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AN ABSTRACT OF THE THESIS OF 

 

Lucas X. Franca, for the Master of Science degree in Plant, Soil, and Agricultural Systems, 

presented on April 13, 2015 at Southern Illinois University Carbondale. 

 

TITLE:  EMERGENCE PATTERNS OF COMMON WATERHEMP AND PALMER 

AMARANTH IN SOUTHERN ILLINOIS 

 

MAJOR PROFESSOR: Dr. Ahmad Fakhoury, Bryan G. Young, Co-chair 

The continued spread of glyphosate-resistant common waterhemp [Amaranthus tuberculatus 

(Moq.) Sauer (syn. rudis)] and Palmer amaranth [Amaranthus palmeri (S. Wats.)] have 

complicated weed control efforts in soybean and corn production in Illinois. A thorough 

understanding of the weed biology of these species is fundamental in developing effective weed 

management strategies. The determination of emergence patterns as well as the influence of 

tillage practices on soil microclimate and soil seed bank will allow control strategies to be 

implemented at the most effective timing.  

Field experiments were conducted in southern Illinois throughout the growing season of 2013 

and 2014 on two separate sites with populations of common waterhemp and Palmer amaranth. 

Three tillage treatments were evaluated: no-tillage; early tillage, preferably performed around a 

recommended soybean planting date of May 1
st
; and late tillage, preferably performed on June 1

st
 

to simulate a late soybean planting. Amaranthus seedlings were identified and enumerated in the 

center 1 m
2 
quadrat of each plot within a 7-day interval from April through November or first 

frost. All weed seedlings were removed from the plot area after each enumeration. Soil 

temperature and soil moisture were recorded hourly throughout the experiment using data loggers 

established in the plot area.  

First emergence of common waterhemp occurred earlier in the season than did Palmer 

amaranth. In 2013, initial emergence of common waterhemp and Palmer amaranth was observed 
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at the first and second week of May, respectively. In 2014, initial common waterhemp emergence 

was observed in late April, while Palmer amaranth initial emergence was similar to previous year. 

Palmer amaranth emerged over a longer period compared to waterhemp. By the end of June, 90% 

of common waterhemp had emerged regardless of tillage or year. By the same measure, Palmer 

amaranth emergence was extended to the third week of July and second week of August in 2013 

and 2014, respectively. Soil temperature did not differ across tillage treatments in both years. On 

the other hand, differences in soil moisture were observed, mostly over two weeks following each 

tillage operation.  

The single best predictor for common waterhemp emergence was soil temperature (weekly 

highs and lows) followed by soil moisture. For Palmer amaranth emergence the single best 

predictor was spikes in soil moisture (high for the week). In 2013, common waterhemp 

emergence was initially positively and later in the growing season negatively interacted with 

maximum temperature 13 days prior to counts, with temperatures above 30 C observed with 

decreased emergence (R
2 
= 0.35). In the same year spikes in soil moisture interacted with Palmer 

amaranth emergence were those observed 11 days before each seedling enumeration date (R
2 

= 

0.30). In 2014, with first common waterhemp emergence in April, a positive interaction to high 

soil temperature was initially observed followed by a positive interaction to minimum 

temperatures later in the season (R
2 
= 0.55). Spikes in soil moisture observed 2 weeks prior to 

emergence and weekly high temperatures 8 days prior to emergence were the best predictors of 

Palmer amaranth emergence in 2014 (R
2 
=0.37). Soil seed bank depletion was also estimated by 

comparing field emergence with greenhouse experiment results of soil seed bank estimation. 

Greater emergence of common waterhemp from the soil seed bank was observed in early tillage 

in 2013 and no-tillage in 2014 than late tillage, respectively; for Palmer amaranth, the greatest 
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emergence from the soil seed bank was observed in no-tillage and late tillage in 2013, and no-

tillage, in 2014. 

The emergence patterns observed in this research suggest that although common waterhemp 

and Palmer amaranth exhibit discontinuous emergence throughout the growing season, greater 

attention should be placed on managing peaks of emergence from late April to late July, which is 

critical to provide a foundation for early-season weed management. Furthermore, knowledge 

regarding the emergence patterns of common waterhemp and Palmer amaranth combined with 

monitoring environmental factors such as soil moisture and soil temperature may assist efforts for 

scouting fields to determine the likely presence of these weed species. The timing of viable 

postemergence herbicide options for control of glyphosate-resistant waterhemp and Palmer 

amaranth is critical and monitoring weather patterns to direct scouting efforts may improve the 

timeliness of these postemergence applications. 
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CHAPTER 1 

REVIEW OF LITERATURE 

 

The introduction of glyphosate-resistant (GR) crops shifted weed management practices to 

postemergence herbicide applications and the near exclusive use of glyphosate. With the 

commercialization of soybeans (Glycine max L.) resistant to glyphosate in 1996 the number of 

hectares treated with glyphosate increased dramatically (USDA 2008). Growers rapidly adopted 

GR soybeans due to the limited soybean injury observed from glyphosate applied postemergence 

(Shaw and Arnold 2002), the flexibility of application timing, and the simplicity of a weed 

control system based on a single herbicide (Young 2006). In 2008, glyphosate was used on more 

soybean hectares than any other herbicide with over 90% of soybean production area receiving at 

least one application (USDA 2008).  

As reliance on glyphosate increased, the use of different herbicides and association with 

herbicide modes of action decreased (Givens et al. 2009; Young 2006). Multiple applications of 

glyphosate in GR soybeans, corn (Zea mays L.) and cotton (Gossypium hirsutum L.) have been 

typical. In soybeans, 62% of continuous GR soybean producers apply at least two postemergence 

applications of glyphosate (Givens et al. 2009). Normally, when producers experience 

inconsistencies in the efficacy of glyphosate applications they tend to increase the rate of the 

herbicide being applied instead of using alternate herbicide modes of action (Owen 2000). 

Reducing the use of alternative herbicides while increasing the use of glyphosate has triggered a 

selection pressure event shifting the frequency of weed species towards those that are inherently 

tolerant or have evolved resistance to glyphosate (Reddy 2001). Prior to the introduction of GR 

crops there were no weed species confirmed resistant to glyphosate in the U.S. (Heap 2011). The 
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evolution of GR weeds has been suggested to occur slowly through multiple gene mutations that 

may affect herbicide uptake, metabolism, or translocation (Gressel 2009). However, the first 

glyphosate-resistant weed biotype was confirmed in Australia in 1996 in a population of Italian 

ryegrass (Lolium rigidum L.) located in an orchard. The ramped use of glyphosate in GR crops 

had only accelerated the selection of glyphosate-resistant weed biotypes with 31 weed species, to 

date, that have been confirmed resistant to glyphosate worldwide with 14 confirmed in the U.S. 

(Heap 2014).  

Two problematic weed species in row crops are common waterhemp (Amaranthus 

tuberculatus Moq. Sauer) and Palmer amaranth (Amaranthus palmeri S.Wats.). Among all the 

Amaranthus species Palmer amaranth, common waterhemp, spiny amaranth (Amaranthus 

spinosus L.) and smooth pigweed (Amaranthus hybridus L.) are the only members with biotypes 

expressing resistance to glyphosate (Legleiter and Bradley 2008; Heap 2015). Normally, 

susceptible biotypes of Palmer amaranth are very sensitive to glyphosate, although in Georgia 

certain GR populations have been found to survive glyphosate applications at 10 times the 

recommended field use rate (Culpepper et al. 2006).  

Weedy Amaranthus Species 

The genus Amaranthus belongs to the family Amaranthaceae and contains approximately 75 

species worldwide. Amaranthus became one of the most notable plant groups, in part because of 

the success of many of its members as fellow travelers of mankind (Sauer 1956). The number of 

Amaranthus species native of North America is extensive. At least nine annual Amaranthus spp. 

have adapted to farm practices to become weedy pests across the Midwestern United States. 

However, few species are as detrimental to row crop production as common waterhemp and 

Palmer amaranth. Common waterhemp is native to the Midwest United States and has been 
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historically found mainly in the western part of the Mississippi River, ranging from Nebraska to 

Texas, spread over a large geographical area containing Illinois, Iowa and Missouri (Hager et al. 

2002; Sauer 1955); Palmer amaranth is native from the area encompassing northwestern Mexico 

to southern California and New Mexico to Texas (Sauer 1957). Both common waterhemp and 

Palmer amaranth are dioecious, erect branching, summer annuals that utilize the C4 

photosynthetic pathway (Bell and Tranel 2010; Ehleringer 1983).  For being dioecious both 

species use outcrossing to reproduce, this ensures large genetically variable populations and can 

also serve to produce more adaptive traits between fields and across agricultural landscape. 

Previous researchers have reported that Palmer amaranth was the first to emerge and grew the 

fastest and the tallest when compared to common waterhemp and two other Amaranthus species 

grown in Kansas (Horak and Loughin 2000). Furthermore, at four weeks after planting Palmer 

amaranth was 48 and 600% taller than redroot pigweed (Amaranthus retroflexus L.) and 

common waterhemp, respectively, in Missouri (Sellers et al. 2003). 

Herbicide Resistance 

The dioecious nature of common waterhemp and Palmer amaranth has likely contributed to 

the rapid spread of glyphosate-resistant Amaranthus. In 1995, Palmer amaranth was the most 

troublesome weed of cotton in North Carolina and South Carolina, but not a major problem in 

any other state; although by 2009, Palmer amaranth was ranked as the most troublesome cotton 

weed in the southern U.S. (Dowler 1995; Webster and Coble 1997). Glyphosate-resistant Palmer 

amaranth infests more than 60% of soybean fields in Arkansas and alone has been responsible 

for the loss of millions of dollars to Midsouth soybean production in the United States 

(Norsworthy et al. 2012). Palmer amaranth is also listed among the toughest weeds to control in 

corn (Webster and Nichols 2012). As a result of intense application of glyphosate and failure to 
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control the GR populations, excessive selection pressure has been placed on PPO-inhibiting 

herbicides, making resistance to this site of action more likely to occur. To this date, Palmer 

amaranth populations have evolved resistance to five different herbicides sites of action (SOA): 

EPSPS-inhibiting herbicides; ALS-inhibiting herbicides; photosystem II-inhibiting herbicides; 

microtubule-inhibiting herbicides; and HPPD-inhibiting herbicides (Wise et al. 2009). According 

to a state-wide survey in Arkansas in 2011, consultants reported that soybean yield was reduced 

by 5% from uncontrolled GR Palmer amaranth, causing an estimated loss of US$71,000,000. 

Furthermore, US$11,000,000 was estimated as spent on hand-weeding labor in soybean fields 

(Norsworthy 2009). The actual scenario shows that GR Palmer amaranth is now widespread 

across the south and moving towards the Midwestern U.S. (Heap 2012; Nandula et al. 2012).  

Common waterhemp populations also have developed resistance to multiple herbicide sites 

of action, mostly used in soybeans, such as: EPSPS-inhibiting herbicides; ALS-inhibiting 

herbicides; PPO-inhibiting herbicides; photosystem II-inhibiting herbicides; synthetic auxins; 

and HPPD-inhibiting herbicides (Heap 2010). Glyphosate-resistant common waterhemp and 

Palmer amaranth have been confirmed in Illinois since 2006 and 2010, respectively (Heap 2010). 

The increase of herbicide resistance and the presence of weed biotypes with multiple resistance 

mechanisms to several herbicide sites of action have complicated weed management. Herbicides 

that inhibit the 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzyme constitute the most 

recently commercialized herbicide site of action in agronomic crops. Nevertheless, common 

waterhemp populations resistant to HPPD herbicides were reported in Iowa in 2011 (Heap 2011). 

Common waterhemp was the first weed to evolve resistance to HPPD-inhibiting herbicides 

(Heap 2011).  
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Seed Production 

Palmer amaranth and common waterhemp are also known for being prolific seed producers, 

with female plants being capable of producing more than 600,000 seeds (Keeley et al. 1987; 

Hartzler et al. 2004). Most of Amaranthus seeds are predominantly dispersed by gravity, but can 

also be spread by irrigation, water flow, movement of birds and mammals, and through 

agricultural practices such as plowing, mowing and harvesting (Costea et al. 2004; Norsworthy 

et al. 2009). 

 Normally, at high weed densities common waterhemp seed production is higher than Palmer 

amaranth. In contrast, at low weed density Palmer amaranth seed production is higher than 

common waterhemp (Bensch et al. 2003). Common waterhemp can produce from 300,000 to 2.3 

million seeds per female plant depending on the location, and over 400,000 seeds per female 

plant under reduced light conditions (Nordby and Hartzler 2004; Steckel et al. 2004). Common 

waterhemp and Palmer amaranth seeds are characterized for being small (1 to 2 mm), smooth 

and round or disc-shaped (Sauer 1955). Research conducted in Georgia have reported that seed 

production of Palmer amaranth was 312,000 seeds per female plant when female plants 

competed with cotton, and 446,000 seeds per female plant in absence of crop (Webster and Grey 

2015). In a similar study conducted in Missouri, female Palmer amaranth plants produced an 

average of 250,000 seeds per plant (Sellers et al. 2003).  

Competition with Row Crops 

Common waterhemp and Palmer amaranth readily compete with crops for light, water, 

nutrients, and therefore have a negative impact on yield. Bensch et al. (2003) reported soybean 

yield reduction of 56% when a population of 8 common waterhemp plants m
-1

 of soybean row 

was allowed to compete with the crop. Low effectiveness in controlling common waterhemp in a 
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soybean field may result in yield reductions up to 43% (Hager et al. 2002). Grain yield loss of 

74% was reported when 270 common waterhemp plants m
-1 

of corn row were allowed to 

compete with the crop beyond V10 growth stage (Steckel et al. 2004). Common waterhemp has 

also shown to be a problematic weed in grain sorghum (Sorghum bicolor L.). Feltner et al. 

(1969) reported a yield reduction of 45% when 3 common waterhemp plants m
-1 

of grain 

sorghum row were allowed to compete for 10 weeks.  

Palmer amaranth is capable of being as much or even more competitive to row crops than 

common waterhemp. Soybean yield reduction varied from 17 to 64% when Palmer amaranth 

density ranged from 0.3 to 10 plants m
-1

 of soybean row, respectively (Klingaman and Oliver 

1994). Palmer amaranth competition reduced corn yield from 11 to 91% as Palmer amaranth 

density increased from 0.5 to 8 plants m
-1

 of corn row. When compared to common waterhemp 

and redroot pigweed, Palmer amaranth was responsible for the highest soybean yield reduction 

(78.7%) at a density of 8 plants m
-1

 of soybean row (Massinga et al. 2001; Bensch et al. 2003). In 

addition to the competition for light, water, and nutrients Palmer amaranth has also interfered 

with mechanical harvest efficiency. Smith et al. (2000) reported that 3,260 Palmer amaranth 

plants per hectare reduced cotton yield by 22% and mechanical harvesting efficiency by 2.4%. In 

addition, Palmer amaranth biomass has shown to have allelopathic chemicals that reduce 

seedling vigor of several crops and weeds (Menges 1987). 

Germination Characteristics  

Information on germination rates and emergence patterns of common waterhemp and Palmer 

amaranth, along with factors that may influence their persistence in the soil seed bank is critical 

in selecting effective management strategies. There are numerous factors that can influence seed 

germination, such as soil moisture, oxygen availability and quality, temperature, light exposure, 
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and microbial activity (Leon et al. 2004). These factors are correlated to the level of seed 

dormancy observed in populations of common waterhemp, green pigweed (Amaranthus powellii 

S. Wats), and redroot pigweed (Oryokot et al. 1997). Normally, seed germination of a particular 

weed in the field occurs when the dormancy level of the population is minimum (Probert 1992). 

Bewley et al. (2012) reported that annual dormancy is deeply dependent on temperature and light 

exposure, which implies that seeds in the soil seed bank undergo changes in germination in 

response to temperature and light over time. Moreover, the physiological and genetic 

characteristics of seeds play major roles in seed dormancy. Nevertheless, the interaction between 

all these characteristics is what determines whether seed dormancy will occur or not (Murdoch 

and Ellis 1992). 

Seed Dormancy 

Seed dormancy is an innate seed property that defines under which environmental conditions 

the seed is able start germination (Finch-Savage and Leubner-Metzger 2006). Dormancy is 

determined by genetic factors with a substantial environmental influence and provides plant 

adaptation to a diversity of habitats. When determined by genetic factors seed dormancy is 

classified as primary dormancy; and secondary dormancy, when unfavorable conditions related 

to the environment are the main cause influencing factor (Graeber et al. 2012). Different classes 

of seed dormancy have been reported among plant species, and can be divided in physiological 

dormancy, morphological dormancy, morphophysiological dormancy, and combinational 

dormancy (Baskin and Baskin 2004; Finch-Savage and Leubner-Metzger 2006). Among all these 

classes, physiological and morphological dormancies are the most common mechanisms of weed 

seed persistence in the soil seed bank (Omami et al. 1999).  Previous research has defined 

dormancy as one of the most important component of plant fitness (Donohue et al. 2005; Huang 
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et al. 2010). Seed dormancy levels that are too high may delay germination and reduce the length 

of the growing season for certain species. In contrast, seed dormancy levels that are too low can 

lead to germination before the start of a favorable growing season, which may increase the risks 

of seedling mortality (Graeber et al. 2012). Therefore, seed dormancy is often considered an 

important adaptive trait of weed species that are characterized for prolonged seed germination, 

such as common waterhemp and Palmer amaranth. Previous research has reported that major 

differences in common waterhemp and Palmer amaranth seed dormancy are due to variability in 

seed physiology, and that these differences arose in response of some kind of selection, such as 

tillage practices and herbicide applications (Jha et al. 2014; Leon et al. 2006). The timing of 

tillage and the use of herbicides work as selective forces increasing the level of seed dormancy 

and consequently, delayed seedling emergence (Ghersa et al. 1994). Tillage is also one of the 

most important causes of seasonal seed dormancy observed in common waterhemp and Palmer 

amaranth (Leon et al. 2006; Jha et al. 2008). Nevertheless, depending on how tillage acts, 

whether burying seeds deeper in the soil profile or bringing them closer to the upper surface, it 

may relocate and expose seeds to areas where favorable environmental conditions for emergence 

are more predominant which may break seed dormancy.  

Exposure to light breaks seed dormancy in many species, especially small-seeded 

broadleaves (Dyer 1995). As small-seeded broadleaves may not survive germination from deeper 

in the soil profile, the necessity of light is thought to be an evolutionary advantage for this type 

of seeds (Pons 1991). Research has shown that light can only penetrate a few mm in the soil 

profile; thus, for light-requiring seeds even a shallow burial may induce seed dormancy (Pons 

1991; Wesson and Wareing 1969). The quality and quantity of light reaching the soil surface is 

deeply affected by the presence of crop residues and crop canopy. Generally, when crop canopy 
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is present the light passing through the green leaves is filtered and depleted in red light and 

enriched in far-red wavelengths, which has shown to inhibit germination of many small-seeded 

broadleaf species (Taylorson and Borthwick 1969). The primary plant and seed systems 

responsible for perceiving these wavelengths are the phytochrome family of photoreceptors. 

Amaranthus species that can emerge only from shallow depths, such as common waterhemp and 

Palmer amaranth, often require light for dormancy breaking and germination (Baskin and Baskin 

1987; Benech-Arnold et al. 2000; Gallagher and Cardina 1998; Leon and Owen 2003).  

Temperature and Moisture 

Small differences on soil microclimate conditions may have large effects on weed seed 

germination and emergence. Amaranthus species have shown to be sensitive to environmental 

variations in the soil microclimate (Buhler et al. 1996; Teasdale and Mohler 1993; Oryokot et al. 

1997). The role of temperature on seed germination has been studied in hundreds of species. The 

temperature factor can be studied as an energy source and as an environmental signal. When 

taken as an energy source temperature affects seed germination rates, whereas a temperature 

signal can determine when dormancy ceases and germination initiates (Benech-Arnold et al. 

2000). Common waterhemp and Palmer amaranth may have different optimal temperature ranges 

for growth and development. Wright et al. (1999) reported that Palmer amaranth responds 

negatively to low temperatures and positively to high temperatures. In presence of natural light 

or red light, the optimum temperature range for Palmer amaranth germination is between 25 and 

35 C in normal summer conditions; however in the fall, germination of few Palmer amaranth 

seeds may occur when the temperature is higher than 3 C (Jha and Norsworthy 2009).  

Light, fluctuating soil temperature, and moisture are thought to be the most important factors 

that determine the germination and dormancy rate in seed buried under field conditions (Batlla 
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and Benech-Arnold 2010). Temperature is considered to be one of the greatest factors interacting 

with the hydration level of the soil. Soil temperature ranging from 22 to 34 C, and high soil 

moisture conditions are known to favor germination of common waterhemp and Palmer 

amaranth (Wright et al. 1999). The importance of moisture is often related to seed embryo 

hydration and germination stimulation. Research has reported that under restricted moisture 

conditions the onset and completion of seed germination may be delayed (Schonbeck and Egley 

1998). 

Tillage Effects on Soil Seed bank 

The number of weed seed species present in the soil seed bank is vast. Understanding 

seedling emergence from the soil seed bank is critical to improve weed management strategies 

(Buhler et al. 1996; Forcella et al. 1992, 2000; Myers et al. 2004). Mechanical disruption of the 

soil profile can affect weed seedling emergence patterns by modifying seed burial depth, 

dormancy, and viability. Benech-Arnold et al. (2000) reported that soil mechanical disruption 

modifies environmental factors, such as temperature, oxygen, and moisture that are essential to 

germination.  

Soil temperature and soil moisture conditions in the seedbed zone, i.e. the top 5 cm in the soil 

profile, can promote or delay seed germination and seedling emergence (Kaspar et al. 1990; 

Schneider and Gupta 1985). Research has shown that soil temperature is lower and soil moisture 

is higher in reduced tillage systems compared to conventional tillage (Addae et al. 1991; Leon 

and Owen 2006). Fortin (1991) reported that conventional tillage systems had lower water 

content compared to no-tillage from planting to emergence of corn. In no-tillage systems seeds 

are more concentrated in the upper 5 cm of the soil profile which is favorable to small-seeded 

weed species, such as Amaranthus (Buhler et al. 1996; Oryokot et al. 1997).  Tillage is also 
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considered to be the main cause of seed burial in arable soils. In no-till systems seed burial may 

result from sowing implements; wheel and animal traffic; soil shrinking, swelling, and 

sloughing; and natural burial via structural characteristics of the seeds, e.g. seed shape and 

weight (Forcella et al. 2000).  

Depending on weed seed species and environmental conditions, seed burial can be positive or 

negative for seedling emergence. Mahboudi and Lal (1998) indicated that tillage improves 

seedbed conditions and soil structure, resulting in improved drainage and higher soil temperature 

in the spring. However, the most obvious negative consequence is that seeds are buried so deep 

that germination is prevented. Small-seeded weed species are more likely to use the red:far red 

(R:FR) ratio as a germination cue than large-seeded broadleaves (Tiansawat and Dalling 2013). 

Seed burial as well as crop canopy can have a suppressive effect on weed seedling emergence 

because they reduce the soil thermal amplitude and alter the quality of the light on the soil 

surface (Batlla and Benech-Arnold 2000; Fortin and Pierce 1991; Norsworthy 2004).  

Research has shown that red light is able to penetrate only a few millimeters through the soil 

profile, while longer wavelengths penetrate further, which is largely responsible for decreased 

seed germination (Wooley and Stoller 1978; Benvenuti 1995).  Reduced R:FR ratio caused by 

increased FR has also been shown to be capable of inhibiting seed germination of several 

Amaranthus species such as common waterhemp, redroot pigweed, and smooth pigweed (Fenner 

1980; Gallagher and Cardina 1998; Leon and Owen 2003). Perhaps germination occurs with 

deep burial, but seed reserves may be exhausted before the seedling reaches the soil surface. 

Weed species have evolved mechanisms that help seedlings break through the soil surface layer. 

Some seedlings of Amaranthus species reflex their cotyledons and their bases form a pointed 
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apex at the top of the hypocotyl, as it extends towards the soil surface (Forcella et al. 2000). This 

process seems to allow seedlings of this species to elongate even through compacted soils.  

Seed burial can also work as a positive event for some weed species. The overlay of soil 

creates a mulch that maintains high humidity at or near 100%, which allows seed germination 

relatively rapidly. Moreover, it also provides seed and seedlings protection from abnormal air 

temperatures as well as granivores and herbivores that feed on or near the soil surface (Tolk et al. 

1999; Forcella et al. 2000). Refsell and Hartzler (2009) observed that common waterhemp 

emergence was three times greater in no-till compared to chisel-till areas in Iowa, although, 

tillage did not affect the initial time of emergence. Germination of common waterhemp was four 

times greater in no-till plots compared to chisel and moldboard plow; however, seedling 

emergence occurred over a longer period in no-till plots (Leon and Owen 2006). Furthermore, 

the response of Palmer amaranth from a natural seed bank to tillage and soybean canopy showed 

that tillage had minimum interference in cumulative emergence of Palmer amaranth (Jha and 

Norsworthy 2009).  

Summary 

As herbicide-resistant biotypes of common waterhemp and Palmer amaranth increase in 

prevalence, knowledge of germination and emergence patterns of these species is essential in 

determining effective management tactics. In addition, understanding the effect of soil 

disturbance on weed seed germination and persistence patterns is critical in determining the 

influence of tillage systems on common waterhemp and Palmer amaranth management. 

Considering the large number of environmental factors and weed characteristics inherent to 

common waterhemp and Palmer amaranth that may influence seed germination and emergence, 

further information in regard to common waterhemp and Palmer amaranth emergence patterns in 
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different geographies is required to increase the efficacy of management strategies. Furthermore, 

the interaction of tillage operations with emergence patterns can improve our knowledge base to 

provide better recommendations to growers on the best management practices to combat these 

weed species.  

Objectives 

The objectives of my proposed research were to: 

1. Characterize the emergence patterns of common waterhemp and Palmer amaranth in 

southern Illinois. 

2. Determine the effect of tillage and the timing of the tillage operation on emergence of 

common waterhemp and Palmer amaranth throughout the season in southern Illinois. 

3. Analyze the interaction between soil temperature and soil moisture with the emergence 

of common waterhemp and Palmer amaranth in southern Illinois. 
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CHAPTER 2 

EMERGENCE PATERNS OF COMMON WATERHEMP  

 

Weed management encompasses an overall strategy with practices designed for depleting the 

soil seed bank, limiting weed emergence, reducing weed seed production, and preventing 

interference with crops (Aldrich 1984). The competition between weeds and crops occurs when 

resources such as water, light, nutrients, and gases are limited in supply. The level of competition 

is also determined by the variety of cultural practices applied in association with biological and 

physiological characteristics of the weeds (Morgan et al. 2001).  

Among all the factors that influence the success of an annual plant, emergence is probably 

the single most important phenological event. Forcella et al. (2000) defined complete seedling 

emergence as the point in time when a seedling is weaned from dependence upon nonrenewable 

seed reserves originally produced by its parent, and when photosynthetic autotrophism begins 

above soil surface level. Efforts to develop integrated weed management systems for various 

crops have emphasized that the outcome of crop-weed competition is highly dependent on time 

of weed seedling emergence relative to that of the crop. The timing of emergence determines 

whether a plant competes successfully with its neighbors, is consumed by herbivores, infected 

with diseases, and whether it flowers, reproduces and complete its life cycle by the end of the 

growing season. Weed emergence timing is one of the most critical factors in weed management. 

Knowledge of weed emergence timing may assist decisions regard planting date, fertilizer inputs, 

cultivation, and post-herbicide applications (Dyer 1995; Forcella et al. 2000; Webster et al. 

1999). 
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The timing of weed seedling emergence in the field varies according to environmental 

conditions, especially soil temperature, soil moisture, and dormancy levels of a weed population 

(Forcella and Stephen 1993; Cowan et al. 1988; Wiese and Davis 1967). Normally, common 

waterhemp populations initiate emergence a month later, and emergence occurs over a longer 

time period compared to many other summer annual weed species from the North Central United 

States (Hartzler et al. 1999). The discontinuous and prolonged emergence of common waterhemp 

is advantageous to survival under weed management systems. Seedlings that emerge late during 

the growing season are more difficult to control because there are fewer tactics that can be 

implemented at that time. Delayed emergence has been previously associated with difficult-to-

control weed species such as common waterhemp, giant ragweed (Ambrosia trifida L.) and 

Italian ryegrass (Lolium multiflorum Lam.) (Leon et al. 2006; Hager et al. 1997). Effective 

residual herbicides early in the growing season and the development of a robust crop canopy 

alleviate crop-weed competition later in the season. For example, common waterhemp 

emergence that was delayed from 14 to 28 days after soybean emergence showed a reduction in 

shoot biomass of 50 to 80%, respectively (Hartzler and Nordby 2004). Stoller et al. (1987) 

concluded that yield losses decreased considerably as common waterhemp emergence was 

delayed at least three weeks after soybean emergence.  

Along with traditional use in weed control, tillage is also known for being capable of altering 

environmental factors that are crucial for germination, such as temperature, moisture, and 

oxygen (Benech-Arnold et al. 2000). Tillage can also affect weed seedling emergence patterns 

by modifying seed burial depth, dormancy, and mortality (Gallagher and Cardina 1998). 

Reduced tillage systems reduce soil temperature, increase soil moisture, and concentrate weed 

seeds near to the soil surface (Clements et al. 1996; Yenish et al. 1992). Leon and Owen (2006) 
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showed that soil temperature was generally at least 2 to 4 C lower in no-tillage system and 

temperature fluctuations during the growing season was also lower. Temperature is prominent 

among the cardinal ecological factors that determine weed species growth and productivity (Guo 

and Al-Khatib 2003). The ability to start germination under a wide temperature range is one of 

the characteristics that enable common waterhemp and Palmer amaranth to successfully compete 

with crops (Wright et al. 1999; Guo and Al-Khatib 2003). Common waterhemp had the greatest 

germination percentage when submitted to alternating temperature conditions compared to giant 

foxtail (Setaria faberi Herrm.) and velvetleaf (Abutilon theophrasti Medik.) (Leon and Owen 

2004). Determining the favorable temperature range for seed germination is important in the 

development of weed management tactics that aim to prevent weed-crop competition. Common 

waterhemp seeds had lower germination rates when seeds were submitted to temperatures above 

35 C, and the highest germination rates under cooler temperatures compared to Palmer amaranth 

and redroot pigweed (Guo and Al-Khatib 2003). 

In arable areas, the seeds located on the soil surface may be buried in the soil profile to a 

depth of 15 to 20 cm (Cardina et al. 2009). As a small-seeded broadleaf, common waterhemp 

seeds preferably emerge from burial depths of 0.5 to 3 cm; therefore, most tillage operations are 

thought to bury the seeds deeper into the soil profile making the emergence of common 

waterhemp seedlings more difficult. Previous research has reported that common waterhemp 

emergence timing was 2 to 4 times longer and seedling emergence at least 4 times greater in no-

tillage conditions when compared to chisel and moldboard plow (Leon and Owen 2006). 

Similarly, Hartzler et al. (1999) reported that common waterhemp emergence occurred over an 

extended period in no-tillage compared to tillage conditions. This prolonged emergence pattern 

creates management problems for farmers because significant emergence events may occur after 
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preemergence herbicides have dissipated or non-residual postemergence herbicides have already 

been applied.  

Characterization of the seed bank dynamics over multiple years is necessary to achieve a 

greater understanding of weed emergence patterns and the associated environmental drivers. As 

a summer annual weed, common waterhemp can have multiple emergence flushes in different 

growing seasons. Buhler and Hartzler (2001) studied the persistence of common waterhemp, 

velvetleaf, woolly cupgrass (Eriochloa villosa T.) and giant foxtail (Setaria faberi H.) seeds over 

a four-year period; they observed that after seed burial, the total emergence of common 

waterhemp never exceeded 7% within the same year, and a cumulative emergence of 15% from 

the soil seed bank was observed after the four-year period, with greater emergence in the two 

first years.   

The increase in the number of weed species with resistance to multiple herbicide sites of 

action resistance (Heap 2015) has complicated weed management and reduced the number of 

effective alternative herbicides applied on postemergence. This situation requires attention in 

making herbicide use and cultural practices more percipient, aiming to reduce the selection of 

herbicide-resistant biotypes and make weed management practices more efficient. Information 

regarding emergence timing and patterns of common waterhemp, the effect of soil temperature 

and moisture, as influenced by tillage is essential to improve the effectiveness of weed 

management strategies. Thus, the objectives of this research are to 1) determine the period of 

emergence, date for peak emergence, and date for 90% cumulative emergence for common 

waterhemp in southern Illinois, 2) determine the effect of tillage and the timing of the tillage 

operation on emergence of common waterhemp compared to no-till, and 3) analyze the 

relationship of soil temperature and soil moisture with the emergence of common waterhemp.  
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MATERIALS AND METHODS 

Experiments were conducted throughout the growing seasons of 2013 and 2014 on two separate 

portions of a single field site at the Belleville Research Center near Belleville, IL. Historically, 

the field site has been infested with common waterhemp and was managed uniformly. No crop 

was planted over the two years and corn was the previous crop in 2012. Prior to experiment 

initiation tillage practices at the sites included tandem disc, field cultivator, and cultimulcher. 

The soil class found at the site is Bethalto silt loam with sand at 10%, silt at 72%, and clay at 

17.5%; soil pH, OM and CEC was 6.3, 2.3%, and 12, respectively. Soil P was 86, and soil K was 

320. Prior to study initiation a blanket application of non-residual herbicides, paraquat
1
 (1150 g 

ai ha
-1

) and glyphosate
2
 (1240 g ai ha

-1
) was applied to control weeds present in the area. The 

experiment included three tillage treatments: 1) undisturbed no-till; 2) early tillage, preferably 

around a typical soybean planting date of May 1
st
; 3) late tillage, preferably performed on June 

1
st
 to simulate a late soybean planting. Experiment plots were always counted for emergence 

immediately prior to tillage operations. Tillage treatments were implemented using a Troy-Bilt 

Pro-Line CRT Rototiller – Rear Tine Tiller
3
, at a depth of 5 to 7 cm. Infestations of grass species 

were controlled as necessary with blanket applications of clethodim
4
 (280 g ai ha

-1
) plus crop oil 

concentrate
5
 at 1% v/v.  Broadleaf species that emerged were hand weeded throughout the study 

duration. All weed species were considered glyphosate-susceptible.  

Data Collection. Common waterhemp seedlings were identified and enumerated on a 7-day 

interval starting prior to the first emergence event for each location (most likely March or April) 

and concluded after the final emergence event (beginning of November or first frost). After each 

                                                
1 Gramoxone SL, Syngenta Crop Protection, Inc., P.O. Box 18300, Greensboro, NC 27419-8300. 
2 Roundup WeatherMAX, Monsanto, Inc., P.O. Box 30170, St. Louis, MO 63167. 
3 Troy-Bilt Pro-Line CRT Rototiller, Pro-Bilt LLC, P.O. Box 361131, Cleveland, OH 44136-0019. 
4 Select 2EC, Valent U.S.A., P.O. Box 8025, Walnut Creek, CA 94596. 
5 Prime Oil, Winfield Solutions, LCC, P.O. Box 64589, St. Paul, MN 55164-0589. 
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data collection, weed seedlings were removed to provide an open vegetative canopy and allow 

future emergence of new weeds. To avoid overuse of the same soil seed bank and previous 

tillage effect, the 2014 experiment was re-located to a different area immediately adjacent to the 

trial area in 2013.  

Data Loggers WatchDog 1000 Series
6
 equipped with soil probes were used to collect soil 

temperature and soil moisture hourly at a 2.5 cm depth, from March 15
th 

through November 30
th 

or first frost. Each data logger had four channels, named A, B, C and D. Channels A and C were 

used for soil temperature, B and D for soil moisture. Six data loggers with four channels each, 24 

channels total (12 used by temperature probes and 12 by moisture probes) were established in the 

area. To protect probe cables from unforeseen problems such as, probes coming out of the soil, 

animal stepping and rodents feeding on the rubber lines, cables were passed through PVC pipes 

before being buried in the soil. Once a week data loggers were read using a WatchDog Data 

Shuttle
7
. Soil temperature and soil moisture data were downloaded in the computer and 

transferred to Microsoft Excel 
8
sheets where were kept organized by date, probe and treatment.  

Precipitation and air temperature data was also collected throughout the season. BRC is a 

site of the Illinois State Water Survey, and also has its own weather station for hourly 

precipitation and air temperature data collection.  

Experimental Design and Analysis. Overall field experiment dimensions were 10 m wide by 30 

m long with individual plots being 2 m x 2 m arranged in a randomized complete block design 

consisting in eight replications. A 1 m
2 
center quadrat was used for emergence data collection in 

each plot. Due to different weather conditions in the spring of 2013 and 2014, common 

waterhemp emergence influenced by tillage were analyzed both, separately and combined. 

                                                
6 Spectrum Technologies, Inc., P.O. Box 3600, Aurora, IL 60504. 
7 Spectrum Technologies, Inc., P.O. Box 3600, Aurora, IL 60504. 
8 Microsoft Corporation, Inc., P.O. Box 2362, Redmond, WA 98052.  
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Considering the high emergence contrast across replications and searching for a more 

homogeneous distribution, original data was log-transformed for tabulation and graphing. Tillage 

effects on common waterhemp emergence were analyzed using the PROC GLM procedure in 

SAS
9
. Means were separated using Fisher’s protected LSD (α=0.05). The correlation between 

common waterhemp emergence peaks to soil temperature and soil moisture were analyzed using 

Stepwise Regression procedure in SAS. Because of differences on weather patterns between 

years, and the timing of emergence peaks years were analyzed separately.  

Soil Sampling. Soil samples were collected in the spring of 2013 and 2014 at trial initiation in 

the area adjacent to each 1 m
2 

center quadrat to elucidate soil seed bank density. A common soil 

core with approximately 2.2 cm diameter at the cutting edge was used to collect six soil cores per 

plot at a depth of 7.6 cm. Soil samples were brought to SIU and placed into a freezer located at 

the Tree Improvement Center (TIC). Freezer temperature was set at -20 C to avoid any possible 

germination while the soil samples were still in bags. The greenhouse growouts for the soil 

samples for each year were completed the following winter/spring (Wilson et al. 2011). Soil 

cores were placed in a plastic tray with vermiculite on the bottom and a square sheet plant fabric 

barrier on top. Trays containing soil cores were placed on benches equipped with irrigation 

system and covered with a sheet of fabric barrier. Automatic irrigation system was set to provide 

20 min of irrigation once a day. The greenhouse temperature was 32 C, ranging 5 C more or less 

throughout the day.  

Three growouts periods were conducted for each soil core. Each period was 28 days long 

separated by one dry week (between the first and second growout) and 28 days with trays in the 

freezer (between the second and third growout). During each growout common waterhemp 

seedlings were identified and enumerated. The number of common waterhemp seedlings in the 

                                                
9 SAS software, Version 9.3, July 2011, SAS Institute Inc., Cary, NC 27513. 



21 

 

 

greenhouse growout were considered the viable fraction of the soil seedbank. Thus, these values 

were used to calculate the total size of the seedbank for waterhemp at the initiation of the field 

experiment. Growouts from soil samples collected in 2013 and 2014 were used to estimate the 

density of common waterhemp in the soil seed bank. Based on the amount of common 

waterhemp seedlings obtained from the 6 soil cores collected per plot, an estimated value m
-2

 

was calculated (Table 2.1). No statistical differences were observed when soil seed bank density 

was separated by treatment in 2013 and 2014 (P = 0.814; P = 0.439). These results show that 

common waterhemp seed bank density was uniform across the experimental areas in both years. 

To calculate common waterhemp seed bank depletion, field data was used to calculate the 

percent of total cumulative common waterhemp emergence from the soil seed bank. To meet 

normality assumptions cumulative emergence at each field plot was log-transformed prior to 

seed bank estimation (Gomez and Gomez 1984). 

 

RESULTS AND DISCUSSION 

Rainfall patterns and early season air temperature were considerably different between 

2013 and 2014 (Figure 2.1; Figure 2.2). The precipitation observed in the spring of 2013 was 

largely greater compared to the same period in 2014. Differences in daily means of air 

temperature were also perceived, mostly, in the first two weeks of May. These conditions 

contributed, at least in part, to differences in treatment means of cumulative emergence between 

years. For this reason, even with a non-significant treatment by year interaction (P = 0.143), data 

are presented for each year independently (Table 2.1).  

First emergence of common waterhemp occurred on the first week of May and last week 

of April in 2013 and 2014, respectively (Figure 2.3). In 2013, common waterhemp emerged from 
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May 7
th

 through October 8
th
. Seedling emergence occurred over a period of 22 wk in no-tillage, 

21 wk in early tillage, and 19 wk in late tillage. The major emergence peaks in 2013 occurred in 

May through mid-July. In the same year, regardless of treatment, 90% common waterhemp 

cumulative emergence was reached in late June (Figure 2.3).  

In 2014, common waterhemp emergence started on April 23
rd

 through October 30
th
. 

Seedling emergence was observed over 28 wk in no-tillage and 29 wk in both tillage treatments. 

The major emergence peaks occurred from late April to mid-July and mid-August through late 

September. The 90% cumulative emergence point for common waterhemp was reached in no-

tillage and late tillage by the end of June, while early tillage was 85% at the same time period 

and reached 90% by mid-August (Figure 2.3). Cumulative emergence of common waterhemp in 

early tillage remained lower and statistically different from no-tillage and late tillage until mid-

September (P < 0.001) (Table 2.2). Hartzler et al. (1999) reported discontinuous emergence of 

common waterhemp over an extended period throughout the growing season, but the majority 

had emerged through late June. In 2013, total cumulative seedling emergence was greater in 

early tillage plots compared to no-tillage and late tillage; whereas in 2014, total cumulative 

emergence was greater and statistically different in no-tillage and late tillage compared to early 

tillage (P = 0.005) (Table 2.1). Previous research has reported that in tillage systems with seeds 

buried deeply in the soil profile, germination is prevented or seedlings do not have enough 

energy to emerge (Mohler and Galford 1997). In addition, in no-till systems weed seeds are 

concentrated closer to the soil surface, where environmental conditions are more favorable for 

the emergence of small-seeded broadleaves such as common waterhemp (Felix and Owen 1999).   

Tillage Effects. Unfavorable weather conditions (excess rainfall) forced the tillage 

treatments to be delayed; thus, the early tillage treatment was performed on May 20
th

 and May 
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7
th
 and late tillage on June 7

th
 and June 6

th
 in 2013 and 2014, respectively. In both years, initial 

common waterhemp emergence occurred prior tillage treatment dates, which implies common 

waterhemp emergence started under similar environmental conditions. Despite the lower 

cumulative emergence of common waterhemp observed in early tillage in 2014, tillage effects on 

common waterhemp emergence were mostly temporary, and mainly observed through two weeks 

following the early tillage and late tillage operations (Table 2.2). To better analyze the effect of 

tillage, weekly observations of common waterhemp emergence from the total cumulative 

emergence were analyzed for 2013 and 2014. In 2013, in the week following early tillage 

emergence of common waterhemp in early tillage plots was lower, and statistically different 

from late tillage (P = 0.020). Common waterhemp emergence in early tillage continued the 

lowest (P = 0.419) for one more week, until late tillage was performed. Similar results were 

observed after late tillage, with lower emergence in late tillage compared to no-tillage and early 

tillage (P = 0.076). Nevertheless, the period following the third week after late tillage was 

characterized by greater emergence in late tillage compared to early tillage and no-tillage (P = 

0.006). The same scenario persisted until the end of July with means of common waterhemp 

cumulative emergence in late tillage higher than early tillage and no-tillage, respectively. 

Precipitation associated with air temperatures ranging from 20 to 25 C, especially in June and 

July, must have provided favorable conditions required to increase common waterhemp 

emergence in disturbed soils. Guo and Al-Khatib (2003) reported that the highest occurrences of 

common waterhemp emergence peaks was at air temperatures ranging from 20 to 25 C.  

In 2014, the weeks following early tillage operation were observed with no differences on 

common waterhemp emergence across treatments (P = 0.194; P = 0.099; P = 0.114; Table 2.2). 

The month of May 2014 only had 25% of precipitation of May 2013 and three weeks with means 
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of air temperature around 10 C, which may have affected post-tillage emergence on early tillage 

plots. Differences were observed during the three weeks following late tillage, common 

waterhemp in late tillage plots was the highest, followed by no-tillage and early tillage, 

respectively  (P = 0.062; P < 0.001; P < 0.001; Table 2.2). Common waterhemp emergence in 

late tillage plots continued the highest until late August, when no-tillage plots started having the 

greatest number of seedling emergence. The large number of common waterhemp seeds present 

in the upper portion of the soil profile is responsible for the increased emergence observed in no-

till systems (Hartzler and Refsell 2009). On Figure 2.3, even with all treatments reaching 100% 

cumulative emergence, it does not necessarily mean that the same number of seedlings was 

enumerated in each treatment.  

Soil Temperature. Figure 2.4 displays daily means of soil temperature recorded by soil 

probes and common waterhemp emergence throughout the seasons of 2013 and 2014. As 

expected, soil temperature data were less variable compared to air temperature, which can be 

explained by the lower temperature amplitude observed in the soil microclimate. Soil 

temperature was not influenced by any treatment, the same soil temperature pattern was observed 

across treatments along both years.  

In 2013, common waterhemp emergence in no-tillage mostly occurred when soil 

temperature ranged from 20 to 25 C. Soil temperature above 25 C, especially in July and August, 

was observed along with decreased common waterhemp emergence. Previous research has 

shown that seed germination of Amaranthus species is inhibited by high temperatures (Keeley et 

al. 1987; Yaacov 1994; Wright et al. 1999). A decrease in the emergence of common waterhemp 

in early tillage on May 28
th

 and late tillage on June 11
th

 represents the post-tillage effect relative 

to each tillage treatment; these observations were only observed on the plots that had been tilled 
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and suggest that decreased common waterhemp emergence is more likely to be influenced by a 

factor that is not variations in soil temperature, e.g. seed burial. Because of that, the dramatic 

reduction in common waterhemp emergence observed in late tillage in mid-June may be a result 

of a series of factors, such as seed burial, warmer soil temperatures (daily average of 25 C), and 

lack of rainfall events during this period. Contrary to soil temperature, soil moisture showed 

different values between tillage treatments. 

In 2014, similarly to previous year soil temperature did not differ across treatments. In 

mid-May an unexpected decrease of soil temperature, caused by adverse cold weather, was 

followed by reduced common waterhemp emergence in no-tillage. In early season, especially 

May and June, variations on common waterhemp emergence were similar to those of soil 

temperature. Similarly to 2013, values of soil temperatures above 25 C, especially in late July 

and early August, were observed along with decreased common waterhemp emergence. After 

early tillage, more specifically on May 13
th

, a reduction in the emergence of common waterhemp 

was observed (Figure 2.4). In contrast to early tillage, common waterhemp emergence did not 

decrease after late tillage. On the other hand, an increase in the emergence of common 

waterhemp was observed in late tillage. Higher germination of lambsquarters (Chenopodium 

album L.) has been reported in tillage systems compared to no-till (Clements et al. 1996). Soil 

temperature above 25 C observed in late June and July must have contributed to soil warming to 

a level that compromised common waterhemp emergence; seedling emergence was diminished 

across all treatments to less than 5 plants m
-2

 on August 6
th
. Soil moisture in no-tillage plots was 

higher compared to tillage treatments throughout the season; although, discrepant soil moisture 

differences across treatments were observed even during the first weeks when any tillage 

treatment had been applied (Figure 2.5).  
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Soil Moisture. In 2013, soil moisture in no-tillage was greater throughout the season 

compared to tillage treatments. Values of soil moisture were considerably similar in all 

treatments prior tillage application. Curiously, a decrease in soil moisture in all treatments in 

mid-June was not followed by a decrease of common waterhemp emergence in no-tillage; in 

contrast, an increase of soil moisture in no-tillage was followed by decreased common 

waterhemp emergence. As observed on Figure 2.5, soil moisture in early tillage plots was 

dramatically reduced after tillage, especially in the two following weeks, but only until the next 

rainfall event. A similar trend was observed following the late tillage treatment. In this case, soil 

moisture in no-tillage and early tillage was greater compared to late tillage. Reduction in soil 

moisture is often attributed to soil disturbance caused by tillage practices. Recent research has 

reported that tillage practices greatly affect soil hydrologic properties (Salem et al. 2015). 

In 2014, common waterhemp emergence and soil moisture in no-tillage showed a similar 

pattern, mostly, when reductions in soil moisture were observed; for example late May, August 

6
th
, and late September. In contrast, small reductions in common waterhemp emergence was 

observed while there was an increase in soil moisture; for example, early May, mid-June, and 

late August. A dramatic decrease in soil moisture was observed in early tillage plots after tillage 

was applied; this event was followed by a decrease in common waterhemp emergence in early 

tillage plots. After a period of two weeks and occurrence of precipitation, a similar emergence 

pattern was observed between early tillage and no-tillage.  

No decrease in soil moisture was perceived on late tillage plots, even on the week 

following tillage application. In contrast to what was observed after early tillage, an increase in 

common waterhemp emergence was observed following the late tillage operation. Nevertheless, 

soil moisture in no-tillage was still higher compared to late tillage. Large differences in the 
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consistency of soil moisture data may be related to the shallow placement of soil probes in the 

soil, which makes the sensor more sensitive to minimum differences in ground level and 

exposure to increased air movement though the soil particles. Despite the differences observed 

on soil temperature and soil moisture, common waterhemp emergence in no-tillage, early tillage, 

and late tillage showed a similar pattern throughout the season, which indicates that common 

waterhemp emergence throughout the season is, in most part, a result of environmental factors 

acting alternately. 

Regression Analysis of Soil Temperature and Soil Moisture with Emergence. Based 

on the values of soil temperature and soil moisture observed in 2013 and 2014, stepwise 

regressions were used to indicate which environmental factor (soil temperature and/or soil 

moisture) was more successful in predicting the emergence of common waterhemp throughout 

the season. As weed seedlings were enumerated every 7 days, each emergence event was more 

likely to be a result of soil temperature and soil moisture recorded previously. For a more precise 

analysis, regression was designed to find the strongest factor in predicting common waterhemp 

emergence within 14 days prior to each emergence event.  

In 2013, 99% of common waterhemp seedlings emerged in the period between April 23
rd

 

and August 13
th
 (Figure 2.3). In early season, especially April and May, the majority of common 

waterhemp emergence peaks showed a positive interaction with high values of soil temperature 

from 13 days before each emergence count (R
2
 = 0.35; P = <0.001; Table 2.3). A positive 

interaction was also observed between common waterhemp emergence peaks and high soil 

moisture values 11 days prior to emergence counts (R
2
 = 0.35; P = 0.013; Table 2.3). A better 

understanding of these results can be obtained by analyzing the shape similarity between the 

predicted emergence of common waterhemp and high soil temperature 13 days prior emergence, 
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especially in early season (April and May), and high values of soil moisture 11 days prior 

emergence in June, July, and August (Figure 2.6). Based on previous observations, soil 

temperature above 25 C, in July and August, was observed along with decrease in common 

waterhemp emergence. During this period the shape pattern of soil moisture 11 days prior 

emergence and the predicted common waterhemp emergence is similar, which characterizes, 

especially in late season, the positive interaction between soil moisture 11 days prior and 

common waterhemp emergence. In other words the predicted emergence can be defined as the 

common waterhemp emergence originated from the highest values of soil temperature and soil 

moisture observed 13 and 11 days before each enumeration event. Considering the similarities 

observed across graph lines, and the fact that the majority of common waterhemp emergence 

occurred over the selected period (April 23
rd

 and August 13
th
) for regression, is plausible to say 

that the interaction between soil temperature and common waterhemp emergence was positive 

and strong.  

In 2014, the number of emerged common waterhemp seedlings throughout the season 

was considerably higher compared to previous year. The area where the experiment from 2014 

was established had a greater common waterhemp infestation (Table 2.1), which must have been 

a result from more active seed dispersal in that site in 2013. In 2014, common waterhemp 

emergence reached 99% by the middle of September, showing emergence over a longer period 

compared to 2013. For this reason, the period used for regression was initiated on April 23
rd

 

through October 8
th
. A negative interaction between common waterhemp emergence and high 

soil temperature values 10 days prior emergence was observed (R
2
 = 0.55; P < 0.001; Table 2.3). 

On the other hand, a positive interaction with minimum soil temperature 8 days before each 

emergence event was also observed (R
2
 = 0.55; P < 0.001).  
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Analyzing Figure 2.7 and the line pattern of each factor and the predicted common 

waterhemp emergence, a positive interaction between common waterhemp emergence and 

minimum soil temperature can be observed, especially in early season. For example, in May 21
st
 

a notable decrease in common waterhemp emergence and minimum soil temperature was 

noticed, which can be used to explain the positive interaction between these two factors. The 

interaction between these two factors becomes even clearer once minimum soil temperature 8 

days prior emergence corresponds to May 13
th
, which is the date when adverse cold weather was 

present in the site. The negative interaction between high values of soil temperature 10 days 

before each emergence event and common waterhemp emergence can also be demonstrated by 

observing the previous graph of soil temperature and common waterhemp emergence (Figure 

2.4). In August 2014, high soil temperatures (around 40 C) were observed along with a decrease 

in common waterhemp emergence, which, considering the regression results, may be a general 

overview of the negative interaction between common waterhemp emergence and high soil 

temperature 10 days before emergence. In similar research Guo and Al-Khatib (2003) have 

reported severe reductions in common waterhemp emergence when temperature was gradually 

increased, especially above 35 C.  

Emergence from Soil Seed Bank. Soil seed bank density for common waterhemp was 

estimated in both years. For the 2013 site, Palmer amaranth seed bank density was estimated at 

946 seeds m
-2

. In 2014, the amount of common waterhemp seeds in the soil seed bank was 

greatly higher, with a seed density of 44,541 seeds m
-2

. 

In 2013, total common waterhemp cumulative emergence from the soil seed bank was 33, 

36, and 31% in no-tillage, early tillage, and late tillage, respectively (P = 0.915; Table 2.1). The 
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lack of differences across treatments may be attributed to similarity in seed distribution within 

the soil profile, and soil temperature and moisture (Buhler and Daniel 1988; Buhler et al. 1996). 

In 2014, common waterhemp emergence from the soil seed bank was 24, 12, and 19% in 

no-tillage, early tillage, and late tillage, respectively (P = 0.005; Table 2.1). In reason of the large 

soil seed bank density observed in the site of 2014, a potential intraspecific competition for 

common waterhemp germination might be the cause of a lower cumulative emergence from the 

soil seed bank. Previous research has reported that annual emergence of common waterhemp 

from the soil seed bank may vary from 10 to 35% (Wu and Owen 2014). In similar research, 

Hartzler et al. (1999) have reported a 15% common waterhemp cumulative emergence from soil 

seed bank under no-tillage condition. The shallow placement of common waterhemp seedlings 

on the soil surface may have provided favorable conditions for greater germination in no-tillage 

plots. Cardina et al. (2009) have reported that weed seed density on the top portion of the soil 

profile was four times greater than at 5 to 10 cm depth.  

Conclusions. Common waterhemp emergence is discontinuous throughout the crop 

growing season, with the greatest emergence spikes in May, June, and July. In both years, 90% 

common waterhemp cumulative emergence was observed between late April and the end of 

June, which emphasizes the need for effective weed management in the early to mid-growing 

season, preferably with the use of soil residual herbicides. The emergence pattern of common 

waterhemp was mostly affected in the following three weeks after tillage. In both years, after 

early tillage a decrease in common waterhemp emergence was observed, while after late tillage 

there was an increase in the number of emerged common waterhemp seedlings; although, the 

total cumulative emergence was higher in early tillage in 2013, and no-tillage in 2014. These 

results suggest that soil disturbance operated in late season may increase the emergence of 
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common waterhemp, which at this time in the growing season has reduced control options, 

which encourages common waterhemp seed dispersal and compromises crop production. Total 

common waterhemp seedling emergence was greater in early tillage and no-tillage in 2013 and 

2014, respectively.   

The interaction between common waterhemp emergence and high and low soil 

temperature was strong and associated to the major common waterhemp emergence peaks. 

Furthermore, common waterhemp seed bank depletion was greater in no-tillage compared to 

early tillage treatment in 2014, which suggests that the shallow burial of common waterhemp 

may lead to a less persistent seed bank.  These results suggest that weed management efforts in 

controlling common waterhemp should focus in early season, mainly in May and June; and the 

use of tillage, especially in late season, may increase the emergence of common waterhemp for a 

period where alternate weed control options are more difficult considering crop presence. 

Furthermore, monitoring environmental factors, most importantly soil temperature, may assist 

the development of weed management strategies based on the prediction of common waterhemp 

emergence.  
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Figure 2.1. Monthly precipitation received during the experimental period and 30-year rainfall 

average in Belleville, IL.  

 

 

 

 

 

 

 

 

 



33 

 

 

 
Figure 2.2. Daily means of air temperature throughout the experiment period in 2013 and 2014.  
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Table 2.1. Total cumulative and soil seed bank emergence of common waterhemp throughout the season for no-tillage, early tillage 

and late tillage in 2013 and 2014. 

Treatment 

                                        2013                                                2014 

Cumulative emergence Seed bank emergence  Cumulative emergence Seed bank emergence 

 no. seedlings m
-2 

% emerged seedlings m
-2 

 no. seedlings m
-2 

% emerged seedlings m
-2 

No-tillage   312
a 

a
b 

33 a  10,487 a 24 a 

Early tillage 341 a 36 a  5,552 b 12 b 

Late tillage  297 a 31 a 
 

8,459 a 19 a 

a
 Numbers presented are the back-transformed of total emergence. Data were log-transformed and back-transformed for clarity. 

 

b
 Numbers within each row and for each year followed by the same letter do not differ significantly according to Fisher’s protected 

LSD (α = 0.05). 
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Figure 2.3. Cumulative emergence of common waterhemp for no-tillage, early tillage and late 

tillage in Belleville, IL in 2013 and 2014. Arrows represent early tillage and late tillage dates.
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Table 2.2.  Statistical analysis of weekly cumulative emergence of common waterhemp for no-

tillage, early tillage, and late tillage in Belleville, IL in 2013 and 2014. 

  
 

  Tillage 

Year Date R
2 

F value p No-tillage Early tillage
a 

Late tillage
b 

  
   --------------% cumulative emergence

c
------------- 

2013 5/07 0.78 6.77 0.419 5 a
d 

8 a 6 a 

 5/14 0.80 0.57 0.579 14 a 17 a 16 a 

 5/21 0.70 0.81 0.464 29 a
 

31 a
 

35 a 

 5/28 0.74 5.17 0.020 44 ab 35 b 52 a 

 6/4 0.59 0.92 0.419 52 a 56 a 59 a 

 6/11 0.64 3.11 0.076 62 ab 71 a 59 b 

 6/18 0.60 1.81 0.199 77 a 80 a 74 a 

 6/25 0.78 2.63 0.107 83 a 86 a 87 a 

 7/2 0.85 7.31 0.006 90 b 92 ab 94 a 

 7/9 0.68 1.67 0.223 95 a 96 a 97 a 

 7/16 0.52 2.23 0.144 98 a 98 a 99 a 

 7/23 0.65 4.30 0.035 98 b 98 ab 99 a 

 7/30 0.40 2.15 0.153 98 a 99 a 100 a 

 8/6 0.45 1.66 0.225 99 a 99 a 100 a 

 8/13 0.46 2.37 0.130 100 a 99 a 100 a 

 8/20 0.46 1.97 0.176 100 a 100 a 100 a 

 8/27 0.46 2.07 0.163 100 a 100 a 100 a 

 9/3 0.40 0.76 0.486 100 a 100 a 100 a 

 9/10 0.63 1.47 0.263 100 a 100 a 100 a 

 9/17 0.68 1.35 0.290 100 a 100 a 100 a 

 9/24 0.68 1.05 0.376 100 a 100 a 100 a 

 10/01 0.40 1.09 0.363 100 a 100 a 100 a 

           

2014 4/23 0.60 0.00 0.995 3 a 3 a 3 a 

 4/30 0.63 0.24 0.790 11 a 12 a 13 a 
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Table 2.2 (Continued)         

 5/07 0.64 2.11 0.158 25 a 34 a 28 a 

 5/14 0.69 1.85 0.194 40 a 36 a 44 a 

 5/21 0.71 2.74 0.099 44 ab 38 b 48 a 

 5/28 0.71 2.54 0.114 46 ab 41 b 51 a 

 6/4 0.70 3.12 0.075 50 ab 45 b 55 a 

 6/11 0.66 3.40 0.062 65 ab 57 a 66 a 

 6/18 0.77 12.02 <0.001 71 b 64 c 80 a 

 6/25 0.79 14.13 <0.001 83 a 76 b 87 a 

 7/2 0.78 15.29 <0.001 91 a 86 b 93 a 

 7/9 0.78 14.43 <0.001 93 a 88 b 94 a 

 7/16 0.78 14.00 <0.001 93 a 88 b 94 a 

 7/23 0.78 13.94 <0.001 94 a 89 b 95 a 

 7/30 0.78 13.84 <0.001 94 a 89 b 95 a 

 8/6 0.78 13.79 <0.001 94 a 89 b 95 a 

 8/13 0.78 14.73 <0.001 94 a 90 b 95 a 

 8/20 0.77 14.01 <0.001 95 a 91 b 96 a 

 8/27 0.73 11.46 0.001 97 a 93 b 97 a 

 9/3 0.72 10.80 0.001 98 a 95 b 98 a 

 9/10 0.72 9.63 0.002 99 a 98 b 99 a 

 9/17 0.55 4.54 0.030 100 a 99 b 100 ab 

 9/24 0.50 0.72 0.503 100 a 100 a 100 a 

 10/01 0.23 0.11 0.896 100 a 100 a 100 a 

 10/08 0.24 0.43 0.659 100 a 100 a 100 a 

 10/15 0.32 0.68 0.524 100 a 100 a 100 a 

 10/22 0.34 0.76 0.487 100 a 100 a 100 a 

 10/29 - - - 100 a 100 a 100 a 
a 
Early tillage performed on May 20

th
 and May 7

th
 in 2013 and 2014, respectively. 
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b 
Late tillage performed on June 7

th
 and June 6

th
 in 2013 and 2014, respectively.  

c 
Degrees of freedom: main effect = 9; error = 14 

d 
Means within each column for the same year followed by the same letter do not differ 

significantly according to Fisher’s protected LSD (α = 0.05). 
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Figure 2.4. Daily means of soil temperature recorded by soil probes and common waterhemp 

emergence for no-tillage, early tillage, and late tillage in 2013 and 2014. 
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Figure 2.5. Daily means of soil moisture recorded by soil probes and common waterhemp 

emergence for no-tillage, early tillage, and late tillage in 2013 and 2014. 
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Table 2.3. Results of stepwise regression testing the interaction of common waterhemp 

emergence with values of soil temperature and soil moisture in 2013 and 2014. Soil temperature 

and soil moisture included as factors for germination. 

Year
 

Variable
a 

R
2 Time prior 

emergence events 

Parameter 

Estimation 

F 

value 

p-

value 

   ----------(d)---------    

2013 High soil temperature
 

0.35 13
b 

0.46 4.82 <0.001 

 High soil moisture 0.35 11
 

0.07 2.57 0.013 

 
  

    

2014 High soil temperature 0.55 10 -0.20 -7.55 <0.001 

 Minimum soil temperature 0.55 8 0.15 6.09 <0.001 

a 
Maximum (highest), mean, and minimum (lowest) values of soil temperature and soil moisture 

up to 14 days prior each emergence event were used as predict variables.  

b
 Results show the period (days) after observed environmental factors, that  led to major peaks of 

common waterhemp emergence. 
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Figure 2.6. Stepwise regression for emergence of common waterhemp predicted by soil 

temperature and soil moisture in 2013. The blue line represents the highest values of soil 

moisture observed 11 days before each common waterhemp emergence event, the orange line 

represents the highest values of soil temperature collected 13 days prior each emergence. The 

grey line shows the predicted common waterhemp emergence as result of these two variables. 

The green line shows the mean of common waterhemp emergence throughout the selected 

period.  
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Figure 2.7. Stepwise regression for emergence of common waterhemp predicted by soil 

temperature and soil moisture in 2014. The orange line represents the highest values of soil 

temperature observed 10 days before each common waterhemp emergence event, the yellow 

represents the lowest values of soil temperature collected 8 days prior each emergence. The grey 

line shows the predicted common waterhemp emergence as result of these two variables. The 

green line shows the means of common waterhemp emergence throughout the selected period. 
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CHAPTER 3 

EMERGENCE PATERNS OF PALMER AMARANTH 

 

Palmer amaranth is listed among the most troublesome weeds in corn, soybeans and cotton 

and has become one of the most economically damaging glyphosate-resistant (GR) weed species 

in the United States (Beckie 2009). As any other Amaranthus species, Palmer amaranth 

germination is highly dependent on environmental conditions. Originated in the xeric 

environment of northern Mexico and southeastern United States, where water is often a limiting 

factor, Palmer amaranth is naturally opportunistic, and is characterized for rapid germination and 

complete lifecycle in response to available moisture (Ehleringer 1985). The fast response of 

Palmer amaranth to favorable germination conditions was characterized when nine Amaranthus 

species were subjected to different temperature amplitudes with a mean of 30 C; all the viable 

Palmer amaranth and smooth pigweed seeds germinated in the first day, while the other species 

required three to eight days to reach 50% emergence (Steckel et al. 2004). Despite being capable 

of germinating under high temperatures, seed production of Palmer amaranth decreased when 

temperature above 35 C were observed. Moreover, Palmer amaranth seed germination was 

higher under alternating temperatures compared to constant temperatures (Steckel et al. 2004). 

Research has reported that low rainfall condition are also responsible for reduced and delayed 

emergence of pigweed (Hartzler et al. 1999; Oryokot et al. 1997). Forcella et al. (1992) reported 

that redroot pigweed was sensitive to small changes in rainfall, even those lower than 1 mm, 

during the growing season. 

Weed species that contribute to the formation of persistent soil seed banks shall be taken as a 

concern for the success of weed management. The percentage of seed that emerges in a given 
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year varies widely among species and environmental conditions (Hartzler et al. 1999). Previous 

research has shown that Palmer amaranth seeds possess dormancy and are relatively persistent in 

the seed bank, which explains the extended period of emergence observed for Palmer amaranth 

throughout the season (Sosnoskie et al. 2013). This characteristic allows Palmer amaranth to 

become a long-term problem once established.  In research conducted in Georgia, Palmer 

amaranth seed germination was directly related to depth of seed burial (Sosnoskie et al. 2013). 

Among the effects of seed burial, changes in the light environment is one of the most important 

in altering seed germination. Research has reported weed seed burial inducing light-sensitivity 

dormancy in small-seeded Amaranthus species (Gallagher and Cardina 1998). Moreover, Jha and 

Norsworthy (2009) have reported that seed burial and crop canopy were responsible for an 

increase in the far-red transmitted light, which is known for reducing and delaying the 

emergence of small-seeded broadleaves (Gallagher and Cardina 1998). 

Agronomic practices, such as the absence or presence of crops, crop rotation, and tillage, are 

crop production practices that influence weed seed dormancy and persistence (Jha et al. 2014). 

The effect of tillage on weed seed persistence is mainly in the vertical distribution of seeds in the 

soil profile. Steckel et al. (2007) reported that tillage may bring seeds closer to the soil surface, 

favoring emergence and seed bank depletion; or buries seeds deeper in the soil profile, favoring 

seed dormancy and persistence. Previous research has shown that seed burial caused by tillage at 

depths of 5 cm or more, significantly reduces Palmer amaranth seed germination and increases 

the required seedling elongation (Ward et al. 2013). Similar results have shown that seed burial, 

at least 10 cm deep, caused by moldboard plow can provide a 50% reduction in Palmer amaranth 

emergence (Ward et al. 2013). The presence of glyphosate resistance in a Palmer amaranth 

population does not affect the longevity of soil seed bank; the same results showed that deep 
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burial of Palmer amaranth seeds can help reduce Palmer amaranth infestation, but only if seeds 

stay buried below their germination zone longer than 36 months (Sosnoskie et al. 2013).  

The emergence of Palmer amaranth coincides with the growing season of most row crops. 

Seasonal seed dormancy and an extended emergence period allow Palmer amaranth to compete 

throughout the season contributing to severe yield reductions in soybeans, cotton, and corn. The 

increase in the number of Palmer amaranth populations with herbicide resistance has reduced the 

number of herbicides available for Palmer amaranth control in Illinois. Characterizing the 

emergence patterns of Palmer amaranth under no-tillage and tillage conditions, as well as the 

interaction between Palmer amaranth emergence and environmental factors, may be useful in 

implementing a more effective weed management strategy. Thereby, the objectives of this 

research were to 1) determine the period of emergence, date for peak emergence, and date for 

90% cumulative emergence for Palmer amaranth in southern Illinois, 2) determine the effect of 

tillage and the timing of the tillage operation on emergence of Palmer amaranth compared to no-

till, 3) analyze the relationship of soil temperature and soil moisture with the emergence of 

Palmer amaranth.  
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MATERIALS AND METHODS 

Experiments were conducted throughout the growing seasons of 2013 and 2014 on two separate 

portions of a single field site at the Belleville Research Center near Belleville, IL. Historically, 

the field site has been infested with Palmer amaranth and was managed uniformly. No crop was 

planted over the two years and soybean was the previous crop in 2012. Prior to experiment 

initiation tillage practices at the sites included tandem disc, field cultivator, and cultimulcher. 

The soil class present at the site is a Bethalto silt loam with sand at 10%, silt at 72.5%, and clay 

at 17.5%; soil pH, OM and CEC was 6.2, 2.0%, and 11, respectively. Soil P was 72, and soil K 

was 275. Prior to study initiation a blanket application of non-residual herbicides, paraquat
1
 

(1150 g ai ha
-1

) and glyphosate
2
 (1240 g ai ha

-1
) was applied to control weeds present in the area. 

The experiment included three tillage treatments: 1) undisturbed no-till; 2) early tillage, 

preferably around a typical soybean planting date of May 1
st
; 3) late tillage, preferably performed 

on June 1
st
 to simulate a late soybean planting. Experiment plots were always counted for 

emergence immediately prior to tillage operations. Tillage treatments were implemented using a 

Troy-Bilt Pro-Line CRT Rototiller – Rear Tine Tiller
3
, at a depth of 5 to 7 cm.  

Infestations of grass species were controlled as necessary with blanket applications of clethodim
4
 

(280 g ai ha
-1

) plus crop oil concentrate
5
 at 1% v/v.  Broadleaf species that emerged were hand 

weeded throughout the study duration. All weed species were considered glyphosate-susceptible.  

Data Collection. Palmer amaranth seedlings were identified and enumerated on a 7-day interval 

starting prior to the first emergence event for each location (most likely March or April) and 

concluded after the final emergence event (beginning of November or first frost). After each data 

                                                
1 Gramoxone SL, Syngenta Crop Protection, Inc., P.O. Box 18300, Greensboro, NC 27419-8300. 
2 Roundup WeatherMAX, Monsanto, Inc., P.O. Box 30170, St. Louis, MO 63167. 
3 Troy-Bilt Pro-Line CRT Rototiller, Pro-Bilt LLC, P.O. Box 361131, Cleveland, OH 44136-0019. 
4 Select 2EC, Valent U.S.A., P.O. Box 8025, Walnut Creek, CA 94596. 
5 Prime Oil, Winfield Solutions, LCC, P.O. Box 64589, St. Paul, MN 55164-0589. 
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collection, weed seedlings were removed to provide an open vegetative canopy and allow future 

emergence of new weeds. To avoid overuse of the same soil seed bank and previous tillage 

effect, the 2014 experiment was re-located to a different area immediately adjacent to the trial 

area in 2013.  

Data Loggers WatchDog 1000 Series
6
 equipped with soil probes were used to collect soil 

temperature and soil moisture hourly at a 2.5 cm depth, from March 15
th 

through November 30
th 

or first frost. Each data logger had four channels, named A, B, C and D. Channels A and C were 

used for soil temperature, and B and D for soil moisture data collection. Six data loggers with 

four channels each, 24 channels total (12 used by temperature probes and 12 by moisture probes) 

were established in the area. To protect probe cables from unforeseen problems such, probes 

coming out of the soil, animal stepping and rodents feeding on the rubber lines, cables were 

passed through PVC pipes before buried in the soil. Once a week data loggers were read using a 

WatchDog Data Shuttle
7
. Soil temperature and soil moisture data were downloaded in the 

computer and transferred to Microsoft Excel 
8
sheets where were kept organized by date, probe 

and treatment.  

  Precipitation and air temperature data was also collected throughout the season. BRC is a 

site of the Illinois State Water Survey, and also has its own weather station for hourly 

precipitation and air temperature data collection. 

Experimental Design and Analysis. Overall field experiment dimensions were 10 m wide by 30 

m long with individual plots being 2 m x 2 m arranged in a randomized complete block design 

consisting in eight replications. In the center of each plot a 1 m
2
 quadrat was used for emergence 

data collection. Due to different weather conditions in the spring of 2013 and 2014, Palmer 

                                                
6 Spectrum Technologies, Inc., P.O. Box 3600, Aurora, IL 60504. 
7 Spectrum Technologies, Inc., P.O. Box 3600, Aurora, IL 60504. 
8 Microsoft Corporation, Inc., P.O. Box 2362, Redmond, WA 98052.  
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amaranth emergence influenced by tillage were analyzed both, separately and combined. 

Considering the high emergence contrast across replications and searching for a more 

homogeneous distribution, original data was log-transformed for tabulation and graphing. Tillage 

effects on Palmer amaranth emergence were analyzed using the PROC GLM procedure in SAS
9
. 

Means were separated using Fisher’s protected LSD (α=0.05). The interaction of Palmer 

amaranth emergence peaks with soil temperature and soil moisture was analyzed using Stepwise 

Regression procedure in SAS. Due to differences on weather patterns and timing of emergence 

peaks, years were analyzed separately.  

Soil Sampling. Soil samples were collected in the spring of 2013 and 2014 at trial initiation in 

the area adjacent to each 1 m
2 

center quadrat to elucidate soil seed bank density. A common soil 

core with approximately 2.2 cm diameter at the cutting edge was used to collect six soil cores per 

plot at a depth of 7.6 cm. Soil samples were brought to SIU and placed into a freezer located at 

the Tree Improvement Center (TIC). Freezer temperature was set at -20 C to avoid any possible 

germination while the soil samples were still in bags. The greenhouse growouts for the soil 

samples for each year were completed the following winter/spring (Wilson et al. 2011). Soil 

cores were placed in a plastic tray with vermiculite on the bottom and a square sheet plant fabric 

barrier on top. Trays containing soil cores were placed on benches equipped with irrigation 

system and covered with a sheet of fabric barrier. Automatic irrigation system was set to provide 

20 min of irrigation once a day. The greenhouse temperature was 32 C, ranging 5 C more or less 

throughout the day.  

Three growouts periods were conducted for each soil core. Each period was 28 days long 

separated by one dry week (between the first and second growout) and 28 days with trays in the 

freezer (between the second and third growout). During each growout Palmer amaranth seedlings 

                                                
9 SAS software, Version 9.3, July 2011, SAS Institute Inc., Cary, NC 27513. 
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were identified and enumerated. The number of Palmer amaranth seedlings in the greenhouse 

growout were considered the viable fraction of the soil seedbank. Thus, these values were used 

to calculate the total size of the seedbank for Palmer amaranth at the initiation of the field 

experiment. Palmer amaranth emergence from the soil seed bank was estimated based on 

growouts from soil samples collected at the experiment initiation in 2013 and 2014. Based on the 

amount of Palmer amaranth seedlings enumerated from the 6 soil cores collected per plot, an 

estimated value m
-2

 was calculated (Table 3.1). No statistical differences were observed when 

soil seed bank estimation was grouped by treatment (P = 0.793; P = 0.305), which suggests a 

homogenous seed bank density across the experimental area. Palmer amaranth field emergence 

in no-tillage, early tillage and late tillage was used to calculate the respective soil seed bank 

depletion.  

 

RESULTS AND DISCUSSION 

Precipitation events were notably different between the experimental period in 2013 and 

2014 (Figure 3.1). Predominant rainfall events in the spring and in the fall characterize 

precipitation in 2013 and 2014, respectively. Differences in air temperature were also observed 

throughout the experiment duration but mostly in the beginning of May (Figure 3.2). These 

conditions contributed, at least in part, to large differences across means of Palmer amaranth 

emergence between years. Thus, even with non-significant treatment interaction between years 

(P = 0.188), data is presented for each year independently (Table 3.1). 

First emergence of Palmer amaranth occurred on May 14
th

 in both years (Figure 3.3). 

During 2013, Palmer amaranth emerged from May 14
th

 through October 22
nd

. Seedling 

emergence was observed over a period of 23 wk in no-tillage, 21 wk in early tillage, and 19 wk 
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in late tillage. Emergence peak periods were observed from late May through mid-July. 

Cumulative emergence of Palmer amaranth in no-tillage and early tillage reached 90% by the 

third week of July, while late tillage reached 90% cumulative emergence in the first week of July 

(Figure 3.4) The increase in Palmer amaranth emergence observed after late tillage operation 

allowed late tillage to reach 90% cumulative emergence before no-tillage and early tillage.  

In 2014, seedling emergence occurred from May 14
th
 through October 16

th
. Palmer 

amaranth emergence in no-tillage occurred over 22 wk, while emergence in early tillage and late 

tillage occurred over 21 wk. Major emergence peaks were observed from late May through late 

July, and mid-August through late September. In the same year, regardless of treatment 90% 

cumulative emergence was reached by mid-August (Figure 3.3).  

The period of Palmer amaranth emergence was largely dependent on rainfall in both 

years. Peaks of Palmer amaranth emergence observed from May through July may be explained 

by the wet spring observed in 2013. Similarly, rainfall events concentrated in June, August, and 

September were observed along with peaks of Palmer amaranth emergence in 2014. Jha and 

Norsworthy (2009) have reported that peaks of Palmer amaranth emergence occurred along with 

the largest precipitation events. Furthermore, research has reported the effect of low precipitation 

events in delaying pigweed emergence (Hartzler et al. 1999; Oryokot et al. 1997).  

Tillage Effects. Tillage treatments had to be delayed due to excessive rainfall; thus, the 

early tillage treatment was performed on May 20
th

 and May 7
th

 and late tillage on June 7
th 

and 

June 6
th
 in 2013 and 2014, respectively. The effect of tillage on Palmer amaranth emergence was 

temporary, and mostly observed through three weeks after early tillage and late tillage had been 

applied (Table 3.2). To better analyze possible effects of tillage on Palmer amaranth emergence, 
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emergence data was analyzed weekly, throughout the season using Palmer amaranth cumulative 

emergence (not transformed) from the total.  

In 2013, in the two weeks following early tillage Palmer amaranth emergence in no-

tillage was greater and statistically different from early and late tillage (P = 0.002); although, by 

the third week after early tillage no differences were observed (P = 0.159). These results are in 

agreement with those reported by Jha and Norsworthy (2009) in a similar experiment conducted 

in South Carolina in 2005, where the effect of tillage was evident from two to three weeks 

following tillage dates. Different results were observed after late tillage; Palmer amaranth 

emergence in no-tillage and early tillage were greater and statistically different from late tillage 

(P < 0.001). No differences were observed between treatments in the second week after late 

tillage (P = 0.392). However, on the third week after late tillage Palmer amaranth emergence in 

late tillage plots was greater and statistically different from early tillage and no-tillage (P = 

0.002). The results remained the same until the end of July, when no significant differences 

between tillage treatments were observed.  

In 2014, the three weeks following early tillage showed no differences on the emergence 

of Palmer amaranth across treatments (P = 0.522; P = 0.349; P = 0.325; Table 3.2). Similar to the 

same period of previous year an increase in Palmer amaranth emergence was observed after late 

tillage. On the first week after late tillage no statistical differences were observed between 

treatments. However, the period from the second week after late tillage through late July was 

characterized by greater emergence of Palmer amaranth on late tillage compared to early tillage 

and no-tillage (P = 0.041).  

Soil Temperature. Daily means of soil temperature recorded by soil probes and Palmer 

amaranth emergence throughout the season of 2013 and 2014 are displayed on Figure 3.4. No 
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differences were observed in soil temperature across treatments in both years. In 2013, Palmer 

amaranth emergence in no-tillage was mostly observed when temperature ranged from 20 to 30 

C. Peaks of Palmer amaranth in no-tillage coincided with means of soil temperature around 25 C 

in June and July. However, consecutive days with soil temperature above 25 C were observed 

with decreased Palmer amaranth emergence. A decrease in the emergence of Palmer amaranth in 

early tillage on May 28
th
 and late tillage on June 11

th
 shows the post-tillage effect relative to each 

tillage treatment. As these observations were not noticed in no-tillage, it seems that decreased 

emergence of Palmer amaranth after early tillage and late tillage are more related to seed burial, 

caused by tillage, than soil temperature in 2013.  

In 2014, similarly to 2013 means of soil temperature did not differ across tillage 

treatments. In mid-May, a decreased Palmer amaranth emergence in no-tillage was observed 

when soil temperature decreased to 15 C. From late May through June 18
th

 an increase in soil 

temperature was observed along with an increased Palmer amaranth emergence in no-tillage. 

Daily means of soil temperature above 25 C associated with low precipitation in July must have 

contributed to the dramatic decrease in Palmer amaranth emergence on August 6
th
, when Palmer 

amaranth emergence was reduced to less than three plants m
-2

. Nevertheless, rainfall in late 

August and early September must have stimulated the dormant portion of the soil seed bank. 

Steckel et al. (2004) reported that Palmer amaranth and smooth pigweed had higher seed 

germination under alternated temperature compared to constant temperatures.  

Soil Moisture. Values of soil moisture between treatments were not as similar as those 

observed in soil temperature. Similarities were observed between the pattern for Palmer 

amaranth emergence and soil moisture in no-tillage, and peaks of soil moisture were concomitant 

with peaks of Palmer amaranth emergence, most importantly in mid-June, late July and mid-
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September (Figure 3.5). A decrease in soil moisture was observed one week after early tillage 

and late tillage operations; these events were observed along with a reduced followed by an 

increased emergence of Palmer amaranth, but only for a period not longer than two weeks 

(Figure 3.5).  

In 2014, soil moisture in no-tillage was generally greater compared to early tillage and 

late tillage. Throughout the year, peaks of soil moisture were observed with increased Palmer 

amaranth emergence, especially in May, June, and late August. The lack of rainfall in July 

associated with high soil temperature must have been associated with the reduction in soil 

moisture in all treatments at the end of July. Overall, peaks of Palmer amaranth emergence were 

observed along with peaks in soil moisture, and soil moisture in no-tillage was higher than early 

and late tillage. However, differences on Palmer amaranth emergence were restricted, to a period 

not longer than 4 weeks, after tillage operations (Table 3.2). 

Environmental Factors Influencing Emergence Peaks. Based on soil temperature and 

soil moisture data of 2013 and 2014, stepwise regressions were used to indicate which 

environmental factor (soil temperature and/or soil moisture) was more successful at predicting 

the emergence of Palmer amaranth throughout the growing season. With weed seedlings being 

enumerated every 7 days, each emergence event was more likely to be a result of recent soil 

temperature and soil moisture values. To increase the precision of the analysis, regression was 

set to find the strongest factor in predicting Palmer amaranth emergence within 14 days prior to 

each Palmer amaranth emergence event.  

During 2013, 99% Palmer amaranth had emerged between May 14
th

 and August 8
th
 

(Figure 3.3); thus, regression was used to find the best predictors of Palmer amaranth emergence 

in the selected period. A positive interaction with high soil moisture values observed 11 days 
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prior emergence events and the prediction of Palmer amaranth emergence was observed (R
2 
= 

0.30;
 
P < 0.001; Table 3.3). Conversely, a negative interaction between Palmer amaranth 

emergence peaks and high values of soil temperature observed 14 days prior each count date was 

also observed (R
2 
= 0.30; P = 0.807; Table 3.3). The positive interaction between high soil 

moisture 11 days and the prediction of Palmer amaranth emergence is significant and can be 

observed by the similarity between the two variables in the graph throughout the selected time 

period (Figure 3.6). These results suggest that most of Palmer amaranth emergence in 2013 could 

be predicted by the high values of soil moisture observed 11 days apart from each emergence 

event.  

In 2014, Palmer amaranth emergence only reached 99% in all treatments by mid-

September (Figure 3.3). Nevertheless, the major emergence peaks of Palmer amaranth were 

observed from May 14
th

 through August 13
th
. A positive and significant interaction between high 

values of soil moisture 14 days before each emergence event and the prediction of Palmer 

amaranth was observed (R
2 
= 0.37; P < 0.001; Table 3.3). Mutually, there was a positive 

interaction between high values of soil temperature at 8 days prior and the prediction of Palmer 

amaranth (R
2 
= 0.37; P = 0.022; Table 3.3). The positive interaction between high soil moisture 

14 days and the prediction of Palmer amaranth through the selected period is evident comparing 

the regression lines. High and low values of soil moisture 14 d throughout the season were 

observed with increased and decreased predicted emergence of Palmer amaranth, respectively 

(Figure 3.7). The positive interaction between high soil temperature 8 days prior count dates and 

predicted Palmer amaranth emergence seems to be stronger from May through late June. In July, 

peaks of high values of soil temperature 8 days prior emergence, especially those above 35 C, 

were contrary to reduction in Palmer amaranth emergence. These results suggest that Palmer 
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amaranth emergence in 2014 was better predicted by high values of soil moisture observed 14 

days before each emergence event. Furthermore, high values of soil temperature 8 days showed 

to have a positive interaction to Palmer amaranth emergence; although, long periods of high 

values of soil temperature can reduce soil moisture to a level that compromises seed germination, 

which could characterize a negative interaction.  

Emergence from Soil Seed Bank. Based on greenhouse growouts, soil seed bank density for 

Palmer amaranth was calculated for 2013 and 2014. For the 2013 site, Palmer amaranth seed 

density in the soil seed bank was 1073 seeds m
-2

. In 2014, the amount of Palmer amaranth seeds 

in the soil seed bank was greater, with 3092 seeds m
-2

. 

 In 2013, Palmer amaranth emergence from soil seed bank was 39, 33, and 39% in no-

tillage, early tillage, and late tillage, respectively (P = 0.426). The similar Palmer amaranth 

cumulative emergence across treatments in 2013 may be explained by a uniform Palmer 

amaranth seed distribution within the soil profile at the site. Licht and Al-Kaisi (2005) have 

reported that tillage can provide better seedbed conditions to buried seeds, such as higher 

temperature, light exposure, soil aeration, and less penetration resistance for germination and 

emergence. Moreover, Jha and Norsworthy (2009) have reported that the tillage effect for 

improving Palmer amaranth germination may be expected if seeds were buried after dispersal in 

the previous fall and were exposed to light by soil disturbance in the spring.  

 In 2014, the total cumulative emergence of Palmer amaranth from the soil seed bank was 

1.7 greater in no-tillage compared to late tillage (Table 3.1). Palmer amaranth cumulative 

emergence from the total seed bank was 50, 32, and 30% in no-tillage, early tillage and late 

tillage, respectively (P = 0.079; Table 3.1). In similar study, Keeley et al. (1987) have reported 

that Palmer amaranth emergence from the soil seed bank was higher, 36 to 44% emergence, 



57 

 

 

 

when seeds were found at a depth of 2.5 cm or less, which simulates seed burial in no-till 

systems.  

 Conclusions. The results presented suggest that peaks of Palmer amaranth emergence in 

southern Illinois mostly occur from early May through late July; in case of crop presence an 

extended weed management program may be required to reduce late season competition. 

Normally, the period between emergence and 90% Palmer amaranth cumulative emergence is 

shorter than the period required by row crops, such as soybean, corn, and cotton to start showing 

canopy effect.  Aiming to reduce the period of competition between the crop and Palmer 

amaranth, tillage practices, especially in early June, should be avoided. Palmer amaranth 

emergence responded positively to soil disturbance in early June, with late tillage treatment 

reaching 90% cumulative emergence before  no-tillage and early tillage, which increase the need 

for a more effective burndown followed by a soil residual herbicide program that assures reduced 

crop-weed competition. Furthermore, monitoring soil moisture levels, may aid the prediction of 

Palmer amaranth emergence flushes that may occur after 11 to 14 days throughout the season, 

which contributes to the development of weed management strategies focused on reduce 

postemergence competition of the weed to the crop. 
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Figure 3.1. Monthly precipitation received during the experimental period and 30-year rainfall 

average in Belleville, IL.  
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Figure 3.2. Daily means of air temperature throughout the experiment duration in 2013 and 2014.
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Table 3.1. Total cumulative and soil seed bank emergence of Palmer amaranth throughout the season for no-tillage, early tillage and 

late tillage in 2103 and 2014. 

                                        2013                                             2014 

Treatment Cumulative emergence Seed bank emergence  Cumulative emergence Seed bank emergence 

 no. seedlings m
-2 

% emerged seedlings m
-2 

 no. seedlings m
-2 

% emerged seedlings m
-2 

No-tillage 416
a 

a
b 

39 a  1,550 a 50 a 

Early tillage 350 a 33 a  982 ab 32 ab 

Late tillage  415 a 39 a 
 

933 b 30 b 

a
 Numbers presented are the back-transformed of total emergence. Data were log-transformed and back-transformed for clarity. 

 

b
 Numbers within each row and for each year followed by the same letter do not differ significantly according to Fisher’s protected 

LSD (α = 0.05). 
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Figure 3.3. Cumulative emergence of Palmer amaranth for no-tillage, early tillage and late tillage 

in Belleville, IL in 2013 and 2014. Arrows represent early tillage and late tillage dates. 
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Table 3.2. Statistical analysis of weekly cumulative emergence of Palmer amaranth for no-tillage, 

early tillage, and late tillage in Belleville, IL in 2013 and 2014. 

  
 

  Tillage 

Year Date R
2 

F value p No-tillage Early tillage
a 

Late tillage
b 

  
   --------------% cumulative emergence

c
-------------- 

2013 5/14 0.62 0.50 0.616 5 a 3 a 2 a 

 5/21 0.57 4.17 0.038 18 a 12 a 12 a 

 5/28 0.70 9.93 0.002 28 a 16 b 20 b 

 6/4 0.57 2.10 0.159 35 a 33 a 28 a 

 6/11 0.77 15.76 <0.001 46 a 49 a 30 b 

 6/18 0.40 1.00 0.392 60 a 64 a 62 a 

 6/25 0.67 9.70 0.002 73 b 75 b 83 a 

 7/2 0.80 7.69 0.005 81 b 82 b 89 a 

 7/9 0.79 5.44 0.017 86 b 86 b 92 a 

 7/16 0.75 4.15 0.038 89 b 89 b 94 a 

 7/23 0.76 3.96 0.043 91 b 91 b 95 a 

 7/30 0.62 3.36 0.064 97 ab 96 b 99 a 

 8/6 0.72 3.28 0.067 99 a 98 b 99 ab 

 8/13 0.71 3.01 0.081 99 a 98 b 99 ab 

 8/20 0.70 2.66 0.105 99 a 98 b 99 ab 

 8/27 0.46 2.33 0.134 99 a 98 a 99 a 

 9/3 0.47 3.08 0.077 99 a 98 a 99 a 

 9/10 0.19 0.72 0.502 100 a 99 a 100 a 

 9/17 0.29 0.72 0.504 100 a 99 a 100 a 

 9/24 0.59 1.34 0.293 100 a 100 a 100 a 

 10/1 0.53 1.34 0.293 100 a 100 a 100 a 

 10/8 0.45 2.23 0.144 100 a 100 a 100 a 

 10/15 0.45 2.23 0.144 100 a 100 a 100 a 

 10/22 - - - 100 a 100 a 100 a 
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Table 3.2 (Continued)         

2014 5/14 0.42 0.68 0.522 1 a 1 a 1 a 

 5/21 0.29 1.13 0.349 1 a 1 a 1 a 

 5/28 0.80 1.22 0.325 3 a 4 a 5 a 

 6/4 0.79 4.51 0.030 13 b 15 ab 19 a 

 6/11 0.76 4.52 0.030 23 b 27 b 30 a 

 6/18 0.50 4.74 0.026 51 b 54 b 63 a 

 6/25 0.62 7.34 0.006 66 b 68 b 77 a 

 7/2 0.55 6.45 0.010 76 b 76 b 84 a 

 7/9 0.47 4.72 0.027 79 b 79 b 86 a 

 7/16 0.45 4.01 0.041 82 b 82 b 87 a 

 7/23 0.39 2.78 0.095 85 ab 84 b 89 a 

 7/30 0.38 2.40 0.126 85 a 85 a 89 a 

 8/6 0.37 2.38 0.128 85 a 85 a 89 a 

 8/13 0.40 1.61 0.234 87 a 87 a 90 a 

 8/20 0.37 0.13 0.875 93 a 92 a 93 a 

 8/27 0.49 0.40 0.679 95 a 94 a 95 a 

 9/3 0.47 1.21 0.326 96 a 95 a 96 a 

 9/10 0.57 0.07 0.936 98 a 98 a 98 a 

 9/17 0.59 1.91 0.184 99. a 99 a 99 a 

 9/24 0.61 2.10 0.159 100 a 99 a 100 a 

 10/1 0.53 1.83 0.196 100 a 100 a 100 a 

 10/8 0.49 3.17 0.07 100 a 100 a 100 a 

 10/15 - - - 100 a 100 a 100 a 

 10/22 - - - - - - - - - 
a 
Early tillage performed on May 20

th
 and May 7

th
 in 2013 and 2014, respectively. 

b 
Late tillage performed on June 7

th
 and June 6

th
 in 2013 and 2014, respectively.  

c 
Degrees of freedom: main effect = 9; error = 14 
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d 
Means within each column for the same year followed by the same letter do not differ 

significantly according to Fisher’s protected LSD (α = 0.05). 
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Figure 3.4. Daily means of soil temperature recorded by soil probes and Palmer amaranth 

emergence in 2013 and 2014. 
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Figure 3.5. Daily means of soil moisture recorded by soil probes and Palmer amaranth 

emergence in 2013 and 2014. 
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Table 3.3. Results of stepwise regression testing the interaction of Palmer amaranth emergence 

with soil temperature and soil moisture in 2013 and 2014. Soil temperature and soil moisture 

included as factors for germination. 

Year
 

Variable
a 

R
2 Time prior 

emergence events 

Parameter 

Estimation 

F 

value 

p-

value 

   ----------(d)---------    

2013 High soil moisture 0.30 11
b 

0.084 3.61 <0.001 

 High soil temperature 0.30 14
 

-0.004 -0.25 0.807 

 
  

    

2014 High soil moisture 0.37 14 0.132 5.01 <0.001 

 Minimum soil temperature 0.37 8 0.077 2.37 0.022 

a
 Maximum (highest), mean, and minimum (lowest) values of soil temperature and soil moisture 

up to 14 days prior each emergence event were used as predict variables. 

b
 Results show the period (days) after observed environmental factors, that led to major peaks of 

Palmer amaranth emergence.
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Figure 3.6. Stepwise regression for emergence of Palmer amaranth predicted by soil temperature 

and soil moisture in 2013. The blue line represents the highest values of soil moisture observed 

11 days before each Palmer amaranth emergence event, the orange line represents the highest 

values of soil temperature collected 14 days prior each emergence. The grey line shows the 

predicted Palmer amaranth emergence as result of these two variables. The green line shows the 

mean of Palmer amaranth emergence throughout the selected period.  
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Figure 3.7. Stepwise regression for emergence of Palmer amaranth predicted by soil temperature 

and soil moisture in 2014. The blue line represents the highest values of soil temperature 

observed 14 days before each Palmer amaranth emergence event, the orange represents the 

highest values of soil temperature collected 8 days prior each emergence. The grey line shows 

the predicted Palmer amaranth emergence as result of these two variables. The green line shows 

the means of Palmer amaranth emergence throughout the selected period.
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CHAPTER 4 

CONCLUSIONS 

 

The increase in the number of herbicide-resistant weeds has complicated common 

waterhemp and Palmer amaranth management practices in agricultural fields worldwide. The 

extended period of emergence observed on common waterhemp and Palmer amaranth promotes 

the indiscriminate use of postemergence herbicides for weed control. Over the last two decades, 

several herbicides used to control common waterhemp and Palmer amaranth have lost partial or 

total effectiveness. This scenario has made growers turn their attention to alternative control 

tactics that do not only rely on postemergence herbicides, such as tillage practices, and residual 

herbicides. The literature of the effects of tillage on weed species germination, seed burial, 

emergence, and soil microclimate is vast. Nevertheless, research on the emergence patterns of 

common waterhemp and Palmer amaranth under no-tillage and tillage conditions in southern 

Illinois is lacking.  

In southern Illinois, common waterhemp emergence started earlier than did Palmer 

amaranth in both years; although, Palmer amaranth emerged through a longer time period 

compared to common waterhemp. Cumulative emergence of common waterhemp reached 90% 

in almost all treatments by the end of June in both years. In contrast, Palmer amaranth 90% 

emergence in late tillage was reached by mid-July and late August in 2013 and 2014, 

respectively. In no-tillage and early tillage treatments, Palmer amaranth cumulative emergence 

only reached 90% by mid-August and late August in 2013 and 2014, respectively. These results 

show that common waterhemp and Palmer amaranth may have different period of competition 

with row crops in southern Illinois. Furthermore, tillage timing may increase common 
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waterhemp and more importantly Palmer amaranth emergence when performed in June. 

Thereby, weed management tactics for controlling common waterhemp shall focus on early 

season, whereas for Palmer the period of competition may extend through late season.  

Common waterhemp and Palmer amaranth emergence was largely contingent on 

environmental events throughout the growing season in both years. Strong interaction was 

observed between common waterhemp emergence dates and variations on soil temperature. A 

positive interaction between common waterhemp emergence and high soil temperature was 

observed, especially in early season (May and June), which may be related to high temperature 

amplitudes usually observed in the spring. A positive interaction was also observed between the 

emergence of common waterhemp and soil moisture, but mostly in late season when soil 

temperature is above 35 C. The emergence of Palmer amaranth was strong and positively 

correlated to high values of soil moisture throughout the season. Peaks of Palmer amaranth 

emergence were concomitant to those observed on soil moisture. Considering the natural origin 

of common waterhemp and Palmer amaranth, high soil temperature and soil moisture may 

stimulate the dormant portion of the seed bank. Control tactics that aim to reduce the soil seed 

bank have also been adopted by growers as an alternative to control common waterhemp and 

Palmer amaranth. In both years, Palmer amaranth emergence from a natural soil seed bank was 

greater in no-tillage compared to tillage treatments. Similar results were observed for common 

waterhemp in 2014. Shallow-buried seeds of common waterhemp and Palmer amaranth favors 

seed germination, and consequently, reduce seed persistence in the soil through recruitment.  

The results of this research emphasize the importance of an early-season weed control 

management for common waterhemp and Palmer amaranth in southern Illinois. The emergence 

patterns of common waterhemp and Palmer amaranth reflect the potential competitiveness with 



72 

 

 

 

 

crops that may occur, especially in May and June, in case weed control is not satisfactory. The 

use of tillage, when applied in May can reduce the emergence of common waterhemp. However, 

if applied in June, a temporary but increasing, emergence of common waterhemp and Palmer 

amaranth may be observed. Given the large number of factors that may affect weed seed 

germination of these two species, high values of soil temperature and soil moisture may assist the 

prediction of common waterhemp and Palmer amaranth emergence. Moreover, the monitoring of 

soil temperature and soil moisture may aid growers to make decisions in regard to field 

operations, such as fertilization, cultivation, pre and post emergence applications. As a result, by 

adopting the use of a burndown followed by an effective residual herbicide program that 

overlaps the emergence period of common waterhemp and Palmer amaranth combined with crop 

canopy effect, growers should be able enhance the control levels of common waterhemp and 

Palmer amaranth. 
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APPENDIX A 

 

Table A.1 

 

Test of treatment by year interaction for common waterhemp and Palmer amaranth considering 

log-transformed cumulative data during the experimental period in 2013 and 2014. 

Dependent variable Source R
2
 Var. DF 

Root 

MSE 

Mean 

Square 

F 

value 
p 

common waterhemp 

cumulative 
        

 year 0.95 7.15 1 0.53 124.28 447.95 <0.001 

 rep(year) 0.95 7.15 14 0.53 0.69 2.47 0.020 

 trt 0.95 7.15 2 0.53 0.30 1.08 0.354 

 trt*year 0.95 7.15 2 0.53 0.58 2.08 0.143 

         

Palmer amaranth 

cumulative 
        

 year 0.93 5.88 1 0.38 13.29 91.13 <0.001 

 rep(year) 0.93 5.88 14 0.38 3.05 20.96 <0.001 

 trt 0.93 5.88 2 0.38 0.44 3.05 0.063 

 trt*year 0.93 5.88 2 0.38 0.26 0.18 0.188 
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Table A.2 

ANOVA of data analysis for common waterhemp seed density in the seed bank per m
-2

. 

Year 
Cumulative common waterhemp 

emergence from soil seed bank 
Sum Average 

Standard 

error 
F value p 

2013 No-tillage 8611 1076 564 0.20 0.814 

 Early tillage 7320 915 628 0.20 0.814 

 Late tillage 6890 861 861 0.20 0.814 

       

2014 No-tillage 428838 53605 28,319 0.85 0.439 

 Early tillage 285892 35736 32,368 0.85 0.439 

 Late tillage 368990 46124 20,247 0.85 0.439 
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Table A.3 

ANOVA of data analysis for Palmer amaranth seed density in the seed bank per m
-2

. 

Year 
Cumulative Palmer amaranth 

emergence from soil seed bank 
Sum Average 

Standard 

error 
F value p 

2013 No-tillage 7750 969 502 0.23 0.793 

 Early tillage 9472 1184 681 0.23 0.793 

 Late tillage 8611 1077 690 0.23 0.793 

       

2014 No-tillage 34875 4359 2,260 1.25 0.305 

 Early tillage 22389 2799 3,230 1.25 0.305 

 Late tillage 19375 2422 2,146 1.25 0.305 
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APPENDIX B 

 

Table B.1 

 

Test of weekly common waterhemp cumulative emergence per treatment in 2013. 

Dependent variable
a
 

2013 

R
2 

F value p No-tillage Early tillage Late tillage 

  
  ----------------------emergence

b
------------------- 

5/07 0.78 6.77 0.419 5.298 a
 

8.399 a 5.513 a 

5/14 0.80 0.57 0.579 13.700 a 17.278 a 15.857 a 

5/21 0.70 0.81 0.464 28.535 a
 

30.648 a
 

34.527 a 

5/28 0.74 5.17 0.020 44.156 ab 35.132 b 52.198 a 

6/4 0.59 0.92 0.419 51.792 a 56.401 a 58.771 a 

6/11 0.64 3.11 0.076 62.464 ab 70.681 a 59.212 b 

6/18 0.60 1.81 0.199 77.463 a 80.402 a 73.505 a 

6/25 0.78 2.63 0.107 83.113 a 86.458 a 86.802 a 

7/2 0.85 7.31 0.006 90.326 b 92.117 ab 94.031 a 

7/9 0.68 1.67 0.223 94.999 a 95.954 a 96.574 a 

7/16 0.52 2.23 0.144 97.771 a 97.877 a 98.837 a 

7/23 0.65 4.30 0.035 98.055 b 98.587 ab 99.251 a 

7/30 0.40 2.15 0.153 98.725 a 99.091 a 99.542 a 

8/6 0.45 1.66 0.225 99.440 a 99.368 a 99.769 a 

8/13 0.46 2.37 0.130 99.606 a 99.472 a 99.886 a 
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Table B.1 (Continued)          

8/20 0.46 1.97 0.176 99.779 a 99.545 a 99.914 a 

8/27 0.46 2.07 0.163 99.854 a 99.579 a 99.914 a 

9/3 0.40 0.76 0.486 99.856 a 99.772 a 99.914 a 

9/10 0.63 1.47 0.263 99.861 a 99.855 a 99.971 a 

9/17 0.68 1.35 0.290 99.923 a 99.924 a 100.000 a 

9/24 0.68 1.05 0.376 99.930 a 99.936 a 100.000 a 

10/01 0.40 1.09 0.363 99.930 a 100.000 a 100.000 a 

10/8 - - - 100.000 a 100.000 a 100.000 a 

a
 Degrees of freedom:  main effect = 9 ; error = 14 

b
 Cumulative common waterhemp emergence per treatment in each week 

 

 

 

 

 

 

 

 

 

 

 



91 

 

 

 

 

 Table B.2 

  

Test of weekly common waterhemp cumulative emergence per treatment in 2014. 

Dependent variable
a
 

2014 

R
2 F 

value 
p No-tillage Early tillage Late tillage 

  
  ----------------------emergence

b
------------------ 

4/23 0.60 0.00 0.995 3.075 a
 

3.092 a 3.168 a 

4/30 0.63 0.24 0.790 10.583 a 11.818 a 12.833 a 

5/7 0.64 2.11 0.158 25.137 a 33.545 a 27.528 a 

5/14 0.69 1.85 0.194 39.862 a 35.571 a 43.968 a 

5/21 0.71 2.74 0.099 44.185 ab 37.511 b 47.817 a 

5/28 0.71 2.54 0.114 46.306 ab 41.241 b 51.126 a 

6/4 0.70 3.12 0.07 49.799 ab 44.553 b 55.303 a 

6/11 0.66 3.40 0.06 64.851 ab 57.097 a 66.433 a 

6/18 0.77 12.02 <0.001 71.246 b 63.758 c 80.293 a 

6/25 0.79 14.13 <0.001 83.269 a 76.232 b 87.462 a 

7/2 0.78 15.29 <0.001 91.445 a 85.789 b 93.066 a 

7/9 0.78 14.43 <0.001 92.709 a 87.536 b 93.985 a 

7/16 0.78 14.00 <0.001 93.319 a 88.383 b 94.356 a 

7/23 0.78 13.94 <0.001 93.666 a 88.885 b 94.558 a 

7/30 0.78 13.84 <0.001 93.772 a 88.999 b 94.628 a 

8/6 0.78 13.79 <0.001 93.787 a 89.045 b 94.645 a 

8/13 0.78 14.73 <0.001 94.244 a 89.548 b 94.882 a 
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Table B.2 (Continued)          

8/20 0.77 14.01 <0.001 95.464 a 91.247 b 95.920 a 

8/27 0.73 11.46 0.001 96.635 a 92.845 b 96.635 a 

9/3 0.72 10.80 0.001 97.676 a 94.899 b 97.591 a 

9/10 0.72 9.63 0.002 99.066 a 98.072 b 98.964 a 

9/17 0.55 4.54 0.030 99.632 a 99.222 b 99.511 ab 

9/24 0.50 0.72 0.503 99.928 a 99.888 a 99.898 a 

10/01 0.23 0.11 0.896 99.969 a 99.967 a 99.973 a 

10/08 0.24 0.43 0.659 99.995 a 99.988 a 99.992 a 

10/15 0.32 0.68 0.524 99.999 a 99.995 a 99.993 a 

10/22 0.34 0.76 0.487 100.000 a 99.995 a 99.994 a 

10/29 - - - 100.000 a 100.000 a 100.000 a 

a
 Degrees of freedom:  main effect = 9 ; error = 14 

b
 Cumulative common waterhemp emergence per treatment in each week 
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Table B.3 

  

Test of weekly log-transformed common waterhemp cumulative emergence per treatment in 

2013. 

Dependent variable
a
 

2013 

R
2 

F value p No-tillage Early tillage Late tillage 

  
  ----------------------emergence

b
---------------- 

5/7 0.65 0.65 0.535 2.178 a
 

2.855 a 2.300 a 

5/14 0.63 0.31 0.737 3.490 a 3.866 a 3.732 a 

5/21 0.58 0.08 0.924 4.435 a 4.537 a 4.597 a 

5/28 0.59 0.32 0.728 4.893 a 4.702 a 5.015 a 

6/4 0.55 0.11 0.897 5.066 a 5.237 a 5.145 a 

6/11 0.56 0.41 0.670 5.257 a 5.477 a 5.153 a 

6/18 0.56 0.24 0.792 5.484 a 5.611 a 5.375 a 

6/25 0.55 0.10 0.903 5.556 a 5.685 a 5.550 a 

7/2 0.53 0.08 0.927 5.640 a 5.749 a 5.632 a 

7/9 0.52 0.08 0.919 5.691 a 5.790 a 5.659 a 

7/16 0.52 0.08 0.925 5.720 a 5.810 a 5.682 a 

7/23 0.52 0.08 0.921 5.723 a 5.817 a 5.686 a 

7/30 0.52 0.08 0.919 5.729 a 5.823 a 5.689 a 

8/6 0.52 0.08 0.920 5.737 a 5.825 a 5.691 a 

8/13 0.52 0.08 0.920 5.738 a 5.826 a 5.692 a 

8/20 0.52 0.08 0.920 5.740 a 5.827 a 5.693 a 
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Table B.3 (Continued)          

8/27 0.52 0.08 0.920 5.741 a 5.827 a 5.693 a 

9/3 0.52 0.09 0.917 5.741 a 5.829 a 5.693 a 

9/10 0.52 0.09 0.917 5.741 a 5.830 a 5.693 a 

9/17 0.52 0.09 0.916 5.741 a 5.831 a 5.694 a 

9/24 0.52 0.09 0.916 5.741 a 5.831 a 5.694 a 

10/01 0.52 0.09 0.915 5.741 a 5.832 a 5.694 a 

10/08 0.52 0.09 0.915 5.742 a 5.832 a 5.694 a 

10/15 0.52 0.09 0.915 5.742 a 5.832 a 5.694 a 

10/22 0.52 0.09 0.915 5.742 a 5.832 a 5.694 a 

10/29 0.52 0.09 0.915 5.742 a 5.832 a 5.694 a 

a
 Degrees of freedom:  main effect = 9 ; error = 14 

b
 Log-transformed common waterhemp cumulative emergence per treatment in each week 
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Table B.4 

  

Test of weekly log-transformed common waterhemp cumulative emergence per treatment in 

2014. 

Dependent variable
a
 

2014 

R
2 

F value p No-tillage Early tillage Late tillage 

  
  ----------------------emergence

b
---------------- 

4/23 0.60 1.14 0.347 5.430 a
a 

4.801 a 5.390 a 

4/30 0.63 1.34 0.292 6.802 a 6.278 a 6.837 a 

5/7 0.61 0.51 0.610 7.784 a 7.498 a 7.692 a 

5/14 0.69 4.71 0.027 8.290 a 7.557 b 8.182 a 

5/21 0.70 5.57 0.016 8.398 a 7.615 b 8.268 a 

5/28 0.70 5.40 0.018 8.451 a 7.710 b 8.343 a 

6/4 0.70 5.70 0.015 8.531 a 7.793 b 8.428 a 

6/11 0.72 6.54 0.009 8.816 a 8.049 b 8.623 a 

6/18 0.75 8.15 0.004 8.911 a 8.161 b 8.819 a 

6/25 0.75 8.46 0.003 9.072 a 8.348 b 8.907 a 

7/2 0.75 8.40 0.004 9.168 a 8.467 b 8.970 a 

7/9 0.75 8.41 0.004 9.181 a 8.487 b 8.980 a 

7/16 0.75 8.41 0.004 9.188 a 8.497 b 8.984 a 

7/23 0.75 8.39 0.004 9.192 a 8.503 b 8.986 a 

7/30 0.75 8.39 0.004 9.193 a 8.504 b 8.987 a 

8/6 0.75 8.39 0.004 9.193 a 8.505 b 8.987 a 
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Table B.4 (Continued)          

8/13 0.75 8.34 0.004 9.198 a 8.510 b 8.990 a 

8/20 0.75 8.29 0.004 9.211 a 8.529 b 9.001 a 

8/27 0.75 8.14 0.004 9.220 a 8.547 b 9.008 a 

9/3 0.75 8.03 0.004 9.234 a 8.569 b 9.018 a 

9/10 0.74 7.65 0.005 9.248 a 8.602 b 9.032 a 

9/17 0.74 7.57 0.005 9.254 a 8.614 b 9.038 a 

9/24 0.74 7.55 0.006 9.257 a 8.620 b 9.042 a 

10/01 0.74 7.56 0.005 9.257 a 8.621 b 9.042 a 

10/08 0.74 7.56 0.005 9.257 a 8.621 b 9.042 a 

10/15 0.74 7.56 0.005 9.257 a 8.622 b 9.042 a 

10/22 0.74 7.56 0.005 9.257 a 8.622 b 9.042 a 

10/29 0.74 7.56 0.005 9.257 a 8.622 b 9.043 a 

a
 Degrees of freedom:  main effect = 9 ; error = 14 

b
 Log-transformed common waterhemp cumulative emergence per treatment in each week 
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APPENDIX C 

 

Table C.1 

 

Test of weekly Palmer amaranth cumulative emergence per treatment in 2013. 

Dependent variable
a
 

2013 

R
2 F 

value 
p No-tillage Early tillage Late tillage 

  
  ----------------------emergence

b
------------------ 

5/14 0.62 0.50 0.616 4.611 a 3.147 a 2.417 a 

5/21 0.57 4.17 0.038 18.492 a 12.420 a 11.507 a 

5/28 0.70 9.93 0.002 27.962 a 16.219 b 20.493 b 

6/4 0.57 2.10 0.159 34.536 a 33.397 a 28.173 a 

6/11 0.77 15.76 <0.001 46.359 a 48.550 a 30.312 b 

6/18 0.40 1.00 0.392 59.722 a 64.012 a 62.383 a 

6/25 0.67 9.70 0.002 72.872 b 75.072 b 82.917 a 

7/2 0.80 7.69 0.005 80.862 b 82.371 b 89.483 a 

7/9 0.79 5.44 0.017 86.304 b 86.002 b 92.188 a 

7/16 0.75 4.15 0.038 89.043 b 89.498 b 94.011 a 

7/23 0.76 3.96 0.043 90.945 b 90.688 b 95.064 a 

7/30 0.62 3.36 0.064 97.324 ab 96.233 b 97.864 a 

8/6 0.72 3.28 0.067 98.778 a 97.889 b 98.638 ab 

8/13 0.71 3.01 0.081 99.013 a 98.260 b 98.768 ab 

8/20 0.70 2.66 0.105 99.065 a 98.351 b 98.920 ab 
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Table C.1 (Continued)          

8/27 0.46 2.33 0.134 99.396 a 98.426 a 99.085 a 

9/3 0.47 3.08 0.077 99.396 a 98.627 a 99.424 a 

9/10 0.19 0.72 0.502 99.634 a 99.437 a 99.737 a 

9/17 0.29 0.72 0.504 99.756 a 99.565 a 99.856 a 

9/24 0.59 1.34 0.293 99.898 a 99.785 a 100.000 a 

10/1 0.53 1.34 0.293 99.983 a 99.991 a 100.000 a 

10/8 0.45 2.23 0.144 99.983 a 100.000 a 100.000 a 

10/15 0.45 2.23 0.144 99.983 a 100.000 a 100.000 a 

10/22 - - - 100.000 a 100.000 a 100.000 a 

a
 Degrees of freedom:  main effect = 9 ; error = 14 

b
 Cumulative Palmer amaranth emergence per treatment in each week 
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Table C.2 

 

Test of weekly Palmer amaranth cumulative emergence per treatment in 2014. 

Dependent variable
a
 

2014 

R
2 

F value p No-tillage Early tillage Late tillage 

  
  ----------------------emergence

b
------------------- 

5/14 0.42 0.68 0.522 1.000 a 1.000 a 1.000 a 

5/21 0.29 1.13 0.349 1.000 a 1.000 a 1.000 a 

5/28 0.80 1.22 0.325 3.300 a 4.400 a 4.700 a 

6/4 0.79 4.51 0.030 12.900 b 15.200 ab 19.400 a 

6/11 0.76 4.52 0.030 22.700 b 27.100 b 30.100 a 

6/18 0.50 4.74 0.026 50.600 b 53.800 b 63.200 a 

6/25 0.62 7.34 0.006 66.300 b 67.600 b 76.900 a 

7/2 0.55 6.45 0.010 75.600 b 76.200 b 83.900 a 

7/9 0.47 4.72 0.027 79.100 b 78.600 b 85.800 a 

7/16 0.45 4.01 0.041 81.700 b 82.000 b 87.500 a 

7/23 0.39 2.78 0.095 84.600 ab 84.000 b 88.600 a 

7/30 0.38 2.40 0.126 85.400 a 84.800 a 89.100 a 

8/6 0.37 2.38 0.128 85.500 a 84.900 a 89.200 a 

8/13 0.40 1.61 0.234 87.000 a 87.000 a 89.900 a 

8/20 0.37 0.13 0.875 92.800 a 92.200 a 92.800 a 

8/27 0.49 0.40 0.679 94.700 a 94.100 a 95.000 a 

9/3 0.47 1.21 0.326 95.800 a 95.100 a 96.300 a 
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Table C.2 (Continued)          

9/10 0.57 0.07 0.936 98.000 a 97.800 a 98.100 a 

9/17 0.59 1.91 0.184 99.300 a 98.800 a 99.300 a 

9/24 0.61 2.10 0.159 99.600 a 99.400 a 99.700 a 

10/1 0.53 1.83 0.196 99.900 a 99.800 a 99.900 a 

10/8 0.49 3.17 0.07 99.900 a 100.000 a 100.000 a 

10/15 - - - 100.000 a 100.000 a 100.000 a 

a
 Degrees of freedom:  main effect = 9 ; error = 14 

b
 Cumulative Palmer amaranth emergence per treatment in each week 
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Table C.3 

 

Test of weekly log-transformed Palmer amaranth cumulative emergence per treatment in 2013. 

Dependent variable
a
 

2013 

R
2 

F value p No-tillage Early tillage Late tillage 

  
  ----------------------emergence

b
---------------- 

5/14 0.36 0.10 0.908 1.779 a 1.625 a 1.713 a 

5/21 0.95 3.08 0.077 4.272 a 3.775 b 3.853 ab 

5/28 0.95 5.87 0.014 4.749 a 4.012 b 4.438 ab 

6/4 0.95 1.03 0.381 4.968 a 4.735 a 4.746 a 

6/11 0.96 3.24 0.069 5.257 a 5.119 ab 4.825 b 

6/18 0.96 0.42 0.668 5.512 a 5.411 a 5.556 a 

6/25 0.96 1.46 0.265 5.713 a 5.571 a 5.841 a 

7/2 0.96 1.39 0.280 5.813 a 5.660 a 5.917 a 

7/9 0.96 1.29 0.306 5.879 a 5.703 a 5.947 a 

7/16 0.96 1.09 0.362 5.911 a 5.744 a 5.967 a 

7/23 0.96 1.10 0.359 5.933 a 5.758 a 5.978 a 

7/30 0.96 1.02 0.387 6.002 a 5.819 a 6.007 a 

8/6 0.97 0.97 0.403 6.017 a 5.836 a 6.015 a 

8/13 0.97 0.96 0.408 6.019 a 5.840 a 6.017 a 

8/20 0.97 0.96 0.408 6.020 a 5.841 a 6.018 a 

8/27 0.97 0.97 0.403 6.023 a 5.842 a 6.020 a 

9/3 0.97 0.97 0.403 6.023 a 5.844 a 6.023 a 
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Table C.3 (Continued)          

9/10 0.97 0.92 0.421 6.026 a 5.852 a 6.026 a 

9/17 0.97 0.92 0.423 6.027 a 5.853 a 6.027 a 

9/24 0.97 0.92 0.422 6.028 a 5.855 a 6.029 a 

10/1 0.97 0.91 0.426 6.029 a 5.857 a 6.029 a 

10/8 0.97 0.90 0.427 6.029 a 5.857 a 6.029 a 

10/15 0.97 0.90 0.427 6.029 a 5.875 a 6.029 a 

10/22 0.97 0.90 0.426 6.029 a 5.857 a 6.029 a 

a
 Degrees of freedom:  main effect = 9 ; error = 14 

b
 Log-transformed Palmer amaranth cumulative emergence per treatment in each week 
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Table C.4 

 

Test of weekly log-transformed Palmer amaranth cumulative emergence per treatment in 2014. 

Dependent variable
a
 

2014 

R
2 

F value p No-tillage Early tillage Late tillage 

  
  ----------------------emergence

b
---------------- 

5/14 0.56 0.16 0.856 0.900 a 1.015 a 1.097 a 

5/21 0.43 0.52 0.604 1.050 a 1.268 a 1.512 a 

5/28 0.73 0.03 0.972 3.579 a 3.513 a 3.579 a 

6/4 0.68 0.33 0.722 5.162 a 4.956 a 5.110 a 

6/11 0.56 0.64 0.540 5.838 a 5.531 a 5.610 a 

6/18 0.47 1.11 0.355 6.659 a 6.261 a 6.371 a 

6/25 0.55 1.73 0.213 6.932 a 6.493 a 6.574 a 

7/2 0.54 2.05 0.165 7.066 a 6.617 a 6.662 a 

7/9 0.54 2.21 0.146 7.110 a 6.647 a 6.684 a 

7/16 0.55 2.26 0.140 7.143 a 6.690 a 6.704 a 

7/23 0.56 2.49 0.119 7.178 a 6.715 a 6.717 a 

7/30 0.57 2.52 0.116 7.187 a 6.724 a 6.722 a 

8/6 0.57 2.53 0.115 7.189 a 6.725 a 6.723 a 

8/13 0.58 2.61 0.108 7.207 a 6.749 a 6.731 a 

8/20 0.60 2.97 0.083 7.271 a 6.809 ab 6.763 b 

8/27 0.61 3.03 0.080 7.290 a 6.829 ab 6.787 b 

9/3 0.61 3.05 0.079 7.302 a 6.839 ab 6.801 b 
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Table C.4 (Continued)          

9/10 0.61 3.03 0.080 7.325 a 6.868 ab 6.818 b 

9/17 0.61 3.05 0.079 7.338 a 6.878 ab 6.831 b 

9/24 0.61 3.05 0.079 7.342 a 6.885 ab 6.835 b 

10/1 0.60 3.05 0.079 7.345 a 6.888 ab 6.837 b 

10/8 0.60 3.05 0.079 7.345 a 6.890 ab 6.838 b 

10/15 0.60 3.05 0.079 7.345 a 6.890 ab 6.838 b 

10/22 0.60 3.05 0.079 7.345 a 6.890 ab 6.838 b 

a
 Degrees of freedom:  main effect = 9 ; error = 14 

b
 Log-transformed Palmer amaranth cumulative emergence per treatment in each week 
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APPENDIX D 

 

Table D.1 

 

Stepwise regression of common waterhemp peaks of emergence and environmental factors in 

2013. 

2013 

MSE R
2 

STD 

1.141 0.35 7.397 

 

Dependent variable
a
 Parameter estimate

b 
F value p 

Max soil moist 11 

days 
0.075 2.57 0.013 

Max soil temp 13 

days 
0.460 4.82 <0.001 

 

Week
 Max soil moist 11 days 

(%VWC) 

Max soil temp 13 

days (C) 

Predicted 

emergence 

(plants.m
-2

)
 c
 

4/23/2013 47 23 7 

4/30/2013 44 22 2 

5/7/2013 45 27 11 

5/14/2013 46 28 11 

5/21/2013 44 30 47 

5/28/2013 41 31 6 

6/4/2013 44 28 17 

6/11/2013 44 31 15 
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Table D.1 (Continued)    

6/18/2013 42 36 24 

6/25/2013 48 38 8 

7/2/2013 46 37 7 

7/9/2013 49 34 11 

7/16/2013 35 39 3 

7/23/2013 35 42 6 

7/30/2013 47 45 6 

8/6/2013 41 38 5 

8/13/2013 33 38 3 

a
 Best predictors for common waterhemp emergence according to stepwise regression. 

b
 Characteristic of the interaction of common waterhemp emergence with soil temperature and 

soil moisture. 

c
 Number of common waterhemp seedlings as a result of variable factors. 
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Table D.2 

 

Stepwise regression of common waterhemp peaks of emergence and environmental factors in 

2014. 

2014 

MSE R
2 

STD 

1.243 0.55 5.246 

 

Dependent variable
a
 Parameter estimate

b 
F value p 

Max soil temp 10 

days 
-0.201 -7.55 <0.001 

Min soil temp 8 

days 
0.158 6.09 <0.001 

 

Week
 Max soil temp 10 days 

(%VWC) 

Min soil temp 8 days 

(C) 

Predicted 

emergence 

(plants.m
-2

)
 c
 

4/23/2014 24 2 187 

4/30/2014 23 8 502 

5/7/2014 25 7 416 

5/14/2014 31 14 231 

5/21/2014 31 6 31 

5/28/2014 34 17 154 

6/4/2014 34 18 199 

6/11/2014 35 17 223 

6/18/2014 30 13 593 

6/25/2014 40 22 78 
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Table D.2 (Continued)    

7/2/2014 35 20 528 

7/9/2014 38 17 33 

7/16/2014 40 16 38 

7/23/2014 39 15 28 

7/30/2014 39 17 17 

8/6/2014 40 18 10 

8/13/2014 40 18 30 

8/20/2014 36 16 158 

8/27/2014 39 22 228 

9/3/2014 41 22 91 

9/10/2014 36 14 99 

9/17/2014 31 9 100 

9/24/2014 30 11 249 

10/1/2014 33 12 37 

10/8/2014 34 6 5 

a
 Best predictors for common waterhemp emergence according to stepwise regression. 

b
 Characteristic of the interaction of common waterhemp emergence with soil temperature and 

soil moisture. 

c
 Number of common waterhemp seedlings as a result of variable factors. 
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APPENDIX E 

 

Table E.1 

 

Stepwise regression of Palmer amaranth peaks of emergence and environmental factors in 2013. 

2013 

MSE R
2 

STD 

0.882 0.30 5.648 

 

Dependent variable
a
 Parameter estimate

b 
F value p 

Max soil moist 11 

days 
0.084 3.61 <0.001 

Max soil temp 14 

days 
-0.004 -0.25 0.807 

 

Week
 Max soil moist 11 days 

(%VWC) 

Max soil temp 14 

days (C) 

Predicted 

emergence 

(plants.m
-2

)
 c
 

5/14/2013 49 27 26 

5/21/2013 45 28 20 

5/28/2013 41 31 14 

6/4/2013 50 29 30 

6/11/2013 51 29 31 

6/18/2013 43 32 16 

6/25/2013 49 37 26 

7/2/2013 49 37 25 
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Table E.1 (Continued)    

7/9/2013 49 35 27 

7/16/2013 32 40 6 

7/23/2013 34 40 7 

7/30/2013 42 43 13 

8/6/2013 38 39 10 

8/13/2013 34 37 7 

a
 Best predictors for Palmer amaranth emergence according to stepwise regression. 

b
 Characteristic of the interaction of Palmer amaranth emergence with soil temperature and soil 

moisture. 

c
 Number of Palmer amaranth seedlings as a result of variable factors. 
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Table E.2 

 

Stepwise regression of Palmer amaranth peaks of emergence and environmental factors in 2014. 

2014 

MSE R
2 

STD 

1.314 0.37 6.420 

 

Dependent variable
a
 Parameter estimate

b 
F value p 

Max soil moist 14 

days 
0.132 5.01 <0.001 

Max soil temp 8 

days 
0.077 2.37 0.022 

 

Week
 Max soil moist 14 days 

(%VWC) 

Max soil temp 8 days 

(C) 

Predicted 

emergence 

(plants.m
-2

)
 c
 

5/14/2014 39 30 12 

5/21/2014 40 29 13 

5/28/2014 37 32 13 

6/4/2014 36 34 16 

6/11/2014 41 31 19 

6/18/2014 50 35 111 

6/25/2014 42 39 63 

7/2/2014 48 36 95 

7/9/2014 33 39 19 

7/16/2014 44 39 84 

7/23/2014 42 38 57 
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Table E.2 (Continued)    

7/30/2014 28 39 9 

8/6/2014 25 39 6 

8/13/2014 30 38 11 

a
 Best predictors for Palmer amaranth emergence according to stepwise regression. 

b
 Characteristic of the interaction of Palmer amaranth emergence with soil temperature and soil 

moisture. 

c
 Number of Palmer amaranth seedlings as a result of variable factors. 
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