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SQUARED BESSEL PROCESS WITH DELAY

LOCHANA SIRIWARDENA AND HARRY RANDOLPH HUGHES

Abstract. We discuss a generalization of the well known squared Bessel process with real
nonnegative parameter δ by introducing a predictable almost everywhere positive process
γ(t, ω) into the drift and diffusion terms. The resulting generalized process is nonnegative
with instantaneous reflection at zero when δ is positive. When δ is a positive integer, the
process can be constructed from δ-dimensional Brownian motion. In particular, we consider
γt = Xt−τ which makes the process a solution of a stochastic delay differential equation
with a discrete delay. The solutions of these equations are constructed in successive steps
on time intervals of length τ . We prove that if 0 < δ < 2, zero is an accessible boundary
and the process is instantaneously reflecting at zero. If δ ≤ 2, lim inft→∞ Xt = 0. Zero is
inaccessible if δ ≥ 2.

1. Introduction

Bessel processes have been extensively studied and used in modeling many real world
phenomena such as population dynamics [2] and interest rates in finance [1]. We begin by
introducing the squared Bessel process which is constructed as the squared distance between
the origin and the position of the δ-dimensional Brownian motion at time t [12, p. 439]. The
process was first constructed for integer values of δ and subsequently defined and analyzed
for real δ ≥ 0.

Definition 1.1 (Squared Bessel Process). Let Bt be δ−dimensional Brownian motion on a
complete probability space (Ω,F , P ) and Ft be the natural filtration. The process

X = B2
1 + B2

2 + · · · + B2
δ

is called a squared Bessel process of dimension δ (BESQδ).

Construction of this process for positive integer δ is straightforward. Using the Itô formula,

(1.1) dXt = δ dt + 2
√

Xt dWt, X0 = x,

where Wt is a one-dimensional Brownian motion constructed from Bt. The process BESQδ

for general real δ ≥ 0 is defined as the solution of (1.1). This process is well suited for
modeling population dynamics and financial asset pricing. Because the coefficients satisfy
a linear growth condition, the equation has a global solution (no explosion in finite time)
[4, p. 177]. Note that the diffusion term is non-Lipschitz and hence the uniqueness follows
from the Yamada-Watanabe theorem [12, p. 390]:

Theorem 1.2 (Yamada-Watanabe Theorem). Suppose that for a one-dimensional SDE,

(1.2) dXt = a(t, Xt) dt + σ(t, Xt) dWt; X0 = x0,

the function a is Lipschitz continuous and there exists a strictly increasing function h : R+ →
R+ with

∫ 0+

0
h−2 (x) dx = +∞ such that,

|σ(t, x)− σ(t, y)| ≤ h (|x − y|)
2010 Mathematics Subject Classification. Primary 60H10.
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for all t and x, y ∈ R. Then pathwise uniqueness holds.

The construction of the squared Bessel process and other properties are discussed in Revuz
and Yor and we state the main theorem here [12, p. 442]:

Theorem 1.3. The stochastic differential equation

dXt = δ dt + 2
√

|Xt| dWt, X0 = x0,

has a unique strong solution and, if δ, x0 ≥ 0, then Xt ≥ 0. Furthermore,

(1) for δ > 3 the process is transient, and for δ ≤ 2, it is recurrent,

(2) for δ ≥ 2, zero is polar and, for δ ≤ 1, zero is reached a.s.,

(3) for δ = 0, zero is an absorbing boundary,

(4) for δ > 0, the process is instantaneously reflecting at zero.

The squared Bessel process was analyzed by Feller [2] in a generalized form and used in
the Cox model [1]. It was further generalized by Göing-Jaeschke and Yor to allow δ < 0
dimensions [5,7]. Parameter estimation of the squared Bessel process was discussed by Göing-
Jaeschke in her Ph.D. dissertation [6]. Squared Bessel processes in non-colliding particle
systems were analyzed in [3], [8], and [9].

In this paper, we construct a generalization of the Bessel process by introducing a pre-
dictable almost everywhere positive process γ(t, ω) to the drift and diffusion terms. The
motivation for this construction is to define a process Xt where the dynamics depend on
γt = Xt−τ , the state of the process at a fixed time τ units in the past. For instance, in a hy-
pothetical population, the growth in the number of adults at time t depends on the number
of adults able to reproduce at time t− τ , where τ is the time required for an egg to mature
to adulthood. In this model, the adult population could rebound even after reaching zero,
due to the delay in the hatching of eggs and the maturation of individuals. The behavior of
such a process at boundary zero is of particular interest. This analysis may be applied to
other fields where the past needs to be considered in the present dynamics of the model.

In [10], Mohammed gives a general formulation of a stochastic delay differential equation
(SDDE). We consider the one-dimensional case. For each solution path X(t), define the
segment xt : [−τ, 0] → R by xt(s) = X(t+s). The initial segment x0 is given by θ : [−τ, 0] →
R and the coefficients of the stochastic differential equation are functionals h and g of the
segments, xt:

(1.3) dX(t) = h(t, xt) dt + g(t, xt) dW (t), X(t) = θ(t) for t ∈ [−τ, 0].

As it is noted in [10], in the discrete delay case where h and g only depend on the values of
X(t − τ ) and X(t), such a system can be solved in successive steps as stochastic ordinary
differential equations (SODE) on time intervals of length τ . For t ∈ [0, τ ], the coefficients
of the SODE are determined by θ(t). The coefficients of the SODE for t ∈ [nτ, (n + 1)τ ]
depend on the already determined solution for t ∈ [(n − 1)τ, nτ ].

In the following sections, we will present the construction of an SDDE that generalizes
the squared Bessel process:

(1.4) dXt = δXt−τ dt + 2
√

XtXt−τ dWt, Xt = θt for t ∈ [−τ, 0] .

This equation can also be solved in successive steps. Because the diffusion coefficient does
not satisfy the Lipschitz condition, the uniqueness results of [10] do not apply. We turn to
the Yamada-Watanabe Theorem to show uniqueness.
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2. Construction of the Generalized Squared Bessel Process

Let δ be a positive integer, Bt be δ-dimensional Brownian motion, Ft be the natural
filtration and γ : [0,∞] × Ω → R be an almost everywhere positive, predictable, locally
integrable process.
Let time-changed Brownian motions Yi be defined by

Yi =

∫ t

0

√
γs dBi

s.

Define
X = Y 2

1 + Y 2
2 + · · · + Y 2

δ .

Then, as for the squared Bessel process, using the Itô formula, we get

dXt = δγt dt + 2
√

γtXt dWt, X0 = x0,

where Wt is a one-dimensional Brownian motion.
We extend this construction for a general real δ ≥ 0 below. To study the boundary at

zero, we follow Revuz and Yor and use the following theorems.

Theorem 2.1 (Local time theorem for Semi-martingales [12, p. 225]). For any continuous

semimartingale X, there exists a modification of the local time process {La
t ; a ∈ R, t ∈ R+}

such that the map (a, t) → La
t is a.s. continuous in t and cadlag in a. Moreover, if X =

M + V , then

La
t − La−

t = 2

∫ t

0

1{Xs=a}dXs = 2

∫ t

0

1{Xs=a}dVs.

Let 〈X, X〉t denote the quadratic variation process for semi-martingale X.

Theorem 2.2 (Occupation Time Formula [12, p. 224]). If X is a continuous semi-

martingale, there is a P -negligible set outside of which
∫ t

0

Π (Xs) d〈X, X〉s =

∫ ∞

−∞

Π (a)La
t da

for every t and every positive Borel function Π.

We introduce the following theorem for non-negative real δ.

Theorem 2.3. Let δ, x0 ≥ 0. Suppose that outside of a set of probability zero, γt is an

almost everywhere positive predictable process, locally integrable with respect to t. Then the

SDE

(2.1) dXt = δγt dt + 2
√

γtXt dWt, X0 = x0,

has a unique strong solution. If δ > 0, the process almost surely instantaneously reflects at

zero and is a.e. positive. If δ = 0, the boundary at zero is absorbing.

Proof. The existence and uniqueness follow as in the proof of Theorem 1.3 [12]. Equation
2.1 may also be solved by means of a random time change of the BESQδ process with time
change rate γt [11, p. 153]. Pathwise uniqueness for solutions follows with the application
of the Yamada-Watanabe Theorem (Theorem 1.2), noting that |√x − √

y| <
√

x − y for
x > y ≥ 0.
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We modify the arguments of Revuz and Yor [12, p. 442] to analyze the boundary behavior
of the process at zero. Note that d〈X, X〉t = 4γtXtdt and use Theorem 2.1 to get

L0
t = 2δ

∫ t

0

1{Xs=0}γsds.

Since γs > 0 a.e., then almost surely for fixed t,
∫ t

0

γsds ≥
∫ t

0

1{Xs>0}γsds

=

∫ t

0

1{Xs>0}γs (4γsXs)
−1 d〈X, X〉s

=

∫ ∞

0

1 · (4a)−1 La
t da,

where the last equality follows from the Occupation Time Formula. Since
∫ t

0
γsds < ∞, this

implies that L0
t = 2δ

∫ t

0
1{Xs=0}γs ds = 0. Hence

|s > 0 : Xs = 0| = 0

when δ > 0. When δ = 0, Xt ≡ 0, t ≥ s, is the unique solution with Xs = 0 and thus zero
is an absorbing boundary. �

3. The Stochastic Delay Differential Equation

For the rest of the results we choose γt = Xt−τ where τ > 0 is the fixed delay time. We
now present the main theorem of this paper.

Theorem 3.1. Let τ > 0 be fixed and let θt be positive, integrable, and independent of F0

for t ∈ [−τ, 0]. Then the SDDE

(3.1) dXt = δXt−τ dt + 2
√

XtXt−τ dWt, Xt = θt for t ∈ [−τ, 0]

has a unique strong solution and this solution is nonnegative. In addition:

(1) If δ = 0, zero is an absorbing boundary.

(2) If δ > 0, zero is a reflecting boundary.

(3) If δ < 2, the process reaches zero with positive probability and lim inft→∞ Xt = 0
almost surely.

(4) If δ = 2, Xt reaches arbitrarily small values ε, 0 < ε < θ0, in finite time almost

surely.

(5) If δ ≥ 2, zero is inaccessible and Xt reaches any m > θ0 in a finite time almost

surely.

Proof. The global existence and uniqueness of solutions follow by successive applications of
Theorem 2.3 to time intervals of length τ . Note that for t ∈ [0, τ ], γt = Xt−τ = θt−τ . Once
a continuous nonnegative solution is obtained up to time nτ , γt = Xt−τ is determined for
t ∈ [nτ, (n + 1) τ ] [10].

If δ = 0, it follows that zero is an absorbing boundary and therefore Xt is nonnegative. If
δ > 0, we claim that Xt ≥ 0 and Xt instantaneously reflects at 0. Arguing inductively, let
Yt be the solution of the stochastic differential equation,

(3.2) dYt = 2
√

YtXt−τ dWt, Ynτ = Xnτ ,
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for t ∈ [nτ, (n + 1)τ ]. If Xt is nonnegative in the interval [(n − 1)τ, nτ ], then by applying a
comparison theorem to the processes defined in (3.1) and (3.2) [12, p. 394], it follows that
Xt ≥ Yt ≥ 0 for t ∈ [nτ, (n + 1)τ ]. Furthermore, by Theorem 2.3, Xt instantaneously reflects
at zero and is positive a.e. on [nτ, (n + 1)τ ] if it is positive a.e. on [(n − 1)τ, nτ ]. The result
follows because, on the initial segment, θt > 0 by hypothesis.

Now we consider the boundary behavior for different values of δ. Suppose 0 < δ < 2.
Define stopping time

λn = inf {t > 0 : Xt = n or Xt = 0} .

First we claim that for almost all ω, there exists an n such that λn = ∞ or Xλn
= 0. Let

X0 = θ0 and Un : [0,∞) → R be twice continuously differentiable on (0,∞). Fix T > 0. By
the Itô formula [11, p. 44], we have

(3.3)

∫ λn∧T

0

dUn(Xs) =

∫ λn∧T

0

[δXs−τU
′
n(Xs) + 2XsXs−τ U

′′
n(Xs)] ds

+

∫ λn∧T

0

[

2
√

XsXs−τ U ′
n(Xs)

]

dWs.

Solving the boundary problem

δU ′
n(x) + 2xU ′′

n(x) = 0, Un(0) = 0, Un(n) = 1,

we obtain

Un(x) =
x(1−δ/2)

n(1−δ/2)
.

Substituting Un in (3.3) and applying the Optional Stopping Theorem [12, p. 69], we have

E
θ [Un(Xλn∧T )] = Un(θ0) =

θ
(1−δ/2)
0

n(1−δ/2)
,

where E
θ is expectation conditioned on the initial segment θ. Since Un(x) ≥ 0 for x ∈ [0, n],

Un(θ0) = lim
T→∞

E
θ [Un(Xλn∧T )]

= E
θ [Un(Xλn

) ; λn < ∞] + lim
T→∞

E
θ [Un(Xλn∧T ) ; λn = ∞]

≥ 1 · P θ(Xλn
= n)

where P θ is the conditional law of Xt with initial segment θ. Taking the limit n → ∞,

lim
n→∞

P θ(Xλn
= n) = lim

n→∞
Un(θ0) = 0.

Therefore, since
P θ(Xλn

= n) + P θ(λn = ∞ or Xλn
= 0) = 1,

we have that

P θ(∪∞
n=1 {λn = ∞ or Xλn

= 0}) = lim
n→∞

P θ(λn = ∞ or Xλn
= 0) = 1,

which proves the claim.
Now we show that lim inft→∞ Xt (ω) = 0 almost surely. Let Vn(x) = (n − x)/δ. Then Vn

satisfies
δV ′

n(x) + 2xV ′′
n (x) = −1
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with Vn(n) = 0 and Vn(x) ≥ 0 on (0, n). Substituting Vn for Un in (3.3), we have

lim
T→∞

E
θ [Vn(Xλn∧T )] = Vn(θ0) − lim

T→∞
E

θ

[
∫ λn∧T

0

Xt−τ dt

]

.

It follows then that

E
θ

[
∫ λn

0

Xt−τ dt ; λn < ∞
]

+ E
θ

[
∫ ∞

0

Xt−τ dt ; λn = ∞
]

= Vn(θ0) − lim
T→∞

E
θ [Vn(Xλn∧T )] ≤ Vn(θ0) < ∞

and thus

E
θ

[
∫ ∞

0

Xt−τ dt ; λn = ∞
]

< ∞.

If there is an n such that P θ (λn = ∞) > 0, then on that event, lim inft→∞ Xt = 0. Otherwise
Xt reaches zero and reflects instantaneously. Since the same is true if the process is considered
for t ∈ [S,∞), for arbitrarily large time S, lim inft→∞ Xt = 0 a.s.

Now consider the case δ = 2. Suppose that 0 < ε < θ0 < n. Define

λεn = inf {t > 0 : Xt = ε or Xt = n} .

Again, Vn(x) = (n − x)/2 is a solution of 2V ′
n(x) + 2xVn(x) = −1, with boundary condition

Vn(n) = 0. Hence,

E
θ

[
∫ T

0

Xt−τ dt ; λεn = ∞
]

= Vn(θ0) − E
θ [Vn(Xλεn∧T )]

− E
θ

[
∫ λεn∧T

0

Xt−τ dt ; λεn < ∞
]

≤ Vn(θ0) < ∞.

Since Xt > ε for all t when λεn = ∞, letting T → ∞, it follows that P θ(λεn = ∞) = 0.
Now let Un(x) = 1 − (log x)/(log n). Then U ′

n(x) + xU ′′
n(x) = 0 and Un(n) = 0. Thus

Un(θ0) = lim
T→∞

E
θ [Un(Xλεn∧T )]

=

(

1 − log ε

log n

)

P θ(Xλεn
= ε).

Therefore limn→∞ P θ(Xλεn
= ε) = 1, which proves that the process almost surely reaches

every positive ε < θ0 in finite time.
Arguing in a similar way, let Un(x) = 1 + (log x)/(log ε). Thus

Un(θ0) = lim
T→∞

E
θ [Un(Xλεn∧T )]

=

(

1 +
log n

log ε

)

P θ(Xλεn
= n).

In this case, limε→0 P θ(Xλεn
= n) = 1 for every n. Since this continuous process almost

surely reaches every positive integer before it hits zero, it almost surely cannot reach zero in
finite time.



SQUARED BESSEL PROCESS WITH DELAY 7

Now suppose δ > 2. We redefine λn = inf {t > 0 : Xt = 1/n} and solve δU ′
n(x)+2xU ′′

n(x) =
0, with boundary condition Un(1/n) = 1, to get

Un(x) =
1

x(δ/2−1)n(δ/2−1)
.

With an argument similar to the δ < 2 case, we get,

(3.4) P θ(∪∞
n=1 {λn = ∞}) = 1.

Now we prove that Xt reaches any m > θ0 a.s. when δ > 2. Define µm = inf {t > 0 : Xt = m} .
Then Vm = (m − x)/δ is a solution of δV ′

m(x) + 2xV ′′
m(x) = −1, with boundary condition

Vm(m) = 0. Therefore, by an argument similar to before,

E
θ

[
∫ µm

0

Xt−τ dt

]

< ∞,

and thus,

E
θ

[
∫ µm

0

Xt−τ dt ; µm < ∞
]

+ E
θ

[
∫ µm

0

Xt−τ dt ; µm = ∞
]

< ∞.

Arguing by contradiction, suppose that P (µm = ∞) > 0. Then using (3.4), there exists a
positive integer n0 such that P (λn0

= ∞, µm = ∞) > 0 and thus

E
θ

[
∫ ∞

0

Xt−τ dt ; µm = ∞
]

= ∞,

which leads to a contradiction. Therefore, P (µm = ∞) = 0. �

Remark 3.2. Because the coefficient functions in the stochastic delay differential equations
depend on the history of the process, these processes are not in general Markov [10]. Nev-
ertheless, we identify properties analogous to the properties of recurrence and transience as
defined for Markov processes. When δ ≤ 2, lim inft→∞ Xt = 0 almost surely and thus it
satisfies a recurrence property at zero. On the other hand, the preceding proof shows that
when δ > 2, lim inft→∞ Xt > 0 almost surely, and when δ ≥ 2, lim supt→∞ Xt = ∞ almost
surely.

Acknowledgment. The authors would like to thank the referee for many useful suggestions
for improving this paper.
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