View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by OpenSIUC

High-throughput Scientific Workflow Scheduling
under Deadline Constraint in Clouds

Michelle M. Zhu!, Fei Cad, Chase Q. W&
IDept. of Computer Science, Southern lllinois Universitgri@ndale, IL 62901
2Dept. of Computer Science, University of Memphis, Mempfii, 38152
Email: {mzhu, fcag @cs.siu.edu; chase.wu@memphis.edu

Abstract— Cloud computing is a paradigm shift in service to run some particular software remotely without the
delivery that promises a leap in efficiency and flexibility need of installing it on their local machines. Salesforce’s
in using computing resources. As cloud infrastructures are Database.com is one typical example that provides many
widely deployed around the globe, many data- and compute- o . -

intensive scientific workflows have been moved from tra- application programming mterfapgs (APIs) for users to
ditional high_performance Computing p|atf0rms and grids access the database as though itis a |Oca| database. Con-
to clouds. With the rapidly increasing number of cloud sidering the wide variety of scientific computing modules
users in various science domains, it has become a critical and their disparate performance and runtime requirements,
task for the cloud service provider to perform efficient job IAAS is generally considered as the best suited cloud

scheduling while still guaranteeing the workflow completio . S .
time as specified in the Service Level Agreement (SLA). environment for scientific workflows. A typical 1AAS

Based on practical models for cloud utilization, we formulae cloud employs a scheduler to determine the type and
a delay-constrained workflow optimization problem to max- location of VM instances, and a pricing model to decide
imize resource utilization for high system throughput and the cost charged to the user.
propose a two-step scheduling algorithm to minimize the giantific workflows can be as simple as a single module
cloud overhead under a user-specified execution time bound. . .
Extensive simulation results illustrate that the proposedalgo- or _a.s complex ,as a Dlrectgd Acyclic Gr.ap.h (DAG). TO
rithm achieves lower computing overhead or higher resource facilitate execution parallelism and maximize execution
utilization than existing methods under the execution time efficiency, workflow modules need to be dispatched or
bound, and also significantly reduces the total workflow mapped to a set of strategically selected VMs. There exists
execution time by strategically selecting appropriate maping 5 plethora of research on the mapping and scheduling
nodes for prioritized modules. .
of workflow systems in clouds. However, most of these
Index Terms—scientific workflow, workflow scheduling, existing efforts are based on static resource models. In
cloud computing this paper, we consider time-varying resource availabilit
of both computer nodes and network links upon the arrival
|. INTRODUCTION of a user request. We believe that this model better reflects
r]tge use dynamics of a real-life cloud environment where

ANY/modern e-sciences produce colossal amou : o
any user can make advance reservations or utilize VM
of data that must be processed and analyzerzg

by domain-specific workflows of interdependent com- sources during the scheduling process.

uting modules for scientific discovery and inventio In our scheduling problem, we consider two objectives
buting y Yrom the perspective of a cloud service provider: i) satisfy

Such scientific workflows are traditionally executed o o : o
hiah-performance computing olatforms and com utationﬂ]e latest completion time of the entire workflow, which is
gn-p puting p P fapically specified as a Quality of Service (QoS) require-

grids. With the advent of cloud computing, researche ent: ii) maximize the system throughput to accommo-

have recognized the importance and benefit of shiftindgd,[e as many user requests as possible during a certain

SC'.em'f'C workflo_ws to .ClOUd e nvironments, as alread%{me period. The system throughput is reflected by the
evidenced in various science fields.

Cloud computing offers three generic tvpes of clo resource utilization rate, which is defined as the useful
ou puting 9 IC ype u omputing cost over the total cost including the overhead
services, namely, Infrastructure-as-a-Service (IAAS

. for starting up and shutting down VMs as well as the idle
Platform-as-a-Service (PAAS), and Software-as-a-Servigy, e Although most cloud service providers charge

(SAAS). IAAS creates virtual machines (VMs) on Jsers by hours regardless of the time spent on comput-

physical node Wit.h full user control, as exe_mplified b)(ng or overhead, the provider always wishes to reduce
Aquons E.SZS instances [12]. PAAS proyldgs an ?)Ennecessary CPU cycles spent on overhead since these
ecution environment for users to run applications wit

wasted resources could be allocated elsewhere to meet

specific system configurations using particular Prograiner users’ requests, especially when the cloud is heavily

ming paradigms such as Java and Python, as exem Lded during the peak time. Resource utilization must be

fied by Google’s App Engine [13]. SAAS enables US€lSonsidered in the design of a scheduling algorithm to avoid

Manuscript received May 8, 2013; revised October 18, 201i8re= early resource sa}turatlon and job reqUESt turndown.
sponding author email: mzhu@cs.siu.edu. The aforementioned cloud scheduling problem has been

https://core.ac.uk/display/60570268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

proven to be NP-complete [9]. We propose a heurignd processes the results [21]. RCP provides a better
tic workflow mapping approach, referred to as Highmapping performance than the default mapping scheme
throughput Workflow scheduling Algorithm with Execu-employed by the Condor Scheduler [19]. However, the
tion time bound (HIWAE), which is a two-step procedureaforementioned algorithms either target static homoge-
In the first step, modules are topologically sorted intneous environments with fully connected networks, or fail
different layers to determine the module mapping ordéo find feasible mapping solutions when the system scales
starting from the first layer. Each module is assigneab, or adopts a simple greedy approach that oftentimes
with a certain priority value based on its computationatads to unsatisfactory performance.
complexity and mapped to the node that yields the lowestSeveral efforts have been devoted to scheduling work-
partial end-to-end delay (EED) as the execution time froftows in cloud environments [5], [6], [7], [8], [4]. In [5],
the starting module to the current one. This mappirigoffa et al. compared the performance and the overhead
process is repeated until a convergence point is reachefirunning a workflow on a local machine, a local cluster,
The main goal of the second step is to improve thend a virtual cluster. Haizea is a lease management archi-
resource utilization rate by minimizing the overhead dkcture [7], which implements leases as VMs, leverages
VM’s startup and shutdown time as well as the idle timehe ability to suspend, migrate, and resume computations,
For example, some modules may share the same VM famd provides the leased resources in a customized ap-
reduced startup/shutdown overhead, and some VMs malication environment. In [8], Vocklert al. discussed
be released early until the next active module arrives the experience of running workflows and evaluating their
save the idle time. A preliminary version of this algorithnperformance as well as the challenges in different cloud
was proposed in [1]. environments. In [6], Figueiredet al. made an effort to
The rest of the paper is organized as follows. Section dreate a grid-like environment from cloud resources to
conducts a survey of workflow mapping algorithms. Seensure a higher level of security and flexible resource
tion Il constructs the models for scientific workflows anaontrol. In [4], Yu et al. proposed a cost-based workflow
cloud environments to compute the workflow executioscheduling algorithm that minimizes execution cost while
cost. Section IV proves that the EED and cost are two comeeting the deadline for completing the tasks.
flicting objectives, and optimizing both at the same time Several job scheduling policies including Greedy (First
is not possible. Section V presents the algorithm detaist) and Round Robin algorithms are used in open-source
and Section VI evaluates the algorithm performance. cloud computing management systems such as Euca-
lyptus [10]. Queuing system, advanced reservation and
Il. RELATED WORKS preemption scheduling are adopted by OpenNebula [11].
Nimbus uses some customizable tools such as PBS and
SGE [14]. The Greedy and Round Robin are heuristics

mapping algorithms in various environments with focu&1at select adaptive physical resources for the VM to

On'l:[:gsvsoglz\llc?\:\?ﬁwead Sipnemf'f:tl)lé rfr:)lr‘ocrl?#iiislﬁal makes adeploy without considering the maximum usage of the
. pping p : P hysical resource. The queuing system, advanced reser-
in heterogeneous network environments has been exten

. . . vation and preemption scheduling also do not consider
sively studied and is well known to be NP-hard [9]. Ther e
exist a number of heuristic algorithms [1], [2], [16], [17], ny balanced overall system utilization. Pegasus Workflow

[9]. [18], [23] in the literature. In [18], the Heterogeneou Manage System is a more advanced workflow scheduling

Earliest Finish Time (HEFT) algorithm tries the mappin algorithm [15], which maps a workflow onto the cloud

of each module onto all the nodes first, and then Choosgsgenerate an executable workflow using a clustering
) . o) approach, where short-duration modules are grouped as a
the best one with the earliest finish timgtreamline [9], PP group

heduling alaorithm originally desianed for str minsingle module to reduce data transfer overhead and the
a scheduling aigo originaly desighed tor strea ﬁl[lmber of VMs created. The rank matching algorithm

data, creates a coarse-grained dataflow graph on ava|Ia|R e[24] features a scheduling strategy that ranks each

grid resources. In [17], an optimal algorithm is proposed tl%odule's possible mapping nodes and selects the one with
determine an optimal static allocation of modules among. |owest cost as the mapping result

a large number of sensors based onralgorithm. The Our work aims to achieve the maximum utilization of

Recursive .Crmcal Path (RCP) algorithm t"?"‘es a dynam'c‘foud resources while guaranteeing the QoS required by
programming-based approach and recursively compute

sa. i
critical path to minimize the EED [16]. This algorithm ismgmdual users. Although many techniques have been

used as the mapping scheme for the Scientific Workfloe\yopos'EOI fo meet these two objectives separately, the

Automation and Management Platform (SWAMP) [19]_research effor.tslln tackling both problems at the same time
. . are still very limited.
Condor is a specialized workload management system
for compute-intensive jobs [20] and it can be used in
grid environments such as Globus grid [22]. The Directed
Acyclic Graph Manager (DAGMan) is a meta-scheduler We construct the analytical cost models for the work-
for Condor jobs that manages dependencies between jflbgs task graph and the underlying cloud computer net-
at a higher level than the Condor Scheduler. DAGMamork graph to facilitate a mathematical formulation of the

submits jobs to Condor in an order represented by a DAd&glay-constrained mapping optimization problem.

We provide a brief description of existing workflow

IIl. ANALYTICAL MODELS

A. Workflow and Cloud Models

We model the workflow of a distributed computing ap
plication as a directed acyclic grah, f = (Vwy, Ews),

[Vwsl = N, where the vertices represent computing mod-

ules, i.e.V,y = {u1,ug,...,un} with w; anduy being

the start and end modules, respectively. The dependenc

between a pair of moduleg;,u;) is represented as a
directed edge; ; with weightw;; being the size of data
transferred from module; to moduleu;. Module u; re-

Server
Capacity

Server
Capacity

VM;

0,
(40%) 100%

80%

VM, (20%)

60%
M, 40%
(60%)

20%

Time

t tob & t Time t & t

Figure 1. Reserved requests on a single cloud node from toire fa
to t4.

ceives a data inpub;; from each of its preceding modules

u; and performs a predefined computing procedure whose

complexity is modeled as a function,, (-) of the total

aggregated input data sizg,. Note that in real scenarios,

the complexity of a module is an abstract quantity, whi

not only depends on the computational complexity of t

procedure itself but also on its implementation detail

TABLE I.
NOTATIONS USED IN THE ANALYTICAL COST MODELS

Parameters Definitions
WGuwf = Vuws, Ewy) the computation workflow
'N the number of modules in the workflow
Cu; the i-th computing module
keij the dependency edge from modulg to u;

Wi the data size transferred over dependency edge

Module u; sends a data outpub,, to each of its suc-

the aggregated input data size of modulge

Zu;
u,

cui(')

the computational complexity of modute;

ceeding modules:;, upon the completion of execution.
In general, a module cannot start its execution until g

115t the start time of module:;

Tet, the end time of module:;

input data required by this module arrives. To generali

FC e = Ven, Ecn) the cloud network

g XK the total number of nodes in the cloud

our model, if an application has multiple starting or endi

X the j-th computer node
T

modules, we can create a virtual starting or ending modute

the source node

s

of complexity zero and connect it to all starting or endin

Vg the destination node

modules without any data transfer along the edges.
We consider a general cloud environment that suppo

both advance VM reservations and on-demand user

quests. Thus, the resource allocation status of the clg

network is time dependent, i.e. the available computir
resources on each node and the bandwidth on each i

work link vary over time. We model the underlying clou

network as a complete network graph,, = (Ven, Ecn),

consisting of a set ofV.,,| = K computing node$/.,, =

{v1,v2,...,vx } as well as a link between every pair o

nodes. Nodev; is featured by a normalized computing

powerp,,; based on its CPU and memory, and the netwo

Do, the total computing power of node;
tg"jfil o the maximal percentage of computing power of VM
r on nodev; from ¢; to t,
€E; ; the network link between nodes andv;
uthi.vj.titn the bandwidth of linkL; ; from ¢, to ¢,
\nd”i~'“7‘ the minimum link delay of linkL; ;
"L tart the time spent on setting up a virtual machine
net- for the workflow running environment on a node
tohut the time spent on shutting down a virtual machin€
tvj (ui) the execution time of module;
] running on nodev;
Ka the total number of nodes that have been allocatdd
for the workflow
VMvj & the k-th VM on the j-th node
Mv]. the total number of VMs on thg-th node
rl@VIVIUi & the computing power of/ M, ;

link L; ; from nodev; to v; is featured by bandwidth,, .,
and minimum link delayd,, ., .

Fig. 1 illustrates an example of thre_e re;ervation_rehe corresponding VM’s capacity. The time spent on
quests made on one cloud node during different timgeploying VM on a particular node; consists of the

slots. For example, request 1 reserves 60% of the nod
capacity fromt, to t¢o; request 2 reserves 20% fromto
t4; request 3 reserves 40% froty to t4,. The maximal
available computing power of this node froty to ¢4 is
Puj to,ta = min(40%, 20%, 80%, 40%). The largest VM
instance that can be allocated op from time ¢; to ¢,,
namelyp, "/ ; . is computed using resourcesmf ;, , -
The execution time of module; on nodev; during time
slot ¢, andt,, is then computed a5, ¢, (u;) Zug e ()

pvj,tl ytn

wherez,, denotes the aggregated complexity-normalized

input data size of moduley;. Similarly, the maximum
link bandwidth alongL,, ., during time slott,,, andt,, is
min(BU'h'Uj st tn) "

B. Workflow Execution Cost
The cost of running a workflow in a cloud is measure

by the sum of the total time, during which VMs are

Rfowing components:

1) The VM startup time for selecting a virtual node and
transferring a virtual image as well as the boot-up
time. It is assumed to be a fixed valuegf, ;.
The running time for every assigned module on the
corresponding VM. Suppose that a détof mod-
ules are assigned oviM,, &, and start to run from
time ¢t and end at time. in a sequential manner.
The running time for these modules is computed as
DU ZugCui ()

PVM,. '
The idle time between the execution time of any
two modules. When two modules run on the same
VM, there could be some idle time after one module
is completed and before the next module starts,
calculated addle(V M., 1) = ZuieU(Sti —eti—1).
The VM shutdown time, which is also assumed to a
constant oftsp,.;.

3)

d4

running including idle and overhead time, multiplied by Hence, the total resource cost for workfld, is:

and the data transfer time is small enough to be ignored

TCGus) =N, 2a, - cu, () compareq W||th (tjhe mpdule running time. gote tr?at dat_a

Ko L) Fdle(V M . transfer in cloud environments is fa}st and such cost is
22520 2ok=1 Py, - (stare + 1dle(V My, 1) + tshut), typically not included in the user bill. There exist two

)] feasible solutions S1 and S2:
whereN is the total number of modules in a workfloi; (i) S1 is optimal for EED: The modules; and us

denotes the total number of nodes that have been allocaigd scheduled on node, and moduleu, is scheduled
for the workflow, andM.,; denotes the total number of oy nodey,. Two independent virtual nodes can start up
VMs that have been set up on node simultaneously. The EED of S1 is calculated in Eq. 3
The Utilization Rate (UR) is defined as: wherec,, (-) = ke, (-) andp,, = kp,,. As u; and us
N are independent, they can run in parallel on two different
UR = M, (2) virtual nodes, and thus only the latest running time needs
TC(Guy) to be counted for the EED. The efficiency resource (ERC),
which measures the efficiency of the cloud resource utihich is the useful cost for running the workflow (i.e. user
lization excluding the VM overhead. Obviously, the clougbayload), is computed in Eq. 4 . The utilization rate of S1
provider always desires to maximize this ratio, i.e. redudg calculated in Eq. 5.
the cost to improve the resource utilization rate, which
leads to a higher system throughput. For convenience, we
provide a summary of the notations used in the cost modgsED(Sl) = SA+ , +bv) + Do +5U.
in Table I. ' o ' ®)
Minimum End-to-end Delay (MED) is an important
performance requirement in time-critical applications es
pecially for interactive operations. Our mapping objeetiv
is to select an appropriate set of virtual nodes to set up
VM instances for module execution to achieve MED. The ERC
utilization rate can be improved by cutting down the VM UR(S1) = g5 T D)(SAT S0y,)
startup, shutdown and idle time. Our approach chooses . . . S
the mapping scheme that results in a higher UR under(") S2 is optimal for the ut|I|_zat|qn rate: All the modules
the same End-to-End Delay (EED) constraint. Once Sgould be mapped ta,, which is more powerful, to
mapping schedule is determined, EED is calculated as t@{éhleve a better EED with maX|m|zed utilization rate. To
total time incurred on the critical path (CP), i.e. the |Os'gecalculate the EED, the running time ef andu; needs

execution path from the source module to the destinatié® P& computed first. In the beginning, two modules need
module. to share the computing power of until us is finished.

The running time forus is 26“2’}')'2“2 = 20“]1;)““1
. . . . v vl
when u; is still in execution. Whenu, releases the
. } ... _hode, the running time for the remaining portion of
A scheduleS with the maximum resource utilization, . ., _‘uO™u
CIROUELS k . Thus the EED(S2), ERC' and

rate may be obtained by simply mapping all the modulé$ oy _
onto one node. However, such a schedsilesually has a YR(S2) can be calculated as follows:
much longer EED than the optimal one.

We first consider a bi-objective scheduling problem t%ED(S2) _ SA+C“1(') w212 Cus() * Zug 1SU

Cuy () " Fuy 212 C“B(') " Rug

ERC = (k + 1)Cu2(') " Zuy + 212+ Cu:s(') " Zug- (4)

IV. PROBLEM FORMULATION

minimize the EED and maximize the utilization rate (or Doy ervl,@;L Doy
to minimize the total overhead). These two objectives are (6)
conflictive and cannot be achieved at the same time, as
stated in Theorem 1 . . L ERC/ = (k + 1)cu2(-) * Zug + 212 + Cus(') *Rug = ERC.

Theorem 1:The bi-objective problem of minimizing @)
the EED and maximizing the utilization rate is non-
approximable within a constant factor. ERC

Proof: We consider a simple instance of the problem UR(S2) = ERC + (SA+ S0)

that involves only three modules;, us andus, and two “Pu (8)
computing nodesyp; and vy, whose computing powers ERC > UR(S1).

have a relationship,, = kp,,. We assume a constant VM ERC + k(SA+ SU) - p,
startup timeSA and shutdown timeSU. The computa- Since the transfer time is much faster than the running
tional complexity of modules, andus has a relationship time, S1 has a smaller EED and also a smaller utilization
cu, () = keu,(v), and they provide two input datasetgate, which contradicts our assumption on its optimality.
to uz. The link bandwidth between these two nodes iEherefore, it is impossible to optimize both objectives at
a constantb,, ,,+ = B, 4, Without any other transfer the same time. Thus, we attempt to maximize the utiliza-
task scheduled. The data size transferred fronto us tion rate within the constraint of the largest acceptable
is represented by;2 = mB,, ,,. Assume that,, = z,, EED. [|

We consider the following delay-constrained utilization
maximization problem for workflow mapping:

Definition 1: Given a DAG-structured computing work-
flow Gy = (Vwy, Ews), and an arbitrary computer net-
work in a cloud environmen®..,, = (V.,,, E.,) with time-
dependent link bandwidth and node computing power, we
wish to find a workflow mapping schedule such that the
utilization rate is maximized within the largest accepéabl

end-to-end delay constraint, i.e. the execution time bound

(ETB):

max
all possible mappings

(9)
Here,URg,, (Gwy) is the product of the utilization rates

of all the resources that are assigned to either run a module

or transfer data as shown in Eq. 2. Apparently, a smaller
number of resources yield a higher combined UR.

V. ALGORITHM DESIGN

(URg,, (Gwy)), such thatEED < ETB.

Layer I-1' Layer |

Layer 2}
1

Layer 3}

Ve

Virtual

Data Center

Machines

L (VMs) J

(Physical)
Machines
_(Servers) |

‘ — Dependency Edge <= Recursive Mapping order

Module-Node Mapping

We propose a two-ste-p heuristic workflow mapping a‘Qi_igure 2. Layer-ordered prioritized modules mapped to theéedying
proach, referred to as High-throughput Workflow schedudtoug.

ing Algorithm with Execution time bound (HIWAE). In the
first step, modules are divided into different layers thitoug

topological sorting, which determines the module mapping
order starting from the first layer. Modules are assigned
with different priority values based on a combined con-
sideration of their complexities and whether or not they
are on the critical path (CP). Each module is mapped to
the node that results in the lowest partial EED from the
starting module to the current one. This module mapping
process is repeated until the difference in EED between

We first compute the CP by employing the well-
known polynomial-time Longest Path (LP) algorithm,
namely FindCriticalPath() , and then run the pri-
oritized module mapping algorithiAModulesMap-
ping() to map the workflow to the network graph
until the convergence of EED is reached, as shown
in Fig. 2.

two contiguous rounds falls below a certain thresholdlgorithm 2 EEDOrientedForwardMappingG., s, Gen,
The second step improves the resource utilization rate ty)
cutting down the VM's startup, shutdown, and idle timeinput: workflow task graptG., s, cloud network grapl .., workflow's
Strategies used for this purpose include module groupif liest start ime, . . .

- tput: the temporary mapping scheme with the minimum end-to-end
on the same VM to save the startup/shutdown time ag@ay (vep)
resource release to save the idle time. The pseudocodeof; = 1:

HIWAE is pl’OVided in Alg 1. : wa* : mapped workflow based o@cy,*;
. CP;=FindCriticalPath (G, *);

: call MED; = PModulesMapping(Gy, s, Gen, ts);
: updateG, f*;

Algorithm 1 HIWAE(Gyf, Gen, ts, ET B)

Input: workflow task graph,, ¢, cloud network grapldz .., workflow’s
earliest start time, the execution time bound ETB
Output: a task scheduling scheme with the minimum resource cosg:

NouhwN

: while |[MED; — MED;_1| > Threshold do

CP;=FindCriticalPath (G, *);
call M ED; =PModulesMapping(G., 5, Gen, ts);

within the given execution time bound 9: updateG.;*;

1: EEDOrientedForwardMappif@., ¢ , Gen, ts); ﬂ ené :mJﬁe

2: DelayConstraintedBackwardM [Geny Mim,ts, ETB). :
elayConstraintedBackwardMappi@,, s , Gen, Mtm, ts,) 12 retumMED,;.

S The pseudocode d?ModulesMapping() algorithm is

A. Step 1: Minimized End-to-End Delay (MED) provided in Alg. 3. This algorithm first conducts topo-
1) Construct a computing environme@t.,,* with ho- logical sorting to sort modules into different layers. Each
mogenous computing nodes and communication linksodule is assigned a priority value based on its computing
to calculate the initial Critical Path (CP). Sinceand communication requirements. The module on the CP
our cloud environment supports in-advance resouréegiven the highest priority value within the same layer.
reservations in addition to on-demand requests, tisarting from the first layer, each module is mapped onto
available resource capacity graph is time dependeart appropriate node with the lowest partial execution
and a set of time stamps are used to represent aimde from the starting module. A backtracking strategy
track the periods when resources remain unchangéxladopted to adjust the mapping of the preceding mod-

2) Call EEDOrientedForwardMapping() function in ules (i.e. pre-modules) of each newly mapped module in
Alg. 2 to map all modules to underlying cloud nodesorder to further reduce its partial EED. The remapping

. . Server
of any pre-module may also trigger the remapping of capaciya VM,
its succeeding modules (i.e. suc-modules) if necessary. [""" oo

Such back-and-forth remapping is only limited to one ™[=~~~ "~~~ | v, oo
layer, i.e. confined within the affected area in order to e
control the algorithm’s complexity. The shaded modules ~ 70% |- - - - : D

(large)
that comprise of the CP are given the highest priority in :

their corresponding layers. In Fig. 2, the forward order
to map those modules follows;, us, us, ug, us, ...,
un_1, uy, as marked by the dotted arrows. A new CP is
computed after each round of module mapping and such
mapping is repeated until the improvement of EED over 20% |~ =~ =~ -
the previous round is below a certain threshold. o :

The complexity of this iterative module mapping algo- L [
rithmisO(k-1- N -|E.,|), wherel is the number of layers 0 v i verSTi ve: L ve Time
in the sorted task g.rath is the numb_er Of, modules in Figure 3. Map module:; with start running timeST; on a cloud node
the task graphF., is the number of links in the cloud with three possible VMs instances in forward mapping.
network graph, and: is the number of iterations where
the obtained? ED meets a certain requirement.

VM,
S0% = = 7 (medium) [EowE

30% [~= = -

adjustment process, we also need to calculate the partial

Algorithm 3 PModulesMappinG. s, Gen, ts) EED. Instead of calculating the EED from the source

Input: workflow task graphZ,, 7, cloud network grapi@.,, workflow's ~module to the adjusted module, we calculate the partial

earliest start time _ , EED from the source module to its latest finished suc-

Output: the temporary mapping scheme with the best EED namephodule

MED e

1: for all u; € CPdo This module mapping process is essentially a dynamic

2: setuj.flag = 1; programming process. Let us defing € pre(u;) as the

3: end for t of pre-modules of our current mapping modujgan

4: conduct topological sorting and assign the priority eato each set ofpre Od,u eso O.u curre apping odulea d
module; MN(uj) aswu;'s mapping node. We have the following

5: dMinMED = oo; recursive Eq. 10 leading to the minimBIE D (u;, vy) for

6: for all u; € SortedArraydo the forward mapnpin

7: for all v; € Node SetVe, do L PP . 9- ,

8: calculate the start running time fas; run onwv;; Similarly, we def'neu{ € suc(u;) as the set qﬁi S suc-

9 call GetPartiaMED() to calculate the partial EED for; modules. We also define a recursive equation to update

mapped onv;; EED(u; in Eq. 11 for th kward mapping.

10: if EED in thijs round is smaller than previous routien . (ul) as q 0 € k.)ac a d apping

11 update mapping result for current module; Fig. 3 illustrates how the partial EED is calculated for a

12: end if module to be mapped on a cloud nolte\/; andV M- are

13: end for

virtual machines that have been deployed to run some pre-
modules. We can calculate the execution start tiSi€;

The ab . q is il din Fi for modulew;, and then find out the time slot whe&T;
e above mapping procedure is illustrated in Fig. 24 5cated. We check all the possible VM strategies, and

¥;/here .tze Epze; part drelpres?nts ahDAGI;struﬁurrt]ed lworé%lect the one with the lowest partial EED. In this example,
ow with shaded modules aiong the CP, and the OWRlere are three possible VMs that can be allocated:for
part represents a cloud environment. After the_ topologic mely,V" Ms, VM, andV Ms. We calculate the execution
sorting, u falls in layer 1;us, us anduy fall in layer g0 of), on V M; to obtain a partial EED, then check if
2. The modules in layer 1 are mapped omfofirst, then the execution time is shorter than the life timelof/;. If

Fhe modules in layer 2, and so on. For exampighas not, we calculate the execution time &n{,; otherwise,
its pre-modules a3 and uy, which are mapped onto

; . e calculate the execution time driMs. We compare
vs and vy, respectively. The mapping strategy that Ieaci%e partial EED on each VM, and select the one with the
to the lowest partial EED is chosen for that module. W '

. L VBwest partial EED.
assume that the inter-module communication cost within

the same node is negligible as the data transfer within the

same memory is typically much faster than that acrossBa Step 2: Reduce VM Overhead

network. Since the resource capacity is time dependentin the second step of this algorithm, we want to reduce

in a cloud environment, instead of calculating one partigthe VM overhead for the workflow while still meeting the

EED for each possible mapping, we calcul#e(i.e. the user-specified execution time bound (ETB). The overheads

number of time slots for one cloud node) possible partia a cloud include setting up, shutting down and releasing

EEDs. a VM as well as the VM’s idle time. The goal of this
After we map the downstream layer, we adjust its ugstep is to reduce unnecessary overheads and improve the

stream layer’s modules depending on its current mappingsource utilization for higher system throughput.

result. For example, in the above casgjs mapped ta;. We provide below a brief description dbelayCon-

We need to adjust its pre-modules andu,. During the straintedBackwardMapping(), which is presented in

14: end for

EED(u;) = min (max
VR €Ven ujEpre(u;)

(EED(u;,

Wi

EED(u;) = min (max
vE€Ven ujEpre(u;)

(EED(uj, M N (uj))+ bk

Algorithm 4 DelayConstraintedBackwardMappiftg., f,
Gcn, Mt7m tSa ETB)

Input: workflow task graphG,;, cloud network graphGen, the

mapping result from step 1, earliest start time execution time bound

ETB.

Output:

ETB.

1: Calculate the maximal acceptable running time for eachutea as
MART;;

2: SortedArray = topological and priority sort;

3: for all u; € SortedArraydo

result with the Ilowest cost UR within

mapping

4: SET findReuse = false;

5: for all v; € Node SetVe,, do

6: if v; has allocated VMhen

7: call ReuseVM() to see whether we can reuse a VM on
8: if v; has reusable VMhen

9: update mapping result;

10: break;

11: end if

12: end if

13: call AllocateNewVM() to allocate a new VM on;;
14: end for

15: end for
Alg. 4.

1) Combine the user-specified execution time bound
(ETB) with the MED calculated from Step 1 to obtain
the initial maximal acceptable running time (MART) for
each module. The running time is calculated\dgl RT; =
RT. . ETB

" MED

2) Perform topological sorting in a reverse direction
starting from the destination module and assign the cor-
responding priority value for each module similar to Step
1.

3) For each module; from the last module to the first
module in the reverse topological sorting list, we compare
the mapping result for each possible mapping node and
select the node and its corresponding VM that incurs the

)+

W; 4 Zu; * Cuy
MN () 4 20 4 2o Cul) (10
5,k Pk
21 ()+ max wkMN(l) Zl C‘L())) (11)
Dk wesuc(ui) Oy MN(u)) PMN(w)
Server
Capacitya

100%

80%

70%

30%

20%
15%

»

Time

ETit

0 ty ty

Figure 4. Three different VMs to execute modulg with end running
time of ET; in backward mapping.

is similar togetPartialEED(). We create a VM with
the maximal allocable resource. Taking Fig. 4 as an
example, we can calculate the end time of the module
as ET;. We have 3 different strategies to deploy a
VM as V My, VM, or VMs. Let ve, be the VM’s
end time andvs, be its start time. We calculate the
running time for that module to be mapped on each
VM as 24,%40) The allocable resource cost on a

PY s ven
VM is p}j{VvSM% - (vey — vs;). We then compare
the running time with the maximal running time of
M ART;. If the running time is less than/ ART;,

this VM is acceptable and may be created. For all
acceptable VMs, we compare their allocable amount
of resources, and select the VM with the maximum
amount of allocable resource. In this example, we
would selectV M; which has the largest area.

lowest VM overhead as the final mapping node/VM for 4) Repeat Step 3) until all modules from this workflow

this module. There are two cases to consider:

i) If the mapping node has some allocated VMs, we then
call ReuseVM() method to check whether or not
we can reuse one of these VMs on that node. Two

have been mapped.

V1. PERFORMANCEEVALUATION

conditions must be satisfied when we reuse a module:We implement the proposed HIWAE algorithm in C++

i)

a) The available VM resource should be sufficient ton a Windows 7 desktop PC equipped with Intel Core
run the module. b) Any possible idle time should b& CPU of 2.66 GHz and 8.0 GB memory. In the ex-
less than the time to shut down a VM and start uperiments, we compare our algorithm’s end-to-end delay
a new one. If both conditions are satisfied and thend resource utilization rate with Min-min and Max-min
partial EED to this module is less than previouslyeuristics adapted for workflows [24]. The threshold can
found one, we update the mapping information. be set dynamically according to different rules, e.g. the
If the mapping node has no VMs or those VMs cadifference is less than 2% aof/ ED; or the decreasing

not be reused, we callllocateNewVM() to allocate speed approaches zero, etc. A brief description of the two
a new VM for this module. Thé\llocateNewVM() heuristics are as follows:

TABLE II.
WORKFLOW CASES USED IN THE CLOUD MAPPING EXPERIMENT.S

Index of Test Case 1 2 3 4 5 6 7
of Modules 10| 20 | 40 60 80 | 100 | 200
of Dependency Edges 21 | 36 | 88 | 120 | 156 | 215 | 420

EED(hr) UR
1.0
35 ETB 0.9
0.8 T T hiwae
3.0 . 0.7
/ Max-min ;*'_/_"\‘»/4’/4
// // HIWAE 0.6 ‘ Max-min
25 / / 0.51 2 3 2 5 6 7 Testcase
/ /
/ / Figure 6. Comparison of the utilization rate among différecheduling
/ / algorithms.
2.0 /
/
/ - of 100 nodes with CPU of 2.0 GHz. In this paper, we con-
15 / sider computing-intensive workflows and we assume that
/// the data transfer time is negligible due to high bandwidth
///é/ among servers. We develop a workflow generator class
Lo /] to generate our test workflows with varying parameters
' // within a suitably predefined range of values according to
. some previous works [26], [27]: (i) the complexity of each
task; (i) the number of inter-task communications and
05 —— 3 4 5 & 7 Testcase the data transfer size between two tasks. The workflow

mapping results in terms of workflow sizes, utilization rate
Figure 5. Comparison of EED among different scheduling iigms. and EED are presented in Table Il and plotted in Figs. 5
and 6 respectively. These results demonstrate that the
proposed HIWAE algorithm achieves a superior mapping
 Min-min heuristic: When a module is ready toperformance over Min-min and Max-min in terms of
execute (i.e. it has received all input data from all fFED and utilization rate. Particularly, we observe that
its preceding modules), the resource resulting in theiwAE consistently achieves lower EED than the other
minimum partial EED can be determined (assumingyo algorithms in comparison. This performance benefit
that a new VM with the maximal allocable resources brought by our VM reuse strategy that minimizes the
is allocated for each module). After calculating thgverhead including VM startup/shutdown and idle time.
minimum partial EED values for all such ready-tonmoreover, as the workflow size increases, the number of
execute modules, the module with the least minimumodules in the same layer would also increase. Therefore,
partial EED value is selected for immediate scheduéven a random selection would have a better chance to
ing. This is done iteratively until all the modules haVQeuse a VM. In addition to the improvement in the VM
been mapped. The intuition behind this heuristic igyerhead, the iterative step to further improve EED of the
that each iterative step incurs the least EED increaggtire workflow also leads to loweEED than Min-min
with the hope that the final EED is minimized. ~ and Max-min because they only consider minimum partial
« Max-min heuristic: The first step of this heuristic EED for each module.
is exaCtIy the same as the Min-min heuristic. In As discussed in [25], the percentage of modules as-
the second step, the module with the maximumgned to their first choices is likely to be higher for Min-
minimum partial EED value among all the ready-tomin than for Max-min, which results in a smaller EED.
execute modules is selected for immediate schedax-min attempts to minimize the penalties incurred by
ing. The intuition behind this heuristic is that byrunning the modules with a longer execution time. For
giving preference to the longer modules (in termg workflow consisting of a module with a significantly
of execution time), there is a hope that the short@snger execution time than the others, mapping this time-
modules may be overlapped with the longer ones @ibnsuming module to the best machine would allow
other resources [24]. concurrent execution with other shorter modules. In this
We run these three mapping algorithms on seven racase, Max-min is often preferred over Min-min as in the
domly generated workflows in a cloud network consistinigtter case, the shorter modules get to execute first and the

longest modules get executed with many idle nodes for REFERENCES
e e, M Tesls 1 TECE) 1, Zh, . W and .2, Costefctic Scheuln
. . : . N “ME * Algorithm for Scientific Workflows in Clouds. IrProc. of
Min-min and Max-min achieve similar utilization rates the 31st IEEE International Performance Computing and
because they are more likely to choose the same resourceCOmmunication Conference (IPCCQ)p. 256-265, 2012.
for each module (as stated in the first step of Min-min arld] A. Bala and I. Chana. A Survey of Various Workflow
Max-min heuristics). Our algorithm achieves about 24% - Scheduling Algorithms in Cloud Environment. Froc. of

. I . . . the 2nd National Conference on Information and Communi-
% hiah h - -
30% Igher resource utilization than Min-min and Max cation Technologypp. 26-30, 2011.

min on average because of our VM reuse strategy thaf s.zhang, X. Chen, and X. Huo. Cloud Computing Research

minimizes the overhead. and Development Trend. IRroc. of the 2nd International
These experimental results show that the proposed Hi- Conference on Future NetworkkCFN'10), pp. 93-97, 2010.

WAE algorithm exhibits a better control over the executiolf] J- Yu, R. Buyya, and C.K. Tham. Cost-based Scheduling

. P _of Scientific Workflow Applications on Utility Grids. In
time of a workflow compared to Min-min and Max Proc. of the 1st IEEE International Conference on e-Science

min heuristics, and yields a significantly higher resource 5,4 Grig Computing(e-Science 2005), Dec. 5-8, 2005,
utilization rate by reducing the VM overhead during the Melbourne, Australia.

workflow execution. [5] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B.
Berriman, and J. Goo. On the Use of Cloud Computing for
VII. CONCLUSION AND FUTURE WORK Scientific Workflows. InProc. of the IEEE 4th International

Conference on eSciencgp. 640-645, 2008.

Many big data sciences are starting to use cIouds\Aﬁ R. J. Figueiredo. P. A. Dinda, and J. A.B. Fortds Case
the major computing platform. We formulated a workflo for Grid Compdting On Virtual Machinesin Proc. of

scheduling problem in cloud environments. In general, it Distributed Computing Systemsp. 550-559, 2003.
is of the cloud service provider's interest to improve thfy] B. Sotomayor, K. Keahey, and I. Foster. Combining batch

system throughout to satisfy as many user requests asexecution and leasing using virtual machines.Rroc. of

; ; the 17th International Symposium on High Performance
possible using the same hardware resources. Hence, theDistributed ComputingHPDC'08). Boston, Massachusetts,

resource uFiIization rate is a very important pe.rformance USA., June 23-27, 2008.

metric, which, however, has not been sufficiently ads] J.vockler, G. Juve, E. Deelman, M. Rynge, and B. Berriman
dressed by many existing workflow scheduling algorithms Experiences using cloud computing for a scientific workflow
developed for clouds. Also, from the user's perspective, application. InProc. of the 2nd International Workshop on
one primary goal is to minimize the execution time of S¢ientific Cloud ComputingScienceCloud’11), pp. 15-24,

L . . . 2011.
each individual workflow as stated in certain Quality o[‘g] B. Agarwalla, N. Ahmed, D. Hilley, and U. Ramachandran.

Service reqU_iremem-_ . _ Streamline: a scheduling heuristic for streaming appbcat
Our mapping algorithm aims to achieve the dual goals on the grid. InProc. of the 13th Multimedia Computing and

of end-to-end delay performance and low overhead using Networking Conf.San Jose, CA, 2006. .
a two-step approach. In the first step, modules are togé®] D- Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.

. . . So-man, L. Youseff, and D. Zagorodnov.The Eucalyptus
logically sorted and mapped layer-by-layer to identify the open-source cloud-computing system. Rroc. of IEEE

best mapping strategy with the minimal execution time. If |nternational Symposium on Cluster Computing and the Grid
the final finish time is earlier than the latest finish time (CCGrid’09), 2009.
specified by the user, the extra allowed time delay is uséid] Open Nebular, http://www.opennebula.org
to relax the mapping of modules to reduce the cost on V2] émazlonAECZE, ht,tp”/ﬁws-?‘/’;&azo?-com/ecy I /
setup and shutdown as well as the idle time. A backwalf] G°09le App Engine, https://developers.google.com/app- e
module remapping procedure from the last layer towafgs; "Nimpus, http:/nimbusproject.org.
the first layer is conducted to cut down the overheafi5] E. Deelman, G. Singh, M. H. Su, J. blythe, and Y. e.a.
One strategy is to maximize the allocable volume of a Gil. Pegasus: A framework for mapping complex scientific
VM to open the window for more modules to reuse it. Workflows onto distributed systemScientific Programming

: . . Journal vol. 13, pp. 219-237, July 2005.
Atter this backward mapping, any unused VM Volulme I 6] Q. Wu and Y. Gu. Supporting distributed application twor
terms of extra time is not requested. The simulation re-"fq,s in heterogeneous computing environmentsPioc. of
sults demonstrated that our algorithm significantly reduce the 14th IEEE Int. Conf. on Parallel and Distributed Systems
the VM cost compared with other representative cloud Melbourne, Australia, pp. 3-10, 2008.
scheduling algorithms with a comparable or lower totdl7] A. Sekhar, B. Manoj, and C. Murthy. A state-space search
execution time. Itis of our future interest to implement and PProach for optimizing reliability and cost of executian i

. . . . distributed sensor networks. IRroc. of Int. Workshop on
test this scheduling algorithm in local cloud testbeds and pigtiputed Computingpp. 63-74, 2005. P

production cloud environments to support real-life largg18] s. Topcuoglu and M. Wu. Task scheduling algorithms

scale scientific workflows. for heterogeneous processors. Bmoc. of the 8th IEEE
Heterogeneous Computing Worksh@CWwW’'99), pp. 3-14,
ACKNOWLEDGEMENT 1999.

We would like to acknowledge Ms. Yang Zhao for heF9 Q- Wu, M. Zhu, X. Lu, P. Brown, Y. Lin, Y. Gu, F. Cao,
and M. Reuter. Automation and management of scientific

contributions to the preliminary design and implementa- workflows in distributed network environments. Rroc. of

tion of the workflow scheduling algorithm proposed in the the 6th Int. Workshop on Sys. Man. Tegip. 1-8, 2010.
conference paper [1]. [20] Condor,http://www.cs.wisc.edu/condor

[21] DagMan,http://www.cs.wisc.edu/condor/dagman

[22] Globus,http://www.globus.org

[23] T. Ma and R. Buyya. Critical-path and priority based
algorithms for scheduling workflows with parameter sweep
tasks on global grids. IfProc. of the 17th Int. Symp. on
Computer Architecture on High Performance Computing
251-258, 2005.

[24] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-
Crummey, B. Liu, and L. Johnsson. Scheduling Strategies
for Mapping Application WorMows onto the Grid. IRroc.
of the IEEE International Symposium on High Performance
Distributed ComputingHPDC), pp. 125-134, 2005.

[25] T. D. Braun, H. J. Siegel, and N. Beck. A comparison of
eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems. |
Journal of Parallel and Distributed computing1(6): 810-
837, 2011.

[26] Q. Wu, M. Zhu, Y. Gu, P. Brown, X. Lu, W. Lin, and
Y. Liu. A Distributed Workflow Management System with
Case Study of Real-life Scientific Applications on Grids.In
Journal of Grid Computingvol. 10(3), pp. 367-393, 2012.

[27] Q. Wu, Y. Gu, Y. Lin, and N. Ra. Latency Modeling
and Minimization for Large-scale ScientificWorkflows in
Distributed Network Environments. line 44th Annual Sim-
ulation Symposium (ANSS 2012p11, pp. 205-212.

Michelle M. Zhu received the Ph.D. degree
in computer science from Louisiana State Uni-
versity in 2005. She spent two years in the
Computer Science and Mathematics Division at
Oak Ridge National Laboratory for her Ph.D.
dissertation from 2003 to 2005. She is currently
an associate professor in the Computer Sci-
ence Department at Southern lllinois Univer-
sity, Carbondale. Her research interests include
distributed and high-performance computing,
remote visualization, bioinformatics, and sensor

networks.

Fei Cao received the B.S. degree in soft-

ware engineering from Zhejiang University,

P.R. China, in 2007, the M.S. degree in com-
puter science from California State University,

Fullerton, in 2009. She is currently a Ph.D.

student in the Department of Computer Science
at Southern lllinois University, Carbondale. Her

research interests include distributed computing
and high-performance computing.

Chase Q. Wu received the B.S. degree in
remote sensing from Zhejiang University, P.R.
China, in 1995, the M.S. degree in geomatics
from Purdue University in 2000, and the Ph.D.
By \] degree in computer science from Louisiana

-— State University in 2003. He was a research
- fellow in the Computer Science and Mathemat-
L ics Division at Oak Ridge National Laboratory
\ / during 2003-2006. He is currently an Associate
\,,r.ﬁ(\) Professor with the Department of Computer

Science at University of Memphis. His research
interests include parallel and distributed computing, potar networks,
and cyber security.

