produced 50 km RCM simulations sampled from the space of 4 71 

AOGCMs and 6 RCMs to produce 12 unique combinations using historical forcing (1971-2000) 72 
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and a single future emissions scenario, SRES A2 (2071-2100) and the Prediction of Regional 73 

Scenarios and Uncertainties for Defining European Climate Change Risks and Effects 74 

(PRUDENCE; Christensen et al. 2007) project which included four high resolution atmospheric 75 

GCMs and eight RCMs also using SRES A2 forcing.  A more recent project, the Coordinated 76 

Regional Climate Downscaling Experiment, or CORDEX, aims to establish an international 77 

framework for coordinating downscaling projects in different regions.  As computational 78 

capabilities continue to improve, it may be possible to conduct coordinated dynamical 79 

downscaling experiments over a much wider range of AOGCM-RCM combinations and 80 

radiative forcing scenarios, to assess and potentially reduce uncertainty associated with the 81 

development of regional climate change projections (see Mearns et al. 2012).     82 

Conceptually, statistical downscaling evolved from synoptic climatology (Hewitson and 83 

Crane 1996), the subfield of climatology that describes surface climate as a function of both 84 

large-scale atmospheric circulation and local environmental conditions (see Yarnal 1994).  As 85 

such, it relates observed, reanalyzed, or AOGCM-derived large-scale climate descriptors to 86 

observed regional- or local-scale descriptors using a statistical function.  The function is then 87 

applied to AOGCM output to derive the regional- or local-scale descriptor consistent with the 88 

AOGCM projection (see Figure 1).  Statistical downscaling also has roots in operational weather 89 

forecasting (e.g., the Perfect Prognosis and Model Output Statistics approaches) and applications 90 

in short-range and seasonal forecasting are still common (e.g., Gutiérrez et al. 2004, Feddersen 91 

and Andersen 2005, Diez et al. 2005, Lim et al. 2009, Schoof et al. 2009).  The relatively low 92 

computational demand makes statistical downscaling an attractive approach for developing 93 

regional- to local-scale climate change scenarios using a large suite of AOGCMs and a range of 94 

greenhouse gas emissions scenarios.  The Statistical and Regional Dynamical Downscaling of 95 
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Extremes for European Regions (STARDEX; Goodess et al. 2005) project represents the largest 96 

coordinated statistical downscaling effort to date. 97 

Several reviews of statistical downscaling have been conducted since the approach 98 

became widely applied following the advent of widely accessible climate model archives 99 

associated with coupled model intercomparison projects (see Meehl et al. 2007; Taylor et al. 100 

2012).  Recent reviews, however, have focused on specific variables (e.g., the review of 101 

precipitation downscaling by Maraun et al. 2010) or on specific applications, such as 102 

hydrological modeling (Xu 1999; Wood et al. 2004, Fowler et al. 2007, Chen et al. 2012).  This 103 

review will provide a broad overview of statistical downscaling for regional climate change 104 

investigations with a focus on downscaling assumptions, choices of predictors and predictands, 105 

and methodological approaches, with an overall goal of broadly representing current 106 

downscaling practice and providing direction for future statistical downscaling research.  107 

 108 

2. Assumptions 109 

Successful statistical downscaling requires that several assumptions are met (see 110 

Hewitson and Crane 1996, Giorgi et al. 2001, Wilby et al. 2004, Benestad 2008).  The 111 

assumptions can be summarized as follows: 112 

1) There must be a strong relationship between the predictor variable(s) and the 113 

predictand (i.e., the variable being predicted). 114 

2) The predictor variable(s) must be adequately simulated by the AOGCM. 115 

3) The predictor variable(s) must incorporate the climate change signal. 116 

4) The relationship between the predictor(s) and predictand must be stationary (i.e., time 117 

invariant).   118 
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The first assumption is a general requirement for statistical modeling.  The time behavior 119 

of the predictand can only be specified on the basis of the predictor(s) if there is a strong degree 120 

of covariance and similar time structure (Benestad 2008) and standard methods exist for 121 

identifying and quantifying the strength of the predictor-predictand relationship.         122 

The second assumption addresses the fidelity of the model in simulating important 123 

aspects of the predictor variables.  Clearly, reproducing the statistical moments and spatial 124 

distribution of the historical large-scale climate does not guarantee that the future representation 125 

in the model is correct, but failure to do so would certainly indicate a shortcoming.  It is also 126 

possible that the climate model response to enhanced greenhouse gas forcing is incorrect.  In this 127 

case, downscaling will not improve the model, but simply add precision to the erroneous model 128 

projections (Prudhomme et al. 2002).  The failure of AOGCMs to produce an accurate regional 129 

response to large scale forcing from ENSO and other large-scale climate variations has also led 130 

to recent criticism of confidence placed on multi-decadal regional climate projections (see Pielke 131 

and Wilby 2012).  More discussion of evaluation of predictors simulated by AOGCMs is 132 

presented in Section 3. 133 

Since the goal of many (most) statistical downscaling applications is to develop scenarios 134 

of regional climate change, the predictor variables must fully represent the climate change signal 135 

(Assumption 3).  For example, sea-level pressure typically explains a significant proportion of 136 

variance in observed temperature, but if used alone in a statistical downscaling application, may 137 

lead to unrealistically low temperature change estimates (Huth 2004, Benestad 2008) since the 138 

effects of increased radiative forcing from greenhouse gases are not likely to be manifest as 139 

changes in sea level pressure alone.  Likewise, Zorita et al. (1995) and Zorita and von Storch 140 

(1999) note that geopotential height changes may be reflective of changes in atmospheric density 141 
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in a warmer climate rather than changes in circulation and advocate for the use of sea level 142 

pressure instead.  The regional response to large scale climate change is also a function of 143 

regional feedbacks.  A major shortcoming of all downscaling approaches, aside from a small 144 

number of two-way nested dynamical techniques, is that there is no opportunity for regional 145 

processes to feedback to the driving AOGCM.  Changes in the local environment that might also 146 

contribute to future changes cannot be accounted for explicitly.  Surface-related feedbacks can be 147 

especially important in alpine environments where changes in albedo and energy fluxes between 148 

snow-covered and vegetated surfaces exist.  The importance of land cover has also been 149 

demonstrated for temperature and near-surface moisture variations (Fall et al. 2010) with 150 

implications for assessing future changes in human heat stress related to changing climate 151 

conditions (Schoof et al. 2012a).   152 

The fourth assumption of statistical downscaling is that the relationship between the 153 

predictor(s) and predictand is stationary through time.  While this assumption cannot be tested 154 

explicitly, the ability of a particular statistical model to ‘adapt’ to changed climate conditions can 155 

be tested given a sufficiently long historical record.  For example, Wilks (1999) built 156 

precipitation downscaling models with dry years and then tested them on wet years and vice-157 

versa.  Similarly, with a long enough record, a model could be trained on cold years and then 158 

tested on warmer years.  A model that ‘passes’ such a test would increase the confidence when 159 

used in a warmer climate to assess changes in the variable of interest. As noted by Benestad 160 

(2004), statistical historical relationships from several published studies appear to hold in 161 

perturbed climates.  While this does not guarantee stationarity in the relationships used in all 162 

downscaling studies, it demonstrates that the assumption of stationary is not necessarily violated 163 

in all statistical downscaling applications.  Studies have also tested the stationarity assumption 164 
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within AOGCMs.  Frias et al. (2006) use a 1000 year model simulation to test the stationarity of 165 

the relationship between sea level pressure and precipitation in two regions with the results 166 

differing by region.  The assumption of stationarity in the predictor-predictand relationship also 167 

extends to validity beyond the historical data range.  As noted by Wilby et al. (2004), little 168 

research has been done to date to address this issue across a range of predictor variables and 169 

AOGCM simulations.  A long, high quality observed record, will result in more robust 170 

downscaled climate estimates (Wilby and Wigley 1997; Prudhomme et al. 2002) and will also 171 

maximize the range of the predictors and allow for testing of stationarity.  While often cited as a 172 

drawback of statistical downscaling, the stationarity assumptions also applies to the 173 

parameterizations within regional climate models used for dynamical downscaling as noted by 174 

Wilby et al. (2004). 175 

     176 

3. Predictors and predictands 177 

Climate change research has focused primarily on temperature and precipitation since 178 

they are likely to produce the greatest impacts on humans via impacts on agriculture and water 179 

security and generally have the longest available observed records.  While downscaling studies 180 

generally follow this trend, downscaling has also been applied to a large range of additional 181 

predictands including humidity (Huth 2005, Schoof 2012a), wind (Sailor et al. 2000, Pryor et al. 182 

2005a, 2005b, 2006, Salameh et al. 2009, Michelangeli et al. 2009), and many others including 183 

coastal sea-level (Cui et al. 1995) and ocean wave heights (Wang et al. 2010).  For some 184 

methods (e.g., canonical correlation analysis, CCA) spatial fields are downscaled.  For these 185 

applications, and many others, pre-processing using empirical orthogonal functions (EOFs) is 186 

common.  Benestad (2001) described a common EOF approach in which the same EOFs are used 187 
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for both calibration and future scenario production.  To address nonlinearity, studies have 188 

frequently transformed predictands in lieu of applying nonlinear downscaling techniques.  A 189 

number of studies have also downscaled probability distribution or weather generator parameters 190 

rather than actual values (e.g., Wilby et al. 2002, Pryor et al. 2005a, Schoof et al. 2010).   191 

The predictor variables used for downscaling are largely determined by availability of 192 

long historical time series that can be used for calibration of the downscaling model (Figure 1) 193 

and the availability of the predictors from AOGCMs.  The synoptic climatological roots of 194 

statistical downscaling suggest that circulation variables should be the dominant source of 195 

surface climate variability.  However, multiple studies (Hanssen-Bauer and Forland 2000, Kaas 196 

and Frich 1995, Schubert 1998, Huth 1999) have noted the importance of including upper air 197 

temperature as a measure of radiative forcing and the importance of including humidity as a 198 

predictor for precipitation (e.g., Cavazos and Hewitson 2005).  Other studies, such as Timbal et 199 

al. (2008) have investigated the role of absolute vs. relative humidity as predictors for 200 

precipitation.  Benestad (2008) demonstrated (using the first law of thermodynamics and the 201 

continuity equation, respectively) that temperature or precipitation cannot be specified solely on 202 

sea level pressure.  Therefore, in practice, the large-scale parameters often include 203 

thermodynamic variables in addition to circulation variables.   204 

Given the wide availability of reanalysis products available (e.g., Kalnay et al. 1996, 205 

Uppala et al. 2005), there are now a wide variety of accessible candidate predictor variables.  For 206 

example, the widely used Statistical DownScaling Model (SDSM; Wilby et al. 2002) uses 25 207 

candidate predictor variables consisting of standard upper level variables (humidity, geopotential 208 

height, temperature, and zonal and meridional winds), surface and near surface variables (sea 209 

level pressure, near surface winds), and derived circulation variables (vorticity and divergence).  210 
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Studies have also identified reanalysis or AOGCM precipitation fields as useful predictors for 211 

precipitation downscaling (e.g., Widmann et al. 2003, Schmidli et al. 2006) 212 

The utility of a candidate predictor variable depends strongly on the nature of the 213 

predictand (discrete vs. continuous, daily vs. monthly).  For example, monthly mean temperature 214 

is likely to be approximately Gaussian and strongly correlated with lower to mid tropospheric 215 

temperature and circulation (geopotential height and/or sea level pressure) while daily 216 

precipitation is highly skewed with dependence on parameters that govern the horizontal flux 217 

and convergence of moisture (e.g., specific humidity, winds, vorticity)(see Cavazos and 218 

Hewitson 2005; Schoof , 2012b).   219 

With few exceptions, statistical downscaling work published to date has focused 220 

primarily on the strength of the statistical relationship between the predictand and candidate 221 

predictor(s) (i.e., Assumption 1 in Section 2) with surprisingly little work addressing (1) the 222 

fidelity of predictor simulation by AOGCMs or (2) identification of scales at which AOGCM 223 

simulations exhibit agreement with observations.  Evaluation of grid-point statistics in GCMs (as 224 

demonstrated by Chervin (1981) and Portman et al. (1992) has been adopted by several 225 

downscaling studies (Sailor and Li 1999, Schoof et al. 2007).  These studies and others implicitly 226 

assume that AOGCM performance in the historical period is reflective of AOGCM utility for 227 

investigating future climate.  While historical skill does not provide any guarantee regarding 228 

future climate, identification and elimination of models that do not perform well in the historical 229 

period is a useful approach for reducing the variability associated with downscaled AOGCM 230 

ensembles.   231 

Taylor diagrams (Taylor 2001) represent one tool that can be used to address multiple 232 

aspects of AOGCM performance over a specified spatial domain.  Taylor diagrams have the 233 
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spatial correlation plotted on the radial axis and the ratio of simulated to observed spatial 234 

standard deviation on the x-axis.  The distance from any plotted point to the origin (spatial 235 

correlation = 1 and ratio of spatial standard deviations = 1) is then proportional to the root mean 236 

square error.  The example provided in Figure 2 demonstrates that for this particular AOGCM 237 

(IPSL CM5a; Dufresne et al. 2012), winter (DJF) 850 mb air temperature is better simulated than 238 

sea level pressure.  The accompanying maps suggest that this is largely due to overestimation of 239 

sea level pressure associated within the high elevation regions of the Rocky Mountains.               240 

 An additional issue related to predictor choice is scale.  While it has been widely 241 

acknowledged that AOGCMs should not be used at the grid point scale, there has been relatively 242 

little analysis of predictor fidelity across scales and across AOGCMs.  When predictor scale has 243 

been considered (e.g. Grotch and McCracken 1991), the recommendation has been to use 244 

averages over several grid points and has been interpreted differently among studies.  For 245 

example, Schoof et al. (2010) averaged predictors over a 12.5 × 12.5 area centered on the 246 

station of interest while Goyal et al. (2012) averaged predictors over four grid points resulting in 247 

5 × 5 data.  Predictor domain can also be taken as the region where correlation with predictand 248 

is positive (Benestad 2004, Chu and Yu 2010) or meets a specific threshold.  By this standard, 249 

the predictor domain may be located ‘upstream’ due to temporal mismatch between reanalysis 250 

data and observations (see Brinkmann 2002).  The optimal scale is likely to vary among 251 

predictors, timescales, AOGCMs, and how ‘optimal’ is defined.  Studies have found inconsistent 252 

results regarding the effect of predictor scale on results (see Benestad 2001 and Huth 2002).  253 

Recent work by Masson and Knutti (2011) and Räisänen and Ylhäisi (2011) identifies the 254 

‘optimal smoothing scale’ at which AOGCM simulated temperature and precipitation exhibit 255 

agreement with observations, yet retain regional features of the climate signal.  Application of 256 
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these techniques to the variables commonly used in statistical downscaling and an assessment of 257 

optimal scale variations among models and variables should be a high priority for the statistical 258 

downscaling community.   259 

 260 

4. Methodological choices 261 

In their seminal paper on statistical downscaling, Wilby and Wigley (1997) outlined three 262 

categories of downscaling method: regression-based approaches, weather pattern-based 263 

approaches, and weather generators.  Although methodological developments have continued in 264 

the years since their publication and most recent downscaling applications use combinations of 265 

these approaches, these categories still adequately represent the canon of available downscaling 266 

techniques.  However, a number of novel scaling techniques have also emerged within the 267 

downscaling literature (e.g., Salathé 2003, Wood et al. 2004).  In forecasting parlance, 268 

downscaling techniques can also be described as either PerfectProg (PP), if the relationship is 269 

derived using observed predictors, or Model Output Statistics (MOS) if the predictors are taken 270 

directly from the AOGCM.  The MOS approach can be thought of as having a built-in AOGCM 271 

bias correction whereas PP requires trust in (or explicit evaluation of) the fidelity of the AOGCM 272 

simulations.    273 

In the application of any particular downscaling technique subjective decisions are 274 

required (see Winkler et al. 1997) and comparative studies conducted in different regions and 275 

using different driving AOGCMs have demonstrated that there is no single statistical 276 

downscaling approach that is optimal for all regions and applications.  Bürger et al. (2012) 277 

compared five statistical downscaling methods for temperature and precipitation extremes in 278 

Western Canada.  They found that expanded downscaling, a weather pattern-based approach (see 279 
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Bürger 1996), performed best.  They noted that it is unlikely that their results would extend 280 

beyond the fixed framework within which they were derived (i.e., the specific data, AOGCM, 281 

and study region).  Schmidli et al. (2007) compared six statistical downscaling methods 282 

including regression-based, weather pattern-based, and stochastic weather generator approaches 283 

for downscaling daily precipitation in the European Alps and found a wide range of results 284 

which depended largely on the choice of method.  Haylock et al. (2006) compared six statistical 285 

and two dynamical downscaling approaches and found that methodological differences were as 286 

large as those from emissions scenarios.  Harpham and Wilby (2005) compared two artificial 287 

neural networks and a conditional resampling method and found the methods to have relative 288 

advantages and disadvantages in downscaling heavy precipitation.  These studies collectively 289 

demonstrate that the choice of method is a major contributor to uncertainty in the resulting 290 

downscaled climate. This is especially important if the downscaled climate information is to be 291 

used in an additional model to assess impacts, as in Chen et al. (2012).  In the description of 292 

methods that follows, specific applications are described to provide the reader with the scope of 293 

current statistical downscaling practice and methodological considerations.  294 

 295 

4.1 Scaling methods 296 

Scaling techniques are perhaps the most intuitive statistical methods for inferring fine 297 

scale information from AOGCMs.  Spatial interpolation or disaggregation of AOGCM output, 298 

for example, provides a baseline against which more rigorous downscaling methods can be 299 

compared (see Wheater et al. 1999).  For regions of high relief, interpolation can be used with an 300 

adjustment for elevation as in Wang et al. (2011).  Salathé (2003) describes a scaling technique 301 

for precipitation in the northwest USA that consists of applying precipitation anomalies from 302 
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reanalysis data to a high resolution observed data set.  Wood et al. (2004) describes a method in 303 

which AOGCM data are first bias corrected and then spatially disaggregated (BCSD) to a fine 304 

grid for hydrologic modeling.  Wood et al. found that BCSD exhibited less bias than traditional 305 

interpolation methods and Hayhoe et al. (2007) applied the method to assess climate change 306 

impacts on the northeast United States under different greenhouse gas scenarios.  The studies of 307 

Salathé (2003), Widmann et al. (2003), Wood et al. (2004) and Salathé (2005) are also among a 308 

growing number of studies that use large scale values of the predictand as the predictors.   309 

 310 

4.2 Regression-based methods 311 

The term regression is used the downscaling literature to describe the range of techniques 312 

from standard ordinary least squares regression applications (e.g., Sailor and Li 1999) and 313 

variations (e.g., censored quantile regression, Friederichs and Hense (2007), multi-way partial 314 

least-squares regression, Bergant and Kajfež-Bogataj (2005) ) to methods that identify 315 

relationships between fields, such as singular value decomposition (SVD) and canonical 316 

correlation analysis (CCA) (see Bretherton et al. 1992 for a review and intercomparison of such 317 

methods).  Hertig and Jacobeit (2008) used CCA to downscale geopotential heights to 318 

temperature to assess 21st century warming in the Mediterranean.  Huth (1999) and Huth (2002) 319 

compared CCA, SVD, and multiple linear regression with principal components and grid point 320 

values with and without screening for downscaling temperature in central Europe.  They found 321 

that pointwise multiple linear regression best approximated the temporal structure of the 322 

observed data, but that CCA best captured the spatial structure.  The generalized linear modeling 323 

(GLM) framework has recently emerged as a flexible technique for downscaling precipitation 324 

and other variables.  An application to precipitation in Ireland can be found in Fealy and 325 
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Sweeney (2007) and an overview of applications in other studies is available in Beuchat et al. 326 

(2012).   327 

Also included in this category are artificial neural networks (ANNs), and a growing body 328 

of computational learning algorithms including tree-based methods (Goyal et al. 2012), genetic 329 

programming (Coulibaly 2004), support vector machines (SVMs, Tripathi et al. 2006), and 330 

relevance vector machines (RVMs, Ghosh and Mujumdar 2008).  ANNs have been widely used 331 

for a range of temperature, precipitation, and wind downscaling applications (see, for example, 332 

Cavazos 1997, Crane and Hewitson 1998, Schoof and Pryor 2001, Cannon and Whitfield 2002).  333 

Coulibaly et al. (2005) and Dibike and Coulibaly (2006) applied an ANN to daily precipitation 334 

downscaling and found that performance was improved over regression especially for extremes 335 

and variability.  Regression and weather pattern-based approaches have also been combined with 336 

ANN techniques downscaling studies.  For example, Cavazos (1997) combined principal 337 

components of multiple circulation variables as predictors in an ANN for winter precipitation in 338 

Mexico.  ANNs have also been useful for evaluating the need for nonlinear methods.  Trigo and 339 

Palutikof (2001) compared linear and nonlinear ANNs for downscaling of monthly precipitation 340 

over Iberia.  The linear (or only slightly non-linear) ANNs were more capable of reproducing the 341 

observed precipitation series.  When the predictor-predictand relationship is nonlinear, or when 342 

the predictand is non-Gaussian, as in the case of daily precipitation, ANNs are typically found to 343 

have an advantage over standard parametric approaches (e.g., Ramirez et al. 2006).  Cannon 344 

(2011) describes a new quantile regression neural network that can be used to downscale mixed 345 

discrete-continuous predictands.  SVM approaches emerged as an alternative to ANNs which are 346 

highly sensitive to network architecture.  Tripathi et al. (2006) used a support vector machine 347 

approach to downscaling monthly precipitation and found it to outperform ANN.  SVMs have 348 
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also been used by Anandhi et al. (2008) for monthly precipitation downscaling.  RVMs are 349 

similar to SVMs, but use Bayesian learning framework to determine the model solution (Ghosh 350 

and Mujumdar 2008).   351 

 352 

4.3 Weather pattern-based methods 353 

 Weather pattern-based techniques emerged from the synoptic climatological perspective 354 

the surface climate variations are largely determined by the large-scale atmospheric circulation.  355 

Early approaches to downscaling in this category used eigentechniques (e.g., EOF analysis) to 356 

identify modes of variability in large scale data and then used the temporal variations in the 357 

modes (the principal components) in traditional downscaling, such as regression models or 358 

ANNs (Huth and Kyselý 2000, Schoof and Pryor 2001).  More recently, Li and Smith (2009) 359 

downscaled winter seasonal precipitation from four principal components of mean sea-level 360 

pressure for southern Australia and found improvement over raw GCM output.  Other 361 

classification methods, based on fuzzy rules (Stehlík and Bárdossy 2002, Bárdossy et al. 2002, 362 

2005), optimal distinction of surface climate elements (Enke et al. 2005), and self-organizing 363 

maps (SOMs) have also been applied within a downscaling context (e.g., Cavazos 2000, 364 

Hewitson and Crane 2006).    365 

 Among the most widely applied weather pattern-based approaches are analog methods 366 

(Zorita and von Storch 1999).  In the analog approach, the historical record is searched for a 367 

pattern matching the AOGCM simulated pattern.  The surface climate conditions observed 368 

during the historical analog are then used as the downscaled predictands.  The analog method, 369 

like all statistical downscaling methods, requires long historical series.  As historical records 370 

become longer, the likelihood of no-analog situations decreases.  The analog method has been 371 
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widely applied (e.g., Timbal and Jones 2008, Timbal et al. 2009 and references therein).  While 372 

some comparative studies of precipitation downscaling (Wetterhall et al. 2006; Wetterhall et al. 373 

2007) have generally found that other downscaling approaches outperform the analog method, 374 

other studies have shown that analog techniques exhibit skill that is similar to more complex 375 

techniques (Zorita and von Storch 1999; Chiew et al. 2010; Frost et al. 2011).  Several 376 

improvements to traditional analog approaches have been suggested, including constructed 377 

analogs (Maurer and Hidalgo 2008) and multivariate adapted constructed analogs (MACA, 378 

Maurer et al. 2010).  In an application to wildfire, Abatzoglou and Brown (2012) found that 379 

MACA outperformed the BCSD method with better representation of relative humidity and 380 

wind.  Another analog-based method is K-nearest neighbor downscaling (KNN, Gangopadhyay 381 

et al. 2005), which applies weights to a number (k) of similar historical analogs which are then 382 

used to generate ensembles.   383 

 The nonhomogeneous hidden Markov model (NHMM, first introduced by Hughes and 384 

Guttorp 1994) has also been widely applied to downscaling (e.g., Hughes et al. 1999, Bellone et 385 

al. 2000, Robertson et al. 2004, Fu et al. 2012), particularly for daily precipitation.  In the 386 

NHMM approach, precipitation occurrence probabilities and amounts at a location are associated 387 

with classes of large scale atmospheric fields, such as geopotential height and humidity.  The 388 

approach has also been extended to multisite precipitation downscaling by Charles et al. (2004) 389 

and Frost et al. (2011).  Mehrotra and Sharma (2005) used a combination of the k-nearest 390 

neighbor approach and NHMM in an application to multisite precipitation occurrence 391 

downscaling at 30 stations in Australia.  Their approach treated the weather states as continuous, 392 

whereas the traditional NHMM approach requires a discrete number of classes. 393 



18 
 

 Since the large-scale atmospheric state will continue to exert influence on surface climate 394 

as climate varies and changes, weather pattern-based approaches are likely to remain a preferred 395 

method for statistical downscaling.  Outstanding issues for downscaling with the weather 396 

pattern-based approaches include a lack of systematic studies evaluating the reproduction of 397 

synoptic patterns by AOGCMs and their responses to GHG forcing and different surface climate 398 

responses within the same large-scale atmospheric state (i.e., within-type variability).  Goodess 399 

and Palutikof (1998) applied a combined circulation-type and weather generator approach to 400 

daily precipitation downscaling in southeast Spain and found that the inability of the GCM to 401 

correctly simulate the circulation types was detectable in the weather generator output.  402 

McKendry et al. (2006) and Schoof and Pryor (2006) both identified a number of shortcomings 403 

in AOGCM representation of synoptic patterns for North American regions.   404 

 405 

4.4 Weather generators 406 

 Weather generators (WGs) are stochastic models for daily weather elements that can also 407 

be regarded as random number generators whose output resembles daily weather data at a station 408 

(Wilks and Wilby 1999).  As such, WGs can generate sequences of arbitrary length for used in 409 

impacts models.  WGs were initially developed for use in agricultural modeling where 410 

observations were of insufficient length or plagued by missing data.  The most widely applied 411 

WGs in statistical downscaling work have been variations of the WGEN model (Richardson and 412 

Wright 1984) and LARS-WG (Semenov and Barrow 1997).  Both models produce daily 413 

sequences of precipitation (occurrence and amount) along with maximum and minimum 414 

temperature and solar radiation.  Precipitation models usually form the basis of WGs since other 415 

variables exhibit dependence on precipitation.  For example, in the simulation of maximum and 416 
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minimum temperatures, precipitation occurrence provides a surrogate for cloud cover.  Wilks 417 

and Wilby (1999) provide an overview of commonly used WG formulations.   418 

 To use WGs in a climate downscaling context, the model parameters (e.g., the transition 419 

probabilities for precipitation occurrence, the distribution parameters for wet-day precipitation 420 

amounts, the means and variances of the non-precipitation variables, etc.) need to be changed to 421 

reflect the changed climate.  In the first study to apply WGs to climate downscaling, Wilks 422 

(1992) perturbed WG parameters by considering AOGCM-projected relative changes.  Other 423 

studies have suggested alternative means of updating the parameters, such as downscaling them 424 

using regression of large-scale atmospheric variables (Schoof et al. 2007, 2010).  Zhang (2005) 425 

downscaled monthly GCM temperature and precipitation to the station level by calibrating the 426 

probability distributions produced by the GCM to the observed probability distributions at the 427 

station.  For each calendar month, functions were fit to the quartiles of observed vs. simulated 428 

values and then used to downscale future values which were used with a weather generator to 429 

produce inputs for an agricultural impact assessment model.  Weather generators have also been 430 

developed for multisite simulation of precipitation under climate change (Wilks 1999) and 431 

combined with other downscaling approaches (e.g., the weather pattern-based approaches by 432 

Mearns et al. 1999 and Fowler et al. 2005).   433 

 In comparisons with other methods, WGs have been found to perform well.  Wilby et al. 434 

(1998) compared two weather generators, two vorticity-based methods, and two ANNs methods 435 

for statistical downscaling of daily precipitation.  The weather generators were found to produce 436 

series that most agreed with the observed series.  Underestimation of variances is a common 437 

problem with statistical models and those used for downscaling are no exception (see for 438 

example, Schmidli et al. 2007).   Some authors have proposed increasing the variance of models 439 
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using techniques such as inflation (Karl et al. 1990) or addition of random noise (von Storch 440 

1999) with no clear consensus on which method is preferable (see von Storch 1999 and Huth 441 

2002).  Furthermore, neither method provides a clear extension to enhancing variability in the 442 

downscaled future time series.  As noted by Schoof et al. (2007), the inclusion of distribution 443 

parameters in WG-based downscaling applications reduces the underestimation of variance 444 

relative to regression-based methods.  Other authors (Grondona et al. 2000, Wilby et al. 2002) 445 

have also conditioned WG parameters on large scale modes of climate variability such as the 446 

NAO or ENSO to improve low frequency variability. 447 

 448 

5. The future of statistical downscaling 449 

The array of studies cited in this review demonstrates that statistical downscaling has 450 

become a preferred method for inferring regional information from coarsely resolved AOGCMs.   451 

However, despite a large number of studies comparing downscaling predictors and methods, 452 

additional work is needed to translate the derived regional climate change information into 453 

climate adaptation (Fowler et al. 2007, Fowler and Wilby 2007).  Given the current state of 454 

climate science, future climate scenarios developed using downscaling techniques do not include 455 

all first order forcings and feedbacks and even the large-scale atmospheric response to changes in 456 

greenhouse gas forcing with AOGCMs is uncertain.  Large-scale AOGCM errors and 457 

shortcomings, such as the lack of balance between global precipitation and evaporation described 458 

by Liepert and Previdi (2012), have tremendous implications for climate downscaling.  459 

Therefore, downscaled climate projections (whether derived statistically or dynamically) can 460 

currently only be presented to the impacts community as a subset of possible future climates 461 

(Pielke and Wilby 2012).   462 
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Consideration of uncertainty and its role in applied downscaling should be a key theme in 463 

the next decade, while the utility of downscaled climate scenarios should remain limited to 464 

sensitivity testing and appraisal of adaptation options.  Hawkins and Sutton (2009) consider 465 

uncertainty due to internal climate variability, choice of AOGCM, and choice of greenhouse gas 466 

scenario.  The latter two types of uncertainty increase at finer scales and are added to uncertainty 467 

associated with the downscaling technique.  Application of the downscaled series to an impacts 468 

model adds yet another layer of uncertainty.  The full uncertainty associated with downscaled 469 

climates has not yet been sufficiently addressed in most downscaling studies, yet adaptation to 470 

regional climate change may require identification of regional climate projections that are 471 

scenario-neutral (i.e., robust across scenarios and therefore ‘actionable’, e.g., Prudhomme et al. 472 

2010).   473 

As the focus of coordinated AOGCM experiments evolves to include decadal prediction 474 

(see e.g., Meehl et al. 2009), statistical downscaling will become better positioned to inform 475 

decision making in agricultural and hydrological applications.  Recent work combining 476 

dynamical and statistical downscaling techniques (e.g., Chen et al. 2012, Svoboda et al. 2012) 477 

suggests that even as model resolution increases and dynamical downscaling approaches evolve, 478 

statistical downscaling will continue to provide information to the impacts community that 479 

cannot be provided by other methodological approaches.  As better observed and reanalyzed data 480 

sets become available and AOGCM simulations continue to improve, there will be additional 481 

opportunities for the statistical downscaling community to evaluate the critical assumption of 482 

stationarity and better assess the scales at which statistical downscaling predictors are optimally 483 

simulated by AOGCMs.  This will improve the confidence with which statistically downscaled 484 

climates can be used to assess the impacts of climate variability and change at the regional scale.   485 
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Figure 1.  The statistical downscaling process (from Schoof 2012, modified after Maraun et al. 913 

2010).  The calibration step consists of developing and validating the statistical model using 914 

historical data (observed data for the PP approach or AOGCM data for the MOS approach, see 915 

Section 4).  The projection step consists of applying the validated model to AOGCM output to 916 

derive regional- to local-scale projections. 917 
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Figure 2.  Demonstration of Taylor diagrams (Taylor 2001) as useful tools for assessing the 931 

performance of AOGCMs.  The examples provided are for sea level pressure (SLP) and 850-mb 932 

air temperature simulated by the coupled climate model IPSL CM5 evaluated relative to the 933 

NCEP-NCAR reanalysis during winter (DJF). 934 
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