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WHAT IS THE BEST PREDICTOR OF ANNUAL LYME DISEASE
INCIDENCE: WEATHER, MICE, OR ACORNS?

ERIC M. SCHAUBER,1,4 RICHARD S. OSTFELD,2 AND ANDREW S. EVANS, JR.3

1Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University,
Carbondale, Illinois 62901 USA

2Institute of Ecosystem Studies, Millbrook, New York 12545 USA
3Dutchess County Department of Health, Poughkeepsie, New York 12601 USA

Abstract. Predicting fluctuations in annual risk of Lyme disease would be useful in
focusing public health efforts. However, several competing hypotheses have been proposed
that point to weather variables, acorn production, or mouse abundance as important pre-
dictors of Lyme disease risk. We compared the ability of acorn production, mouse density,
and four relevant weather variables to predict annual Lyme disease incidence (detrended)
between 1992 and 2002 for Dutchess County, New York, and seven states in the northeastern
United States. Acorn production and mouse abundance measured in Dutchess County were
the strongest predictors (r $ 0.78) of Dutchess County Lyme disease incidence, but the
increase in mouse abundance from 1991 to 1992 was contrary to a decrease in Lyme disease
in the following years. The Palmer Hydrologic Drought Index (PHDI) was a significant
positive predictor of Lyme disease incidence two years later for three states (0.58 # r #
0.88), but summer precipitation was generally negatively correlated with Lyme disease
incidence the next year (20.79 # r # 0.02). Mean temperatures for the prior winter or
summer showed weak or inconsistent correlations with Lyme disease incidence. In four
states, no variable was a statistically significant predictor of Lyme disease incidence. Syn-
chrony in Lyme disease incidence between pairs of states was not significantly concordant
with synchrony in any weather variable that we examined (0.02 # r # 0.21). We found
that acorns and mice were strong predictors of Dutchess County Lyme disease incidence,
but their predictive power appeared to be weaker spatially. Moreover, evidence was weak
for causal relationships between Lyme disease incidence and the weather variables that we
tested. Reliable prediction of Lyme disease incidence may require the identification of new
predictors or combinations of biotic and abiotic predictors and may be limited to local
scales.

Key words: Borrelia burgdorferi; Ixodes scapularis; Lyme disease; mammals; masting; oak;
Peromyscus leucopus; prediction; ticks; vector-borne disease; weather.

INTRODUCTION

Lyme disease is the most prevalent vector-borne dis-
ease in North America, Europe, and parts of Asia, so
there is intense public interest in understanding how
the risk of exposure varies in space and time. Annual
incidence of reported Lyme disease cases in the United
States has generally increased over time since the dis-
ease was first described, probably due to both expand-
ing populations of tick vectors and increased rates of
diagnosis and reporting (Orloski et al. 2000). Lyme
disease incidence has also fluctuated from year to year
relative to the overall trend, and these fluctuations tend
to be consistent across localities within a region (Staf-
ford et al. 1998). Such spatiotemporal consistency sug-
gests that year-to-year fluctuations in Lyme disease in-
cidence in different sites may share an underlying cause
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or suite of causes. Thus, identifying the causal factors
may enable prediction of relative risk.

Lyme disease risk is dependent on the density of
blacklegged ticks (Ixodes scapularis) that are infected
with the Lyme disease bacterium, Borrelia burgdorferi
(Falco and Fish 1989, Fish 1993, Mather et al. 1996,
Stafford et al. 1998, Falco et al. 1999). Therefore, fluc-
tuations in Lyme disease risk have been hypothesized
to be the result of either fluctuating weather conditions
affecting tick survival (Jones and Kitron 2000, Subak
2003) or fluctuating acorn production affecting the be-
havior and abundance of mammals that act as tick hosts
and reservoirs of B. burgdorferi (Ostfeld et al. 1996a,
Ostfeld 1997, Jones et al. 1998). Blacklegged ticks are
susceptible to desiccation when they quest for hosts
(Yoder and Spielman 1992, Stafford 1994, Lindsay et
al. 1998, 1999, Vail and Smith 2002), so temperature
and precipitation are clear candidates to explain vari-
ations in tick abundance and, consequently, Lyme dis-
ease risk. Jones and Kitron (2000) observed that the
abundance of larval (first-year) blacklegged ticks over
eight years in northwest Illinois was positively corre-



576 ERIC M. SCHAUBER ET AL. Ecological Applications
Vol. 15, No. 2

lated with summer rainfall and negatively correlated
with summer temperatures in the previous year, where-
as abundance of nymphs (second year) was positively
correlated with prior-year temperatures. However, the
abundance of infected ticks may also be mediated by
the behavior and abundance of wild hosts.

The movements and abundance of mammals that
serve as reservoirs of B. burgdorferi and hosts for I.
scapularis are profoundly affected by the abundance
of tree seeds, especially acorns (Ostfeld 1997, Ostfeld
et al. 2001). Acorn production fluctuates greatly from
year to year, with synchrony (defined as positive cross-
correlation between concurrent time series from sep-
arate sites; Bjørnstad et al. 1999, Koenig 1999) over
spatial scales on the order of tens to hundreds of ki-
lometers (Koenig and Knops 2000, Liebhold et al.
2004). A large acorn crop has two direct ecological
effects that ultimately lead to indirect effects on Lyme
disease risk. Almost immediately, abundant acorns at-
tract white-tailed deer (Odocoileus virginianus), the
primary host for adult I. scapularis, into oak forest
stands in autumn (McShea and Schwede 1993). The
result is an outbreak of larval ticks in oak stands in
the following summer (Ostfeld 1997, Jones et al. 1998).
Abundant acorns also cause increased abundance of
white-footed mice (Peromyscus leucopus) and eastern
chipmunks (Tamias striatus) in the following summer
(Elkinton et al. 1996, Wolff 1996, Jones et al. 1998);
both species are important hosts for larval I. scapularis
and are highly competent reservoirs of B. burgdorferi
(Donahue et al. 1987, Mather et al. 1989, Slajchert et
al. 1997, Schmidt et al. 1999, LoGiudice et al. 2003).
Thus, large acorn crops appear to cause concentrations
of questing larval ticks and of competent reservoir
hosts to coincide in time and space in the following
summer, culminating in high density of infected
nymphs in the second summer (Ostfeld et al. 2001).

Weather may also affect Lyme disease risk indirectly
via ecological effects on hosts. Subak (2003) found that
the incidence of Lyme disease in the northeast United
States between 1993 and 2000 was negatively corre-
lated with drought conditions two years before and pos-
itively correlated with temperatures in the previous
winter. These results were interpreted as a combination
of direct effects of drought on tick survival and indirect
effects of severe winters on the abundance of white-
footed mice. However, there is only weak evidence that
winter temperatures affect mouse abundance (Lewellen
and Vessey 1998, Subak 2003), relative to the high-
amplitude fluctuations driven by acorn production.

Because purported causes like weather and acorn
production cannot be experimentally manipulated at
scales large enough to substantially affect Lyme dis-
ease incidence in humans, causality must be cautiously
inferred from correlative studies at large scales but-
tressed by smaller scale experiments that test proposed
mechanisms. Statistical analyses are confounded by the
fact that both Lyme disease incidence and hypothesized

causes are autocorrelated in space and time. Thus, sep-
arate years and sites do not provide completely inde-
pendent data, and spurious correlations between pur-
ported causes and effects can occur by chance much
more frequently than otherwise would be expected
(Abraham and Ledolter 1983, Koenig 1999). Spurious
correlations are especially problematic because reliable
Lyme disease data are only available for a small number
of years (since 1993) and because Lyme disease inci-
dence has had a consistent upward trend during that
time period.

The search for general explanations may be doomed
if different factors govern Lyme disease risk in differ-
ent places. However, our approach was to ascertain
initially whether the few variables that have been sup-
ported as universal or nearly universal drivers are able
to explain patterns of Lyme disease incidence. If they
fail, perhaps we must resign ourselves to the hypothesis
that all is spatially idiosyncratic. The search for causes
of Lyme disease fluctuations has also been hampered
by a tendency of researchers to test the plausibility of
a single hypothesis, rather than comparing the explan-
atory power of two or more alternative hypotheses.
Only Ostfeld et al. (2001) explicitly confronted com-
peting hypotheses against a common data set, finding
that acorn production was a much better predictor of
the abundance of infected nymphal ticks in Duchess
County, New York, than were prior precipitation and
growing degree-days.

Our objective was to use model selection procedures
to determine whether Lyme disease incidence was best
predicted by weather variables identified in previous
studies, acorn production, or mouse abundance. It was
not our objective to seek out and identify new hypoth-
esized predictors, so we restricted our analyses to
weather variables that have received empirical support
in prior studies. Our analysis included the seven north-
eastern U.S. states examined by Subak (2003). We also
focused on Dutchess County, New York, an area where
Lyme disease is hyperendemic (7% of national cases
in 2002) and where time series of acorn production,
mouse abundance, and weather data were available. We
further analyzed weather hypotheses by testing for spa-
tiotemporal concordance of weather variables and
Lyme disease incidence across states in the northeast-
ern United States.

METHODS

Lyme disease data

Our response variable was the annual Lyme disease
incidence (LDI, i.e., number of case reports) during the
years 1990–2002, measured for Dutchess County (New
York) and the seven northeastern states responsible for
the vast majority of Lyme disease cases in the United
States: Connecticut, Maryland, Massachusetts, New
Jersey, New York, Pennsylvania, and Rhode Island.
The use of state-level LDI data could obscure the im-
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portance of factors whose importance varies at smaller
scales. In most states, however, Lyme disease cases are
concentrated in particular hyperendemic areas (e.g.,
southeastern New York, coastal areas of Massachusetts
and Maryland), so factors affecting disease risk in those
areas drive temporal patterns in state-level incidence.
For example, acorn production is unlikely to explain
fluctuations of LDI in northern New York State, where
oaks are rare, but this region makes a very small con-
tribution to the total number of cases in the state (New
York State Department of Health 2003).

For Dutchess County, we used case surveillance data
collected by the Dutchess County Department of
Health, arranged by year of diagnosis. These data
stemmed from passive case reporting as well as labo-
ratory surveillance (Chow et al. 2002). A backlog of
case reports began building in 2000 due to the West
Nile Virus outbreak, and some reports for 2000, 2001,
and 2002 remained pending confirmation as of March
2003. Therefore, we estimated the final number of con-
firmed cases for each year by multiplying the number
of pending cases for that year by the proportion of
reviewed cases that were confirmed to meet the case
definition over the years 1998–2003 (0.452 6 0.004
mean 6 1 SE). For states, we analyzed case reports
submitted to the Centers for Disease Control and Pre-
vention (CDC) by state health departments, arranged
by year of report (Centers for Disease Control and Pre-
vention 2002, Centers for Disease Control and Pre-
vention 2003; available online).5 Some discrepancies
and problems in reporting exist. For example, some
cases were not reported to CDC in the year of diagnosis
due to processing delays. For Dutchess County we were
able to attribute all case reports to the year of diagnosis,
resulting in some differences from data reported to
CDC. Also, these surveillance data underestimate true
LDI (Meek et al. 1996), and the CDC case definition
was made more stringent in 1997 (Centers for Disease
Control and Prevention 1997), which may have reduced
the reporting rate relative to earlier years. Finally, 2002
incidence data are provisional, and are likely to change
slightly as further reports are submitted and reviewed.

Acorn data

Production of acorns was measured annually from
1992 to 2002 by the abundance of acorns falling per
square meter of ground under oak trees in two 2.25-ha
forest plots at the Institute of Ecosystem Studies (IES),
Dutchess County, New York. In each plot, 20 0.5-m2

circular baskets were placed underneath mature oaks,
and intact mature acorns in these baskets were counted
every month during autumn. Acorn production was
measured by dividing the total acorn count from all
baskets by the total basket area. Because Lyme disease
risk is expected to be linked to acorn production two
years before, our acorn data (Fig. 1A) could be com-

5 ^http://www.cdc.gov/ncidod/ovbid/lyme/epi.htm&

pared with Lyme disease incidence in the years 1994–
2002.

Mouse data

The hypothesized effect of acorn production on
Lyme disease risk is, in part, due to effects on abun-
dance of white-footed mice, a primary reservoir host.
Populations of white-footed mice at IES have been
monitored by capture–mark–recapture methods since
1991 on two 2.25-ha trapping grids in oak-dominated
forest habitats (Fig. 1A). Capture and handling of small
mammals conformed to Institutional Animal Care and
Use Protocols issued annually. Each year, small mam-
mals were live-trapped for 2–3 consecutive days every
3–6 weeks. Trapping generally began in April or May
and ended in November. Each trapping grid consisted
of an 11 3 11 array of trap stations, with two Sherman
live traps (H. B. Sherman Traps, Tallahassee, Florida,
USA) at each station. Traps were baited with oats or
sunflower seeds, and cotton batting was provided as
insulation during cool weather. Traps were opened in
the evening and checked and closed the following
morning. Each captured animal was marked with a
uniquely numbered ear tag and released at the site of
capture. Because each trap session was only two nights,
we estimated mouse abundance in each trap session by
inputting data from all trap sessions in a year into the
Jolly-Seber open population model in program PO-
PAN5 (Arnason and Schwartz 1999). Larval ticks in
the northeastern United States feed on mice primarily
in late summer (Fish 1993), and larval tick densities
at IES have generally peaked between mid-August and
early September each year (Ostfeld et al. 1995, 1996a,
b). Therefore, we estimated mouse abundance on 15
August of each year by linear interpolation between
mouse abundance estimates for trap sessions immedi-
ately before and after 15 August.

Weather data

Because an enormous number of weather variables
could conceivably affect Lyme disease risk, there is
great danger of uncovering statistically significant, but
spurious, relationships when testing a large number of
explanatory variables without clear a priori justification
(Anderson et al. 2000). Therefore, we restricted our
weather variables to those that have been empirically
linked to changes in abundance of immature blackleg-
ged ticks or Lyme disease incidence in prior studies.
Based on hypotheses presented in prior studies (Jones
and Kitron 2000, Subak 2003), we evaluated the pre-
dictive power of four explanatory variables calculated
from lagged (1–2 years before incidence data) weather
measurements: the mean summer (June–August) Palm-
er Hydrologic Drought Index lag 2 (PHDI2), mean win-
ter (December–February) temperature lag 1 (MWT1),
mean total summer precipitation lag 1 (TSP1), and
mean summer temperature lag 1 (MST1). These data
were downloaded from the National Climatic Data Cen-
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FIG. 1. Time series of variables used to predict Lyme disease incidence: (A) acorn production and mouse abundance
measured in Dutchess County New York; (B–E) weather variables measured in each of seven states in the northeastern United
States.

ter web site.6 Although Jones and Kitron (2000) found
a possible relationship between nymphal abundance
and summer growing degree-days in the prior year, we
chose to use mean summer temperature instead because
growing degree-day data were much more difficult to
interpolate across climatic regions. Subak (2003) found
weak support for the hypothesis that PHDI is consis-
tently linked with LDI in the same year, so we did not
include unlagged PHDI among our potential predictors.
Jones and Kitron (2000) claimed in their abstract that
cumulative degree-days were correlated with immature
blacklegged tick abundance in the same year, but this
relationship was not mentioned in their results, so we
did not include unlagged temperatures. Based on Subak
(2003) and Jones and Kitron (2000), we expected a
priori that Lyme disease risk would be positively cor-
related with each of these weather variables except
TSP1. High TSP1 could enhance Lyme disease risk by
reducing desiccation of larval ticks, but it could also
possibly foster fungi and other natural enemies of ticks
(Samish and Rehacek 1999). Unlike acorn and mouse

6 ^http://www.ncdc.noaa.gov/oa/climate/climatedata.html&

data, which were recorded at a single Dutchess County
site, weather data were available for each state indi-
vidually (Fig. 1B–E). Following Subak (2003), we cal-
culated each variable for the climatic region of each
state where the bulk of Lyme cases occurred: Maryland
Region 6 (eastern), Massachusetts Region 1 (eastern),
New Jersey Region 1 (northwestern), New York Region
5 (Hudson Valley), Pennsylvania Region 3 (southeast-
ern), and Rhode Island Region 1 (entire state). We av-
eraged data from the three climatic regions in Con-
necticut because recent cases have been distributed
throughout the state.

Statistical analysis

For each state and Dutchess County, we detrended
annual LDI data from years 1990 to 2002 by applying
a natural-logarithm transformation, fitting a linear or
quadratic (y 5 a 1 b*[year 2 1989] 1 c*[year 2
1989]2) trend model, and retaining the residuals. For
each data set, the choice of linear or quadratic trend
was based on the Akaike information criterion adjusted
for small samples (AICc; Burnham and Anderson
1998). We then calculated the temporal cross-correla-
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tion between detrended LDI and each explanatory var-
iable singly (Bjørnstad et al. 1999). An alternative anal-
ysis would have been to incorporate trend components
and hypothesized causal variables simultaneously in
multiple regression models. However, this would re-
quire ignoring trend information contained in data from
years in which all explanatory variables were not mea-
sured. We considered accounting for the biennial nature
of the I. scapularis life cycle in the detrending process
by adding an even-year indicator variable. We chose
not to because TSP also exhibited a tendency for two-
year oscillations (Fig. 1C), so removing differences
between odd- and even-year LDI would probably ob-
scure any relationship with TSP.

We compared the strength of various predictors by
measuring their cross-correlations with LDI. Because
acorn data could only be compared with LDI from 1994
to 2002, we compared the cross-correlations with LDI
and each explanatory variable over those years. Mouse
abundance could be compared with LDI over the years
1992–2002, so we compared the cross-correlations of
LDI during that period with all explanatory variables
except acorns. We assessed statistical significance of
cross-correlations after adjusting degrees of freedom
for serial autocorrelation (Sciremammano 1979). Be-
cause previous studies allow a priori expectation of a
positive relationship, we used one-tailed P values for
all explanatory variables except TSP1.

After comparing the predictive power of each ex-
planatory variable individually, we then tested whether
combinations of variables would improve prediction.
Because there is no a priori basis for choosing partic-
ular variable combinations, we chose the most parsi-
monious (lowest AICc) main-effects model out of all
possible subsets, ranging from the null (intercept only)
model to a model with all six explanatory variables.
The results of this exploratory analysis must be inter-
preted cautiously, because the potential for spurious
results is high (Anderson et al. 2000). However, pre-
dicting fluctuations in LDI could require more than one
causal explanatory variable.

Because weather data were available for each state,
we were able to test for spatiotemporal concordance
between detrended LDI and each weather variable. This
procedure, which has been used to test purported causes
of mast fluctuations (Schauber et al. 2002), goes be-
yond the temporal correlation between purported cause
and effect at a given site. The analysis is based on the
proposition that if a particular explanatory variable
governs a response variable across a large spatial ex-
tent, then one would expect that the degree of syn-
chrony in the response variable between two sites (mea-
sured by temporal cross-correlation) should be largely
determined by the synchrony in the explanatory vari-
able between the same sites. When both variables are
measured at several sites, one would expect concor-
dance (a positive correlation) between synchrony of a
causal factor and synchrony of the response. Therefore,

we constructed a separate matrix of pairwise synchrony
estimates (cross-correlations between sites, trans-
formed by Hotelling’s z* transformation; Sokal and
Rohlf 1981) for each variable (detrended LDI, PHDI,
MST, MWT, and TSP). We then measured spatiotem-
poral concordance by the Pearson correlation between
the LDI matrix and each weather matrix (Schauber et
al. 2002). The significance of each concordance mea-
sure was evaluated by Mantel randomization tests with
10 000 replications (Manly 1997). Statistically signif-
icant spatiotemporal concordance could result from
spatial autocorrelation in both variables, so this pro-
cedure represents a liberal test (Type I error rate higher
than nominal) of hypothesized predictors.

RESULTS

LDI increased substantially between 1990 and 2002
in Dutchess County and in each state (Fig. 2). Based
on AICc values, the most parsimonious trend model
was quadratic for Dutchess County, Massachusetts,
Rhode Island, and Pennsylvania (Fig. 2A, C, E, F);
linear trend models were more parsimonious for Con-
necticut, Maryland, New Jersey, and New York (Fig.
2B, D, G, H).

Analysis of each predictor individually

For the period 1994–2002, when data were available
for all explanatory variables, detrended LDI was most
strongly correlated with either acorn production or
mouse abundance in Dutchess County, Rhode Island,
Connecticut, and Pennsylvania (Table 1). Correlations
of LDI with acorns or mice were statistically significant
for Dutchess County, New York State, and Connecticut.
PHDI2 was the strongest predictor for Massachusetts,
and had moderate to high correlations (r . 0.3) with
detrended LDI for all sites except New Jersey and
Maryland. After adjusting for autocorrelation, how-
ever, correlations with PHDI2 were statistically sig-
nificant only for Massachusetts and Connecticut. Ob-
served correlations between TSP1 and LDI were neg-
ative at all sites, significantly so for New York and
Connecticut, and TSP1 was the strongest predictor for
New York. MST1 showed positive correlations with
LDI at all sites, with moderate (0.3 , r , 0.6) cor-
relations for Dutchess County (P , 0.05), New York
State, New Jersey, and Maryland. Correlations between
MWT1 and LDI were highly variable (20.33 # r #
0.82).

Although mouse abundance tended to be a good pre-
dictor of LDI over the years 1994–2002, expanding the
analysis to include 1992 and 1993 led to substantially
lower correlations. Mouse abundance was moderate in
1991 and very high in 1992, whereas detrended LDI
in the following years showed the opposite pattern at
several sites. For 1992–2002, PHDI2 was the strongest
predictor for all sites except New York State and New
Jersey, and had moderate to high correlations with LD
incidence for all sites except New Jersey (Table 1).



580 ERIC M. SCHAUBER ET AL. Ecological Applications
Vol. 15, No. 2

FIG. 2. Long-term trends in reported Lyme disease incidence before (solid circles) and after ln-transformation (open
circles). Results are shown for (A) Dutchess County, New York; (B) New York State, (C) Massachusetts, (D) Connecticut,
(E) Rhode Island, (F) Pennsylvania, (G) New Jersey, and (H) Maryland. Trend lines are linear or quadratic regressions against
year minus 1989.

TSP1 again showed moderate negative correlations
with LDI for all sites except Maryland, but the cor-
relation was statistically significant only for Connect-
icut. Correlations between MST1 and LDI were posi-
tive at all sites, and MST1 was a significant predictor
for New York State and Dutchess County. As was the
case for the 1994–2002 period, correlations with
MWT1 were inconsistent, ranging from 20.43 to 0.76.
However, MWT1 was a significant positive predictor
for Massachusetts and Connecticut.

Multiple-predictor model selection

The most parsimonious model for nearly every site
included #1 explanatory variable (Table 2). The few
exceptions involved models including two weather var-
iables. All models with three or more predictor vari-
ables performed poorly (R2 , 0.1 or d-AICc . 3.0).
The null model was a strong candidate for the best
approximating model (d-AICc , 1.5) for Rhode Island,
Pennsylvania, New Jersey, and Maryland, indicating
little support for the hypothesis that LDI fluctuations
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TABLE 1. Cross-correlations between detrended Lyme disease incidence and hypothesized predictors for Dutchess County,
New York (DC), and seven northeastern U.S. states.

Predictor Years (t)

State

DC NY MA CT RI PA NJ MD

Acorns t 2 2 1994–2002 0.87 0.31 0.29 0.56 0.08 0.36 0.51 0.21
Mice t 2 1 1994–2002 0.78 0.62 0.46 0.81 0.45 0.56 0.43 0.09
PHDI t 2 2 1994–2002 0.63 0.52 0.85 0.58 0.39 0.49 0.04 0.28
Winter temp. t 2 1 1994–2002 0.25 0.00 0.82 0.50 0.11 20.03 20.33 0.33
Summer temp. t 2 1 1994–2002 0.57 0.53 0.12 0.17 0.25 0.03 0.53 0.38
Summer precip. t 2 1 1994–2002 20.55 20.68 20.43 20.79 20.31 20.26 20.29 20.17
Mice t 2 1 1992–2002 0.46 0.25 0.19 0.52 0.35 0.36 0.06 20.18
PHDI t 2 2 1992–2002 0.71 0.55 0.88 0.65 0.44 0.51 20.05 0.35
Winter temp. t 2 1 1992–2002 0.27 20.08 0.76 0.52 0.19 0.02 20.43 20.01
Summer temp. t 2 1 1992–2002 0.68 0.59 0.39 0.34 0.21 0.23 0.43 0.29
Summer precip. t 2 1 1992–2002 20.57 20.60 20.52 20.64 20.28 20.35 20.33 0.02

Note: Values in boldface were significant (one-sided P , 0.05) after adjusting for serial autocorrelation.

in these states are predictable on the basis of any of
the variables that we examined. Massachusetts LDI
data exhibited no evidence of predictability on the basis
of acorns or mice measured at IES, but showed high
coefficients of determination (R2 $ 0.72) based on
PHDI2, MWT1, or a combination of both. For the years
1994–2002, mice and TSP1 each performed well in
predicting LDI in Connecticut and New York State,
and acorn production was the sole supported variable
for Dutchess County. However, for 1992–2002, mouse
abundance was a poor predictor for all states, whereas
PHDI2 was in the best models for Dutchess County,
Massachusetts, Connecticut, Rhode Island, and Penn-
sylvania.

Spatiotemporal concordance

From 1990 to 2002, interstate synchrony was high
for all weather variables (Fig. 1B–E and Fig. 3). Fluc-
tuations in detrended LDI showed moderate synchrony
(r . 0.4) among Connecticut, Massachusetts, and New
York, but weak synchrony (r , 0.25) between Penn-
sylvania and Massachusetts and between New Jersey
and Maryland and all other states except New York
(Fig. 3). Synchrony in LDI showed essentially zero
concordance with synchrony of PHDI and MWT, and
concordance with MST and TSP was nonsignificant.

DISCUSSION

Understanding and predicting temporal fluctuations
in Lyme disease risk would be beneficial in allowing
public health officials to focus intervention efforts dur-
ing years of greatest risk. Several biotic and abiotic
variables have been proposed as potential predictors,
but they have not been rigorously confronted with a
common data set. Our goal was to objectively assess
the ability of weather variables, acorn production, and
mouse abundance to predict state or local (county) re-
ports of Lyme disease incidence (LDI). We also sought
to provide more rigorous statistical analyses than have
been done previously, by explicitly accounting for the
temporal autocorrelation among successive annual

measures of LDI, and by using information theoretic
approaches to model selection (Burnham and Anderson
1998).

Our results did not indicate that any one variable or
category of variables consistently outperformed others,
and LDI in four out of the seven states (Rhode Island,
New Jersey, Pennsylvania, and Maryland) showed no
evidence of predictability on the basis of the variables
that we examined. Acorn production and mouse abun-
dance showed greatest predictive power for Dutchess
County, the only sites where these variables were mea-
sured, but also tended to be positively correlated with
Lyme disease incidence for the other states that we
examined, except Maryland. After accounting for serial
autocorrelation, PHDI two years previously was a sig-
nificant predictor for two states and was essentially
uncorrelated with Lyme incidence in New Jersey. For
the sites that we examined, there was a consistent neg-
ative relationship between total precipitation in the pre-
vious summer and Lyme disease incidence. Prior-year
summer temperatures showed consistent positive cor-
relation with Lyme disease incidence, but the corre-
lation was only strong and statistically signficant for
New York. Correlations between prior-year winter tem-
perature and Lyme disease incidence were inconsistent.
Information theoretic model selection suggested that
models with more than two variables were not parsi-
monious, so combining predictors did not substantially
improve predictive performance.

Our results highlight the difficulties in extracting rig-
orous causal inference from short-term (13 years) ob-
servational data subject to spatial and temporal auto-
correlation. For example, detrended Lyme disease in-
cidence and weather variables exhibited synchrony
across the seven states included in this study. There-
fore, finding that a weather variable had predictive
power for several states does not actually provide much
additional independent information. If one of the
weather variables that we examined truly governs fluc-
tuations in Lyme disease incidence across our study
region, then states with similar fluctuations in weather
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TABLE 2. Results of best subset model selection for pre-
dicting detrended Lyme disease incidence in Dutchess
County, New York, and seven northeastern U.S. states.

Time period
and site

Variables
included d-AICc R2

1994–2002
Dutchess County Acorns t 2 2 0 0.75

New York State TSP1 0 0.46
Mice t 2 1 1.1 0.39
MST1 2.5 0.28
Null 2.7

Massachusetts PHDI2 0 0.72
PHDI2, MWT1 0.4 0.87
MWT1 1.5 0.67

Connecticut Mice t 2 1 0 0.65
TSP1 0.6 0.63
MST1, TSP1 2.4 0.78

Rhode Island Null 0

Pennsylvania Mice t 2 1 0 0.32
Null 0.6

New Jersey MST1 0 0.28
Null 0.2

Maryland Null 0

1992–2002

Dutchess County PHDI2 0 0.50
MST1 0.9 0.46
PHDI2, MST1 2.2 0.62

New York State TSP1 0 0.35
MST1 0.06 0.35
PHDI2 0.9 0.30
MWT1, TSP1 1.6 0.54
PHDI2, MWT1 2.5 0.50
Null 2.9

Massachusetts PHDI2, MWT1 0 0.87
PHDI2 0.8 0.77

Connecticut PHDI2 0 0.42
TSP1 0.2 0.41
MWT1, TSP1 2.4 0.55
Mice t 2 1 2.5 0.27
MWT1 2.5 0.27
PHDI2, TSP1 2.7 0.54

Rhode Island PHDI2 0 0.19
Null 0.4

Pennsylvania PHDI2 0 0.26
Null 1.4

New Jersey MWT1, TSP1 0 0.51
MWT1 0.4 0.19
MST1 0.5 0.18
Null 0.7

Maryland Null 0

Note: For each time period and site, we list variables in-
cluded in the best model (d-AICc 5 0) and models meeting
all the following criteria: d-AICc , 3.0, d-AICc , d-
AICc[Null], and R2 . 0.1.

should exhibit similar fluctuations in Lyme incidence.
However, we were unable to demonstrate spatiotem-
poral concordance between Lyme incidence and any
weather variable. This suggests that either the variables
that we examined have little true effect on LDI, or that
different factors predominate in different areas. The
latter possibility casts doubt on the hope that a simple,

general explanation for LDI fluctuations will be un-
covered. Future observations will be needed to confirm
or refute the hypothesis that the weather variables we
examined are causally related to subsequent fluctua-
tions in LDI.

Weather-related variables are logical candidates to
explain and predict future fluctuations in LDI, but many
links in hypothesized causal chains have not been val-
idated empirically. For example, Subak (2003) spec-
ulated that the observed relationship between PHDI and
Lyme risk two years later might stem from drought
reducing the survival of nymphal ticks, thereby reduc-
ing the abundance of adult ticks in that year. Reduced
adult abundance would then result in reduced abun-
dance of infected nymphs two years later. Of these
steps, only the effect of moisture on nymphal survival
is supported by empirical field studies (Lindsay et al.
1998), and it is brought into doubt by the inconsistent
effect of PHDI on concurrent Lyme incidence (Subak
2003). Although high nymphal mortality in one gen-
eration logically might be expected to reduce nymphal
abundance in the next generation, this has not been
demonstrated, and nymphal mortality could be com-
pensated for by increases in survival or reproductive
success of intervening life stages.

Unlike weather-related hypotheses, the hypothesis
that acorn production indirectly affects Lyme disease
risk is buttressed by a logical chain of causation with
empirical support for each link: from acorns to small-
mammal abundance (Elkinton et al. 1996, Wolff 1996,
Jones et al. 1998), from acorns to the abundance and
distribution of larval ticks (Jones et al. 1998), and ul-
timately to the abundance of infected nymphal ticks
(Ostfeld et al. 2001). Here, we complete the chain by
empirically linking past acorn production with ob-
served fluctuations in LDI in humans, locally and per-
haps regionally. Clearly, Lyme disease occurs in land-
scapes that are not dominated by oaks (Ginsberg et al.
1998, Ostfeld et al. 1998), and in these areas we would
expect mouse populations and LDI to fluctuate inde-
pendently of acorn crops. The observation that acorns
and mice measured in Dutchess County can predict LDI
fluctuations in other states as well as or better than
weather variables measured in those states suggests that
local impacts of acorns and their mammalian consum-
ers are potent, but that broad-scale impacts are diluted
by other factors that predominate in non-oak-domi-
nated landscapes.

Spatial synchrony in acorn production dictates the
spatial extent over which acorn data from one site could
potentially predict LDI. Large-scale synchrony in acorn
production has been documented (Downs and Mc-
Quilkin 1944, Koenig and Knops 2000). Unfortunately,
long time series of acorn production and mouse abun-
dance are much more difficult to obtain than similar
weather data, and we do not know to what degree acorn
production is synchronized among northeastern states.
However, some short-term comparisons of acorn pro-
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FIG. 3. Matrices of synchrony between states for each weather variable and Lyme disease incidence (LDI), and plots of
LDI synchrony (after Hotelling’s z* transformation) against weather variable synchrony. Correlations reported on scatterplots
are measures of spatiotemporal concordance, and P values result from Mantel randomization tests. Abbreviations: PDHI,
Palmer Hydrologic Drought Index; MWT, mean winter temperature; MST, mean summer temperature; TSP, total summer
precipitation.

duction can be made. Healy et al. (1999) published a
time series from 1986 to 1996 of acorn production by
red oaks (Quercus rubra) in western Massachusetts.
Their measurements of acorn production were broadly
consistent with our measurements at IES, in that acorn
production was near zero in 1992, moderate or high in
1993–1994, low in 1995, and moderate in 1996. Visual

inspection of their data suggests a negative relationship
with detrended Lyme disease incidence in Massachu-
setts two years later. However, most cases of Lyme
disease in Massachusetts come from the eastern portion
of the state. Data published by Elkinton et al. (1989)
indicate that fluctuations in acorns and mice in eastern
and western Massachusetts may be asynchronous.
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Therefore, predicting Lyme disease risk in eastern Mas-
sachusetts might require local acorn measurements.
Liebhold et al. (2000) published measurements of acorn
production in central Pennsylvania from 1968 to 1994.
These data were broadly concordant with acorn pro-
duction at IES, with acorn failure in 1992 and increas-
ing production in 1993–1994. Furthermore, large acorn
crops reported for 1990 and 1994 were followed by
high values of detrended Lyme disease incidence in
1992 and 1996 in Pennsylvania.

Subak (2003) implied that fluctuations in winter tem-
peratures may be a more important factor in mouse
population dynamics than acorn production. However,
this inference was based on analysis of a six-year time
series of mouse abundance at IES. Our full data set
indicates that mouse abundance from 1993 to 2002 was
much more strongly correlated with prior acorn pro-
duction (r 5 0.81) than with prior winter temperatures
(r 5 0.49). Subak (2003) also suggested that even a
temporary effect of winter temperatures on mouse
abundance may be important for the success of larval
ticks hatching in spring. However, most larval black-
legged ticks in the northeastern United States hatch in
late summer (Fish 1993, Ostfeld et al. 1996a, b), so
this mechanism seems dubious. In perhaps the most
comprehensive study of P. leucopus population dy-
namics, Lewellen and Vessey (1998) found that the
response of mouse numbers to weather lasted only 1–
2 months, and that summer peak densities (most rel-
evant to Lyme disease epidemiology) were unaffected
by weather, with the exception of two droughts over
the 23-year study. The weak effect of winter temper-
atures on mouse abundance may explain the inconsis-
tent correlations between winter temperatures and
Lyme disease incidence.

We were somewhat surprised by the consistent neg-
ative relationship between summer precipitation and
Lyme disease incidence in the next year. This result
implies that wet summers might actually prove detri-
mental to immature blacklegged ticks, perhaps by en-
hancing the abundance or efficacy of natural enemies.
Entomopathogenic soil fungi (Metarhizium and Beau-
veria), which seem capable of controlling blacklegged
tick populations under some conditions (Samish and
Rehacek 1999, Benjamin et al. 2002), might benefit
from high summer precipitation and subsequently
might reduce tick abundance. Recently, Chase and
Knight (2003) found that wet conditions supported
predators and competitors capable of reducing wetland
mosquito populations, with the surprising result that
mosquito populations were more abundant following
dry than wet years. Whether the same might be true
for ticks is not known.

Our results do not present a clear answer to the ques-
tion of whether acorns, mice, or any of the weather
variables that we examined is a reliable predictor of
Lyme disease incidence over large areas of the north-
eastern United States. However, confronting a priori

predictions against future Lyme incidence levels may
provide critical tests of competing hypotheses. Acorn
production was relatively high at IES in 2001 and 2002
(Fig. 1A), implying that Lyme disease incidence will
be greater than the trend would suggest for 2003 and
2004. PHDI was strongly negative in most of the states
in our study in 2002 (Fig. 1B), and total summer pre-
cipitation was high in 2003 (Fig. 1C). These two weath-
er factors both point to lower than expected Lyme dis-
ease incidence in 2004. Finally, our analyses did not
account for potential biennial dynamics in tick abun-
dance. Because I. scapularis has a two-year life cycle,
biennial dynamics (Rost et al. 2001) also could explain
fluctuations in Lyme disease incidence. Detrended LDI
appears to alternate between positive and negative val-
ues in several states (Fig. 2), which may reflect biennial
dynamics of tick abundance; however, summer precip-
itation exhibits a similar pattern (Fig. 1C). The two-
year pattern in summer precipitation was broken in
2002, however. If biennial dynamics predominate, we
would expect lower incidence in 2003 and higher in
2004 for most of the states in our study. Thus, the acorn
cascade, weather, and biennial dynamics hypotheses
make conflicting forecasts regarding LDI in the next
two years, presenting an opportunity for a critical test
of these competing hypotheses.

Analyses of trends in numbers of Lyme disease cases
reported by state health departments to the CDC are
subject to temporal and spatial variability in criteria
for reporting and, consequently, in the likelihood that
the data represent true numbers of Lyme disease cases.
Under-reporting can occur when awareness of Lyme
disease by at-risk citizens and their healthcare provid-
ers is low (such as when it initially enters a geographic
area), and when local health departments lack funds to
identify and record cases. If awareness and funding
stabilize at sufficiently high levels, these sources of
error are likely to be reduced in the future.

Our objective was to compare the performance of
previously identified variables in predicting Lyme dis-
ease incidence, and not to search for new predictors.
It is possible that a different weather variable may
prove to be a reliable predictor, but demonstrating so
will require more exploratory analyses confirmed by
rigorous tests against independent data sets. At this
point, it remains premature to claim that any biotic or
abiotic variable provides superior ability to predict
Lyme disease incidence. Longer time series of response
and predictor variables and standardized case reporting
will aid in discriminating among purported predictors,
and future exploratory analyses may identify more re-
liable predictors. Realistically, it seems likely that both
biotic and abiotic factors contribute to observed fluc-
tuations in Lyme disease incidence, so incorporating
multiple variables may ultimately be necessary to
achieve reliable prediction.
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