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Abstract 

Electrochemiluminescence (ECL) is a sensitive analytical technique with great promise 

for biological applications, especially when combined with microfluidics. Here, we report the 

first integration of ECL with digital microfluidics (DMF). ECL detectors were fabricated into the 

ITO-coated top plates of DMF devices, allowing for the generation of light from electrically 

excited luminophores in sample droplets. The new system was characterized by making 
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electrochemical and ECL measurements of soluble mixtures of tris(phenanthroline)ruthenium(II) 

and tripropylamine (TPA) solutions. The system was then validated by application to an 

oligonucleotide hybridization assay, using magnetic particles bearing 21-mer, deoxyribose 

analogues of the complement to microRNA-143 (miRNA-143). The system detects single 

nucleotide mismatches with high specificity, and has a limit of detection of 1.5 femtomoles. The 

system is capable of detecting miRNA-143 in cancer cell lysates, allowing for the discrimination 

between the MCF-7 (less aggressive) and MDA-MB-231 (more aggressive) cell lines. We 

propose that DMF-ECL represents a valuable new tool in the microfluidics toolbox for a wide 

variety of applications. 

 

Keywords 

Electrochemiluminescence, digital microfluidics, microRNA, single nucleotide mismatch, tumor 

cells 

 

1. Introduction 

Electrochemiluminescence (ECL) detection has recently emerged as a hot topic in 

analytical chemistry (Hu and Xu 2010; Miao 2008; Mirasoli et al. 2014; Muzyka 2014; 

Nepomnyashchii et al. 2006; Parveen et al. 2013; Radha and Mark 2007; Richter 2004; Robert et 

al. 2009; Yin et al. 2004). In ECL, electrically excited chemical species are generated at an 

electrode surface by applying a electrical potential; those species or their products subsequently 

emit light to be detected, often in visible region of the spectrum (Miao 2008). This process 

makes ECL highly selective, as there are relatively few analytes that are both (a) electroactive, 

and (b) capable of radiative electronic relaxation. Detection with ECL has multiple advantages, 
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including (1) low background optical signal, (2) precise control over the position and moment of 

emission (i.e., emission occurs in proximity of electrode surface when an appropriate potential is 

applied), (3) selective control over which species are addressed (Wang et al. 2012), (4) 

compatibility with in-solution and in-thin-film emission, and (5) wide dynamic range (3-6 orders 

of magnitude). ECL luminophores are stable and can be used as selective nonradioactive labels 

in bioassays with zeptomole sensitivity (Sardesai et al. 2011), and for multi-modal analysis with 

electrochemical detection (Redha et al. 2009). These advantages have driven the development of 

commercial ECL systems which have been applied to immunoassays, DNA assays, detection of 

water-borne parasites, monitoring of environmental hazards, and biowarfare agent detection 

(ORIGEN®, I.I., Gaithersburg, MD, Elecsys®, Roche Diagnostics, Indianapolis, IN, 

NucliSens®, Organon Teknika, Durham, NC, and QPCR® 5000, PerkinElmer, Wellesley, MA). 

ECL has also been incorporated as a detection mode in wide range of analytical tools such as 

capillary electrophoresis (CE) (Cao et al. 2002), flow injection analysis (FIA) (Zhang et al. 

2013), high performance liquid chromatography (HPLC) (Skotty et al. 1996), and microfluidics 

and micro total analysis systems (µTAS) (Arora et al. 2001).  

Microfluidic analytical platforms are promising because of their compatibility with 

integration, compactness, fast analysis, low reagent and/or sample consumption, and the capacity 

for multiplexed analysis (Rackus et al. 2015). However, microfluidic platforms are often 

fundamentally signal-limited because their low sample volumes often contain only few 

molecules of analyte. Thus, ECL and microfluidics are a natural fit; together, they can be used to 

detect small amounts of analyte in low sample volumes (Mirasoli et al. 2014). As an example, 

there is great promise for using ECL for nucleic acid analysis, often implemented using magnetic 

particles that are modified with complementary oligonucleotide probes. But such assays are 
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tedious, requiring long processing regimens including particle conditioning and blocking, 

hybridization with sample, extensive wash-steps, mixing with ECL luminophores and co-

reactants, and (finally) detection. There have been a number of microfluidic systems combined 

with ECL detection described in the literature, some relying on enclosed microchannels (Azimi 

et al. 2011; Hsueh et al. 1998; Hsueh et al. 1996; Sardesai et al. 2013; Silverbrook et al. 2011), 

and others relying on lateral flow in paper or other absorptive media (Delaney et al. 2011; Ge et 

al. 2012; Liu et al. 2015; Mani et al. 2013; Wang et al. 2012; Yan et al. 2013; Guan et al. 2016),
 

but we are unaware of any system that has been developed which integrates all of the steps 

required for magnetic-particle-based nucleic acid analyses. 

Here, we report the first integration of ECL detection with a mode of microfluidics 

known as digital microfluidics (DMF). DMF is a powerful liquid handling platform that is useful 

for maneuvering (i.e., move, dispense, mix, and split) discrete droplets on an array of insulated 

electrodes (Choi et al. 2012). Like other forms of microfluidics, DMF is intrinsically compatible 

with a variety of analytical detection modalities, including mass spectrometry (Lafrenière et al. 

2014), colorimetry (Choi et al. 2013), and electrochemical analysis (Dryden et al. 2013). But 

DMF is quite distinct from other forms of microfluidics (e.g., there are no channels), and it has 

never before been combined with electrochemiluminescence. Here, we report a DMF-ECL 

system applied to a magnetic particle-based nucleic acid hybridization assay using sample 

volumes of ~1.8 µL. The system was validated by application to analysis of microRNA 

(miRNA) expression levels that are associated with cancer phenotype (Calin and Croce 2006). 

We propose that the coupling between DMF and ECL represents a useful new addition to the 

analyst’s toolbox, with particular utility in the emerging area of miRNA analysis (Labib and 

Berezovski 2015; Woolley 2015). 
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2. Materials and Methods 

2.1. Supplementary methods.  

Methods for immobilization of probe sequence on magnetic particles, as well as DMF 

device fabrication, assembly, and operation are described in detail in the supplementary 

information. 

2.2.  Reagents and Materials 

All reagents were purchased from Sigma Chemical (Oakville, ON, Canada) or Fisher 

Scientific Canada (Ottawa, ON, Canada) unless otherwise specified. Analytical grade reagents 

were used to prepare solutions of 0.3 M AgNO3 in 3 M NH4OH, 2.0 mM KAuCl4 in 0.5 M 

H2SO4, 200 µM tris(phenanthroline)ruthenium(II) chloride ([Ru(Phen)3]Cl2) in phosphate 

buffered saline, PBS (1×), and 20 mM tripropylamine (TPA) in (1×). All aqueous solutions were 

prepared using deionized (DI) water with a resistivity of 18 MΩ•cm at 25°C. Dynabeads® M-

280 Streptavidin were purchased from Invitrogen Dynal AS (Oslo, Norway) as a suspension of 

10 mg/mL (~6–7×10
8
) streptavidin-coated magnetic particles (dia. 2.8 µm) in PBS, containing 

0.1% BSA and 0.02% NaN3 as preservatives. Binding and washing buffer, B&W (2×), was 

prepared, comprising 10 mM Tris-HCl (pH 7.5) containing 1 mM ethylenediaminetetraacetic 

acid (EDTA) and 2 M NaCl, and diluted to B&W (1×) in DI water. Hybridization buffer (pH 8.0) 

was prepared, comprising 20 mM Tris-HCl containing 0.2 M NaCl and 5 mM MgCl2. HPLC-

purified biotinylated probe DNA sequence and target DNA sequences (Table S1 in the 

supplementary information) were purchased from Bio Basic Canada Inc. (Markham, ON, 

Canada). Stock solutions (50 µM) of biotinylated probe DNA sequence and target sequences 

were prepared in DNase/RNase-free ultrapure water (Invitrogen, Life Technologies, Toronto) 
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and hybridization buffer, respectively. Working solutions from the stock were prepared in the 

respective medium. All solutions/suspensions were supplemented with Pluronic F68 (0.05% v/v) 

prior to use with DMF (Au et al. 2011). 

2.3. Nucleic acid assay. 

A seven-step protocol was developed to enable magnetic particle-based nucleic acid 

assays on DMF. Prior to each analysis, 4.5 µL aliquots of magnetic particle suspension, target 

sequence solution (0, 10, 100, or 1000 nM ds-143; or 1000 nM 143-m1, 1000 nM 143-m2, or 

1000 nM nc-145), hybridization buffer, 200 µM [Ru(Phen)3]Cl2 solution, PBS, and 20 mM TPA 

solution were loaded into reservoirs on a device. After all reagents were loaded, (1) three unit 

droplets containing magnetic particles were dispensed from their reservoir and merged, and the 

particles were separated from the supernatant. (2) Two unit droplets of target sequence solution 

were dispensed, merged, and delivered to the immobilized particles for resuspension and 

incubation for 15 min. (3) The particles were washed four times in series by re-suspending and 

mixing with one unit droplet of hybridization buffer followed by magnetic separation from the 

supernatant. (4) Two unit droplets of [Ru(Phen)3]Cl2 solution were dispensed, merged, and 

delivered to the particles, where they were re-suspended and mixed for 2 min. The particles were 

then separated from the supernatant droplet. (5) The particles were washed two times with 2 

droplets of PBS as in step 3. (6) Two droplets of TPA solution were dispensed, merged, and 

delivered to the particles, where they were re-suspended and mixed for 1 min. (7) The final 

droplet containing TPA and Ru(Phen)3
2+

-labeled DNA modified particles was actuated to the 

ECL electrodes on the top-plate for ECL measurements.  



7 
 

2.4. Electrochemistry and electrochemiluminescence. 

Prior to each assay, cathodic electrochemical cleaning of the ITO WEs was performed to 

remove adsorbed organic molecules and reduce oxide layer. For this, cyclic voltammetry was 

performed in 20 µL aliquots of PBS (1×) positioned on DMF top plates using the ITO WE and 

Ag/Au/ITO CE/RE in 10 cycles over a range from –1 V to 0 V with a scan rate of 100 mV/s. In 

preliminary work, ECL cells were characterized in assembled DMF devices by cyclic 

voltammetry of a merged droplet formed from dispensed unit droplets of 200 µM [Ru(Phen)3]Cl2 

solution and 20 mM TPA solution. In these experiments, potentials were swept between 0 and 

1.8 V at a scan rate of 100 mV/s. ECL cells were also characterized by 

electrochemiluminescence using the same reagents by applying 1.5 V for 45 s to the ITO WE 

relative to the Ag/Au/ITO CE/RE, with luminescence collected by the integrated photomultiplier 

tube (PMT; see supplementary information) over that duration. In oligonucleotide assays 

(described above), the maximum observed ECL signal was recorded for quantitation. In 

quantitative assays, data were plotted as a function of concentration and fit using a four-

parameter logistic regression. The concentration limit of detection (CLOD) was the concentration 

from the regression equivalent to that of the signal of the blank value plus three standard 

deviations of the blank. The absolute limit of detection (LOD) was calculated as (CLOD)×(1.8 

L). Statistical significance was evaluated by Student’s t-Test.  

2.5. Cell culture and analysis. 

Cell culture reagents were from Life Technologies (Carlsbad, CA). MCF-7 and MDA-

MB-231 cell lines were from ATCC (Manassas, VA) and were grown in Dulbecco’s modified 

Eagle medium (DMEM) containing 100 U/mL penicillin G and 100 µg/mL streptomycin 

supplemented with 10% fetal bovine serum (FBS) in a humidified incubator at 37°C with 5% 
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CO2, passaging every 2-3 days. Prior to analysis, cells were trypsinized in 0.25% trypsin-EDTA 

for 5 minutes at 37°C, counted using a hemocyometer, centrifuged at 300 × g for 5 min, and 

lysed in sufficient volume of RLT buffer (Qiagen, Frederick, MD) to form a -mixture equivalent 

to 10
6
 cells mL

-1
. This suspension was homogenized using a 22 gauge needle, and stored at -

20°C until use. For on-chip assays, MCF-7 lysate, MDA-MB-231 cell lysate, or RTL buffer with 

no lysate (background solution) was diluted 1:10 in sample dilution buffer (pH 8.0), which was 

formed from Tris-base (7.7 mM), Tris-HCl (12.2 mM), NaCl (200 mM), MgCl2 (5 mM), and 

supplemented with BSA (4 % w/v) and Pluronic L64 (0.05 % w/v). Assays were carried out 

using the seven-step process described above, except that five unit droplets of magnetic particle 

suspension were dispensed and merged (in place of three droplets) in step (1). 

 

3. Results and Discussion 

3.1. Integration of DMF and ECL. 

Digital microfluidics has recently emerged as a powerful technique for implementing 

magnetic-bead-based assays (Kokalj et al. 2015), the precise, programmable control making it a 

perfect fit for automating the many tedious wash, mix, and analysis steps. This combination 

(DMF and magnetic particles) has been used for a wide range of applications coupled with 

detection by electrochemistry (Shamsi et al. 2013), fluorescence (Foudeh et al. 2015; Tsaloglou 

et al. 2014), chemiluminescence (Ng et al. 2012; Ng et al. 2015), and bioluminescence (Welch et 

al. 2011). But until now, digital microfluidics has never been combined with the promising 

technique of electrochemiluminescence (ECL) detection. Here, we report our work exploring the 

suitability of ECL for DMF, with application to magnetic-particle based nucleic acid assays.  
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As described in the supplementary information, a custom DMF device top-plate (Figure 

1a) was designed for integrated ECL detection, adapted from a design reported previously for 

electrochemical analysis (Shamsi et al. 2013) with several significant alterations. First, in the 

current design, the analysis electrodes were moved to the center of the device, appropriate for 

detection using a PMT positioned above the device. Second, the apertures of the ECL electrodes 

were designed to be larger than what was reported previously (Shamsi et al. 2013) to allow for 

increased surface-area for luminophore generation (for increased sensitivity). Third, each 

working electrode (WE) was formed from bare (transparent) ITO [rather than gold (Shamsi et al. 

2013)] to allow for convenient optical detection [note that ITO WEs have been extensively 

employed for generating ECL in microchannel devices (Kasahara et al. 2014; Wu et al. 2015)]. 

Fourth, each silver-coated counter/pseudoreference electrode (CE/RE) was formed using a new 

protocol involving a gold adhesion layer for enhanced mechanical stability. As with the design 

reported previously for electroanalysis (Shamsi et al. 2013), each analysis electrode was 

connected to a contact pad, and the remainder of the ITO on the top plate functions as a ground 

for DMF droplet actuation. The ECL electrodes are sufficiently small such that they do not 

interfere with droplet movement. Figure 1b depicts a fully assembled DMF device where top 

and bottom plates are biased by AC voltages for droplet movement, and DC voltages are applied 

between the ITO WE and the Ag/Au/ITO CE/RE on the top-plate via a potentiostat. A droplet is 

shown between the two plates containing magnetic particles modified with labeled double-

stranded DNA oligonucleotides. ECL photons are detected by a PMT, which is suspended above 

the device. 

The new DMF-ECL platform was validated using a popular reactant-mixture comprising 

a ruthenium-based luminophore and tripropylamine (TPA) as a co-reactant. In this system, the 
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luminophore and TPA are oxidized simultaneously, after which TPA
+
 reacts further to form an 

energetically excited radical, which subsequently reduces the luminophore into an energetically 

excited species that (finally) emits photons, returning to the reactant state (Miao et al. 2002). 

Here, we used Ru(Phen)3
2+

 as the luminophore because of its well-known DNA intercalation 

propensity [i.e., each Ru(Phen)3
2+

 ion can intercalate into four base pairs in a DNA double helix]. 

Because soluble Ru(Phen)3
2+ 

does not interact with single-stranded DNA or RNA (Xu and Bard 

1995), this reactant serves as a marker for the amount of double-stranded DNA present in the 

sample being analyzed, and thus is useful for hybridization assays (Chen et al. 2012; Li et al. 

2013; Liu et al. 2011; Yin et al. 2009). 

In initial work, the DMF-ECL detection system was characterized with Ru(Phen)3
2+

/TPA 

with no DNA present. Figure 2a is a representative cyclic voltamogram for this mixture; as 

shown, there is a broad irreversible anodic peak at ~1.3 V, corresponding to the oxidations of 

Ru(Phen)3
2+

 and TPA, reaching a plateau at 1.4–1.5 V [this behaviour has been reported 

elsewhere using a similar reactant mixture (Chiang and Whang 2001)]. Thus, 1.5 V was chosen 

as the bias potential for the ECL measurements described here [as reported earlier (Xu and Bard 

1995)]. The system was then characterized by measuring the electroluminescence as a function 

of time. Figure 2b shows a representative response, where “ON” and “OFF” represent the times 

at which 1.5 V was applied (and removed) between the ITO WE and the Ag/Au/ATO CE/RE. In 

ECL, the oxidative-reductive process theoretically regenerates the luminophore/co-reactant 

couple at the electrode surface, allowing luminescence to continue at constant value with time. 

As shown, the luminescence observed here was not constant, and in fact decayed over time. This 

behaviour has been reported previously (Xu and Bard 1995), likely caused by irreversible 

decomposition of the luminophore. Regardless, it was found that the maximum luminescence 
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signal, which was observed within 10 s of applying the potential, gave reproducible signals (with 

coefficient of variance, CV, of 10%). This parameter (the maximum signal observed within 10 s) 

was used for all experiments with nucleic acids (described below). 

A number of parameters were considered in determining the ECL-analysis procedure 

described here. First, there was some concern that the surfactant used to reduce fouling of the 

Teflon-AF surface (Au et al. 2011) might interfere with analysis, but this did not prove to be a 

problem for the procedures described here. Likewise, ruthenium/TPA ECL is a pH-dependent 

process showing highest intensity when the reactants are dissolved in a buffer with slightly 

alkaline medium (Miao 2008); thus, the solutions used here were formed in PBS buffer with pH 

7.5. Finally, there are a number of parameters that were not optimized, including working 

electrode size (800 µm was the only dimension tested) and optical filtering (no filters were used). 

In the future, if enhanced sensitivity is desirable, users might consider using larger WE areas (as 

larger electrodes should yield more contact between the electrode and luminophore/coreactant 

molecules) to allow for more rapid regeneration, and band-pass filters to isolate photons at 540 

nm – 700 nm (Tokel-Takvoryan et al. 1973) to improve signal to noise ratio. 

Finally, we acknowledge that the instrument used to program droplet movement and 

detect ECL is not (yet) fully integrated. As described in the supplementary information, the 

custom-made DMF/magnet/PMT system used here is enclosed in the form factor of a large 

shoebox (Choi et al. 2013), but the commercial potentiostat used for electrochemistry and ECL 

measurements described here is separate. In the future, to enhance portability and robustness, we 

propose that it will be straightforward to integrate a DMF-compatible potentiostat (Dryden and 

Wheeler 2015) into the enclosed system without any sacrifice in form factor.  
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3.2. Integrated Nucleic Acid Assays on DMF-ECL. 

Equipped with a working DMF-ECL prototype system, we applied it to developing an 

automated assay for oligonucleotide hybridization. Motivated by the enthusiasm for measuring 

miRNA levels as prognostic markers for cancer (Calin and Croce 2006), magnetic particles were 

modified via avidin-biotin chemistry with a 21-mer DNA analogue (ss-143) of the complement 

to miRNA-143, a molecule that is down-regulated in some tumors (Ng et al. 2009). As outlined 

in Table S1 in the supplementary information, ds-143 (a synthetic deoxyribose analogue of 

miRNA-143) was used as a model analyte, and variants of the analyte bearing single- (143-m1) 

and double- (143-m2) nucleotide mismatches were used to test the specificity of the system. 

Finally, a fully non-complementary oligonucleotide (nc-145) was used as a negative control. The 

sequence of nc-145 was chosen such that it is the deoxyribose analogue of another common 

miRNA found in cancer cells, miRNA-145, making it a representative interferant that is often 

found in real samples. 

A seven step protocol, depicted in Figure 3a, was designed and optimized to quantify the 

level of analyte hybridization to the immobilized ss-143. Figure 3b shows frames from a movie 

depicting the steps involved in the new protocol. Briefly, first, ss-143-modified particles were 

dispensed onto the actuation electrodes followed by magnetic separation of the particles (frames 

1&2). Then, particles were incubated with a target sequence droplet followed by repeated wash 

steps (frames 3&4). The particles were then incubated with Ru(Phen)3
2+

 solution and washed 

again (frames 5&6), then mixed with TPA solution (frame 7). The final suspension was driven 

toward the ITO (WE) and Ag/Au/ITO (CE/RE) to measure the electrochemiluminescence (frame 

8). In practice, two assays were commonly implemented in parallel, which required 

approximately 40 min to complete. 
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The new assay was applied to a solution of ds-143, and a typical ECL vs. time response is 

shown in Figure 4a. The shape of the curve (with a peak followed by a sharp decrease) is 

different than that observed for free solution (Figure 2b), because in the hybridization assay, the 

luminophore is bound to the beads and cannot be regenerated at the electrode. Replicate assays 

were carried out to evaluate the signal observed for droplets containing the blank solution (no 

DNA), or 1 M ds-143, 143-m1, 143-m2, or nc-145. Figure 4b shows the relative ECL 

responses of the various sequences. It is evident that single and double nucleotide mismatched 

sequences can be distinguished from fully complementary sequence (p = 0.002, p = 0.001 

respectively), an effect of (1) the decrease in hybridization efficiency and (2) structural 

distortion(s) in the double helix. For the former (1), reduction in hybridization efficiency is 

enhanced (increasing selectivity) for surface-bound probes relative to free probes in solution 

because of steric limitations (Shamsi and Kraatz 2013). For the latter (2), structural distortions 

decrease the level of intercalation of Ru(phen)3
2+

. Combined, these two effects increase with 

multiple nucleotide mismatches (Shamsi and Kraatz 2011), which is evident in the significant 

differences between the signals observed for 143-m1 and 143-m2 (p = 0.005). Finally, the signal 

from the fully non-complementary sequence cannot be distinguished from that of the blank (p = 

0.2). Taken together, these data suggest that the new technique is quite selective.  

The quantitative performance of the new system was assessed by evaluating a dilution 

series of the complementary target, ds-143. Figure 5a is a calibration curve for these 

experiments comprising 0, 10, 100, and 1000 nM target concentrations (with CVs of 82%, 16%, 

26%, and 16% respectively) with concentration limit of detection of CLOD = 1.1 nM and absolute 

LOD = 1.5 femtomoles. This performance is suitable for the application of interest here (analysis 

of cell lysate, described below), but may not be sufficient to quantify miRNA-143 in human 
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blood or serum. If greater sensitivity is needed in future applications, the limit of detection might 

be improved by optimizing WE area, optical filters, and other parameters (as described above), 

or ECL-DMF might be integrated with digital microfluidic methods designed to pre-concentrate 

RNA from large volumes of blood (Jebrail et al. 2014) prior to analysis. 

3.3. Detection of miRNA in tumor cells using DMF-ECL. 

Finally, motivated by the intense interest in microRNA expression profiles in cancer cells 

(Turchinovich et al. 2011), we applied the new DMF-ECL method to evaluating miRNA-143 

expression in two cancer cell lines. Figure 5b shows the signals observed for cell-density-

matched samples of lysate collected from MDA-MB-231 and MCF-7 cell lines. As shown, the 

signals observed for both MDA-MB-231 (41,000 +/- 6,500) and MCF-7 (95,000 +/- 37,100) are 

greater than that of the background (17,000 +/- 8,000). Note that the variances on these 

measurements are relatively high (i.e., CVs of 16% and 39% for MD-MB-231 and MCF-7, 

respectively), likely caused by the inherent variabilities that are often observed in proliferating 

cancer cells. But even with this level of error, the ECL signal observed for MDA-MB-231 is 

significantly lower than that observed for MCF-7 (p = 0.03). This observation is consistent with 

the understanding that miRNA-143 expression is down-regulated in some aggressive forms of 

cancer (Ng et al. 2009), and that MDA-MB-231 cells are the more aggressive (in terms of 

propensity to metastasize) of the two lines evaluated here (Weigel et al. 2010). 

 

4. Conclusion 

We report the first integration of electroluminescence detection with digital microfluidics. 

The method was validated by application to magnetic particle-based nucleic acid hybridization 

assays using sample volumes of 1.8 µL. The system can specifically detect single nucleotide 
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differences in 21-mer deoxyribose analogues of miRNA-143, with a limit of detection of 1.5 

femtomoles. Moreover, the system is capable of detecting microRNA in breast cancer cell 

lysates, allowing for the discrimination between cell type.  
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Figure 1. Digital microfluidics and electrochemiluminescence. a) Top-view schematic of device 

top-plate with four bare circular ITO electrodes (dia. 800 µm) that serve as ECL working 

electrodes (WE) and two square Ag/Au/ITO electrodes (560 µm x 560 µm) that serve as ECL 

counter/pseudoreference electrodes (CE/RE). The substrate is globally coated with Teflon-AF, 

with apertures formed above each WE and CE/RE. The ECL electrodes are connected to contact 

pads through patterned ITO wires, and the remainder of the ITO functions as a ground electrode 

for DMF operation. b) Cross-section schematic of two-plate digital microfluidic system for ECL 

detection. (1) Glass substrate (white), (2) Indium tin oxide (ITO) layer (gray), (3) Teflon-AF 

hydrophobic layer (green), (4) Parylene-C dielectric layer (blue), (5) Chromium array of DMF 

driving electrodes (yellow), (6) Ag/Au/ITO CE/RE, (7) Bare ITO WE, (8) Working and 

counter/psuedoreference electrodes connected via a potentiostat, (9) Top-plate DMF ground 

electrode and bottom-plate DMF driving electrodes connected via an open-source droplet control 

system,(Fobel et al. 2013) (10) Photomultiplier tube over the top-plate, (11) Droplet containing 

magnetic beads modified with hybridized DNA oligomers
 
with intercalating labels. 
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Figure 2. Characterization of DMF-ECL devices. Representative a) cyclic voltammogram 

(swept from 0 to 1.8 V at 100 mV/s on ITO WE vs Ag/Au/ITO CE/RE) and b) ECL response as 

a function of time (where “ON” and “OFF” were the times at which 1.5 V as applied and then 

removed) for a 1:1 mixture of 200 µM [Ru(Phen)3]
2+

 and 20 mM TPA in PBS buffer (pH 7.4).  

  

a) 

b) 
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Figure 3. DMF-ECL oligonucleotide hybridization assay. a) Schematic depicting the seven-step 

DMF protocol developed to detect miRNA-143 by electrochemiluminescence (ECL). b) Frames 

from the movie depicting the running of two protocols in parallel: (1&2) droplets of ss-143-

modified beads are dispensed onto the main platform from reservoir electrodes, followed by 

magnetic separation of the particles from solution, (3&4) particles are incubated with target 

sequence droplet followed by wash steps, (5&6) particles are incubated with Ru(Phen)3
2+

 

solution followed by wash steps, (7) particles are mixed with TPA solution, and (8) finally, one 

of the two droplets (on the left) is  actuated to the ITO WE and Ag/Au/ITO-CE/RE (area inside 

the dotted rectangle) to measure the ECL. The droplet on the right is queued for a subsequent 

measurement.  
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Figure 4. DMF-ECL DNA hybridization efficiency. a) Representative ECL response of ds-143-

bound [Ru(Phen)3]
2+

 on magnetic beads in TPA. ITO (WE) and Ag/Au/ITO (CE/RE).The “ON” 

and “OFF” labels indicate when 1.5 V DC was applied and removed between the ITO WE and 

the Ag/Au/ITO CE/RE. b) Average response of blank (no target), fully complementary ds-143, 

single nucleotide mismatched 143-m1, double nucleotide mismatch 143-m2, and fully non-

complementary nc-145. In each case, the target concentration was 1 µM, the data represent the 

average of 4 replicates, and the error bars represent +/- one standard deviation. 

  

a) 

b) 
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Figure 5. DMF-ECL for quantitation and evaluation of cell lysate. a) ECL signal as a function of 

ds-143 concentration. b) ECL signal background (generated from cell media), and in MDA-MB-

231 and MCF-7 cell lysates generated from 10
6
 cell/mL suspensions. All data represent the 

average of 4 replicates, and the error bars represent +/- one standard deviation. 

a) 

b) 
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Highlights for “Electrochemiluminescence on Digital Microfluidics for microRNA Analysis” by 

Shamsi et al.: 

 

• Integration of digital microfluidics (DMF) with electrochemiluminescence (ECL) 

 

• ECL detection-cell on the DMF top-plate 

 

• Magnetic particle-based nucleic acid assay 

 

• Distinguishes single-base mismatches from nucleic acid complements 

 

• Detects miRNA in cancer cell lysate 
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