
High-throughput Scientific Workflow Scheduling
under Deadline Constraint in Clouds

Michelle M. Zhu1, Fei Cao1, Chase Q. Wu2
1Dept. of Computer Science, Southern Illinois University, Carbondale, IL 62901

2Dept. of Computer Science, University of Memphis, Memphis,TN 38152
Email: {mzhu, fcao}@cs.siu.edu; chase.wu@memphis.edu

Abstract— Cloud computing is a paradigm shift in service
delivery that promises a leap in efficiency and flexibility
in using computing resources. As cloud infrastructures are
widely deployed around the globe, many data- and compute-
intensive scientific workflows have been moved from tra-
ditional high-performance computing platforms and grids
to clouds. With the rapidly increasing number of cloud
users in various science domains, it has become a critical
task for the cloud service provider to perform efficient job
scheduling while still guaranteeing the workflow completion
time as specified in the Service Level Agreement (SLA).
Based on practical models for cloud utilization, we formulate
a delay-constrained workflow optimization problem to max-
imize resource utilization for high system throughput and
propose a two-step scheduling algorithm to minimize the
cloud overhead under a user-specified execution time bound.
Extensive simulation results illustrate that the proposedalgo-
rithm achieves lower computing overhead or higher resource
utilization than existing methods under the execution time
bound, and also significantly reduces the total workflow
execution time by strategically selecting appropriate mapping
nodes for prioritized modules.

Index Terms— scientific workflow, workflow scheduling,
cloud computing

I. I NTRODUCTION

M ANY/modern e-sciences produce colossal amounts
of data that must be processed and analyzed

by domain-specific workflows of interdependent com-
puting modules for scientific discovery and invention.
Such scientific workflows are traditionally executed on
high-performance computing platforms and computational
grids. With the advent of cloud computing, researchers
have recognized the importance and benefit of shifting
scientific workflows to cloud environments, as already
evidenced in various science fields.

Cloud computing offers three generic types of cloud
services, namely, Infrastructure-as-a-Service (IAAS),
Platform-as-a-Service (PAAS), and Software-as-a-Service
(SAAS). IAAS creates virtual machines (VMs) on a
physical node with full user control, as exemplified by
Amazon’s ES2’s instances [12]. PAAS provides an ex-
ecution environment for users to run applications with
specific system configurations using particular program-
ming paradigms such as Java and Python, as exempli-
fied by Google’s App Engine [13]. SAAS enables users

Manuscript received May 8, 2013; revised October 18, 2013. Corre-
sponding author email: mzhu@cs.siu.edu.

to run some particular software remotely without the
need of installing it on their local machines. Salesforce’s
Database.com is one typical example that provides many
application programming interfaces (APIs) for users to
access the database as though it is a local database. Con-
sidering the wide variety of scientific computing modules
and their disparate performance and runtime requirements,
IAAS is generally considered as the best suited cloud
environment for scientific workflows. A typical IAAS
cloud employs a scheduler to determine the type and
location of VM instances, and a pricing model to decide
the cost charged to the user.

Scientific workflows can be as simple as a single module
or as complex as a Directed Acyclic Graph (DAG). To
facilitate execution parallelism and maximize execution
efficiency, workflow modules need to be dispatched or
mapped to a set of strategically selected VMs. There exists
a plethora of research on the mapping and scheduling
of workflow systems in clouds. However, most of these
existing efforts are based on static resource models. In
this paper, we consider time-varying resource availability
of both computer nodes and network links upon the arrival
of a user request. We believe that this model better reflects
the use dynamics of a real-life cloud environment where
any user can make advance reservations or utilize VM
resources during the scheduling process.

In our scheduling problem, we consider two objectives
from the perspective of a cloud service provider: i) satisfy
the latest completion time of the entire workflow, which is
typically specified as a Quality of Service (QoS) require-
ment; ii) maximize the system throughput to accommo-
date as many user requests as possible during a certain
time period. The system throughput is reflected by the
resource utilization rate, which is defined as the useful
computing cost over the total cost including the overhead
for starting up and shutting down VMs as well as the idle
VM time. Although most cloud service providers charge
users by hours regardless of the time spent on comput-
ing or overhead, the provider always wishes to reduce
unnecessary CPU cycles spent on overhead since these
wasted resources could be allocated elsewhere to meet
other users’ requests, especially when the cloud is heavily
loaded during the peak time. Resource utilization must be
considered in the design of a scheduling algorithm to avoid
early resource saturation and job request turndown.

The aforementioned cloud scheduling problem has been

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenSIUC

https://core.ac.uk/display/60570268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

proven to be NP-complete [9]. We propose a heuris-
tic workflow mapping approach, referred to as High-
throughput Workflow scheduling Algorithm with Execu-
tion time bound (HiWAE), which is a two-step procedure:
In the first step, modules are topologically sorted into
different layers to determine the module mapping order
starting from the first layer. Each module is assigned
with a certain priority value based on its computational
complexity and mapped to the node that yields the lowest
partial end-to-end delay (EED) as the execution time from
the starting module to the current one. This mapping
process is repeated until a convergence point is reached.
The main goal of the second step is to improve the
resource utilization rate by minimizing the overhead of
VM’s startup and shutdown time as well as the idle time.
For example, some modules may share the same VM for
reduced startup/shutdown overhead, and some VMs may
be released early until the next active module arrives to
save the idle time. A preliminary version of this algorithm
was proposed in [1].

The rest of the paper is organized as follows. Section II,
conducts a survey of workflow mapping algorithms. Sec-
tion III constructs the models for scientific workflows and
cloud environments to compute the workflow execution
cost. Section IV proves that the EED and cost are two con-
flicting objectives, and optimizing both at the same time
is not possible. Section V presents the algorithm details
and Section VI evaluates the algorithm performance.

II. RELATED WORKS

We provide a brief description of existing workflow
mapping algorithms in various environments with focus
on those developed specifically for clouds.

The workflow mapping problem for minimal makespan
in heterogeneous network environments has been exten-
sively studied and is well known to be NP-hard [9]. There
exist a number of heuristic algorithms [1], [2], [16], [17],
[9], [18], [23] in the literature. In [18], the Heterogeneous
Earliest Finish Time (HEFT) algorithm tries the mapping
of each module onto all the nodes first, and then chooses
the best one with the earliest finish time.Streamline [9],
a scheduling algorithm originally designed for streaming
data, creates a coarse-grained dataflow graph on available
grid resources. In [17], an optimal algorithm is proposed to
determine an optimal static allocation of modules among
a large number of sensors based on anA∗ algorithm. The
Recursive Critical Path (RCP) algorithm takes a dynamic
programming-based approach and recursively computes a
critical path to minimize the EED [16]. This algorithm is
used as the mapping scheme for the Scientific Workflow
Automation and Management Platform (SWAMP) [19].
Condor is a specialized workload management system
for compute-intensive jobs [20] and it can be used in
grid environments such as Globus grid [22]. The Directed
Acyclic Graph Manager (DAGMan) is a meta-scheduler
for Condor jobs that manages dependencies between jobs
at a higher level than the Condor Scheduler. DAGMan
submits jobs to Condor in an order represented by a DAG

and processes the results [21]. RCP provides a better
mapping performance than the default mapping scheme
employed by the Condor Scheduler [19]. However, the
aforementioned algorithms either target static homoge-
neous environments with fully connected networks, or fail
to find feasible mapping solutions when the system scales
up, or adopts a simple greedy approach that oftentimes
leads to unsatisfactory performance.

Several efforts have been devoted to scheduling work-
flows in cloud environments [5], [6], [7], [8], [4]. In [5],
Hoffa et al. compared the performance and the overhead
of running a workflow on a local machine, a local cluster,
and a virtual cluster. Haizea is a lease management archi-
tecture [7], which implements leases as VMs, leverages
the ability to suspend, migrate, and resume computations,
and provides the leased resources in a customized ap-
plication environment. In [8], Vockleret al. discussed
the experience of running workflows and evaluating their
performance as well as the challenges in different cloud
environments. In [6], Figueiredoet al. made an effort to
create a grid-like environment from cloud resources to
ensure a higher level of security and flexible resource
control. In [4], Yu et al. proposed a cost-based workflow
scheduling algorithm that minimizes execution cost while
meeting the deadline for completing the tasks.

Several job scheduling policies including Greedy (First
Fit) and Round Robin algorithms are used in open-source
cloud computing management systems such as Euca-
lyptus [10]. Queuing system, advanced reservation and
preemption scheduling are adopted by OpenNebula [11].
Nimbus uses some customizable tools such as PBS and
SGE [14]. The Greedy and Round Robin are heuristics
that select adaptive physical resources for the VM to
deploy without considering the maximum usage of the
physical resource. The queuing system, advanced reser-
vation and preemption scheduling also do not consider
any balanced overall system utilization. Pegasus Workflow
Manage System is a more advanced workflow scheduling
algorithm [15], which maps a workflow onto the cloud
to generate an executable workflow using a clustering
approach, where short-duration modules are grouped as a
single module to reduce data transfer overhead and the
number of VMs created. The rank matching algorithm
in [24] features a scheduling strategy that ranks each
module’s possible mapping nodes and selects the one with
the lowest cost as the mapping result.

Our work aims to achieve the maximum utilization of
cloud resources while guaranteeing the QoS required by
individual users. Although many techniques have been
proposed to meet these two objectives separately, the
research efforts in tackling both problems at the same time
are still very limited.

III. A NALYTICAL MODELS

We construct the analytical cost models for the work-
flow task graph and the underlying cloud computer net-
work graph to facilitate a mathematical formulation of the
delay-constrained mapping optimization problem.

A. Workflow and Cloud Models

We model the workflow of a distributed computing ap-
plication as a directed acyclic graphGwf = (Vwf , Ewf),
|Vwf | = N , where the vertices represent computing mod-
ules, i.e.Vwf = {u1, u2, ..., uN} with u1 and uN being
the start and end modules, respectively. The dependency
between a pair of modules(ui, uj) is represented as a
directed edgeei,j with weightwij being the size of data
transferred from moduleui to moduleuj . Moduleuj re-
ceives a data inputwij from each of its preceding modules
ui and performs a predefined computing procedure whose
complexity is modeled as a functioncuj

(·) of the total
aggregated input data sizezuj

. Note that in real scenarios,
the complexity of a module is an abstract quantity, which
not only depends on the computational complexity of the
procedure itself but also on its implementation details.
Module uj sends a data outputwjk to each of its suc-
ceeding modulesuk upon the completion of execution.
In general, a module cannot start its execution until all
input data required by this module arrives. To generalize
our model, if an application has multiple starting or ending
modules, we can create a virtual starting or ending module
of complexity zero and connect it to all starting or ending
modules without any data transfer along the edges.

We consider a general cloud environment that supports
both advance VM reservations and on-demand user re-
quests. Thus, the resource allocation status of the cloud
network is time dependent, i.e. the available computing
resources on each node and the bandwidth on each net-
work link vary over time. We model the underlying cloud
network as a complete network graphGcn = (Vcn, Ecn),
consisting of a set of|Vcn| = K computing nodesVcn =
{v1, v2, ..., vK} as well as a link between every pair of
nodes. Nodevj is featured by a normalized computing
powerpvj based on its CPU and memory, and the network
link Li,j from nodevi to vj is featured by bandwidthbvi,vj
and minimum link delaydvi,vj .

Fig. 1 illustrates an example of three reservation re-
quests made on one cloud node during different time
slots. For example, request 1 reserves 60% of the node’s
capacity fromt0 to t2; request 2 reserves 20% fromt1 to
t4; request 3 reserves 40% fromt3 to t4. The maximal
available computing power of this node fromt0 to t4 is
pvj ,t0,t4 = min(40%, 20%, 80%, 40%). The largest VM
instance that can be allocated onvj from time t1 to tn,
namelypVM

vj ,t1,tn
, is computed using resources ofpvj ,t1,tn .

The execution time of moduleui on nodevj during time
slot t1 andtn is then computed astvj ,t1(ui) =

zui
∗cui

(·)

pV M
vj,t1,tn

,

wherezui
denotes the aggregated complexity-normalized

input data size of moduleui. Similarly, the maximum
link bandwidth alongLvi,vj during time slottm andtn is
min(Bvi,vj ,tm,tn).

B. Workflow Execution Cost

The cost of running a workflow in a cloud is measured
by the sum of the total time, during which VMs are
running including idle and overhead time, multiplied by

20%

40%

60%

80%

Timet0 t1 t2 t3 t4t0 t1 t2 t3 t4

VM1

(60%)

VM2 (20%)

VM3

(40%)

Server

Capacity

Time

Server

Capacity

100%

Figure 1. Reserved requests on a single cloud node from time point t0
to t4.

TABLE I.
NOTATIONS USED IN THE ANALYTICAL COST MODELS.

Parameters Definitions
Gwf = (Vwf , Ewf) the computation workflow
N the number of modules in the workflow
ui the i-th computing module
ei,j the dependency edge from moduleui to uj

wij the data size transferred over dependency edgeei,j
zui

the aggregated input data size of moduleui

cui
(·) the computational complexity of moduleui

sti the start time of moduleui

eti the end time of moduleui

Gcn = (Vcn, Ecn) the cloud network
K the total number of nodes in the cloud
vj the j-th computer node
vs the source node
vd the destination node
pvj

the total computing power of nodevj
pV M
vj,t1,tn

the maximal percentage of computing power of VM

on nodevj from t1 to tn
Li,j the network link between nodesvi andvj
bvi,vj,t1,tn the bandwidth of linkLi,j from t1 to tn

dvi,vj
the minimum link delay of linkLi,j

tstart the time spent on setting up a virtual machine
for the workflow running environment on a node

tshut the time spent on shutting down a virtual machine
tvj (ui) the execution time of moduleui

running on nodevj
KG the total number of nodes that have been allocated

for the workflow
VMvj ,k the k-th VM on thej-th node
Mvj

the total number of VMs on thej-th node
pV Mvj,k

the computing power ofV Mvj,k

the corresponding VM’s capacity. The time spent on
deploying VM on a particular nodevj consists of the
following components:

1) The VM startup time for selecting a virtual node and
transferring a virtual image as well as the boot-up
time. It is assumed to be a fixed value oftstart.

2) The running time for every assigned module on the
corresponding VM. Suppose that a setU of mod-
ules are assigned onVMvj ,k, and start to run from
time ts and end at timete in a sequential manner.
The running time for these modules is computed as∑

ui∈U zui
·cui

(·)

pV Mvj,k

.

3) The idle time between the execution time of any
two modules. When two modules run on the same
VM, there could be some idle time after one module
is completed and before the next module starts,
calculated asIdle(VMvj ,k) =

∑
ui∈U (sti − eti−1).

4) The VM shutdown time, which is also assumed to a
constant oftshut.

Hence, the total resource cost for workflowGwf is:

TC(Gwf) =
∑N

i=1 zui
· cui

(·)

+
∑KG

j=1

∑Mvj

k=1 pVMvj,k
· (tstart + Idle(VMvj ,k) + tshut),

(1)
whereN is the total number of modules in a workflow,KG

denotes the total number of nodes that have been allocated
for the workflow, andMvj denotes the total number of
VMs that have been set up on nodevj .

The Utilization Rate (UR) is defined as:

UR =

∑N

i=1 zui
· cui

(·)

TC(Gwf)
, (2)

which measures the efficiency of the cloud resource uti-
lization excluding the VM overhead. Obviously, the cloud
provider always desires to maximize this ratio, i.e. reduce
the cost to improve the resource utilization rate, which
leads to a higher system throughput. For convenience, we
provide a summary of the notations used in the cost models
in Table I.

Minimum End-to-end Delay (MED) is an important
performance requirement in time-critical applications es-
pecially for interactive operations. Our mapping objective
is to select an appropriate set of virtual nodes to set up
VM instances for module execution to achieve MED. The
utilization rate can be improved by cutting down the VM
startup, shutdown and idle time. Our approach chooses
the mapping scheme that results in a higher UR under
the same End-to-End Delay (EED) constraint. Once a
mapping schedule is determined, EED is calculated as the
total time incurred on the critical path (CP), i.e. the longest
execution path from the source module to the destination
module.

IV. PROBLEM FORMULATION

A scheduleS with the maximum resource utilization
rate may be obtained by simply mapping all the modules
onto one node. However, such a scheduleS usually has a
much longer EED than the optimal one.

We first consider a bi-objective scheduling problem to
minimize the EED and maximize the utilization rate (or
to minimize the total overhead). These two objectives are
conflictive and cannot be achieved at the same time, as
stated in Theorem 1.

Theorem 1:The bi-objective problem of minimizing
the EED and maximizing the utilization rate is non-
approximable within a constant factor.

Proof: We consider a simple instance of the problem
that involves only three modules,u1, u2 andu3, and two
computing nodes,v1 and v2, whose computing powers
have a relationshippv1 = kpv2 . We assume a constant VM
startup timeSA and shutdown timeSU . The computa-
tional complexity of modulesu1 andu2 has a relationship
cu1(·) = kcu2(·), and they provide two input datasets
to u3. The link bandwidth between these two nodes is
a constantbv1,v2,t = Bv1,v2 without any other transfer
task scheduled. The data size transferred fromu2 to u3

is represented byz12 = mBv1,v2 . Assume thatzu1 = zu2

and the data transfer time is small enough to be ignored
compared with the module running time. Note that data
transfer in cloud environments is fast and such cost is
typically not included in the user bill. There exist two
feasible solutions S1 and S2:

(i) S1 is optimal for EED: The modulesu1 and u3

are scheduled on nodev1, and moduleu2 is scheduled
on nodev2. Two independent virtual nodes can start up
simultaneously. The EED of S1 is calculated in Eq. 3
where cu1(·) = kcu2(·) and pv1 = kpv2 . As u1 and u2

are independent, they can run in parallel on two different
virtual nodes, and thus only the latest running time needs
to be counted for the EED. The efficiency resource (ERC),
which is the useful cost for running the workflow (i.e. user
payload), is computed in Eq. 4 . The utilization rate of S1
is calculated in Eq. 5.

EED(S1) = SA+
cu1(·) · zu1

pv1
+

z12

bv1,v2
+
cu3(·) · zu3

pv1
+SU.

(3)

ERC = (k + 1)cu2(·) · zu2 + z12 + cu3(·) · zu3 . (4)

UR(S1) =
ERC

ERC + (k + 1)(SA+ SU)pv2
. (5)

(ii) S2 is optimal for the utilization rate: All the modules
should be mapped tov1, which is more powerful, to
achieve a better EED with maximized utilization rate. To
calculate the EED, the running time ofu1 andu2 needs
to be computed first. In the beginning, two modules need
to share the computing power ofv1 until u2 is finished.
The running time foru2 is

2cu2(·)·zu2

pv1
=

2cu1(·)·zu1

kpv1

when ui is still in execution. Whenu2 releases the
node, the running time for the remaining portion ofu1

is
cu1(·)∗zu1−

cu1(·)∗zu1
k

pv1
. Thus the EED(S2), ERC’ and

UR(S2) can be calculated as follows:

EED(S2) = SA+
cu1(·) · zu1

pv1
+

z12

bv1,v2
+
cu3(·) · zu3

pv1
+SU.

(6)

ERC′ = (k + 1)cu2(·) · zu2 + z12 + cu3(·) · zu3 = ERC.

(7)

UR(S2) =
ERC

ERC + (SA+ SU) · pv1

=
ERC

ERC + k(SA+ SU) · pv2
> UR(S1).

(8)

Since the transfer time is much faster than the running
time, S1 has a smaller EED and also a smaller utilization
rate, which contradicts our assumption on its optimality.
Therefore, it is impossible to optimize both objectives at
the same time. Thus, we attempt to maximize the utiliza-
tion rate within the constraint of the largest acceptable
EED.

We consider the following delay-constrained utilization
maximization problem for workflow mapping:

Definition 1: Given a DAG-structured computing work-
flow Gwf = (Vwf , Ewf), and an arbitrary computer net-
work in a cloud environmentGcn = (Vcn, Ecn) with time-
dependent link bandwidth and node computing power, we
wish to find a workflow mapping schedule such that the
utilization rate is maximized within the largest acceptable
end-to-end delay constraint, i.e. the execution time bound
(ETB):

max
all possible mappings

(URGcn
(Gwf)), such thatEED ≤ ETB.

(9)
Here,URGcn

(Gwf) is the product of the utilization rates
of all the resources that are assigned to either run a module
or transfer data as shown in Eq. 2. Apparently, a smaller
number of resources yield a higher combined UR.

V. A LGORITHM DESIGN

We propose a two-step heuristic workflow mapping ap-
proach, referred to as High-throughput Workflow schedul-
ing Algorithm with Execution time bound (HiWAE). In the
first step, modules are divided into different layers through
topological sorting, which determines the module mapping
order starting from the first layer. Modules are assigned
with different priority values based on a combined con-
sideration of their complexities and whether or not they
are on the critical path (CP). Each module is mapped to
the node that results in the lowest partial EED from the
starting module to the current one. This module mapping
process is repeated until the difference in EED between
two contiguous rounds falls below a certain threshold.
The second step improves the resource utilization rate by
cutting down the VM’s startup, shutdown, and idle time.
Strategies used for this purpose include module grouping
on the same VM to save the startup/shutdown time and
resource release to save the idle time. The pseudocode of
HiWAE is provided in Alg. 1.

Algorithm 1 HiWAE(Gwf , Gcn, ts, ETB)
Input: workflow task graphGwf , cloud network graphGcn, workflow’s
earliest start timets, the execution time bound ETB
Output: a task scheduling scheme with the minimum resource cost
within the given execution time bound
1: EEDOrientedForwardMapping(Gwf , Gcn, ts);
2: DelayConstraintedBackwardMapping(Gwf , Gcn,Mtm, ts, ETB).

A. Step 1: Minimized End-to-End Delay (MED)

1) Construct a computing environmentGcn
∗ with ho-

mogenous computing nodes and communication links
to calculate the initial Critical Path (CP). Since
our cloud environment supports in-advance resource
reservations in addition to on-demand requests, the
available resource capacity graph is time dependent
and a set of time stamps are used to represent and
track the periods when resources remain unchanged.

2) Call EEDOrientedForwardMapping() function in
Alg. 2 to map all modules to underlying cloud nodes.

Data Center

Layer 1 Layer 2 Layer l-1 Layer l

u1

u3

u2

u4 ul

ut

Layer 3

...

...

uN-1

uN

Recursive Mapping order Module-Node MappingDependency Edge

...

...

Figure 2. Layer-ordered prioritized modules mapped to the underlying
cloud.

We first compute the CP by employing the well-
known polynomial-time Longest Path (LP) algorithm,
namely FindCriticalPath() , and then run the pri-
oritized module mapping algorithmPModulesMap-
ping() to map the workflow to the network graph
until the convergence of EED is reached, as shown
in Fig. 2.

Algorithm 2 EEDOrientedForwardMapping(Gwf , Gcn,

ts)
Input: workflow task graphGwf , cloud network graphGcn, workflow’s
earliest start timets
Output: the temporary mapping scheme with the minimum end-to-end
delay (MED)
1: i = 1;
2: Gwf

∗ = mapped workflow based onGcn
∗;

3: CPi=FindCriticalPath (Gwf
∗);

4: call MEDi = PModulesMapping(Gwf , Gcn, ts);
5: updateGwf

∗;
6: while |MEDi −MEDi−1| ≥ Threshold do
7: CPi=FindCriticalPath (Gwf

∗);
8: call MEDi =PModulesMapping(Gwf , Gcn, ts);
9: updateGwf

∗;
10: i++;
11: end while
12: returnMEDi.

The pseudocode ofPModulesMapping() algorithm is
provided in Alg. 3. This algorithm first conducts topo-
logical sorting to sort modules into different layers. Each
module is assigned a priority value based on its computing
and communication requirements. The module on the CP
is given the highest priority value within the same layer.
Starting from the first layer, each module is mapped onto
an appropriate node with the lowest partial execution
time from the starting module. A backtracking strategy
is adopted to adjust the mapping of the preceding mod-
ules (i.e. pre-modules) of each newly mapped module in
order to further reduce its partial EED. The remapping

of any pre-module may also trigger the remapping of
its succeeding modules (i.e. suc-modules) if necessary.
Such back-and-forth remapping is only limited to one
layer, i.e. confined within the affected area in order to
control the algorithm’s complexity. The shaded modules
that comprise of the CP are given the highest priority in
their corresponding layers. In Fig. 2, the forward order
to map those modules followsu1, u3, u2, u4, ut, ...,
uN−1, uN , as marked by the dotted arrows. A new CP is
computed after each round of module mapping and such
mapping is repeated until the improvement of EED over
the previous round is below a certain threshold.

The complexity of this iterative module mapping algo-
rithm isO(k · l ·N · |Ecn|), wherel is the number of layers
in the sorted task graph,N is the number of modules in
the task graph,Ecn is the number of links in the cloud
network graph, andk is the number of iterations where
the obtainedEED meets a certain requirement.

Algorithm 3 PModulesMapping(Gwf, Gcn, ts)

Input: workflow task graphGwf , cloud network graphGcn, workflow’s
earliest start timets
Output: the temporary mapping scheme with the best EED namely
MED
1: for all uj ∈ CP do
2: setuj .flag = 1;
3: end for
4: conduct topological sorting and assign the priority value to each

module;
5: dMinMED = ∞;
6: for all ui ∈ SortedArraydo
7: for all vj ∈ Node SetVcn do
8: calculate the start running time forui run onvj ;
9: call GetPartialMED() to calculate the partial EED forui

mapped onvj ;
10: if EED in this round is smaller than previous roundthen
11: update mapping result for current module;
12: end if
13: end for
14: end for

The above mapping procedure is illustrated in Fig. 2,
where the upper part represents a DAG-structured work-
flow with shaded modules along the CP, and the lower
part represents a cloud environment. After the topological
sorting, u1 falls in layer 1;u2, u3 and u4 fall in layer
2. The modules in layer 1 are mapped ontovs first, then
the modules in layer 2, and so on. For example,ut has
its pre-modules asu3 and u4, which are mapped onto
v3 and v2, respectively. The mapping strategy that leads
to the lowest partial EED is chosen for that module. We
assume that the inter-module communication cost within
the same node is negligible as the data transfer within the
same memory is typically much faster than that across a
network. Since the resource capacity is time dependent
in a cloud environment, instead of calculating one partial
EED for each possible mapping, we calculateK (i.e. the
number of time slots for one cloud node) possible partial
EEDs.

After we map the downstream layer, we adjust its up-
stream layer’s modules depending on its current mapping
result. For example, in the above case,ut is mapped tovt.
We need to adjust its pre-modulesu3 andu4. During the

15%

30%

20%

100%

VM1

(medium)
50%

VM2

(large)

Server

Capacity

90%

70%

0 vs1 t1 ve1 STi t2 vs2 t4 ve2 Time

VM3

VM5

VM4

Figure 3. Map moduleui with start running timeSTi on a cloud node
with three possible VMs instances in forward mapping.

adjustment process, we also need to calculate the partial
EED. Instead of calculating the EED from the source
module to the adjusted module, we calculate the partial
EED from the source module to its latest finished suc-
module.

This module mapping process is essentially a dynamic
programming process. Let us defineuj ∈ pre(ui) as the
set of pre-modules of our current mapping moduleui, and
MN(uj) as uj ’s mapping node. We have the following
recursive Eq. 10 leading to the minimalEED(ui, vk) for
the forward mapping.

Similarly, we defineul ∈ suc(ui) as the set ofui’s suc-
modules. We also define a recursive equation to update
EED(ui) as in Eq. 11 for the backward mapping.

Fig. 3 illustrates how the partial EED is calculated for a
module to be mapped on a cloud node.VM1 andVM2 are
virtual machines that have been deployed to run some pre-
modules. We can calculate the execution start time (STi)
for moduleui, and then find out the time slot whereSTi

is located. We check all the possible VM strategies, and
select the one with the lowest partial EED. In this example,
there are three possible VMs that can be allocated forui,
namely,VM3, VM4 andVM5. We calculate the execution
time of ui on VM3 to obtain a partial EED, then check if
the execution time is shorter than the life time ofVM3. If
not, we calculate the execution time onVM4; otherwise,
we calculate the execution time onVM5. We compare
the partial EED on each VM, and select the one with the
lowest partial EED.

B. Step 2: Reduce VM Overhead

In the second step of this algorithm, we want to reduce
the VM overhead for the workflow while still meeting the
user-specified execution time bound (ETB). The overheads
in a cloud include setting up, shutting down and releasing
a VM as well as the VM’s idle time. The goal of this
step is to reduce unnecessary overheads and improve the
resource utilization for higher system throughput.

We provide below a brief description ofDelayCon-
straintedBackwardMapping(), which is presented in

EED(ui) = min
vk∈Vcn

(max
uj∈pre(ui)

(EED(uj ,MN(uj)) +
wij

bj,k
) +

zui
· cui

(·)

pk
) (10)

EED(ui) = min
vk∈Vcn

(max
uj∈pre(ui)

(EED(uj ,MN(uj))+
wij

bj,k
)+

zui
· C(·)

pk
+ max

ul∈suc(ui)
(
wkMN(ul)

bk,MN(ul)
+

zul
· cui

(·)

pMN(ul)
)) (11)

Algorithm 4 DelayConstraintedBackwardMapping(Gwf,

Gcn,Mtm, ts, ETB)
Input: workflow task graphGwf , cloud network graphGcn, the
mapping result from step 1, earliest start timets, execution time bound
ETB.
Output: mapping result with the lowest cost UR within
ETB.
1: Calculate the maximal acceptable running time for each module i as

MARTi;
2: SortedArray = topological and priority sort;
3: for all ui ∈ SortedArraydo
4: SET findReuse = false;
5: for all vj ∈ Node SetVcn do
6: if vj has allocated VMthen
7: call ReuseVM() to see whether we can reuse a VM onvj

;
8: if vj has reusable VMthen
9: update mapping result;

10: break;
11: end if
12: end if
13: call AllocateNewVM() to allocate a new VM onvj ;
14: end for
15: end for

Alg. 4.
1) Combine the user-specified execution time bound

(ETB) with the MED calculated from Step 1 to obtain
the initial maximal acceptable running time (MART) for
each module. The running time is calculated asMARTi =
RTi ·

ETB
MED

.
2) Perform topological sorting in a reverse direction

starting from the destination module and assign the cor-
responding priority value for each module similar to Step
1.

3) For each moduleui from the last module to the first
module in the reverse topological sorting list, we compare
the mapping result for each possible mapping node and
select the node and its corresponding VM that incurs the
lowest VM overhead as the final mapping node/VM for
this module. There are two cases to consider:
i) If the mapping node has some allocated VMs, we then

call ReuseVM() method to check whether or not
we can reuse one of these VMs on that node. Two
conditions must be satisfied when we reuse a module:
a) The available VM resource should be sufficient to
run the module. b) Any possible idle time should be
less than the time to shut down a VM and start up
a new one. If both conditions are satisfied and the
partial EED to this module is less than previously
found one, we update the mapping information.

ii) If the mapping node has no VMs or those VMs can
not be reused, we callAllocateNewVM() to allocate
a new VM for this module. TheAllocateNewVM()

15%

30%

20%

100%

Server

Capacity

80%

70%

0 t1 t2 ETi t3 t4 Time

VM3

VM2

VM1

Figure 4. Three different VMs to execute moduleui with end running
time of ETi in backward mapping.

is similar togetPartialEED(). We create a VM with
the maximal allocable resource. Taking Fig. 4 as an
example, we can calculate the end time of the module
as ETi. We have 3 different strategies to deploy a
VM as VM1, VM2 or VM3. Let vex be the VM’s
end time andvsx be its start time. We calculate the
running time for that module to be mapped on each
VM as

zui
·cui

(·)

pV M
vj,vsx,vex

. The allocable resource cost on a

VM is pV M
vj ,vsx,vex

· (vex − vsx). We then compare
the running time with the maximal running time of
MARTi. If the running time is less thanMARTi,
this VM is acceptable and may be created. For all
acceptable VMs, we compare their allocable amount
of resources, and select the VM with the maximum
amount of allocable resource. In this example, we
would selectVM1 which has the largest area.

4) Repeat Step 3) until all modules from this workflow
have been mapped.

VI. PERFORMANCEEVALUATION

We implement the proposed HiWAE algorithm in C++
on a Windows 7 desktop PC equipped with Intel Core
i7 CPU of 2.66 GHz and 8.0 GB memory. In the ex-
periments, we compare our algorithm’s end-to-end delay
and resource utilization rate with Min-min and Max-min
heuristics adapted for workflows [24]. The threshold can
be set dynamically according to different rules, e.g. the
difference is less than 2% ofMED1 or the decreasing
speed approaches zero, etc. A brief description of the two
heuristics are as follows:

TABLE II.
WORKFLOW CASES USED IN THE CLOUD MAPPING EXPERIMENTS.

Index of Test Case 1 2 3 4 5 6 7
of Modules 10 20 40 60 80 100 200
of Dependency Edges 21 36 88 120 156 215 420

Testcase

EED(hr)

1 2 3 4 5 6 7
0.5

1.0

1.5

2.0

2.5

3.0

3.5

HiWAE

Min-min

Max-min

ETB

Figure 5. Comparison of EED among different scheduling algorithms.

• Min-min heuristic: When a module is ready to
execute (i.e. it has received all input data from all of
its preceding modules), the resource resulting in the
minimum partial EED can be determined (assuming
that a new VM with the maximal allocable resource
is allocated for each module). After calculating the
minimum partial EED values for all such ready-to-
execute modules, the module with the least minimum
partial EED value is selected for immediate schedul-
ing. This is done iteratively until all the modules have
been mapped. The intuition behind this heuristic is
that each iterative step incurs the least EED increase
with the hope that the final EED is minimized.

• Max-min heuristic: The first step of this heuristic
is exactly the same as the Min-min heuristic. In
the second step, the module with the maximum
minimum partial EED value among all the ready-to-
execute modules is selected for immediate schedul-
ing. The intuition behind this heuristic is that by
giving preference to the longer modules (in terms
of execution time), there is a hope that the shorter
modules may be overlapped with the longer ones on
other resources [24].

We run these three mapping algorithms on seven ran-
domly generated workflows in a cloud network consisting

Testcase

UR

1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1.0

HiWAE

Min-min
Max-min

Figure 6. Comparison of the utilization rate among different scheduling
algorithms.

of 100 nodes with CPU of 2.0 GHz. In this paper, we con-
sider computing-intensive workflows and we assume that
the data transfer time is negligible due to high bandwidth
among servers. We develop a workflow generator class
to generate our test workflows with varying parameters
within a suitably predefined range of values according to
some previous works [26], [27]: (i) the complexity of each
task; (ii) the number of inter-task communications and
the data transfer size between two tasks. The workflow
mapping results in terms of workflow sizes, utilization rate
and EED are presented in Table II and plotted in Figs. 5
and 6 respectively. These results demonstrate that the
proposed HiWAE algorithm achieves a superior mapping
performance over Min-min and Max-min in terms of
EED and utilization rate. Particularly, we observe that
HiWAE consistently achieves lower EED than the other
two algorithms in comparison. This performance benefit
is brought by our VM reuse strategy that minimizes the
overhead including VM startup/shutdown and idle time.
Moreover, as the workflow size increases, the number of
modules in the same layer would also increase. Therefore,
even a random selection would have a better chance to
reuse a VM. In addition to the improvement in the VM
overhead, the iterative step to further improve EED of the
entire workflow also leads to lowerEED than Min-min
and Max-min because they only consider minimum partial
EED for each module.

As discussed in [25], the percentage of modules as-
signed to their first choices is likely to be higher for Min-
min than for Max-min, which results in a smaller EED.
Max-min attempts to minimize the penalties incurred by
running the modules with a longer execution time. For
a workflow consisting of a module with a significantly
longer execution time than the others, mapping this time-
consuming module to the best machine would allow
concurrent execution with other shorter modules. In this
case, Max-min is often preferred over Min-min as in the
latter case, the shorter modules get to execute first and the

longest modules get executed with many idle nodes for
lower utilization rate. Thus, Max-min results in a more
balanced workload across the nodes and a better EED.

Min-min and Max-min achieve similar utilization rates
because they are more likely to choose the same resource
for each module (as stated in the first step of Min-min and
Max-min heuristics). Our algorithm achieves about 24% -
30% higher resource utilization than Min-min and Max-
min on average because of our VM reuse strategy that
minimizes the overhead.

These experimental results show that the proposed Hi-
WAE algorithm exhibits a better control over the execution
time of a workflow compared to Min-min and Max-
min heuristics, and yields a significantly higher resource
utilization rate by reducing the VM overhead during the
workflow execution.

VII. C ONCLUSION AND FUTURE WORK

Many big data sciences are starting to use clouds as
the major computing platform. We formulated a workflow
scheduling problem in cloud environments. In general, it
is of the cloud service provider’s interest to improve the
system throughout to satisfy as many user requests as
possible using the same hardware resources. Hence, the
resource utilization rate is a very important performance
metric, which, however, has not been sufficiently ad-
dressed by many existing workflow scheduling algorithms
developed for clouds. Also, from the user’s perspective,
one primary goal is to minimize the execution time of
each individual workflow as stated in certain Quality of
Service requirement.

Our mapping algorithm aims to achieve the dual goals
of end-to-end delay performance and low overhead using
a two-step approach. In the first step, modules are topo-
logically sorted and mapped layer-by-layer to identify the
best mapping strategy with the minimal execution time. If
the final finish time is earlier than the latest finish time
specified by the user, the extra allowed time delay is used
to relax the mapping of modules to reduce the cost on VM
setup and shutdown as well as the idle time. A backward
module remapping procedure from the last layer toward
the first layer is conducted to cut down the overhead.
One strategy is to maximize the allocable volume of a
VM to open the window for more modules to reuse it.
After this backward mapping, any unused VM volume in
terms of extra time is not requested. The simulation re-
sults demonstrated that our algorithm significantly reduces
the VM cost compared with other representative cloud
scheduling algorithms with a comparable or lower total
execution time. It is of our future interest to implement and
test this scheduling algorithm in local cloud testbeds and
production cloud environments to support real-life large-
scale scientific workflows.

ACKNOWLEDGEMENT

We would like to acknowledge Ms. Yang Zhao for her
contributions to the preliminary design and implementa-
tion of the workflow scheduling algorithm proposed in the
conference paper [1].

REFERENCES

[1] M. Zhu, Q. Wu and Y. Zhao. A Cost-effective Scheduling
Algorithm for Scientific Workflows in Clouds. InProc. of
the 31st IEEE International Performance Computing and
COmmunication Conference (IPCCC), pp. 256-265, 2012.

[2] A. Bala and I. Chana. A Survey of Various Workflow
Scheduling Algorithms in Cloud Environment. InProc. of
the 2nd National Conference on Information and Communi-
cation Technology, pp. 26-30, 2011.

[3] S. Zhang, X. Chen, and X. Huo. Cloud Computing Research
and Development Trend. InProc. of the 2nd International
Conference on Future Networks(ICFN’10), pp. 93-97, 2010.

[4] J. Yu, R. Buyya, and C.K. Tham. Cost-based Scheduling
of Scientific Workflow Applications on Utility Grids. In
Proc. of the 1st IEEE International Conference on e-Science
and Grid Computing(e-Science 2005), Dec. 5-8, 2005,
Melbourne, Australia.

[5] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B.
Berriman, and J. Goo. On the Use of Cloud Computing for
Scientific Workflows. InProc. of the IEEE 4th International
Conference on eScience, pp. 640-645, 2008.

[6] R. J. Figueiredo, P. A. Dinda, and J. A.B. Fortes.A Case
for Grid Computing On Virtual Machines. In Proc. of
Distributed Computing Systems, pp. 550-559, 2003.

[7] B. Sotomayor, K. Keahey, and I. Foster. Combining batch
execution and leasing using virtual machines. InProc. of
the 17th International Symposium on High Performance
Distributed Computing(HPDC’08), Boston, Massachusetts,
USA, June 23-27, 2008.

[8] J. Vockler, G. Juve, E. Deelman, M. Rynge, and B. Berriman.
Experiences using cloud computing for a scientific workflow
application. InProc. of the 2nd International Workshop on
Scientific Cloud Computing(ScienceCloud’11), pp. 15-24,
2011.

[9] B. Agarwalla, N. Ahmed, D. Hilley, and U. Ramachandran.
Streamline: a scheduling heuristic for streaming application
on the grid. InProc. of the 13th Multimedia Computing and
Networking Conf., San Jose, CA, 2006.

[10] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
So-man, L. Youseff, and D. Zagorodnov.The Eucalyptus
open-source cloud-computing system. InProc. of IEEE
International Symposium on Cluster Computing and the Grid
(CCGrid’09), 2009.

[11] Open Nebular, http://www.opennebula.org.
[12] Amazon EC2, http://aws.amazon.com/ec2/.
[13] Google App Engine, https://developers.google.com/app- en-

gine/.
[14] Nimbus, http://nimbusproject.org..
[15] E. Deelman, G. Singh, M. H. Su, J. blythe, and Y. e.a.

Gil. Pegasus: A framework for mapping complex scientific
workflows onto distributed systems.Scientific Programming
Journal, vol. 13, pp. 219-237, July 2005.

[16] Q. Wu and Y. Gu. Supporting distributed application work-
flows in heterogeneous computing environments. InProc. of
the 14th IEEE Int. Conf. on Parallel and Distributed Systems,
Melbourne, Australia, pp. 3-10, 2008.

[17] A. Sekhar, B. Manoj, and C. Murthy. A state-space search
approach for optimizing reliability and cost of execution in
distributed sensor networks. InProc. of Int. Workshop on
Distributed Computing, pp. 63-74, 2005.

[18] S. Topcuoglu and M. Wu. Task scheduling algorithms
for heterogeneous processors. InProc. of the 8th IEEE
Heterogeneous Computing Workshop(HCW’99), pp. 3-14,
1999.

[19] Q. Wu, M. Zhu, X. Lu, P. Brown, Y. Lin, Y. Gu, F. Cao,
and M. Reuter. Automation and management of scientific
workflows in distributed network environments. InProc. of
the 6th Int. Workshop on Sys. Man. Tech., pp. 1-8, 2010.

[20] Condor,http://www.cs.wisc.edu/condor.

[21] DagMan,http://www.cs.wisc.edu/condor/dagman.
[22] Globus,http://www.globus.org.
[23] T. Ma and R. Buyya. Critical-path and priority based

algorithms for scheduling workflows with parameter sweep
tasks on global grids. InProc. of the 17th Int. Symp. on
Computer Architecture on High Performance Computing, pp.
251-258, 2005.

[24] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-
Crummey, B. Liu, and L. Johnsson. Scheduling Strategies
for Mapping Application WorMows onto the Grid. InProc.
of the IEEE International Symposium on High Performance
Distributed Computing(HPDC), pp. 125-134, 2005.

[25] T. D. Braun, H. J. Siegel, and N. Beck. A comparison of
eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems. In
Journal of Parallel and Distributed computing, 61(6): 810-
837, 2011.

[26] Q. Wu, M. Zhu, Y. Gu, P. Brown, X. Lu, W. Lin, and
Y. Liu. A Distributed Workflow Management System with
Case Study of Real-life Scientific Applications on Grids.In
Journal of Grid Computing, vol. 10(3), pp. 367-393, 2012.

[27] Q. Wu, Y. Gu, Y. Lin, and N. Ra. Latency Modeling
and Minimization for Large-scale ScientificWorkflows in
Distributed Network Environments. Inthe 44th Annual Sim-
ulation Symposium (ANSS 2011), 2011, pp. 205-212.

!

Michelle M. Zhu received the Ph.D. degree
in computer science from Louisiana State Uni-
versity in 2005. She spent two years in the
Computer Science and Mathematics Division at
Oak Ridge National Laboratory for her Ph.D.
dissertation from 2003 to 2005. She is currently
an associate professor in the Computer Sci-
ence Department at Southern Illinois Univer-
sity, Carbondale. Her research interests include
distributed and high-performance computing,
remote visualization, bioinformatics, and sensor

networks.

Fei Cao received the B.S. degree in soft-
ware engineering from Zhejiang University,
P.R. China, in 2007, the M.S. degree in com-
puter science from California State University,
Fullerton, in 2009. She is currently a Ph.D.
student in the Department of Computer Science
at Southern Illinois University, Carbondale. Her
research interests include distributed computing
and high-performance computing.

Chase Q. Wu received the B.S. degree in
remote sensing from Zhejiang University, P.R.
China, in 1995, the M.S. degree in geomatics
from Purdue University in 2000, and the Ph.D.
degree in computer science from Louisiana
State University in 2003. He was a research
fellow in the Computer Science and Mathemat-
ics Division at Oak Ridge National Laboratory
during 2003-2006. He is currently an Associate
Professor with the Department of Computer
Science at University of Memphis. His research

interests include parallel and distributed computing, computer networks,
and cyber security.

