
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Geography and Environmental
Resources

4-6-2015

High resolution projections of 21st century daily
precipitation for the contiguous USA
Justin T. Schoof
Southern Illinois University Carbondale, jschoof@siu.edu

Follow this and additional works at: http://opensiuc.lib.siu.edu/gers_pubs

This Article is brought to you for free and open access by the Department of Geography and Environmental Resources at OpenSIUC. It has been
accepted for inclusion in Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Schoof, Justin T. "High resolution projections of 21st century daily precipitation for the contiguous USA." Journal of Geophysical
Research (Apr 2015). doi:10.1002/2014jd022376.

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fgers_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/gers_pubs?utm_source=opensiuc.lib.siu.edu%2Fgers_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/gers?utm_source=opensiuc.lib.siu.edu%2Fgers_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/gers?utm_source=opensiuc.lib.siu.edu%2Fgers_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/gers_pubs?utm_source=opensiuc.lib.siu.edu%2Fgers_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


High-resolution projections of 21st century daily
precipitation for the contiguous U.S.
J. T. Schoof1

1Department of Geography and Environmental Resources, Southern Illinois University, Carbondale, Illinois, USA

Abstract Changes in precipitation have the potential to produce wide ranging impacts across human and
natural systems. Here precipitation projections from select Atmosphere-Ocean General Circulation Models
and Earth Systems Models participating in Phase 5 of the Coupled Model Intercomparison Project are
downscaled to a high-resolution (0.25° × 0.25°) grid covering the contiguous U.S. to improve spatial and
temporal characteristics of the model-derived projections and derive multiple descriptors of 21st century
precipitation climate. Projections for the Northeast, Pacific Northwest, and the high elevations of the Rocky
Mountains are characterized by increases in total annual precipitation, with the magnitude depending
strongly on the level of radiative forcing. Parts of the southern U.S. are projected to experience moderate
precipitation decreases under all forcing scenarios. Increases in total annual precipitation are associated
primarily with changes in precipitation intensity during the cold season. Significant precipitation decreases
are projected for parts of the southern U.S. in all seasons except autumn and are associated primarily with
changes in precipitation occurrence. Many locations in the eastern U.S. are projected to experience longer
extreme dry spells and longer extreme wet spells, reflecting an increase in the serial correlation of precipitation.
Conversely, many western locations are projected to experience shorter dry spells and wet spells, reflecting a
decrease in the serial correlation of precipitation. Most locations are projected to experience an increase in
extreme precipitation, reflected in increases in the mean annual single-day maximum precipitation and the
number of heavy (>10mm) and very heavy (>20mm) precipitation days.

1. Introduction

There is strong agreement among available data sets regarding a positive trend in annual precipitation over
the Northern Hemisphere midlatitudes in recent decades [Hartmann et al., 2013]. For most of the United
States, the positive trend in total precipitation has been accompanied by increases in extreme precipitation
[Groisman et al., 2012; Kunkel et al., 2013; Villarini et al., 2013] with well-documented impacts on human
and natural systems [Easterling et al., 2000; Parmesan et al., 2000; Pryor et al., 2013]. However, parts of the west
and southwest U.S. have experienced declining precipitation and model projections suggest further drying,
with likely impacts on water resources [Cayan et al., 2010]. Translating these changes to impacts on coupled
natural human systems requires projections at higher resolution than that provided by contemporary climate
models. This paper presents an approach that is well suited for projection of precipitation and its extremes.

Precipitation projections from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) [Taylor et al., 2012]
Atmosphere-Ocean General Circulation Models (AOGCMs), and Earth Systems Models (ESMs) forced with high
atmospheric greenhouse gases concentrations generally indicate changes in the United States that are smaller
than one standard deviation of internal variability [Collins et al., 2013], especially outside of winter. During the
winter, CMIP5 models agree that precipitation will increase across the northern half of North America in
association with elevated atmospheric moisture, increased moisture convergence, and a poleward shift in
cyclone tracks. CMIP5 projections also indicate increases in extreme precipitation in both summer and winter
[Scoccimarro et al., 2013; Toreti et al., 2013], resulting from both changes in circulation and increases in water
vapor carried to regions of moisture convergence [Meehl et al., 2005; Tebaldi et al., 2006].

The coarse resolution of contemporary climate models limits their ability to provide output that can be
directly used to assess impacts of climate change. Models often underestimate wet day precipitation intensity
and overestimate precipitation occurrence [Meehl et al., 2005; Stephens et al., 2010; Sillmann et al., 2013a], and
because AOGCM-simulated precipitation represents an area average, extremes are frequently underestimated
[e.g., Harding et al., 2013]. Coarse model resolution also impacts the simulation of precipitation in regions of
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complex topography. As an example, Mehran et al. [2014] note that most CMIP5 models overestimate
precipitation in the mountainous regions of western North America. Given the mismatch between coarse-
resolution climate model output and high-resolution projections needed to assess climate change impacts
across sectors, models are often downscaled dynamically using regional numerical models or statistically
using methods ranging in complexity from simple scaling approaches to artificial neural networks and
machine learning algorithms (see Maraun et al. [2010] and Schoof [2013] for recent reviews of statistical
downscaling methods).

The variousmethodological approaches to precipitation downscaling have their relativemerits and constitute a
major source of uncertainty. To date, high-resolution precipitation projections for large geographic regions
have been developed using only a small number of statistical approaches, with bias correction and spatial
downscaling (BCSD) and constructed analogs (CAs) being the most common approaches for applications in
the United States [see Maurer and Hidalgo, 2008; Gutmann et al., 2014]. Application of BCSD at the daily time
scale [as in Thrasher et al., 2012] also results in binary precipitation occurrence values that do not vary at
scales smaller than the climate model grid (i.e., it either rains or does not rain everywhere within a grid cell)
[Gutmann et al., 2014]. The CA approach may result in changes in statistics over monthly, seasonal, or annual
time scales, but the daily values are limited to those in this historical record (or linear combinations thereof )
[see Hidalgo et al., 2008]. Additionally, the analogs are identified using data for the entire domain, which
may impact the performance at small spatial scales [Gutmann et al., 2014]. Methods based on pattern scaling
have also become common (e.g., SimCLIM) [Warrick et al., 2005] and promising new methods, such as
asynchronous regional regression [Stoner et al., 2013], are emerging.

In this study, a simple scalingmethod is combined with a stochastic weather model to generate high-resolution
(0.25° × 0.25°) daily time series of precipitation for the contiguous United States, with the goal of improving
both the spatial detail and the temporal characteristics of the model-derived precipitation projections at
small scales. Since any number of small-scale weather sequences can be associated with a given large-scale
condition, stochastic weather models are a natural and logical choice for use in downscaling [Wilks, 2010]. Here
daily time series are generated for the period 2006–2095 for multiple climate models and three pathways
for radiative forcing from greenhouse gases. The resulting time series are then analyzed to assess changes in
total annual and seasonal precipitation as well as changes in the precipitation occurrence and intensity
processes that lead to changes in precipitation extremes.

The high-resolution observed precipitation data and CMIP5 model data are described in section 2, along with
thedescriptionof thedownscalingmethodand stochasticweathermodel. Thedownscalingmodel is validated
in section 3 and results from application to 21st century CMIP5 model projections are presented in section 4.
The results are summarized and discussed in section 5.

2. Data and Methods
2.1. Data Sources

Daily precipitation data were taken from the Climate Prediction Center (CPC) 0.25° × 0.25° Daily U.S. Unified
Precipitation data set [Higgins et al., 2000]. In the construction of this data set, observations from between
8000 and 13,000 stations underwent extensive quality control and were then gridded using a modified
Cressman [1959] scheme. The resulting grid consists of around 13,600 grid points covering the contiguous
United States from 1948 to present. Here we used the data from 1948 to 2010. Hereafter, these are simply
referred to as the observed precipitation data.

The AOGCMs and ESMs used in this study are a subset of CMIP5 models with daily precipitation output
available for the historical period (1950–2005) and three 21st century radiative forcing pathways: BCC-CSM1.1
[Xin et al., 2012], BNU-ESM, Can-ESM2 [Arora et al., 2011; von Salzen et al., 2013], CNRM-CM5 [Voldoire et al.,
2012], IPSL-CM5A-LR [Dufresne et al., 2012], MPI-ESM-LR [Stevens et al., 2013], MRI-CGCM3 [Yukimoto et al.,
2012], and NorESM1-M [Bentsen et al., 2013]. As noted by Knutti et al. [2013], many contemporary AOGCMs
share components, such their atmospheric models, so the effective number of models in the CMIP5
archive is considerably smaller than the actual number of models. The models used in this study represent
a range of AOGCMs and ESMs and reflect the breadth of the hierarchy presented by Knutti et al. [2013].
The horizontal resolution of themodels ranges from1.125°× 1.125° (MRI-CGCM3) to 1.9° × 3.75° (IPSL-CM5A-LR).
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For each model, a single integration (usually the first member) was used. Additional details about the
CMIP5 models can be found in Taylor et al. [2012]. The historical simulations used here are forced with
historical greenhouse gas concentrations and time-evolving land cover. Model projections are based on
the representative concentration pathways (RCPs) described by Moss et al. [2010]. Specifically, three RCPs
are considered here, corresponding to low (RCP 2.6), medium (RCP 4.5), and high (RCP 8.5) levels of
radiative forcing from greenhouse gases. To facilitate comparison between models and application of the
downscaling technique, output from all of the models was interpolated to common 2.5° × 2.5° grid.

2.2. Stochastic Precipitation Model

Daily precipitation can be considered the result of two processes: occurrence and intensity. The former is a
binary variable (precipitation either occurs or does not occur) whereas the latter describes how much
precipitation occurs on wet days. The most common models for precipitation occurrence are based on
Markov chains which were first applied by Gabriel and Neumann [1962]. Schoof and Pryor [2008] found that
a precipitation occurrence model based on first-order Markov dependence sufficiently reproduced the
observed distribution of wet and dry spell lengths for most U.S. locations, although more complex models
performed better at locations in the western U.S. in agreement with the findings of Wilks [1999a]. Given a
day where precipitation occurs, precipitation intensity must also be modeled. Common choices for wet day
precipitation amounts include the two-parameter gamma distribution and the three-parameter mixed
exponential distribution. While the latter was found to be superior for simulating monthly maxima by Wilks
[1999a], the former performed nearly as well as it is much easier to represent in a downscaling algorithm,
since the parameters can be easily derived from the mean and variance of wet day amounts.

In this study, the two-state (dry/wet), first-order Markov chain is used for precipitation occurrence. The
model is defined by two transition probabilities, given by p01 (the probability of a wet day following a
dry day) and p11 (the probability of a wet day following a wet day), which can be used to compute the
climatological wet day probability (π) and the lag-1 autocorrelation of the precipitation occurrence process
(r) [see Wilks, 1999b]. Precipitation amounts on wet days are randomly drawn from a gamma distribution
with shape parameter α and scale parameter β. The mean (μ) and variance (σ2) of the wet day precipitation
amounts are then given by αβ and αβ2, respectively. The daily precipitation climatology for a location can
therefore be conveniently summarized using the wet day probability (π), lag-1 autocorrelation of precipitation
occurrence (r), and the mean (μ) and variance (σ2) of wet day precipitation amounts, where the parameters
are defined separately for each calendar month.

2.3. Downscaling Methodology

Application of the precipitation model described above in a downscaling context requires that a relationship
is established between these four parameters at fine resolution and their coarse-resolution counterparts.
Here the approach of Wilks [1999b] is adopted in which the high-resolution values are adjusted by the
differences in the historical and future values. Rather than describe the method here, readers are directed to
Wilks [1999b] for details. While the approach has been widely described in the literature, this is the first paper
that has applied this approach to multiple climate models and radiative forcing pathways to produce
projections of precipitation over a large region.

In this application, the CPC precipitation data are first aggregated from their native 0.25° × 0.25° resolution
to a coarser 2.5° × 2.5° resolution, corresponding roughly to the resolution of contemporary climate models.
The scaling between station precipitation statistics and their large-scale counterparts has been previously
considered in the climate literature [see, for example, Osborn and Hulme, 1997]. In this application, the
large-scale gridded precipitation is simply the average of the high-resolution gridded data, so extrapolation
from unsampled regions is not a concern. The result of the aggregation is two sets of parameters
corresponding to the historical coarse (hc)-resolution data (πhc, rhc, μhc, σ

2
hc) and historical fine (hf)-resolution

(πhf, rhf, μhf, σ
2
hf) data. Development of downscaled future climate projections is then reduced to determining

the future fine (ff)-resolution parameter set (πff, rff, μff, σ
2
ff ) corresponding to a future coarse (fc)-resolution

parameter set, given by (πfc, rfc, μfc, σ
2
fc) and easily derived from the standard daily precipitation output

provided by CMIP5 models.

The downscaled values of π and r are obtained by adjusting the historical fine-resolution values by the
difference of the historical and future coarse-resolution values, following a log-odds transform that
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maintains their natural bounds
(0 ≤ π ≤ 1, �1 ≤ r ≤ 1). Downscaled
values of the wet day precipitation
mean and variance are assumed to be
proportional to their coarse-resolution
counterparts as described by Wilks
[1999b]. The methodology therefore
assumes that changes in π, r, μ, and σ2

will be evenly distributed over the area
with a grid cell of a climate model. To
ensure that the large-scale changes
represented by the parameter set
(πfc, rfc, μfc, σ

2
fc) reflect changes in the

model-simulated climate rather than
differences between historical

observations and historical climate model simulations, for the development of projections, both the
historical and future parameter sets ((πhc, rhc, μhc, σ

2
hc) and (πfc, rfc, μfc, σ

2
fc)) are defined using the climate

model data.

The downscaled parameter set (πff, rff, μff, σ
2
ff) can be conveniently used to generate daily precipitation time

series as described by Wilks [1999b]. Given a generated series, a wider array of precipitation statistics can be
considered. A subset of the indices developed by the World Meteorological Organization Commission for
Climatology (CCI)/World Climate Research Programme (WCRP) project on Climate Variability and Predictability
(CLIVAR) Expert Team on Climate Change Detection and Indices (ETCCDI) [see Klein Tank et al., 2009] is used here
to characterize contemporary and potential future precipitation climates (Table 1). These indices have been
widely adopted in studies of historical climate variability and change [e.g., Alexander et al., 2006;Hartmann et al.,
2013] and have recently been considered in the context of coarse-resolution CMIP5 simulations by Sillmann
et al. [2013a, 2013b]. Wet day probability was not included in ETCCDI list of indices but is also considered here.

3. Model Validation

The applicability of the downscaling model described in section 2 to a changed climate was assessed by
validating the model using analogs from the historical record as in Wilks [1999b]. Specifically, the CPC data
were used to calculate the average U.S. precipitation for each year from 1948 to 2010. The 20 driest years
and the 20 wettest years were then identified by ranking the mean annual total precipitation across all grid
points. Using these criteria, the 20 driest years (in ranked order) are 1956, 1963, 1952, 1976, 1988, 1954,
2000, 1966, 1955, 2001, 1962, 1980, 1949, 2002, 1999, 1965, 1960, 1967, 1987, and 1989. The 20 wettest
years (also in ranked order) are 1983, 1996, 1998, 1982, 1973, 1995, 1979, 1991, 1975, 1993, 1997, 1990,
2010, 2004, 1957 2009, 1992, 1986, 1972, and 2008. Using these data, parameter sets were computed using
the CPC data at both fine- (0.25° × 0.25°) and coarse- (2.5° × 2.5°) resolution CPC data. The wettest 20 years
were first considered as the baseline climate and the coarse-resolution parameter set from the driest 20 years
was then considered as the future climate projection and used to derive corresponding fine-resolution
statistics. The role of the wettest and driest years was then reversed so that the dry years provided the baseline
and the wet years were the target. Wilks [1999b] used separation of wet and dry climates to validate the
methodology. It is used here primarily to ensure that the method is capable of adapting to potentially large
precipitation changes associated with changes in 21st century climate.

For each validation case, ten 20 year time series were generated. The resulting series were then used to
compute a range of statistics (Table 1) and the mean of the 10-member ensemble was compared to the
observed data for the validation period. Figure 1 shows the results for the wet day probability (Pwet),
the simple daily intensity index (SDII; i.e., the mean wet day precipitation amount), and the total annual
precipitation (Ptot) and indicates that the downscaling model coupled with the stochastic weather
generator is able to reproduce the fine-scale variations in precipitation characteristics between wet and dry
periods. The observed and generated differences between the wet years and dry years are shown in Figure
2. As expected, the difference between wet years and dry years in the downscaled data is largely manifest

Table 1. Metrics Used to Characterize Current and Projected
Precipitation Climatesa

Abbreviation Description

Pwet Wet day probability
SDII Simple daily intensity index: mean wet day

precipitation intensity (mm)
Ptot Precipitation total (mm)
RX1DAY 1 day maximum precipitation amount (mm)
R10mm Number of heavy precipitation days (>10mm)
R20mm Number of very heavy precipitation days (>20mm)
CDD Maximum number of consecutive dry days
CWD Maximum number of consecutive wet days

aAs recommended by the World Meteorological Organization
Commission for Climatology (CCI)/World Climate Research Programme
(WCRP) project on Climate Variability and Predictability (CLIVAR) Expert
Team on Climate Change Detection and Indices (ETCCDI).
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as a coarse-resolution difference, but with some subgrid-scale variability that could not be derived from
the coarse-resolution data alone. Averaged over the study region and the calendar year, the downscaled
data exhibit a small positive bias in total precipitation during the wet validation period and a small
negative bias during the dry validation period. These biases are smaller than those reported by Gutmann
et al. [2014] for a range of downscaling methods applied to reanalysis data, although the comparison is
only indirect since the downscaling conducted by Gutmann et al. [2014] focused on downscaling from
reanalysis, the current validation exercise focuses on rescaling observed precipitation.

Validation statistics for the ETCCDI precipitation metrics indicate good agreement between the downscaled
and observed data for the broad range of descriptors considered (Table 2). In addition to standard model
evaluation statistics such as root-mean-square error (RMSE) and mean absolute error (MAE), Table 2 also
shows two varieties of relativemean absolute error defined relative to observed value (RMAE1) and relative to
the observed interannual variability (RMAE2). Errors tend to be slightly larger in both absolute value and
relative to interannual variability for the wet years, but are similar relative to the magnitude of observed
values. For both validation cases, statistics show better performance for ETCCDI metrics that depend only on
daily values (e.g., Pwet and Ptot) and less well for wet and dry spells (e.g., CDD and CWD). Nevertheless, for all of
the ETCCDI metrics considered, the average errors are small relative to both the magnitude of observed
values and the observed interannual variability.

The validation experiment also provided an opportunity to examine the validity of the scaling assumption
underlying the downscaling technique described in section 2.3. Because the future precipitation climate may
differ substantively from the historical precipitation climate, a lack of consistency in the ratio of coarse-resolution

Figure 1. Observed and downscaled precipitation climates (a–f ) for the driest 20 years and (g–l) for the wettest 20 years in
the historical record as defined in section 3. Results are shown for the overall wet day probability (Pwet), the simple daily
intensity index (SDII), and the total annual precipitation (Ptot).
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to fine-resolution parameters during wet and dry periods could reduce confidence in projections. While the
validation experiment described in this section addresses this to some extent, the difference in the ratios
of coarse-resolution to fine-resolution values was additionally computed for each season and for each
downscaled parameter (π, r, μ, and σ2). The differences were generally small but were deemed statistically
significant (on the basis of a Wilcoxon rank sum test with α=0.05) at some grid points for each test. The spatial
distribution of points with significant differences did not exhibit any coherent spatial pattern. The proportion
of points with significant differences was generally small, ranging from 0.05 to 0.11 depending on the season
and parameter, reflecting a lack of evidence against the scaling assumption at most grid points.

4. Precipitation Projections

To develop future projections, the climate models described in section 2.1 were downscaled using the
approach described in section 2.3. Rather than use the climate model grid point data directly, we average
the output over nine grid points centered on the grid point of interest. For summary purposes, results are
shown as differences between the multimodel ensemble median and historical observations (1950–2005) for
three 30 year time periods representing the early, middle, and late 21st century: 2006–2035, 2036–2065, and
2066–2095. For each set of results, statistical significance was assessed by conducting a signed ranks test
with α= 0.05.

Figure 2. Differences between downscaled and observed (a, d) wet day probability (Pwet), (b, e) simple daily intensity index
(SDII (mm)), and (c, f ) total annual precipitation (Ptot) for the validation exercise. Also shown are the downscaled and
observed differences between the wettest and driest 20 years in the historical record as defined in section 3. Results are
shown for the overall (g, j) wet day probability (Pwet), (h, k) simple daily intensity index (SDII), and (i, l) total annual
precipitation (Ptot).
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Projected changes in annual total precipitation are presented in Figure 3. General features of the projections
include a decline in precipitation in the Southwest U.S. and an increase in precipitation in the Northeast, in
the high elevations of the Rocky Mountains, and in the Pacific Northwest. Given the similarity in radiative
forcing in the early period, the relatively small differences in the maps are expected. The smallest changes
are associated with the RCP 2.6 scenario, which is characterized by maximum CO2 concentrations in the
midcentury period and the lowest overall radiative forcing at the end of the century. For the RCP 4.5 and RCP
8.5 scenarios, the patterns of change are similar, but the intensity changes as a function of time and radiative
forcing consistent with pattern scaling [Tebaldi and Arblaster, 2014]. As an example, note that the changes
associated with moderate increases in radiative forcing during the late-century period (RCP 4.5, 2066–2095)
closely resemble the changes associated with high levels of radiative forcing during the midcentury period
(RCP 8.5, 2036–2065). Under high levels of radiative forcing, the late-century period is characterized by
precipitation increases exceeding 200mm per year in the high elevations of the Rocky Mountains and within
the high-precipitation regions of the Pacific Northwest. Increases in precipitation are also projected for the
Northeast region. Decreases of 50–100mm per year are common for locations in southern Texas with small
decreases for parts of the Southwest region. These results are qualitatively similar to those presented in
summary graphics from larger ensembles of CMIP5 models [e.g., Collins et al., 2013]. However, as shown in
Figure 3, the higher spatial resolution associated with the downscaling application results in much greater
spatial detail, especially in areas of substantive relief such as the intermountain West.

Table 2. Validation Statistics for Statistical Downscalinga

Dry Years Wet Years

RMSE MAE RMAE1 RMAE2 RMSE MAE RMAE RMAE2

Annual
Pwet 0.01 0.01 0.04 0.23 0.01 0.01 0.04 0.25
SDII 0.4 0.3 0.05 0.27 0.4 0.3 0.04 0.27
Ptot 40.9 27.4 0.05 0.20 48.5 33.2 0.05 0.22
RX1DAY 5.3 3.9 0.09 0.25 5.7 4.1 0.09 0.25
R10mm 2.0 1.5 0.10 0.30 2.6 2.0 0.11 0.37
R20mm 1.0 0.7 0.17 0.24 1.3 0.9 0.17 0.29
CDD 5.8 3.6 0.08 0.25 5.5 3.6 0.09 0.28
CWD 0.9 0.7 0.11 0.37 0.8 0.6 0.09 0.32

DJF
Pwet 0.02 0.01 0.07 0.37 0.02 0.01 0.07 0.35
SDII 0.7 0.5 0.08 0.39 0.6 0.5 0.07 0.38
Ptot 20.7 12.2 0.10 0.09 21.0 12.4 0.09 0.08
RX1DAY 3.7 2.6 0.12 0.17 4.3 2.9 0.12 0.18
R10mm 0.7 0.4 0.25 0.08 0.9 0.6 0.25 0.10
R20mm 0.4 0.3 0.37 0.09 0.5 0.3 0.38 0.09
CDD 2.9 2.1 0.09 0.17 2.8 2.0 0.10 0.19
CWD 0.6 0.5 0.12 0.23 0.7 0.5 0.12 0.24

JJA
Pwet 0.02 0.01 0.07 0.39 0.02 0.02 0.07 0.41
SDII 0.7 0.5 0.08 0.43 0.8 0.5 0.08 0.46
Ptot 16.0 11.7 0.08 0.09 18.2 13.4 0.08 0.10
RX1DAY 4.4 3.2 0.12 0.21 4.7 3.5 0.12 0.21
R10mm 0.8 0.6 0.17 0.12 0.9 0.7 0.17 0.14
R20mm 0.5 0.3 0.28 0.12 0.6 0.4 0.30 0.13
CDD 3.1 1.9 0.10 0.15 2.8 1.8 0.10 0.17
CWD 0.6 0.5 0.12 0.27 0.6 0.5 0.10 0.22

aThe left-hand side of the table shows statistics resulting from developing the model using the 20 wettest years and
then applying it to the 20 driest years. The right-hand side of the table shows statistics resulting from developing the
model using the 20 driest years and then applying it to the 20 wettest years. Results are shown for the annual statistics
as well as the winter (DJF) and summer (JJA) seasons. The metrics for describing the precipitation climate are
described in Table 1. Statistics presented include root-mean-square error (RMSE), mean absolute error (MAE), and
two formulations of relative mean absolute error defined as MAE divided by the mean value (RMAE1) and as the
MAE divided by the standard deviation of annual or seasonal values (RMAE2).
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Changes in annual total precipitation have the potential to mask important seasonal changes in precipitation.
Furthermore, it is often important to differentiate between changes in total precipitation resulting from
the occurrence and intensity processes described in section 2.2. Figure 4 shows the changes for each
climatological season and for the wet day probability (Pwet), simple daily intensity index (SDII; mm),
and the total seasonal precipitation (Ptot; mm). The projections differ substantively among the seasons,
with the winter (December-January-February; DJF) and spring (March-April-May; MAM) projections for total
precipitation bearing the strongest resemblance to the annual totals presented in Figure 3. During the summer
(June-July-August; JJA), projected changes are not statistically significant for most regions, but small decreases in
precipitation are projected for the south central U.S. and peninsular Florida. Across the Northern U.S., the changes
in autumn (September-October-November; SON) precipitation are positive but are generally small relative to
changes during winter and spring. The Southeast U.S. is projected to receive more precipitation during the
autumn in contrast to the declines or insignificant changes projected for the other seasons. As with the annual
totals, these seasonal changes are in good agreement with the coarse-resolution changes described for the
CMIP5 multimodel ensemble by Collins et al. [2013], but with additional spatial detail in mountainous areas.

A notable feature of the projections is that, with the exception of a small number of grid points in the SW, all
of the significant changes in precipitation intensity (SDII) are associated with increases (Figure 4). Regional
decreases in total precipitation therefore tend to be associated with changes in the precipitation occurrence
process. As shown in Figure 4, parts of the south and southwest U.S. are projected to experience as much as
10% fewer precipitation events during the late 21st century under strong radiative forcing in agreement
with the findings reported by Polade et al. [2014]. Decreases in the frequency of wet days also explain the
projected decline in summer precipitation in the south central U.S. as well as the differences in West
Coast and Northeast U.S. projections during autumn relative to winter and spring.

Changes in precipitation frequency are also manifest as changes in the duration of dry spells and wet spells.
Among the ETCCDI metrics (Table 1) are CDD, the mean annual maximum number of consecutive dry
days, and CWD, the mean annual maximum number of consecutive wet days. Projections of CDD and
CWD for the late-century period (2066–2095) are shown in Figure 5. A large increase in CDD is projected
for some grid points in the Southwest, especially under high levels of radiative forcing. Increases of up to
4 days are projected for parts of the Eastern U.S. under all levels of radiative forcing. These findings are
consistent with those of Sillmann et al. [2013b] who found an increase in dry spell length across the

Figure 3. Projected changes in annual total precipitation (inmm) based on the ensemblemean of downscaled output from
eight AOGCMs. Results are shown for the (top row) early 21st century, (middle row) middle 21st century, and (bottom row)
late 21st century and for (left column) low, (middle column) medium, and (right column) high levels of radiative forcing
from greenhouse gases. Changes in hatched areas are not significant at the 95% level.
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Southern U.S. in a multimodel ensemble under the RCP 8.5 scenario. Under low levels of radiative forcing,
the Northwest and Central U.S. are projected to experience shorter dry spell duration, with smaller
decreases as radiative forcing increases (Figure 5). The mean annual maximum wet spell duration (CWD)
is expected to increase in the Northeast U.S. and decrease along the Gulf Coast and Florida peninsula
and throughout the Pacific Northwest. Combined with the projections of changes in daily precipitation
intensity (Figure 4), these results suggest changes in the serial correlation of precipitation in several
regions. In the northeast, the projections are characterized by more intense events separated by longer
dry periods, while locations in the northwest are projected to experience larger events separated by
shorter dry periods.

Projected increases in daily precipitation intensity drive an overall increase in the mean annual maximum
single-day precipitation total (RX1DAY) as well as the number of heavy (>10mm; R10mm) and very heavy
(>20mm; R20mm) precipitation days (Figure 6). With the exception of parts of the south, significant increases
in RX1DAY are projected for most of the contiguous U.S. during winter and spring. Like the daily intensity (SDII)
and total precipitation (Ptot), changes in RX1DAY are smallest during the summer and increases in RX1DAY are
limited primarily to locations in the Northwest U.S. and extreme Northeast U.S. Extreme peninsular Florida is
projected to experience a decrease in RX1DAY during summer. Projections for autumn are characterized by
significant increases in RX1DAY for most locations in the western half of the U.S. as well as the Great
Lakes region.

The number of heavy precipitation events tends to correlate with seasonal total precipitation, as noted by
Frich et al. [2002]. As shown in Figure 6, the largest increases in R10mm and R20mm occur in regions of large
seasonal precipitation change, such as the West Coast during winter, the Northeast U.S. during winter and

Figure 4. Projected changes in seasonal (left column) wet day probability (Pwet), (middle column) simple daily intensity
index (SDII; mm), and (right column) total precipitation (Ptot; mm) under high radiative forcing (RCP 8.5) for 2066–2095.
Results are based on the ensemble mean of downscaled output from eight AOGCMs. Changes in hatched areas are not
significant at the 95% level.
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spring, and the Southeast U.S. during autumn (c.f. Figures 6 and 4). Under the RCP 8.5 scenario, some of these
regions are projected to have an additional six to ten 10mm precipitation events with several additional
20mm events. These findings are consistent with those of Lau et al. [2013] who report a global increase in
heavy rainfall with increases on both the East and West Coasts of the U.S.

5. Summary and Discussion

High-resolution (0.25° × 0.25°) 21st century precipitation projections have been developed for the contiguous
U.S. by scaling the descriptors of the precipitation occurrence and intensity processes and then stochastically
generating daily precipitation time series. The downscaling approach was applied to output from eight
CMIP5 models using three scenarios of 21st century greenhouse gas forcing. In terms of spatial pattern, the
projections exhibit a strong level of agreement with their coarse-resolution counterparts but provide much
greater detail for regional analysis. The downscaled series were also analyzed seasonally and in terms of
changes in multiple metrics describing occurrence and intensity to provide insight into the projections.

The largest changes in annual precipitation totals are increases in the Northeast, Pacific Northwest, and in the
high elevations of the Rocky Mountains. The magnitude of the increase is highly dependent on the level of
radiative forcing from greenhouse gases. Parts of the Southern U.S. are projected to experience moderate
precipitation decreases under all forcing scenarios. Increases in precipitation were further found to be
associated primarily with changes in cold season precipitation, while significant precipitation decreases
occurred in parts of the Southern U.S. in all seasons except autumn. Increases in precipitation were found to
be associated primarily with the precipitation intensity process while decreases were found to be associated
primarily with the precipitation occurrence process. Many locations in the Eastern U.S. are projected to

Figure 5. Projected changes in (a) the length of the average annual maximum dry spell length (CDD, in days) and (b) the
length of the average annual maximum wet spell length (CWD, in days). Results are shown for the late 21st century
(2066–2095) and for low, medium, and high levels of radiative forcing from greenhouse gases. Results are based on the
ensemble mean of downscaled output from eight AOGCMs. Changes in hatched areas are not significant at the 95% level.
Note that different scales are used in Figures 5a and 5b and that the scale in Figure 5b is reversed so that the blue colors
always represent wetter conditions (i.e., shorter dry spells or longer wet spells).
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experience an increase in the length of extreme dry spells and an increase in the length of the longest
wet spells, reflecting an increase in the serial correlation of precipitation. Many western locations, on
the other hand, are projected to experience shorter dry spells and wet spells, reflecting a decrease in the
serial correlation of precipitation. Most U.S. locations are projected to experience an increase in extreme
precipitation, as manifest in changes in the mean annual single-day maximum precipitation, as well as the
number of heavy (>10mm) and very heavy (>20mm) precipitation days.

In the canon of statistical downscaling techniques, the scaling approach applied here is relatively simple and
practitioners should always be cognizant of the relative merits of different downscaling tools. The method
applied in this paper focuses on improvement of (1) the spatial detail and (2) the representation of the daily
precipitation process. Because the method is based on scaling of climate model output, areas characterized
by sharp contrasts in the native climate model output will be similarly characterized in the high-resolution
downscaled products. Impact studies, especially those focused on hydrology in large watersheds, often require
spatially autocorrelated data. While the series described here are not related at neighboring grid points, several
approaches exist and could be easily implemented to include spatial autocorrelation. The projections might
also be used, in conjunction with projections of other variables, in crop modelling applications. The approach is
also adaptable to even higher-resolution data, such as the new daily PRISM (Parameter-elevation Relationships
on Independent Slopes Model) data with ~4 km resolution (see Daly et al. [2008] and prism.oregonstate.edu).

Given the computational expense of applying even a simple statistical downscaling approach to multiple
models and radiative forcing trajectories, it is important to establish that value has been added. Several
recent studies have presented smoothed or interpolated CMIP5 output for a range of precipitation metrics.
The results of this study exhibit qualitative agreement with these analyses of raw CMIP5 data in terms of

Figure 6. Projected changes in seasonal values of (left column) the average single largest precipitation event (RX1DAY; mm),
(middle column) the number of heavy (>10mm) precipitation events (R10mm), and (right column) the number of very heavy
(>20mm) precipitation events (R20mm) under high radiative forcing (RCP 8.5) for 2066–2095. Results are based on the
ensemble mean of downscaled output from eight AOGCMs. Changes in hatched areas are not significant at the 95% level.
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regions where the models agree on the sign of change (cf. Figure 4 with Figure 2 ofMaloney et al. [2014] and
Figure 6 of this paper with Figure 7 of Wuebbles et al. [2014]). However, the approach presented here also
adds spatial detail, especially in areas of topographic relief. Because the methodology also relates the
precipitation statistics at coarse resolution to those at fine resolution, it improves the simulation of fine
resolution wet day probability and mean wet day precipitation intensity relative to raw model output. As a
demonstration of this added detail, Figure 7 shows the multimodel ensemble wet day probability (Pwet),
mean wet day amount (SDII; mm), and the seasonal total (Ptot; mm) for winter (DJF) and summer (JJA). It is
evident from Figure 7 that downscaling effectively improves the spatial detail present in the projections
but also improves the models overestimation of precipitation occurrence and underestimation of intensity
noted in the introduction.

In this paper, we have presented a relatively simple approach for deriving high-resolution precipitation
projections and quantified the resulting changes in precipitation occurrence and intensity based on a
multimember climate model ensemble. The physical processes associated with the projected changes are
the subject of ongoing research. For example, Li et al. [2013] found that models differ substantially in their
simulation of the North Atlantic subtropical high, resulting in differences in their simulation of precipitation
variability in the Southeast U.S. Because precipitation depends not only on the presence of adequate
atmospheric moisture but also on its transport to regions of convergence, it is likely that the results presented
here are driven by a combination of changes in atmospheric moisture content and circulation changes.
Additional work is needed to assess the relative contributions of these drivers to regional changes in

Figure 7. Projections of wet day probability (Pwet), the simple daily intensity index (SDII; mm), and the precipitation total
(Ptot; mm) as derived from raw and downscaled CMIP5 models. The maps show the ensemble average from (a–c and g–i)
eight CMIP5 models and (d–f and j–l) their downscaled counterparts. Results are shown for the winter (DJF) in the first two
rows and for summer (JJA) in the last two rows.
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precipitation and ultimately increase the confidence in such projections. Further work is also needed to
compare the temporal and spatial characteristics of precipitation projections derived from the relatively
simple downscaling approach presented here with projections derived using other methods that have been
more widely applied for assessing hydrological impacts of changes in climate. Further work on the validity of
the stationarity assumption underlying this and other statistical downscaling approaches is also now
possible as a result of increasing GCM resolution and the development of “perfect model” approaches
[e.g., Barsugli et al., 2013] and should be the focus of additional future research. Lastly, the implications of
the projections presented here will likely depend on changes in other variables, primarily air temperature.
This is especially important for quantifying impacts at high elevations, where changes in temperature
might impact the partitioning of frozen and liquid precipitation, with important consequences for regional
hydrology. Development of high-resolution projections for temperature is the subject of ongoing research.
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