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The bootstrap is a general methodology to estimate the standard error of the test

statistic. In fact, bootstrap methods can be applied to regression models and hypothesis

testing. Consider testing H0 : Aθ = c versus H1 : Aθ 6= c where A is a known r × p

matrix of rank r and c is a known r × 1 vector. Let θ̂ be a consistent estimator of θ and

make a bootstrap sample wi = Aθ̂
∗

i − c for i = 1, ..., B. Make a prediction region for the

wi and determine whether 0 is in the prediction region.

The percentile method uses an interval that contains dB ≈ kB = dB(1 − δ)e of the

T ∗

i,n from a bootstrap sample T ∗

1,n, ..., T
∗

B,n, where the statistic Ti,n is an estimator of θ based

on a sample of size n.

It will be shown that the Olive (2015b) prediction region method generalizes the

percentile method for r = 1 to r ≥ 1. This method can be widely applied, but should be

regarded as exploratory unless theory shows that the prediction region method is a large

sample test.

Moreover, this prediction region method will be compared to the Efron (2014) con-

fidence interval for variable selection and used to bootstrap a correlation matrix. In-

deed, the prediction region method can also be justified as a special case of the per-

centile method where the test statistic is the squared Mahalanobis distance D2∗
i =

(T ∗

i − T ∗)T [S∗

T ]−1(T ∗

i − T ∗)) where wi = T ∗

i , and T ∗ and S∗

T are the sample mean and

sample covariance matrix of T ∗

1 , ..., T
∗

B.
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INTRODUCTION

The bootstrap was introduced in 1979 as a computer-based method for estimating the

standard error of test statistic (T = θ̂). In statistics, bootstrapping can refer to any test or

metric that relies on random sampling with replacement. Bootstrapping allows assigning

measures of accuracy (defined in terms of bias, variance, confidence intervals, prediction

error or some other such measure) to sample estimates. Bootstrap is more important when

the theoretical distribution is unknown.

Bootstrap methods depend on the notion of a bootstrap sample. Let F̂ be the empirical

distribution, putting probability 1/n on each of the observed values yi, i = 1, 2, ..., n. A

bootstrap sample is defined to be a random sample of size n drawn from F̂ , say Y ∗ =

(y∗1, y
∗

2, ..., y
∗

n). The star notation indicates that Y ∗ is not the actual data set Y , but rather a

randomized psedo data for Y . In fact, the bootstrap data points y∗1 , y
∗

2, ..., y
∗

n are a random

sample of size n drawn with replacement from the population of a n objects (y1, y2, ..., yn).

Efron and Tibshirani (1993, p. 46) discussed the bootstrap algorithm which works

by drawing many independent bootstrap samples, evaluating the corresponding bootstrap

replications, and estimating the standard error of θ̂ by the empirical standard deviation

of the replications. The result is called the bootstrap estimate of standard error, denoted

by ŝeB, where B is the number of bootstrap sample used. The limit of ŝeB as B goes to

infinity is the ideal bootstrap estimate of seF (θ̂),

limB→∞ ŝeB = seF̂ = seF̂ (θ̂∗)

The fact that ŝeB approaches seF̂ as B goes to infinity amounts to saying that an

empirical standard deviation approaches the population standard deviation as the number

of replications grows large. The ”population” in this case is the population of values

θ̂∗ = s(X∗) , where F̂ → (x∗1, x
∗

2, ..., x
∗

n) = X∗.
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Bootstrap methods are widely used for many areas in statistics. The application of

bootstrap methods to regression models approximate the distribution of the coefficients and

the distribution of the prediction errors. It may also be used for constructing hypothesis

tests. In the following chapters we describe bootstrap methods that are directly designed

for hypothesis testing. Indeed, the chapter 1 compares percentile method and prediction

region method. Chapter 2 examines the method for multiple linear regression and method

for variable selection, and chapter 3 gives an example and some simulations.
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CHAPTER 1

PERCENTILE METHOD VS PREDICTION REGION METHOD

Consider testing H0 : Aθ = c versus H1 : Aθ 6= c where A is a known r× p matrix of

rank r. If a confidence region can be constructed for Aθ − c, then fail to reject H0 if 0 is

in the confidence region, and reject H0 if 0 is not in the confidence region. Given training

data w1, ...,wn, a large sample 100(1 − δ)% prediction region for a future test value wf is

a set An such that P (wf ∈ An) → 1− δ as n→ ∞, while a large sample confidence region

for a parameter θ is a set An such that P (θ ∈ An) → 1 − δ as n → ∞. The region An is

typically constructed using the training data.

The percentile method, which is an interval that contains dB ≈ kB = dB(1−δ)e of the

T ∗

i,n from a bootstrap sample T ∗

1,n, ..., T
∗

B,n where the statistic Ti,n is an estimator of θ based

on a sample of size n. Often the n is suppressed. Here dxe is the smallest integer ≥ x, e.g.

d7.8e = 8. Let T ∗

(1), T
∗

(2), ..., T
∗

(B) be the order statistics of the bootstrap sample. Then one

version of the percentile method discards the largest and smallest dBδ/2e order statistics,

resulting in an interval (LB , UB) that is a large sample 100(1 − δ)% confidence interval for

θ, and also a large sample 100(1− δ)% prediction interval for a future bootstrap value T ∗

f,n.

Olive (2014, p. 283) recommends using the shorth(c) estimator for the percentile

method. Let c = kB, and let Wi = T ∗

i,n. Let W(1), ...,W(B) be the order statistics of the Wi.

Compute W(c) −W(1),W(c+1) −W(2), ...,W(B) −W(B−c+1). Let [W(s),W(s+c−1)] correspond

to the closed interval with the smallest distance. Then reject H0 : θ = θ0 if θ0 is not in

the interval. The shorth interval tends to be shorter than the interval that deletes the

smallest and largest dBδ/2e observations Wi when the Wi do not come from a symmetric

distribution. Frey (2013) showed that for large Bδ and iid data, the shorth(kB) PI has

undercoverage ≈ 1.12
√

δ/B, and used the shorth(c) estimator as the large sample 100(1−

δ)% prediction interval where c = dB[1− δ+1.12
√

δ/B ] e. Hence if B = 1000, there may

be about 1% undercoverage using c = kB .
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Typically expect a large sample 100(1 − δ)% prediction region for a future value of

a statistic Tf,n to have higher coverage for θ than a large sample 100(1 − δ)% confidence

region for θ, although values of Tf,n are reasonable values of θ. To see this claim, assume

√
n(T − θ)

D→ Np(0,Σ). Then a large sample 100(1 − δ)% confidence region for θ is

An = {w : (w−T )TΣ̂
−1

(w−T ) ≤ χ2
p,1−δ}. If Tf is independent of T , then

√
n(Tf −T )

D→

Np(0, 2Σ). Hence P (Tf ∈ An) = P [(Tf −T )T Σ̂
−1

(Tf −T ) ≤ χ2
p,1−δ] → P (X ≤ χ2

p,1−δ/2) <

1− δ where X ∼ χ2
p and P (X ≤ χ2

p,1−δ) = 1− δ. Hence this large sample prediction region

for Tf needs a cutoff twice as large as the cutoff for the confidence region. Thus a large

sample prediction region for Tf tends to be liberal (coverage is higher than the nominal

coverage) as a confidence region for θ when Tf is a consistent estimator of θ.

The percentile method is an exception since, heuristically, the bootstrap distribution

tends to be centered about the statistic T rather than θ. “Bad samples” are less likely

to cover θ, but across many independent samples the coverage probability tends to 1 − δ.

(Also the percentile method is a large sample 100(1 − δ)% prediction region for a future

value T ∗

f,n of the bootstrap statistic, not for a future value of the statistic Tf,n.)

Several additional approximations are needed for the bootstrap. Suppose the zi are

iid from a distribution with cdf F , and Fn is the empirical cdf that puts probability 1/n

on each observed value of zi for i = 1, ..., n. Let T (F ) denote the statistic computed from

a sample of size n from F , and let T (Fn) denote the statistic computed from a sample of

size n from Fn. Want T (Fn)− T (F )
P→ 0 as n→ ∞ so that iid samples from the empirical

distribution can be used in probability calculations. If E(Tin) = θn → θ, need n large

enough so that θn ≈ θ.

Some notation is needed to give the prediction region used to bootstrap a hypothesis

test. Suppose w1, ...,wn are iid p× 1 random vectors with mean µ and nonsingular covari-

ance matrix Σw. Let a future test observation wf be independent of the wi but from the

4



same distribution. Let (w,S) be the sample mean and sample covariance matrix where

w =
1

n

n
∑

i=1

wi and S = Sw =
1

n − 1

n
∑

i=1

(wi −w)(wi − w)T. (1.1)

Then the ith squared sample Mahalanobis distance is the scalar

D2
w = D2

w(w,S) = (w −w)T S−1(w − w). (1.2)

Let D2
i = D2

wi
for each observation wi. Let D(c) be the cth order statistic of D1, ..., Dn.

Following Olive (2013), a large sample 100(1 − δ)% prediction region for wf is the hyper-

ellipsoid

An = {w : D2
w(w,S) ≤ D2

(c)} = {w : Dw(w,S) ≤ D(c)}. (1.3)

If n is large, can use c = kn = dn(1− δ)e. If n is not large, using c = dn where dn decreases

to kn, can improve small sample performance. Olive (2013) showed that this prediction

region is a large sample 100(1 − δ)% prediction region for a large class of distributions,

although regions with smaller volumes may exist. Note that the result follows since if Σw

and S are nonsingular, then the Mahalanobis distance is a continuous function of (w,S).

Let D = D(µ,Σw). Then Di
D→ D and D2

i
D→ D2. Hence the sample percentiles of

the Di are consistent estimators of the population percentiles of D at continuity points of

cumulative distribution function (cdf) of D. The prediction region estimates the highest

density region for a large class of elliptically contoured distributions. See Olive (2015a) for

more on prediction regions.

Following Olive (2015b), the prediction region method makes a bootstrap sample

wi = Aθ̂
∗

i − c for i = 1, ..., B. Make the prediction region (1.3) for the wi and determine

whether 0 is in the prediction region. The prediction region method can also be justified

as being a special case of the percentile method as follows.

Consider testing H0 : Aθ = c versus H1 : Aθ 6= c, and the statistic Ti = Aθ̂ − c.

If E(Ti) = µ and Cov(Ti) = ΣT were known, then the squared Mahalanobis distance

D2
i (µ,ΣT ) = (Ti − µ)T Σ−1

T (Ti − µ) would be a natural statistic to use if the percentile

5



D2
1−δ(µ,ΣT ) was known. The prediction region method bootstraps the squared Maha-

lanobis distances, forming the bootstrap sample wi = T ∗

i = Aθ̂
∗

i − c and the squared Ma-

halanobis distances D2∗
i = D2

i (T
∗,S∗

T ) = (T ∗

i −T ∗)T [S∗

T ]−1(T ∗

i −T ∗) where T ∗ =
1

B

B
∑

i=1

T ∗

i

and S∗

T =
1

B − 1

B
∑

i=1

(T ∗

i − T ∗)(T ∗

i − T ∗)T are the sample mean and sample covariance

matrix of T ∗

1 , ..., T
∗

B. Then the percentile method that contains the smallest dB ≈ B(1− δ)

distances is used to get the closed interval [0, D(dB)] = [0, D∗

(dB)]. If H0 is true and E[θ̂] = θ,

then µ = 0. Let D2
0 = T ∗

T
[S∗

T ]−1T ∗ and fail to reject H0 if D0 ≤ D(dB) and reject H0 if

D0 > D(dB). This percentile method is equivalent to computing the prediction region (1.3)

on the wi = T ∗

i and checking whether 0 is in the prediction region.

Note that the percentile method makes an interval that contains dB ≈ B(1− δ) of the

scalar valued T ∗

i . The prediction region method makes a hyperellipsoid that contains dB

of the r × 1 vectors T ∗

i = wi, and equivalently, makes an interval [0, D(dB)] that contains

dB of the D∗

i = Di.

When r = 1, a hyperellipsoid is an interval, so the prediction region method is a

special case of the percentile method. Suppose the parameter of interest is θ, and there

is a bootstrap sample T ∗

1 , ..., T
∗

B. Let T
∗

and S2∗
T be the sample mean and variance of the

T ∗

i . Then the squared Mahalanobis distance D2
θ = (θ − T

∗

)2/S2∗
T ≤ D2

(dB) is equivalent to

θ ∈ [T
∗ − S∗

TD(dB), T
∗

+ S∗

TD(dB)], which is an interval centered at T
∗

just long enough to

cover dB ≈ B(1 − δ) of the T ∗

i . Hence this interval is a version of the percentile method.

The point of the above discussion is that prediction region method can be thought

of as a variant of the percentile method applied to vector valued statistics, and is likely

widely applicable. The method should be regarded as exploratory until theory proves that

the method is a large sample test, but similar remarks apply to other bootstrap methods

such as the percentile method.

6



CHAPTER 2

BOOTSTRAP METHODS

2.1 BOOTSTRAP TEST FOR MULTIPLE LINEAR REGRESSION

Consider the multiple linear regression model Yi = xT
i β + ei for i = 1, ..., n, written

in matrix form as Y = Xβ + e where Y is n × 1 and X is n × p. Consider testing

H0 : Aβ = c where A is an r × p matrix with full rank r. To perform the test, suppose

a bootstrap sample β̂
∗

1, ..., β̂
∗

B has been generated. Form the prediction region (1.3) for

w1 = Aβ̂
∗

1 − c, ...,wB = Aβ̂
∗

B − c. If 0 is in the prediction region, fail to reject H0,

otherwise reject H0.

It is useful to compare the bootstrap tests with classical tests. Methods for bootstrap-

ping this model are well known. The estimated covariance matrix of the (ordinary) least

squares estimator is

Cov(β̂OLS) = MSE(XT X)−1.

The residual bootstrap computes the least squares estimator and obtains the n residuals and

fitted values r1, ..., rn and Ŷ1, ..., Ŷn. Then a sample of size n is selected with replacement

from the residuals resulting in r∗11, ..., r
∗

1n. Hence the empirical distribution of the residuals

is used. Then a vector Y ∗

1 = (Y ∗

11, ..., Y
∗

1n)
T is formed where Y ∗

1j = Ŷj + r∗1j. Then Y ∗

1 is

regressed on X resulting in the estimator β̂
∗

1. This process is repeated B times resulting

in the estimators β̂
∗

1, ..., β̂
∗

B . This method should have n > 10p so that the residuals ri are

close to the errors ei.

Efron (1982, p. 36) notes that for the residual bootstrap, the sample covariance matrix

of the β̂
∗

i is estimating the population bootstrap matrix
n − p

n
MSE(XT X)−1 as B → ∞.

Hence the residual bootstrap standard error SE(β̂i) ≈
√

n− p

n
SE(β̂i,OLS).

If the zi = (Yi,x
T
i )T are iid observations from some population, then a sample of

size n can be drawn with replacement from z1, ..., zn. Then the response and predictor

7



variables can be formed into vector Y ∗

1 and design matrix X∗

1. Then Y ∗

1 is regressed

on X∗

1 resulting in the estimator β̂
∗

1. This process is repeated B times resulting in the

estimators β̂
∗

1, ..., β̂
∗

B . If the zi are the rows of a matrix Z, then this rowwise bootstrap

uses the empirical distribution of the zi. This method appears to need a larger sample size

n than the residual bootstrap if n > 10p, but may be useful if n is large but n < 5p.

Following Seber and Lee (2003, p. 100), the classical test statistic for testing H0 is

F =
(Aβ̂ − c)T [MSE A(XTX)−1AT ]−1(Aβ̂ − c)

r
,

and when H0 is true, rFR
D→ χ2

r for a large class of error distributions. The sample

covariance matrix Sw of the wi is estimating
n− p

n
MSE A(XT X)−1AT , and w ≈ 0

when H0 is true. Thus under H0, the squared distance D2
i = (wi − w)TS−1

w(wi − w) ≈
n

n− p
(Aβ̂

∗ − c)T [MSE A(XTX)−1AT ]−1(Aβ̂
∗ − c),

and expect D2
(dB) ≈ n

n−p
χ2

r,1−δ, for large n and B and small p.

2.2 BOOTSTRAPPING THE VARIABLE SELECTION ESTIMATOR

Variable selection, also called subset or model selection, is the search for a subset of

predictor variables that can be deleted without important loss of information. By treating

a variable selection estimator β̂ of β as a shrinkage estimator, the bootstrap can be used to

examine variable selection. Forward selection, backward elimination, stepwise regression,

and all subsets variable selection can be used if there is a criterion that selects the submodel,

such as AIC or Cp. Similar ideas can be used to bootstrap other shrinkage estimators.

Consider testing H0 : Aβ = c where A is an r × p matrix with full rank r. Now let

β̂ be a variable selection estimator of β. To perform the test, suppose a bootstrap sample

β̂
∗

1, ..., β̂
∗

B has been generated. Form the prediction region (1.3) for w1 = Aβ̂
∗

1−c, ...,wB =

Aβ̂
∗

B − c. If 0 is in the prediction region, fail to reject H0, otherwise reject H0.

A model for variable selection in multiple linear regression can be described by

Y = xTβ + e = βTx + e = xT
SβS + xT

EβE + e = xT
SβS + e (2.1)

8



where e is an error, Y is the response variable, x = (xT
S ,x

T
E)T is a p×1 vector of predictors,

xS is a kS ×1 vector and xE is a (p−kS)×1 vector. Given that xS is in the model, βE = 0

and E denotes the subset of terms that can be eliminated given that the subset S is in the

model.

Since S is unknown, candidate subsets will be examined. Following Olive and Hawkins

(2005), let xI be the vector of k terms from a candidate subset indexed by I , and let xO

be the vector of the remaining predictors (out of the candidate submodel). Then

Y = xT
I βI + xT

OβO + e. (2.2)

The model Y = xT β + e that uses all of the predictors is called the full model. A model

Y = xT
I βI + e that only uses a subset xI of the predictors is called a submodel.

Suppose that S is a subset of I and that model (2.1) holds. Then

xT β = xT
SβS = xT

SβS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI (2.3)

where xI/S denotes the predictors in I that are not in S. Since this is true regardless of the

values of the predictors, βO = 0 if S ⊆ I .

For multiple linear regression, if the candidate model of xI has k terms (including the

constant), then the partial F statistic for testing whether the p− k predictor variables in

xO can be deleted is

FI =
SSE(I)− SSE

(n− k) − (n− p)
/
SSE

n − p
=
n− p

p− k

[

SSE(I)

SSE
− 1

]

where SSE is the error sum of squares from the full model and SSE(I) is the error sum of

squares from the candidate submodel. An important criterion for variable selection is the

Cp criterion

Cp(I) =
SSE(I)

MSE
+ 2k − n = (p− k)(FI − 1) + k

where MSE is the error mean square for the full model. Olive and Hawkins (2005) show

that submodels with Cp(I) ≤ min(2k, p) are especially interesting. The AIC is criterion

similar to Cp.
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Suppose the variable selection method, such as forward selection or all subsets, pro-

duces J models. Let model Imin be the model that minimizes the criterion, e.g. Cp(I) or

AIC(I). Following Seber and Lee (2003, p. 448) and Nishi (1984), the probability that

model Imin from Cp or AIC underfits goes to zero as n→ ∞. Since there are a finite num-

ber of regression models I that contain the true model, and each model gives a consistent

estimator of β, the probability that Imin picks one of these models goes to one as n→ ∞.

Hence β̂Imin
is a consistent estimator of β under model (2.1).

Other automated variable selection methods may work better than Imin. For the Cp

criterion, find the submodel II with the fewest number of predictors such that Cp(II) ≤

Cp(Imin) + 1. For AIC, Burnham and Anderson (2004) suggest that if ∆(I) = AIC(I)−

AIC(Imin), then models with ∆(I) ≤ 2 are good. Find the submodel II with the smallest

number of predictors such that ∆(II) ≤ 2. It is possible that II = Imin or that II is the

full model. Do not use more predictors than model II to avoid overfitting.

Suppose model I is selected after variable selection. Then least squares output for

the model Y = XIβI + e can be obtained, but the least squares output is not correct for

inference. In particular, MSE(I)(XT
I X I)

−1 is not the correct estimated covariance matrix

of β̂I . The selected model tends to fit the data too well, so SE(β̂i) from the incorrect

estimated covariance matrix is too small. Hence the confidence intervals for βi are too

short, and hypotheses tests reject H0 : βi = 0 too often.

Hastie, Tibshirani, and Friedman (2009, p. 57) note that variable selection is a shrink-

age estimator: the coefficients are shrunk to 0 for the omitted variables. Suppose n > 10p.

If β̂I is k×1, form β̂ from β̂I by adding 0s corresponding to the omitted variables. Then β̂

is a nonlinear estimator of β, and the residual bootstrap method can be applied. For exam-

ple, suppose β̂ is formed from model Imin that minimizes Cp from some variable selection

method such as forward selection, backward elimination, stepwise selection, or all subsets

variable selection. Instead of computing the least squares estimator from regression Y ∗

i on

X, perform variable selection on Y ∗

i and X , fit the model that minimizes the criterion,
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and add 0s corresponding to the omitted variables, resulting in estimators β̂
∗

1, ..., β̂
∗

B. Also

see Efron (2014).

Prediction intervals and regions can have higher than the nominal coverage 1−δ if the

distribution is discrete or a mixture of a discrete distribution and some other distribution.

In particular, coverage can be high if the wi distribution is a mixture of a point mass

at 0 and the method checks whether 0 is in the prediction region. Such a mixture often

occurs for variable selection methods and lasso. The bootstrap sample for the Wi = β̂
∗

ij can

contain many zeroes and be highly skewed if the jth predictor is weak. Then the program

may fail because Sw is singular, but if all or nearly all of the β̂
∗

ij = 0, then there is strong

evidence that the jth predictor is not needed given that the other predictors are in the

variable selection method.

As an extreme simulation case, suppose β̂
∗

ij = 0 for i = 1, ..., B and for each run in

the simulation. Consider testing H0 : βj = 0. Then regardless of the nominal coverage

1 − δ, the closed interval [0,0] will contain 0 for each run and the observed coverage will

be 1 > 1 − δ. Using the open interval (0,0) would give observed coverage 0. Also intervals

[0, b] and [a, 0] correctly suggest failing to reject βj = 0, while intervals (0, b) and (a, 0)

incorrectly suggest rejecting H0 : βj = 0. Hence closed regions and intervals make sense.
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CHAPTER 3

RESULTS

3.1 EXAMPLE

Cook and Weisberg (1999, pp. 351, 433, 447) gives a data set on 82 mussels sampled off

the coast of New Zealand. Let the response variable be the logarithm logM of the muscle

mass, and the predictors are the length L and height H of the shell in mm, the logarithm

logW of the shell width W, the logarithm logS of the shell mass S and a constant. The R

code used to produce the Table 3.1 and Table 3.2 is shown below. The mussels data was

obtained from (http://lagrange.math.siu.edu/Olive/lregdata.txt).

library(leaps)

y <- log(mussels[,5])

x <- mussels[,1:4]

x[,4] <- log(x[,4])

x[,2] <- log(x[,2])

out <- regboot(x,y,B=1000)

tem <- rowboot(x,y,B=1000)

outvs <- vselboot(x,y,B=1000) #get bootstrap CIs,

apply(out$betas,2,shorth2); apply(tem$betas,2,shorth2);

apply(outvs$betas,2,shorth2)

ls.print(outvs$full)

ls.print(outvs$sub) #test if beta_2 = beta_3 = beta_4 = 0

Abeta <- out$betas[,2:4] #method with residual bootstrap

predreg(Abeta)

Abeta <- outvs$betas[,2:4] #prediction region method with Imin

predreg(Abeta)
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Table 3.1. Large Sample Full Model Inference

model Estimate Std.Err t− value Pr(> |t|) rowboot resboot

constant -1.2493 0.8388 -1.4894 0.1405 [-2.720,-0.015] [-3.065,0.110]

L -0.0006 0.0023 -0.2829 0.7780 [-0.005,0.003] [-0.005,0.003]

log W 0.1298 0.3738 0.3471 0.7295 [-0.390,0.710] [-0.549,0.885]

H 0.0075 0.0050 1.5044 0.1366 [-0.001,0.017] [-0.002,0.016]

log S 0.6404 0.1686 3.7989 0.0003 [ 0.209,1.025] [ 0.337,0.947]

Inference for the full model is shown along with the shorth(c) nominal 95% confidence

intervals for βi computed using the rowwise and residual bootstraps. As expected, the

residual bootstrap intervals are close to the classical least squares confidence intervals

≈ β̂i ± 2SE(β̂i).

The minimum Cp model uses a constant, H and logS. The shorth(c) nominal 95%

confidence intervals for βi using the residual bootstrap are shown. Note that the intervals

for H and log(W ) are right skewed and contain 0 when closed intervals are used instead of

open intervals.

It was expected that log(S) may be the only predictor needed, along with a constant,

since log(S) and log(M) are both log(mass) measurements and likely highly correlated.

Hence want to test H0 : β2 = β3 = β4 = 0 with the Imin model selected by all subsets

variable selection. Of course this test would be easy to do with the full model using least

squares theory. Then H0 : Aβ = (β2, β3, β4)
T = 0. Using the prediction region method

with least squares gave an interval [0,2.937] with D0 = 1.594. Note that
√

χ2
3,0.95 = 2.795.

So fail to reject H0. The prediction region method using Imin had [0, D(dB)] = [0, 3.282]

while D0 = 1.137. So fail to reject H0.
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Table 3.2. Incorrect min Cp submodel Inference

model Estimate Std.Err t− value Pr(> |t|) resboot

constant -0.9573 0.1519 -6.3018 0.0000 [-3.214,-0.593]

L 0 [-0.005, 0.003]

log W 0 [ 0.000, 0.977]

H 0.0072 0.0047 1.5490 0.1254 [ 0.000, 0.015]

log S 0.6530 0.1160 5.6297 0.0000 [ 0.358, 0.933]

3.2 SIMULATIONS

3.2.1 Bootstrapping Regression and Variable Selection

A small simulation study was done in R using B = max(1000, n) and 5000 runs.

The regression model used β = (1, 1, 0, 0)T with n = 100, p = 4 and various zero mean

iid error distributions. The design matrix X consisted of iid N(0,1) random variables.

Hence the full model least squares confidence intervals for βi should have length near

2t99,0.975σ/
√
n ≈ 2(1.96)σ/10 = 0.392σ when the iid zero mean errors have variance σ2.

The simulation computed the shorth(kB) interval for each βi and used the prediction region

method to test H0 : β3 = β4 = 0. The nominal coverage was 0.95 with δ = 0.05. Observed

coverage between 0.94 and 0.96 would suggest coverage is close to the nominal value.

Observed coverage near 0.94 would not be surprising since with B = 1000, expect about

1% undercoverage.

The function regbootsim is used to simulates residual bootstrap for multiple linear

regression. The function vsbootsim is used to simulates bootstrap for all subsets variable

selection. So need p small. For both these cases, five iid error distributions were used.
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Type = 1 for N(0, 1) errors.

Type = 2 for t3 errors.

Type = 3 for exp(1) − 1 errors.

Type = 4 for uniform(−1, 1) errors.

Type = 5 for [ 9.9 N(0,1) + 0.1 N(0,100) ] errors.

The regression models used the residual bootstrap on the full model least squares

estimator and on the all subsets variable selection estimator for the model Imin. The

residuals were from least squares applied to the full model in both cases. Results are shown

for when the iid errors ei ∼ N(0, 1). Table 3.3 shows two rows for each model giving the

observed confidence interval coverages and average lengths of the confidence intervals for

Type = 1. The term “reg” is for the full model regression, and the term “vs” is for the

all subsets variable selection. The column for the “test” gives the length and coverage =

P(fail to reject H0) for the interval [0, D(dn)] where D(dn) is the cutoff for the prediction

region. The volume of the prediction region will decrease to 0 as n → ∞. The cutoff will

often be near
√

χ2
r,0.95 if the statistic T is asymptotically normal.

Note that
√

χ2
2,0.95 = 2.448 is close to 2.4503 for the full model regression bootstrap

test. The coverages were near 0.94 for the regression bootstrap on the full model. For

Imin the coverages were near 0.94 for β1 and β2, but higher for the other 3 tests since

zeroes often occurred for β̂∗

j for j = 3, 4. The average lengths and coverages were similar

for the full model and all subsets variable selection Imin for β1 and β2, but the lengths are

shorter for Imin for β3 and β4. Volumes of the hyperellipsoids were not computed, but the

average cutoff of 2.6859 for the variable selection test suggests that the test statistic was

not multivariate normal, which is not surprising since many zeroes were produced for β̂∗

j

for j = 3, 4.
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Table 3.3. Bootstrapping Regression and Variable Selection for Type 1

model cov/len β1 β2 β3 β4 test

reg cov 0.9322 0.9342 0.9354 0.9374 0.9386

len 0.3823 0.3852 0.3862 0.3852 2.4503

vs cov 0.9332 0.9358 0.9982 0.9956 0.9936

len 0.3823 0.3847 0.3033 0.3035 2.6859

Furthermore, Table 3.4, Table 3.5 , Table 3.6 and Table 3.7 used Type 2, Type 3,

Type 4 and Type 5 errors, respectively. According to the Table 3.4 average cutoff of 2.4914

for the full model regression bootstrap test while 2.7154 for the variable selection test. It

emphasis that variable selection test statistic was not normal. Same result holds for Type

3 and Type 4 which is not surprising since many zeros were produced for β̂∗

j for j = 3, 4..

Furthermore, cutoff for Type 5 full model regression bootstrap test as depicted in Table

3.7 is also 2.55, suggest that the statistic T is not asymptotically normal.

Table 3.4. Bootstrapping Regression and Variable Selection for Type 2

model cov/len β1 β2 β3 β4 test

reg cov 0.9334 0.9412 0.9362 0.9388 0.9422

len 0.6387 0.6515 0.6511 0.6506 2.4914

vs cov 0.9332 0.9344 0.9970 0.9960 0.9928

len 0.6355 0.6508 0.5102 0.5130 2.7154
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As far as coverages of Type 2 are concerned, it is closed to the nominal value for the

regression bootstrap on the full model because the value is near 0.95. The average length

and coverages were similar for the full model and all subsets variable selection Imin for β1

and β2, but the lengths are shorter for Imin for β3 and β4. In fact, the afore mentioned

result was true for Type 3, Type 4 and Type 5 as depicted in Table 3.5 , Table 3.6 and

Table 3.7 respectively. Nevertheless, lengths for regression and variable selection of Type 2

is considerably higher than all other five types while lowest lengths are for Type 5 in both

cases.

Table 3.5. Bootstrapping Regression and Variable Selection for Type 3

model cov/len β1 β2 β3 β4 test

reg cov 0.9344 0.9342 0.9364 0.9414 0.9388

len 0.3791 0.3850 0.3844 0.3847 2.4742

vs cov 0.9256 0.9394 0.9962 0.9976 0.9922

len 0.3789 0.3845 0.3038 0.3026 2.7119

Table 3.6. Bootstrapping Regression and Variable Selection for Type 4

model cov/len β1 β2 β3 β4 test

reg cov 0.9348 0.9426 0.9308 0.9398 0.9360

len 0.2207 0.2224 0.2226 0.2224 2.4437

vs cov 0.9390 0.9426 0.9966 0.9966 0.9930

len 0.2211 0.2225 0.1756 0.1755 2.6963
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Table 3.7. Bootstrapping Regression and Variable Selection for Type 5

model cov/len β1 β2 β3 β4 test

reg cov 0.9300 0.9456 0.9438 0.9344 0.9500

len 1.2201 1.2577 1.2532 1.2548 2.5500

vs cov 0.9336 0.9308 0.9974 0.9972 0.9948

len 1.2264 1.2594 1.0137 1.0153 2.7444

3.2.2 Bootstrapping the Correlation Matrix

One problem with the method is larger sample sizes n are needed as r increases. Olive

(2013) suggested that for iid data xi where xi is p× 1, the coverage started to get close to

the nominal when n > 20p, but volume ratios needed n > 50p.

Consider testing whether correlations in a correlation matrix are 0. Let θ =

(ρ12, ..., ρ1p, ρ23, ..., ρ2p, ..., ρp−1,p)
T . There are r = p(p− 1)/2 correlations ρi,j = cor(Xi, Xj)

where i < j. The simulation simulated iid data w with x = Aw and Aij = ψ for i 6= j

and Aii = 1. Hence

cor(Xi, Xj) = [2ψ + (p− 2)ψ2]/[1 + (p− 1)ψ2].

The function corbootsim is used to simulates bootstrap for correlation matrix. It

stacks entries above the diagonal into a vector β. Make X for 10 different types of distri-

bution.

Type = 1; for MVN Nq(0, I).

Type = 2, 3, 4 and 5 ; for (1 − δ) Nq(0, I) + δ Nq(0, 25I) with δ = 0.4, 0.6, 0.1, 0.25.

Type = 6, 7, 8, 9 ; for multivariate td with d=3, 5, 9, or 1.

Type = 10 ; for lognormal.
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Small values of n which give the test coverage near 0.93 was found by trail and error

method and then used ψ = 0.03 and 0.1 to evaluate the power of the test. Table 3.8 shows

the results for multivariate normal data with p = 4 so r = 6 for testing H0 : θ = 0. The

nominal coverage was 0.95. For n = 100 and ψ = 0, the test failed to reject H0 85.54% of

the time, but 92.54% of the time for n = 400. Note that
√

χ2
6,0.95 = 3.548. With n = 400

and ψ > 0, for the test the coverage = 1 - power. For ψ = 0.3 the simulated power was

0.558, but 1.0 for ψ = 0.1.

Table 3.8. Bootstrapping the Correlation Matrix for Type 1, B = 1000

n ψ cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 0 cov 0.9264 0.9370 0.9274 0.9347 0.9308 0.9322 0.8554

len 0.3778 0.3787 0.3773 0.3780 0.3781 0.3775 3.5508

400 0 cov 0.9410 0.9470 0.9382 0.9404 0.9360 0.9436 0.9254

len 0.1916 0.1915 0.1917 0.1916 0.1916 0.1916 3.5581

400 0.03 cov 0.9406 0.9378 0.9418 0.9426 0.9396 0.9414 0.4420

len 0.1908 0.1909 0.1908 0.1908 0.1909 0.1908 3.5582

400 0.1 cov 0.9440 0.9400 0.9474 0.9402 0.9422 0.9478 0.0000

len 0.1827 0.1827 0.1826 0.1835 0.1827 0.1827 3.5620

Table 3.9 reveals about the bootstrapping correlation matrix for Type 2 data. It can

be seen that when n = 100 , the coverage is 0.7152 which is not around nominal coverage.

The lowest n which occur close to 0.93 is n = 900. Note that
√

χ2
6,0.95 = 3.548 is close to

3.5581 when n = 900. Furthermore, power is increasing as ψ increases and exactly equal

to 1 when ψ = 0.1 .

19



Table 3.9. Bootstrapping the Correlation Matrix for Type 2, B = 1000

n ψ cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 0 cov 0.9190 0.9204 0.9232 0.9164 0.9184 0.9086 0.7152

len 0.5449 0.5456 0.5449 0.5460 0.5466 0.5456 3.5727

900 0 cov 0.9364 0.9386 0.9426 0.9400 0.9402 0.9430 0.9256

len 0.1905 0.1905 0.1906 0.1906 0.1906 0.1904 3.5604

900 0.03 cov 0.9400 0.9422 0.9380 0.9458 0.9418 0.9376 0.4510

len 0.1898 0.1897 0.1895 0.1899 0.1894 0.1896 3.5596

900 0.1 cov 0.9436 0.9396 0.9390 0.9432 0.9356 0.9368 0.0000

len 0.1816 0.1816 0.1819 0.1816 0.1818 0.1815 3.5635

Moreover, the bootstrapping correlation matrix for Type 3, 4, 5, 6, 7, 8 and 10 were

generated and shows in Table 3.10, Table 3.11, Table 3.12, Table 3.13, Table 3.14, Table

3.15 and Table 3.16 respectively. The small n value which gives nominal coverage 0.93

could not be found for Type 9 perhaps the correlation matrix does not exist for Type 9.

All other types for n = 100 and ψ = 0, the test fail to reject H0 : θ = 0 and lowest n

which gives the nominal coverages are: n= 650, 3000, 1500, 25000, 1800, 500 and 12000

for Type 3, 4, 5, 6, 7, 8 and 10 respectively. Indeed, all these types cutoff lengths near
√

χ2
6,0.95 = 3.548 for aforementioned values of n. Furthermore, it is not surprising that

power increased as ψ increased and becomes 1 when ψ = 0.1 for each type.
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Table 3.10. Bootstrapping the Correlation Matrix for Type 3, B = 1000

n ψ cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 0 cov 0.9212 0.9230 0.9300 0.9256 0.9186 0.9268 0.7922

len 0.4674 0.4663 0.4669 0.4683 0.4660 0.4682 3.5581

650 0 cov 0.9366 0.9360 0.9364 0.9412 0.9414 0.9398 0.9294

len 0.1888 0.1889 0.1890 0.1891 0.1891 0.1891 3.5609

650 0.03 cov 0.9488 0.9408 0.9452 0.9458 0.9418 0.9430 0.4278

len 0.1882 0.1887 0.1880 0.1883 0.1884 0.1882 3.5605

650 0.1 cov 0.9380 0.9396 0.9382 0.9388 0.9334 0.9386 0.0000

len 0.1804 0.1802 0.1805 0.1804 0.1801 0.1803 3.5634

Table 3.11. Bootstrapping the Correlation Matrix for Type 4, B = 1000

n ψ cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 0 cov 0.8802 0.8864 0.8782 0.8810 0.8820 0.8788 0.4214

len 0.7162 0.7141 0.7119 0.7128 0.7168 0.7123 3.6728

3000 0 cov 0.9382 0.9452 0.9422 0.9408 0.9414 0.9386 0.9302

len 0.1629 0.1635 0.1633 0.1634 0.1631 0.1633 3.5584

3000 0.03 cov 0.9418 0.9416 0.9396 0.9374 0.9404 0.9452 0.2904

len 0.1629 0.1625 0.1626 0.1627 0.1626 0.1625 3.5588

3000 0.1 cov 0.9428 0.9400 0.9380 0.9466 0.9342 0.9370 0.0000

len 0.1557 0.1561 0.1557 0.1559 0.1558 0.1559 3.5609
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Table 3.12. Bootstrapping the Correlation Matrix for Type 5, B = 1000

n ψ cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 0 cov 0.9084 0.9064 0.9018 0.9060 0.9082 0.9018 0.6130

len 0.6325 0.6308 0.6311 0.6332 0.6330 0.6307 3.5997

1500 0 cov 0.9404 0.9412 0.9426 0.9418 0.9452 0.9408 0.9274

len 0.1766 0.1769 0.1767 0.1767 0.1768 0.1767 3.5601

1500 0.03 cov 0.9404 0.9394 0.9390 0.9382 0.9364 0.9362 0.3782

len 0.1762 0.1762 0.1763 0.1762 0.1762 0.1761 3.5608

1500 0.1 cov 0.9462 0.9416 0.9424 0.9426 0.9374 0.9416 0.0000

len 0.1689 0.1689 0.1690 0.1690 0.1689 0.1687 3.5637

Table 3.13. Bootstrapping the Correlation Matrix for Type 6, B = 1000

n ψ cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 0 cov 0.8980 0.8990 0.8948 0.9050 0.8972 0.8994 0.6412

len 0.5912 0.5962 0.5919 0.5957 0.5929 0.5943 3.6574

25000 0 cov 0.9412 0.9334 0.9426 0.9442 0.9416 0.9358 0.9282

len 0.1200 0.1198 0.1204 0.1205 0.1211 0.1191 3.5714

25000 0.03 cov 0.9364 0.9400 0.9386 0.9364 0.9356 0.9354 0.0084

len 0.1186 0.1204 0.1188 0.1200 0.1191 0.1195 3.5727

25000 0.1 cov 0.9378 0.9380 0.9408 0.9352 0.9390 0.9378 0.0000

len 0.1148 0.1158 0.1140 0.1164 0.1154 0.1152 3.5748
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Table 3.14. Bootstrapping the Correlation Matrix for Type 7, B = 1000

n ψ cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 0 cov 0.9188 0.9176 0.9158 0.9130 0.9176 0.9140 0.7434

len 0.4793 0.4781 0.4773 0.4760 0.4789 0.4775 3.5646

1800 0 cov 0.9410 0.9404 0.9372 0.9420 0.9374 0.9376 0.9256

len 0.1385 0.1385 0.1384 0.1385 0.1385 0.1382 3.5588

1800 0.03 cov 0.9394 0.9410 0.9338 0.9402 0.9368 0.9374 0.0888

len 0.1382 0.1382 0.1380 0.1387 0.1388 0.1383 3.5590

1800 0.1 cov 0.9422 0.9418 0.9390 0.9382 0.9342 0.9400 0.0000

len 0.1324 0.1327 0.1324 0.1318 0.1320 0.1317 3.5599

Table 3.15. Bootstrapping the Correlation Matrix for Type 8, B = 1000

n ψ cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 0 cov 0.9280 0.9288 0.9296 0.9232 0.9264 0.9340 0.8416

len 0.3949 0.3966 0.3963 0.3957 0.3959 0.3962 3.5495

500 0 cov 0.9394 0.9410 0.9358 0.9376 0.9376 0.9452 0.9266

len 0.1819 0.1818 0.1819 0.1816 0.1816 0.1818 3.5583

500 0.03 cov 0.9352 0.9446 0.9474 0.9418 0.9364 0.9416 0.4090

len 0.1810 0.1812 0.1808 0.1812 0.1809 0.1810 3.5572

500 0.1 cov 0.9382 0.9388 0.9420 0.9446 0.9440 0.9394 0.0000

len 0.1733 0.1734 0.1738 0.1736 0.1740 0.1736 3.5608
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Table 3.16. Bootstrapping the Correlation Matrix for Type 10, B = 1000

n ψ cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 0 cov 0.8928 0.8932 0.8916 0.8886 0.8910 0.8930 0.7478

len 0.3347 0.3320 0.3367 0.3302 0.3363 0.3328 3.7545

12000 0 cov 0.9382 0.9346 0.9368 0.9366 0.9384 0.9392 0.9314

len 0.0341 0.0343 0.0343 0.0342 0.0340 0.0344 3.5740

12000 0.03 cov 0.9350 0.9408 0.9364 0.9408 0.9370 0.9394 0.0000

len 0.0341 0.0343 0.0341 0.0340 0.0340 0.0340 3.5742

12000 0.1 cov 0.9402 0.9400 0.9438 0.9422 0.9376 0.9386 0.0000

len 0.0330 0.0332 0.0332 0.0333 0.0332 0.0334 3.5726

On the other hand, the simulation was extended by changing the bootstrap sample

size B = 1000 to B = 4000. For 5000 runs, B = 4000 and ψ = 0, the smallest n which

occur nominal coverages for all types were obtained. Table 3.17 to Table 3.26 reveals about

bootstrapping correlation Matrix when B = 4000 for Type 1 to Type 10 excluding Type

9. In this case, all the coverages and lengths are almost similar as B = 1000 case. In fact,

the smallest n values for nominal coverages are n = 400, 900, 650, 3000, 1500, 25000, 1800,

500 and 12000 for Type 1, Type 2, Type 3, Type 4, Type 5, Type 6, Type 7, Type 8, Type

10 respectively. Therefore, it can be concluded that increasing the number of bootstrap

samples did not much affect testing the correlation matrix.
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Table 3.17. Bootstrapping the Correlation Matrix for Type 1, B = 4000

n B cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 1000 cov 0.9264 0.9370 0.9274 0.9347 0.9308 0.9322 0.8554

len 0.3778 0.3787 0.3773 0.3780 0.3781 0.3775 3.5508

400 1000 cov 0.9410 0.9470 0.9382 0.9404 0.9360 0.9436 0.9254

len 0.1916 0.1915 0.1917 0.1916 0.1916 0.1916 3.5581

100 4000 cov 0.9332 0.9328 0.9340 0.9318 0.9384 0.9348 0.8462

len 0.3810 0.3818 0.3821 0.3818 0.3824 0.3824 3.5334

400 4000 cov 0.9418 0.9404 0.9486 0.9420 0.9494 0.9454 0.9248

len 0.1938 0.1936 0.1934 0.1935 0.1937 0.1937 3.5420

Table 3.18. Bootstrapping the Correlation Matrix for Type 2, B = 4000

n B cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 1000 cov 0.9190 0.9204 0.9232 0.9164 0.9184 0.9086 0.7152

len 0.5449 0.5456 0.5449 0.5460 0.5466 0.5456 3.5727

900 1000 cov 0.9364 0.9386 0.9426 0.9400 0.9402 0.9430 0.9256

len 0.1905 0.1905 0.1906 0.1906 0.1906 0.1904 3.5604

100 4000 cov 0.9252 0.9138 0.9252 0.9220 0.9144 0.9194 0.7164

len 0.5519 0.5483 0.5499 0.5491 0.5515 0.5515 3.5543

900 4000 cov 0.9430 0.9434 0.9394 0.9476 0.9400 0.9430 0.9208

len 0.1928 0.1925 0.1920 0.1923 0.1923 0.1923 3.5438
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Table 3.19. Bootstrapping the Correlation Matrix for Type 3, B = 4000

n B cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 1000 cov 0.9212 0.9230 0.9300 0.9256 0.9186 0.9268 0.7922

len 0.4674 0.4663 0.4669 0.4683 0.4660 0.4682 3.5581

650 1000 cov 0.9366 0.9360 0.9364 0.9412 0.9414 0.9398 0.9294

len 0.1888 0.1889 0.1890 0.1891 0.1891 0.1891 3.5609

100 4000 cov 0.9210 0.9380 0.9372 0.9270 0.9340 0.9334 0.8080

len 0.4709 0.4735 0.4733 0.4722 0.4734 0.4733 3.5416

650 4000 cov 0.9454 0.9462 0.9440 0.9420 0.9408 0.9446 0.9252

len 0.1908 0.1909 0.1908 0.1911 0.1910 0.1911 3.5436

Table 3.20. Bootstrapping the Correlation Matrix for Type 4, B = 4000

n B cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 1000 cov 0.8802 0.8864 0.8782 0.8810 0.8820 0.8788 0.4214

len 0.7162 0.7141 0.7119 0.7128 0.7168 0.7123 3.6728

3000 1000 cov 0.9382 0.9452 0.9422 0.9408 0.9414 0.9386 0.9302

len 0.1629 0.1635 0.1633 0.1634 0.1631 0.1633 3.5584

100 4000 cov 0.8842 0.8870 0.8816 0.8844 0.8806 0.8872 0.4140

len 0.7197 0.7205 0.7181 0.7193 0.7186 0.7205 3.6492

3000 4000 cov 0.9474 0.9432 0.9498 0.9400 0.9434 0.9384 0.9142

len 0.1650 0.1649 0.1649 0.1650 0.1650 0.1648 3.5425
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Table 3.21. Bootstrapping the Correlation Matrix for Type 5, B = 4000

n B cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 1000 cov 0.9084 0.9064 0.9018 0.9060 0.9082 0.9018 0.6130

len 0.6325 0.6308 0.6311 0.6332 0.6330 0.6307 3.5997

1500 1000 cov 0.9404 0.9412 0.9426 0.9418 0.9452 0.9408 0.9274

len 0.1766 0.1769 0.1767 0.1767 0.1768 0.1767 3.5601

100 4000 cov 0.9034 0.9172 0.9038 0.9108 0.9144 0.9044 0.5998

len 0.6404 0.6415 0.6371 0.6389 0.6418 0.6391 3.5791

1500 4000 cov 0.9466 0.9402 0.9434 0.9436 0.9468 0.9442 0.9250

len 0.1785 0.1787 0.1790 0.1788 0.1783 0.1787 3.5441

Table 3.22. Bootstrapping the Correlation Matrix for Type 6, B = 4000

n B cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 1000 cov 0.8980 0.8990 0.8948 0.9050 0.8972 0.8994 0.6412

len 0.5912 0.5962 0.5919 0.5957 0.5929 0.5943 3.6574

25000 1000 cov 0.9412 0.9334 0.9426 0.9442 0.9416 0.9358 0.9282

len 0.1200 0.1198 0.1204 0.1205 0.1211 0.1191 3.5714

100 4000 cov 0.9022 0.9024 0.9084 0.9024 0.9020 0.8986 0.6434

len 0.5967 0.5978 0.6020 0.5998 0.6001 0.6036 3.6358

25000 4000 cov 0.9494 0.9424 0.9434 0.9392 0.9426 0.9466 0.9246

len 0.1210 0.1229 0.1216 0.1225 0.1210 0.1224 3.5547
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Table 3.23. Bootstrapping the Correlation Matrix for Type 7, B = 4000

n B cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 1000 cov 0.9188 0.9176 0.9158 0.9130 0.9176 0.9140 0.7434

len 0.4793 0.4781 0.4773 0.4760 0.4789 0.4775 3.5646

1800 1000 cov 0.9410 0.9404 0.9372 0.9420 0.9374 0.9376 0.9256

len 0.1385 0.1385 0.1384 0.1385 0.1385 0.1382 3.5588

100 4000 cov 0.9238 0.9212 0.9216 0.9158 0.9244 0.9174 0.7454

len 0.4827 0.4796 0.4843 0.4798 0.4824 0.4805 3.5466

1800 4000 cov 0.9440 0.9436 0.9490 0.9480 0.9488 0.9462 0.9360

len 0.1402 0.1402 0.1404 0.1402 0.1404 0.1402 3.54200

Table 3.24. Bootstrapping the Correlation Matrix for Type 8, B = 4000

n B cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 1000 cov 0.9280 0.9288 0.9296 0.9232 0.9264 0.9340 0.8416

len 0.3949 0.3966 0.3963 0.3957 0.3959 0.3962 3.5495

500 1000 cov 0.9394 0.9410 0.9358 0.9376 0.9376 0.9452 0.9266

len 0.1819 0.1818 0.1819 0.1816 0.1816 0.1818 3.5583

100 4000 cov 0.9304 0.9372 0.9338 0.9284 0.9322 0.9296 0.8368

len 0.3993 0.3996 0.3996 0.4004 0.3993 0.4000 3.5318

500 4000 cov 0.9464 0.9446 0.9514 0.9488 0.9436 0.9416 0.9314

len 0.1834 0.1836 0.1832 0.1837 0.1837 0.1837 3.5415
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Table 3.25. Bootstrapping the Correlation Matrix for Type 10, B = 4000

n B cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 1000 cov 0.8928 0.8932 0.8916 0.8886 0.8910 0.8930 0.7478

len 0.3347 0.3320 0.3367 0.3302 0.3363 0.3328 3.7545

12000 1000 cov 0.9382 0.9346 0.9368 0.9366 0.9384 0.9392 0.9314

len 0.0341 0.0343 0.0343 0.0342 0.0340 0.0344 3.5740

100 4000 cov 0.8986 0.9002 0.8958 0.8954 0.8924 0.8944 0.7424

len 0.3338 0.3351 0.3392 0.3347 0.3370 0.3387 3.7336

12000 4000 cov 0.9428 0.9440 0.9426 0.9460 0.9454 0.9406 0.9288

len 0.0346 0.03455 0.0343 0.0346 0.0344 0.0346 3.5574

3.3 CONCLUSIONS

Applying the large sample 100(1 − δ)% prediction region to the bootstrap sample

T ∗

(1), T
∗

(2), ..., T
∗

(B) gives a large sample 100(1− δ)% confidence region for an r× 1 parameter

vector for θ, generalizing the percentile method for r = 1 to r ≥ 1. Moreover, the prediction

region method can be regarded as special case of the percentile method where the test

statistic is the squared Mahalanobis distance D2∗
i = (T ∗

i − T ∗)T [S∗

T ]−1(T ∗

i − T ∗)) where

wi = T ∗

i , and T ∗ and S∗

T are the sample mean and sample covariance martix of T ∗

1 , ..., T
∗

B.

Applications of the prediction region method are numerous, but may need n ≥ 50r and

B ≥ max(1000, n) if the test statistic has an approximate multivariate normal distribution.

Sample sizes may need to be much larger for other limiting distribution.

Example of bootstrapping hypothesis test was discussed based on Cook and

Weisberg (1999) mussels data set. Simulations were done in R. See R Devel-

opment Core Team (2011). The collection of R functions lregpack, available at
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(http://lagrange.math.siu.edu/Olive/lregpack.txt), has some useful functions for the pre-

diction region method. The function vselboot bootstraps the minimum Cp model from all

subsets variable selection. The function shorth2 can be used to find the shorth intervals

for θ̂i. The function predreg computes the prediction region and the Mahalanobis distance

of the zero vector corresponding to Aθ − c = 0. The functions rowboot and regboot

do the rowwise and residual bootstrap for the full model. The functions regbootsim and

vsbootsim can be used to simulate the bootstrap tests for multiple linear regression and

for the all subsets variable selection model that minimizes Cp. The functions corboot and

corbootsim can be used to bootstrap the correlation matrix.

Bootstrapping regression for the full model and bootstrapping variable selection for

the model Imin has been done for five different types of error distributions. Coverages of β1,

β2, β3 and β4 are close to nominal value for the regression bootstrap on the full model. The

average length and coverages were similar the full model and all subsets variable selection

Imin for β1 and β2, but the lengths are smaller for Imin for β3 and β4. Also the cutoffs

for the full model regression near
√

χ2
2,0.95 suggest that the test statistic is asymptotically

normal while the average cutoff for the variable selection suggests that the test statistic was

not normal, which is not surprising since many zeroes were produced for β̂∗

j for j = 3, 4.

Small values of n which give coverage close to the nominal coverage for 10 different

types of distributions were found by generating the bootstrapping the correlation matrix.

Indeed, n = 400, 900, 650, 3000, 1500, 25000, 1800, 500 and 12000 for Type 1, Type 2,

Type 3, Type 4, Type 5, Type 6, Type 7, Type 8, Type 10 respectively. All these different

types have cutoff near
√

χ2
6,0.95 and power increased as ψ increased. Furthermore, it can be

observed that increasing the number of bootstrap samples B did not much affect testing

the correlation matrix.
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