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Abstract: We define and investigate a new class of difference equations related to the classical
Chebyshev differential equations of the first and second kind. The resulting “discrete Chebyshev
polynomials” of the first and second kind have qualitatively similar properties to their
continuous counterparts, including a representation by hypergeometric series, recurrence relations,
and derivative relations.

Keywords: discrete analogue; special function; Chebyshev polynomial; difference equation;
generalized hypergeometric series
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1. Introduction

The following two differential equations are known as the Chebyshev differential equations:

(1− t2)y′′ − ty′ + n2y = 0, (1)

and
(1− t2)y′′ − 3ty′ + n(n + 2)y = 0. (2)

For n ∈ {0, 1, 2, . . .}, the Pochhammer symbol (a)n is defined by

(a)n = a(a + 1) . . . (a + n− 1). (3)

The classical generalized hypergeometric series pFq is defined by the formula [1]

pFq(a1, . . . , ap; b1, . . . , bq; t) =
∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

tk

k!
. (4)

The Chebyshev polynomials are sequences of orthogonal polynomials, usually distinguished
between Chebyshev polynomials of the first kind, denoted by Tn, which obey

Tn(t) = 2F1

(
−n, n;

1
2

;
1− t

2

)
, (5)

and Chebyshev polynomials of the second kind, Un, given by

Un(t) = (n + 1)2F1

(
−n, n + 2;

3
2

;
1− t

2

)
. (6)
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Equations (5) and (6) are indeed polynomials due to the definition of the Pochhammer symbol,
and they also turn out to be solutions to Equations (1) and (2), respectively.

Both sets of Chebyshev polynomials are sequences of orthogonal polynomials: the Tn are

orthogonal with weight function
1√

1− t2
integrated over the interval (−1, 1) and the Un are orthogonal

with weight function
√

1− t2 over (−1, 1). Both sequences of polynomials obey the same three-term
recurrence relation

fn+1(t) = 2t fn(t)− fn−1(t), (7)

but with different initial conditions. The following relationship between Tn and Un is known [2] (2.48)
for n ∈ {1, 2, . . .}:

T ′n (t) = nUn−1(t). (8)

The following formula relates the difference of two Chebyshev polynomials of the second kind to
a Chebyshev polynomial of the first kind [3] (p. 9):

Un(t)−Un−2(t) = 2Tn(t). (9)

If f : {0, 1, 2, . . .} → R, then the forward difference of f , written ∆ f , is defined by the formula
∆ f (t) = f (t + 1)− f (t) and we define a “backwards shift operator” by the formula ($ f )(t) = f (t− 1).
In this article, we investigate solutions of the families of second order difference equations with
polynomial coefficients

t(t− 1)∆2y(t− 2) + 2t∆y(t− 1) + t∆y(t− 1) + ∆y(t)− n2y(t) = 0, (10)

and
t(t− 1)∆2y(t− 2) + 2t∆2y(t− 1) + 3t∆y(t− 1) + 3∆y(t)− n(n + 2)y(t) = 0, (11)

where t, n ∈ {0, 1, 2, . . .}, which we call the Chebyshev difference equations of the first and second
kind, respectively.

There has been recent interest in discrete analogues of special functions, by which we mean
a function f : {0, 1, 2, . . .} → R that obeys some qualitatively similar properties to a related well-known
function F : R→ R. For instance, a Bessel difference equation was investigated in [4], whose solutions
were shown to be generalized hypergeometric series with variable parameters. Such “discrete Bessel
functions” were applied in [5] to solve discrete wave and diffusion equations. We define the Θ operator
by Θ = t$∆. In [6], the Bessel difference equation was generalized to the discrete hypergeometric
difference equation, [

Θ
q

∏
j=1

(
Θ + bj − 1

)
− ξt$

p

∏
i=1

(
Θ + ai

)]
y(t) = 0, (12)

where Θ denotes a certain operator containing a forward difference. We shall solve Equation (10) and
(11) in terms of solutions of Equation (12), and we will develop some of their properties that justify
calling these Chebyshev difference equations.

The phrase “Chebyshev difference equation” sometimes appears in the literature, e.g., in the
recent article [7] (40), in reference to the Equation (7) and in [8] (5.2) which refers to a scaled version of
Equation (7) for monic Chebyshev polynomials. We do not use the terminology in this way. Instead,
we call Equation (7) the “three-term recurrence” for classical Chebyshev polynomials, and we will find
a discrete analogue for it in the sequel.

Other similar sounding functions include an existing “Chebyshev polynomial of a discrete
variable” which can be found in [9] (p. 33) as a special case of the Hahn polynomials. In Ref. [10,11],
the “rth discrete Chebyshev polynomial of order N” is defined. These polynomials are also distinct
from the polynomials appearing in this article.
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We define the discrete monomials tk as “falling factorials”, i.e., tk = t(t − 1) . . . (t − k + 1).
Of particular interest is that the falling factorial obeys a “discrete power rule” ∆tk = ktk−1. We contrast
Equation (4) with the discrete hypergeometric series, pFq, defined by

pFq(a1, . . . , ap; b1, . . . , bq; t, n, ξ) =
∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

ξktnk

k!
, (13)

which solves Equation (12). Discrete special functions defined by an instance of Equation (13) import
the same parameter set a1, . . . , ap, b1, . . . , bq as its analogous continuous special function defined by
Equation (4). Many representations of special functions replace t in Equation (4) with an expression of

the form “ξtn”, for some constant ξ. For instance, the sine function is sin(t) = t0F1

(
;

3
2

;− t2

4

)
and

the discrete sine is given by the formula sin1(t) = t0F1

(
;

3
2

; t− 1, 2,−1
4

)
[6] (Proposition 20). Since

given an arbitrary ξ ∈ R and n, t ∈ {0, 1, 2, . . .}, ξtn 6∈ {0, 1, 2, . . .}, it is not possible to always naively
map what appears in the independent variable arguments of functions defined by Equation (4) to

their discrete analogues (13) in general, explaining the extra parameters. The final argument
1− t

2
appearing in Equations (5) and (6) acts as a barrier to a simple importation of Chebyshev polynomials
to the discrete case from the continuous case, but we resolve this dilemma in the sequel.

2. Chebyshev Difference Equation

The natural way suggested by prior work to find the discrete analogue of a polynomial is to
replace each monomial tm in it with tm. We now demonstrate in the following example that this
method fails for the Chebyshev polynomials.

Example 1. The first few classic Chebyshev polynomials of the first kind (5) appear in the following:

n = Tn(t) =
0 1
1 t
2 2t2 − 1.

These polynomials obey the recurrence (7). Naively replacing t2 with t2, we obtain the following possible
discrete analogues:

n = “Tn”(t)
0 1
1 t
2 2t2 − 1 = 2t2 − 2t− 1,

and we would obtain the an analogue of (7) by replacing all terms of the form tm f (n)(t) with tm∆n f (t−m):

fn+1(t) = 2t fn(t− 1)− fn−1(t).

However, this fails even in the case n = 1:

“T2”(t) = 2t2 − 2t− 1 6= 2t2 − 1 = 2t“T1”(t)− “T0”(t),

and so the well-known method of finding discrete analogues fails in this case.

The problem we have highlighted in Example 1 is caused by the appearance of “1− t” in the final
argument of Equation (5), and the example demonstrates that the discrete hypergeometric series (13)
cannot create a discrete analogue of a function whose classical hypergeometric representation contains
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horizontal shifts in the independent variable. To fix this problem, we can simply replace t with t + 1 in
Equation (1) to get

(t2 + 2t)y′′ + (t + 1)y′ − n2y = 0, (14)

and we do the same in Equation (2) to get

(t2 + 2t)y′′ + 3(t + 1)y′ − n(n + 2)y = 0. (15)

Of course, Tn(t + 1) and Un(t + 1) solve Equations (14) and (15), but they are now in a proper
form for obtaining the discrete analogues. We obtain the difference Equations (10) and (11) by replacing
all terms of the form tmy(n)(t) from Equations (14) and (15) with tm∆ny(t−m).

The discrete Chebyshev polynomials of the first kind, Tn, are defined by

Tn(t) = 2F1

(
−n, n;

1
2

; t, 1,−1
2

)
=

n

∑
k=0

(−1)k(−n)k(n)k

2k( 1
2 )k

tk

k!
. (16)

By applying [6] (Proposition 2), we see that Equation (16) may be written in terms of a classical
pFq with a variable parameter as

Tn(t) = 3F1

(
−n, n,−t;

1
2

;
1
2

)
. (17)

The discrete Chebyshev polynomials of the second kind, Un, are defined by

Un(t) = (n + 1)2F1

(
−n, n + 2;

3
2

; t, 1,−1
2

)
= (n + 1)

n

∑
k=0

(−1)k(−n)k(n + 2)k

2k
( 3

2
)

k

tk

k!
, (18)

and similarly applying [6] (Proposition 2) here yields

Un(t) = (n + 1)3F1

(
−n, n + 2,−t;

3
2

;
1
2

)
. (19)

Both of these functions are finite sums due to Equation (3), since (−n)k is zero for all k > n.
The following lemma will be useful in deriving the difference equations for Tn and Un.

Lemma 1. The following formulas hold:

1. Θy(t) = t∆y(t− 1), and
2. Θ2y(t) = t∆y(t− 1) + t2∆2y(t− 2).

Proof. For 1. in Lemma 1, calculate

Θy(t) = t$∆y(t) = t∆y(t− 1).

For 2., use 1. and the discrete product rule to calculate

Θ2y(t) = t$∆ [t∆y(t− 1)] = t∆y(t− 1) + t2∆y(t− 2),

completing the proof.

The following theorem is a discrete analogue of (14).

Theorem 1. The polynomials (16) solve Equation (10).
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Proof. By Equations (12) and (16), we know that y(t) = Tn(t) satisfies[
Θ
(

Θ +
1
2
− 1
)
−
(
−1

2

)
t$ (Θ− n) (Θ + n)

]
y = 0.

Thus,

Θ2y− 1
2

Θy +
1
2

t$
(

Θ2 − nΘ + nΘ− n2
)

y = 0,

and, hence, (
1 +

1
2

t$
)

Θ2y(t)− 1
2

Θy(t)− n2

2
t$y(t) = 0.

Apply Lemma 1 and multiply by 2 to get(
2 + t$

)(
t∆y(t− 1) + t2∆2y(t− 2)

)
− t∆y(t− 1)− n2ty(t− 1) = 0.

Expanding yields

2t∆y(t− 1) + 2t2∆2y(t− 2) + t2∆y(t− 2) + t3∆2y(t− 3)− t∆y(t− 1)− n2ty(t− 1) = 0,

and, by algebra, we obtain

t3∆2y(t− 3) + 2t2∆2y(t− 2) + t2∆y(t− 2) + t∆y(t− 1)− n2ty(t− 1) = 0.

Divide by t and then replace t with t + 1 to arrive at

t2∆2y(t− 2) + 2t∆y(t− 1) + t∆y(t− 1) + ∆y(t)− n2y(t) = 0,

completing the proof.

We now establish the discrete analogue of the three-term-recurrence for the discrete Chebyshev
polynomials of the first kind.

Theorem 2. The polynomials (16) obey the recurrence relation

Tn+1(t)− 2tTn(t− 1)− 2Tn(t) + Tn−1(t) = 0. (20)

Proof. Let αk,n =
(−1)k(−n)k(n)k

2k
(

1
2

)
k

k!
. Apply Equation (16) to each term of Equation (20) to get

Tn+1(t) =
n+1

∑
k=0

αk,n+1tk = 1 + αn,n+1tn + αn+1,n+1tn+1 +
n−1

∑
k=1

αk,n+1tk,

−2tTn(t− 1) = −2t
n

∑
k=0

αk,n(t− 1)k

= −2
n

∑
k=0

αk,ntk+1 = −2
n+1

∑
k=1

αk−1,ntk

= −2αn−1,ntn − 2αn,ntn+1 − 2
n−1

∑
k=1

αk−1,ntk,

−2Tn(t) = −2
n

∑
k=0

αk,ntk = −2− 2αn,ntn − 2
n−1

∑
k=1

αk,ntk
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and

Tn−1(t) =
n−1

∑
k=0

αk,n−1tk = 1 +
n−1

∑
k=1

αk,n−1tk.

Define βn = αn,n+1 − 2αn−1,n − 2αn,n and compute

βn =
(−1)n−1(−n)n−1(n + 1)n−2

2n−1
(

1
2

)
n−1

(n− 1)!

[
(n + 1)(2n− 1)(2n)

(2n− 1)n
− 2n− 2n(2n− 1)

(2n− 1)n

]
= 0,

define γn = αn+1,n+1 − 2αn,n and compute

γn =
(−1)n(−n)n(n + 1)n−1

2n
(

1
2

)
n

n!

[
(n + 1)(2n)(2n + 1)
(2n + 1)(n + 1)

− 2n
]
= 0,

and finally define δk,n = αk,n+1 − 2αk−1,n − 2αk,n + αk,n−1 and compute

δk,n =
(−1)k−1(−n + 1)k−2(n + 1)k−2

2k−1
(

1
2

)
k−1

(k− 1)!

[
(n + 1)(−n)(n + k− 1)(n + k)

k(2k− 1)
+ 2n2

−2
n2(−n + k− 1)(n + k− 1)

k(2k− 1)
− n(−n + k− 1)(−n + k)(n− 1)

k(2k− 1)

]
= 0.

Therefore,

Tn+1(t)− 2tTn(t− 1)− 2Tn(t) + Tn−1(t) = βntn + γntn+1 +
n−1

∑
k=1

δk,ntk = 0,

completing the proof.

In light of Equations (18) and (20), the following classical hypergeometric relation is yielded.

Corollary 1. The following formula holds for all t ∈ {0, 1, 2, . . .} and for all n ∈ {1, 2, 3, . . .}:

3F1

(
−n− 1, n + 1,−t;

1
2

;
1
2

)
− 2t3F1

(
−n, n,−t + 1;

1
2

;
1
2

)
− 23F1

(
−n, n,−t;

1
2

;
1
2

)
+ 3F1

(
−n + 1, n− 1,−t;

1
2

;
1
2

)
= 0.

We now demonstrate the difference equation that the discrete Chebyshev polynomials of the
second kind solve.

Theorem 3. The polynomials (18) solve Equation (11).

Proof. By Equations (12) and (18), we know that y(t) = Un(t) satisfies[
Θ
(

Θ +
3
2
− 1
)
−
(
−1

2

)
t$ (Θ− n) (Θ + n + 2)

]
y = 0,

yielding

Θ2y(t) +
1
2

Θy(t) +
1
2

t$
(

Θ2y(t) + 2Θy(t)− n(n + 2)y(t)
)
= 0.
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Applying Lemma 1, we get

[
t∆y(t− 1) + t2∆2y(t− 2)

]
+

1
2

t∆y(t− 1)

+
1
2

t$
((

t∆y(t− 1) + t2∆2y(t− 2)
)
+ 2t∆y(t− 1)− n(n + 2)y(t)

)
= 0.

Multiply by
2
t

, replace t with t + 1, and expand to get

t2∆2y(t− 2) + 2t∆2y(t− 1) + 3t∆y(t− 1) + 3∆y(t)− n(n + 2)y(t) = 0,

completing the proof.

We now prove the discrete analogue of the three-term recurrence for the discrete Chebyshev
polynomials of the second kind.

Theorem 4. The polynomials (18) obey the recurrence relation

Un+1(t)− 2tUn(t− 1)− 2Un(t) + Un−1(t) = 0. (21)

Proof. Let ζk,n =
(n + 1)(−1)k(−n)k(n + 2)k

2k
( 3

2
)

k k!
. Apply Equation (18) to each term of Equation (21) to

get

Un+1(t) =
n+1

∑
k=0

ζk,n+1tk = 1 + ζn+1,n+1tn+1 + ζn,n+1tn +
n−1

∑
k=1

ζk,n+1tk,

−2tUn(t− 1) = −2t
n

∑
k=0

ζk,n(t− 1)k = −2
n+1

∑
k=1

ζk−1,ntk = −2ζn,ntn+1 − 2ζn−1,ntn − 2
n−1

∑
k=1

ζk−1,ntk,

−2Un(t) = −2
n

∑
k=0

ζk,ntk = −2− 2ζn,ntn − 2
n−1

∑
k=1

ζk,ntk,

and

Un−1(t) =
n−1

∑
k=0

ζk,n−1tk = 1 +
n−1

∑
k=1

ζk,n−1tk.

Define ηn = ζn,n+1 − 2ζn−1,n − 2ζn,n and compute

ηn =
(−1)n−1(−n + 1)n−2(n + 3)n−2

2n−1( 3
2 )n−1(n− 1)!

[
(n + 2)(n + 1)(−n)(2n + 1)(2n + 2)

n(2n + 1)

+2n(n + 1)(n + 2) +
2n(n + 1)(n + 2)(2n + 1)

n(2n + 1)

]
= 0,

define θn = ζn+1,n+1 − 2ζn,n and compute

θn =
(−1)n(−n)n(n + 3)n−1

2n
( 3

2
)

n n!

[
(n + 2)(n + 1)(2n + 2)(2n + 3)

(2n + 3)(n + 1)
− 2(n + 1)(n + 2)

]
= 0,
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and finally define λk,n = ζk,n+1 − 2ζk−1,n − 2ζk,n + ζk,n−1 and compute

λk,n =
(−1)k−1(−n + 1)k−2(n + 3)k−2

2k−1
( 3

2
)

k−1 (k− 1)!

[
(n + 2)(n + 1)(−n)(n + k + 1)(n + k + 2)

k(2k + 1)

+ 2n(n + 1)(n + 2)− 2n(n + 1)(−n + k− 1)(n + 2)(n + k + 1)
k(2k + 1)

− n(−n + k− 1)(−n + k)(n + 1)(n + 2)
k(2k + 1)

]
= 0.

Therefore,

Un+1(t)− 2tUn(t− 1)− 2Un(t) + Un−1(t) = ηntn + θntn+1 +
n−1

∑
k=1

θk,ntk = 0,

completing the proof.

Using Equation (19), we immediately obtain a corollary that gives us an interesting identity
for 3F1.

Corollary 2. The following formula holds for all n ∈ {1, 2, 3, . . .} and for all t ∈ {0, 1, 2, . . .}:

(n + 2)3F1

(
−n− 1, n + 3,−t;

3
2

;
1
2

)
− 2t(n + 1)3F1

(
−n, n + 2,−t + 1;

3
2

;
1
2

)
− 2(n + 1)3F1

(
−n, n + 2,−t;

3
2

;
1
2

)
+ n3F1

(
−n + 1, n + 1,−t;

3
2

;
1
2

)
= 0.

The following formula is a discrete analogue of (8).

Theorem 5. The following difference formula holds for all n, t ∈ {0, 1, 2, . . .}:

∆Tn(t) = nUn−1(t). (22)

Proof. Taking the difference of Equation (16) yields

∆Tn(t) = ∆

[
n

∑
k=0

(−1)k(−n)k(n)k

2k( 1
2 )k

tk

k!

]
=

n

∑
k=1

(−1)k(−n)k(n)k

2k
(

1
2

)
k

tk−1

(k− 1)!

=
n−1

∑
k=0

(−1)k+1(−n)k+1(n)k+1

2k+1
(

1
2

)
k+1

tk

k!

=
−(−n)n

2
(

1
2

) n−1

∑
k=0

(−1)k(−(n− 1))k(n + 1)k

2k
( 3

2
)

k

tk

k!

= nUn−1(t),

completing the proof.

The following theorem is a discrete analogue of (9).

Theorem 6. The polynomials (16) and (18) obey the following recurrence relation for all n, t ∈ {0, 1, 2, . . .}

Un(t)−Un−2(t) = 2Tn(t).
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Proof. Take the difference of (20) to obtain

∆Tn+1(t)− [2Tn(t) + 2t∆Tn(t− 1)]− 2∆Tn(t) + ∆Tn−1(t) = 0.

By Equation (22), we get

(n + 1)Un(t)− 2Tn(t)− 2tnUn−1(t− 1)− 2nUn−1(t) + (n− 1)Un−2(t) = 0,

which simplifies to

Un(t)−Un−2(t) = 2Tn(t) + n
[
−Un(t) + 2tUn−1(t− 1) + 2Un−1(t)−Un−2(t)

]
,

but the second term is identically zero by Equation (21) with n replaced with n− 1, completing the
proof.

As with many previous results, we obtain a result for 3F1 here as well.

Corollary 3. The following formula holds for all n ∈ {2, 3, . . .} and for all t ∈ {0, 1, 2, . . .}:

(n + 1)3F1

(
−n, n + 2,−t;

3
2

;
1
2

)
− (n− 1)3F1

(
−n + 2, n,−t;

3
2

;
1
2

)
= 23F1

(
−n, n,−t;

1
2

;
1
2

)
.

Thus far, we have seen multiple properties of the classical Chebyshev polynomials that have
direct discrete analogues. We now present an example of a property that is not sustained by the
discrete analogue:

fn+1(t) = 2t fn(t)− fn−1(t).

Example 2. Given a sequence of orthogonal polynomials {Pn}∞
n=0, meaning each is of degree n and there

is an inner product 〈c·, ·〉 such that 〈Pn, Pm〉 = 0 whenever n 6= m and 〈Pn, Pn〉 6= 0, it is known [12]
(Theorem 3.2.1) that they obey a three-term-recurrence, i.e., there are constants An, Cn > 0 and Bn ∈ R
such that

Pn(t) = (Ant + Bn)Pn−1(t)− CnPn−2(t). (23)

Considering the list of polynomials in Table 1, we will use simple algebra and the contrapositive of [12]
(Theorem 3.2.1) to show that the sequence of discrete Chebyshev polynomials (of either kind) does not form
a sequence of orthogonal polynomials.

Table 1. The polynomials Tn and Un for n ∈ {0, 1, 2, 3, 4}, fully expanded.

n = Tn = Un =
0 1 1
1 t + 1 2t + 2
2 2t2 + 2t + 1 4t2 + 4t + 3
3 4t3 + 5t + 1 8t3 + 12t + 4
4 8t4 − 16t3 + 32t2 − 8t + 1 16t4 − 32t3 + 68t2 − 12t + 5

First, suppose that Equation (23) holds for the discrete Chebyshev polynomials of the first kind for n = 3.
This would mean that there exist constants A3, B3, and C3 such that

4t3 + 5t + 1 = (A3t + B3)(2t2 + 2t + 1)− C3(t + 1)

= 2A3t3 + (2A3 + 2B3)t2 + (A3 + 2B3 − C3)t + (B3 − C3). (24)
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This yields the system of equations 
2A3 = 4,
2A3 + 2B3 = 0,
A3 + 2B3 − C3 = 5,
B3 − C3 = 1,

which has no solution. Therefore, the sequence of discrete Chebyshev polynomials of the first kind does not form
a sequence of orthogonal polynomials.

Now suppose that Equation (23) holds for the discrete Chebyshev polynomials of the second kind for n = 3.
This means there would exist constants A3, B3, and C3 such that

8t3 + 12t + 4 = (A3t + B3)(4t2 + 4t + 3)− C3(2t + 2)

= 4A3t3 + (4A3 + 4B3)t2 + (3A3 + 4B3 − 2C3)t + (3B3 − 2C3), (25)

leading to 
4A3 = 8,
4A3 + 4B3 = 0,
3A3 + 4B3 − 2C3 = 12,
3B3 − 2C3 = 4,

which similarly has no solution. Hence, the sequence of discrete Chebyshev polynomials of the second kind do not
form a sequence of orthogonal polynomials.

3. Conclusions

We have shown that the polynomial solutions to (10) and (11) are a sort of discrete analogue of
Chebyshev polynomials for n ∈ {0, 1, 2, . . .}. We have established some of their properties, shown
some relationships between them, and demonstrated how these functions yield classic hypergeometric
relationships for the 3F1 hypergeometric series. We have shown that this method of finding analogues
of special functions does not preserve the orthogonality of the classical Chebyshev polynomials.
An immediate question from this lack of orthogonality is whether the polynomials here satisfy
some kind of weakening of being orthogonal polynomials, e.g., the notion of “almost orthogonal
polynomials” in [13]. Further work can be done with these polynomials, including proving new
properties, investigating the second independent solutions to (10) and (11), and investigating the cases
of n ∈ C \ {0, 1, 2, . . .} and t ∈ C, which may be made well-defined either using the hypergeometric
representations (17) and (19) or by using the gamma function to define tn.
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