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1 Introduction

In recent years, discrete special functions have been studied by a variety of authors in different contexts. The
type of discrete analogue we focus on here is described in [1,2] as a “shadow” of its classical counterpart. By
this, it is meant that the discrete analogue of a continuous (i.e., defined on the real line) function

⊂ →f A˜

: � � with Laplace transform =F z f z��( ) { }( ) is a function ⊂ →f B: � � whose “discrete Laplace
transform” is also F .

The original set of elementary shadow functions were defined for arbitrary time scales, which introduced
notation such as ep for the dynamic exponential and sinp for the dynamic sine. The recent study of further
special functions in integers or natural numbers (both often referred to as “discrete” time scales) started with
the discrete Bessel function [3], which, e.g., was later applied to understand qualitative properties of solutions
of discrete wave equations [4]. The discrete Bessel functions were then later greatly generalized to discrete
hypergeometric functions [5,6], which are relevant to our work here. Generalization of the elementary special
functions on time scales to a broader framework appears in [7].

Many classical special functions are defined as an indefinite integral, but this has not carried through to
discrete special functions. We shall investigate later the discrete analogues of two common special functions
often defined in terms of integrals and observe some of the difficulties that arise when attempting to find the
integral formulation of a discrete special function.

The sine integral and complementary exponential integral functions are well studied special functions.
We will focus on the discrete analogues of these functions in particular, because they are defined as anti-
derivatives of elementary functions. While the theory of discrete special functions has been quite successful in
finding analogues of functions from their power series, analogues of functions classically defined by indefinite
integrals have not been as simple to find. This article will reveal some of the difficulty – we shall show that the
discrete analogue of the sine integral does retain its definition as an antiderivative in the discrete analogue,
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but the discrete complementary exponential integral fails to retain it. Moreover, the other related special
functions such as the cosine integral and the broader class of exponential integrals do not appear to have
straightforward discrete analogues at all, likely due to their use of complex analysis that has no current
discrete analogue in resolving integrals across singularities.

2 Preliminaries and definitions

Wemake significant use of the forward difference operator = + −f t f t f tΔ 1( ) ( ) ( ), which can be rearranged to
obtain

+ = +f t f t f t1 Δ .( ) ( ) ( ) (1)

We borrow the notation from the time scales calculus [8], most significantly

∫ ∑≔
=

−

f τ τ f kΔ .

a

b

k a

b 1

( ) ( )

The falling powers t k are the discrete analogue of the power functions and are defined by the formula

≔ +
− +t k t

t k

Γ 1

Γ 1

( )

( )
. The t k obey a power rule of the form = −t ktΔ

k k 1 and an analogue of the integral for monomials

∫ =
−
+

+ +
t t

b a

k
Δ

1

.

a

b

k
k k1 1

(2)

The shift lemma for discrete calculus is

− = +t t n t .

n m n m( ) (3)

We will use the notationL� for the classical Laplace transform, and the discrete Laplace transform is given by

= ∑ =
∞

+ +f z k

f k

z0

1

k 1

L�{ }( )
( )

( )
, which is a scaled and shifted � -transform (see [9,10] for a thorough investigation). If

∫=X t x τ τΔ

s

t
( ) ( ) , then [10, Theorem 6.4]

=X z s
z

x z s;

1

; .L L�{ }( ) { }( ) (4)

It is well known [8, Theorem 3.90] that

= +t z s
k

z
;

!

.

k
k 1

L�{ }( ) (5)

The discrete exponential eα is the unique solution of the initial value problem =y t αy tΔ ( ) ( ) and =y 0 1( ) .
By the discrete Taylor’s theorem,

∑=
=

∞

e t
α t

k
, 0

!

.α

k

k k

0

( ) (6)

The discrete sine function sin

1

is defined by = − −tsin

e t e t

i1

2

i i
( )

( ) ( ) , and it is straightforward to show from (6) that
= ∑ =

∞ −
+

+
tsin k

t

k1
0

1

2 1 !

k k2 1

( )
( )

( )
, so in particular,

∑+
+

=
−

+=

∞
t

t

t

k

sin 1

1

1

2 1 !

.

k

k k
1

0

2( ) ( )

( )
(7)

The qp� generalized hypergeometric series is defined by:

∑=
=

∞

a a b b z
a a

b b

z

k
, …, ; , …, ;

…

… !

,qp p q

k

k p k

k q k

k

1 1

0

1

1

� ( )
( ) ( )

( ) ( )
(8)

2  Samer Assaf and Tom Cuchta



where = + + − = +
a a a a k1 … 1k

a k

a

Γ

Γ

( ) ( ) ( )
( )

( )
is called a Pochhammer symbol. The discrete analogue of (8) is [5,

(23)] as follows:

∑=
=

∞

F a a b b t n ξ
a a

b b

ξ t

k
, …, ; , …, ; , ,

…

… !

,qp p q

k

k p k

k q k

k nk

1 1

0

1

1

( )
( ) ( )

( ) ( )

and it is related to the classical qp� [5, Proposition 2] by:

= −+F t n ξ ξ na b a t b; ; , , , ; ; ,qp qp n
n�( ) ( ( ) ) (9)

where = ⎛
⎝−

⎞
⎠

− + −
t , …,

t

n

t n

n

1 .

The classical sine integral function is defined by the integral

∫=i x
t

t
t

sin

d ,

x

0

� ( )
( )

(10)

and it follows that it obeys the series

∑=
−
− −=

∞ − −
i x

x

k k

1

2 1 2 1 !

.

k

k k

1

1 2 1

� ( )
( )

( )( )
(11)

It has a classical hypergeometric representation:

⎟⎜= ⎛
⎝

− ⎞
⎠

i z z
z1

2

;

3

2

,

3

2

;

4

.

1 2

2

� �( ) (12)

It solves the third-order differential equation

′′′ + ″ + ′ =zy y zy2 0, (13)

and it has the Laplace transform [11, 3.5.1]:

= ⎛
⎝

⎞
⎠i z

z z

1

arctan

1

.L� �{ }( ) (14)

The related complementary exponential function in� is defined by:

∫=
− −

t
e

τ
τin

1

Δ .

t
τ

0

� ( ) (15)

Another function, called the exponential integral i� , is related to in� by [12, 37:0:1]

= + − −t γ t i tin ln ,� �( ) (∣ ∣) ( ) (16)

where γ is the Euler-Mascheroni constant. Its Laplace transform is given by [13, p. 1160]:

= ⎛
⎝ + ⎞

⎠z
z z

in

1

log 1

1

.L� �{ }( ) (17)

Mathematica reports that the general solution of the polynomial coefficient third-order linear differential
equation

′′′ + + ″ + + ′ + =t y t t t y t t y t y t5 3 4 0

2 2( ) ( ) ( ) ( ) ( ) ( ) (18)

is = + +−
y t

c i t

t

c

t

c t

t

ln

2 1 3

�
( )

( ) ( ) . By (16), the specific solution of (18) for >t 0 with parameters = −c 1

2

, =c γ
1

, and
=c 1

2

is

=y t
t

t

in

.

�
( )

( ) (19)
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3 Discrete sine integral

We define the discrete analogue of (10) by:

∫=
+

+
t

τ

τ
τSi

sin 1

1

Δ .

t

0

1

( )
( )

(20)

The following theorem is an analogue of (11).

Proposition 3.1. The following formula holds:

∑=
−
+ +=

∞ +
t

t

k k
Si

1

2 1 2 1 !

.

k

k k

0

2 1

( )
( )

( )( )
(21)

Proof. Using (7) and (2) to integrate from 0 to t , we obtain

∫

∫

∑

∑

∑

=
−

+

=
−

+

=
−
+ +

=

∞

=

∞

=

∞ +

t
τ

k
τ

k
τ τ

t

k k

Si

1

2 1 !

Δ

1

2 1 !

Δ

1

2 1 2 1 !

,

t

k

k k

k

k
t

k

k

k k

0

0

2

0

0

2

0

2 1

( )
( )

( )

( )

( )

( )

( )( )

which completes the proof. □

We now represent the discrete sine integral in terms of discrete hypergeometric functions, analogous
to (12).

Theorem 3.2. The discrete sine integral has the following hypergeometric representations:

= ⎛
⎝ − − ⎞

⎠ = ⎛
⎝

− + − +
− ⎞

⎠t t F t t
t t

Si

1

2

;

3

2

,

3

2

; 1, 2,

1

4

1

2

,

1

2

,

2

2

;

3

2

,

3

2

; 1 ,

1 2 3 2

�( )

and its defining series exists for > −tRe 1( ) .

Proof. Compute

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=
⎡

⎣
⎢

⎤

⎦
⎥

=

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝ + ⎞

⎠

⎛
⎝ + ⎞

⎠

⎛
⎝ + ⎞

⎠
⎛
⎝

⎞
⎠

⎛
⎝ + ⎞

⎠
⎛
⎝

⎞
⎠

k

k

Γ

Γ

Γ

Γ

.

k

k k

k

k

1

2

3

2

3

2

Γ

Γ

Γ

Γ

2

3

2

2

1

2

1

2

3

2

2

1

2

1

2

3

2

3

2

Since ⎛
⎝ + ⎞

⎠ = ⎛
⎝ + ⎞

⎠
⎛
⎝ + ⎞

⎠k k kΓ Γ ,

3

2

1

2

1

2

and ⎛
⎝ + ⎞

⎠ =
⎛
⎝

⎞
⎠ −

−−kΓ

k

k

1

2

Γ 2 1 !

2 1 !

k

1

2

2 1

( )

( )
, we obtain
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⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝ + ⎞

⎠
⎛
⎝ + ⎞

⎠

=
+

⎛
⎝

⎞
⎠

⎛
⎝ + ⎞

⎠

=
+

⎡
⎣⎢

−
−

⎤
⎦⎥

=
+ +

−

k k

k
k

k

k

k

k

k

k

k k

Γ

Γ

1

2 1

Γ

Γ

2

2 1

1 !

2 1 !

2

2

2 !

2 1 2 1 !

k

k k

k

k

1

2

3

2

3

2

1

4

1

2

1

2

1

2

2

2

1

2

1

2

2 1

2

2

( )

( )

( )

( )

( )( )

Since − = +t t t1

k k2 2 1( ) , the proof of the relation to F
1 2

is complete. The relationship to
3 2

� follows from (9).
As a consequence of (9) and the well known convergence properties of Fqp [6, Corollary 4], it converges

whenever − > + − −tRe 1

1

2

1

2

3

2

3

2

( ) , which simplifies to > −tRe 1( ) , and the proof is completed □

We now prove the discrete analogue of (14), which demonstrates that Si is the shadow function associated
with i� (Figure 1).

Theorem 3.3. The following formula holds:

= ⎛
⎝

⎞
⎠z

z z
Si

1

arctan

1

.L�{ }( )

Proof. By (7) and (5), we compute

∑ ∑⎧⎨⎩
⋅+

⋅+
⎫⎬⎭ =

−
+

=
−

+
⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠=

∞

=

∞ +
z

k
t z

k z z

sin 1

1

1

2 1 !

; 0

1

2 1

1

arctan

1

.

k

k
k

k

k k
1

0

2

0

2 1

L L�

( )
( )

( )

( )
{ }( )

( )

( )
(22)

Using (4) and (22), compute

= ⎧⎨⎩
⋅+

⋅+
⎫⎬⎭ = ⎛

⎝
⎞
⎠z

z
z

z z
Si

1 sin 1

1

1

arctan

1

,

1

L L� �{ }( )
( )

( )

which completes the proof. □

Figure 1: Plot of Si on the real line and its domain coloring in the complex plane.
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We derive the difference equation analogue of (13) by manipulating (21) directly.

Theorem 3.4. If =y t tSi( ) ( ), then

− + + − =tΔ y t Δ y t t y t1 2 Δ 1 0.

3 2( ) ( ) ( ) (23)

Proof. First, compute = ∑ =
∞ −

+y tΔ k
t

k0

1

2 1 !

k k2

( )
( )

( )
,

∑ ∑=
−

+
= −

− +
+=

∞ −

=

∞ +
Δ y t

k t

k

k t

k

1 2

2 1 !

1 2 2

2 3 !k

k k

k

k k
2

1

2 1

0

2 1

( )
( ) ( )

( )

( ) ( )

( )

and

∑ ∑=
− −

+
= −

− + +
+=

∞ −

=

∞

Δ y t
k k t

k

k k t

k

1 2 2 1

2 1 !

1 2 2 2 1

2 3 !

.

k

k k

k

k k
3

1

2 2

0

2

( )
( ) ( )( )

( )

( ) ( )( )

( )

Now, substituting these into the left-hand side of (23) and taking (3) into account yield

∑

∑

−
+

⎡
⎣⎢
−

+ +
+ +

−
+

+ +
+ ⎤

⎦⎥

=
− +

+
− + − + + =

=

∞ +

=

∞ +

t

k

k k

k k

k

k k

t k

k
k k

1

2 1 !

2 2 2 1

2 2 2 3

2 2 2

2 2 2 3

1

1 2 2

2 3 !

2 1 2 2 3 0,

k

k k

k

k k

0

2 1

0

2 1

( )

( )

( )( )

( )( )

( )

( )( )

( ) ( )

( )
[ ( ) ( )]

which completes the proof. □

Using (1) repeatedly in (23), we are able to remove the delay from all terms (see Corollary 4.5 below where
we provide some details on how this is done).

Corollary 3.5. If =y t tSi( ) ( ), then

+ + + + =t Δ y t Δ y t t y t3 2 1 Δ 0.

3 2( ) ( ) ( ) ( ) ( )

4 Discrete complementary exponential integral

Define

∑=
−

+ +=

∞ +
t

t

k k
in

1

1 1 !

.

k

k k

0

1

� ( )
( )

( )( )

Remark 4.1. The integral (15) has no singularity at the origin since the power series for − −e1

τ contains a factor
of τ which cancels the τ in the denominator. It is natural to assume that in� would have a representation as an
integral similar to (20), but this does not seem possible. The start of such a derivation of might look like this:

∫ ∫∑ ∑ ∑∫
=

−
+

=
−

+
= −

−

=

∞

=

∞

=

∞ −
t

τ τ

k

τ

k
τ

τ

k
τin

1 Δ

1 !

1

1 !

Δ

1

!

Δ .

k

k
t

k t

k

k k
t

k

k k

0

0

0

0

0

1

1

� ( )
( )

( )

( )

( )

( )

The series being integrated is almost (6), except the missing =k 0 term and the power on τ . This can be
corrected for by multiplying the series by −

−
τ

τ

1

1

and adding and subtracting 1 to obtain

∫ ∫∑= −
⎡
⎣⎢ −

− − ⎤
⎦⎥

= −
− +

−=

∞
−

t
τ

τ

k
τ

e τ

τ
τin

1

1

1 1

!

Δ

1 , 0

1

Δ ,

t

k

k k
t

?

0

1

?

0

1

� ( )
( ) ( ) ( )
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which superficially appears to be an analogue of (15). However, there are two problems that have arisen: first
is that the numerator equals −1 except when =τ 0 since =−e τ , 0 0

1

( ) for any ≠τ 0 and =−e τ τ, 1

1

( ) [14, p. 1384].
Second, when computing the integral, a division by zero will occur when =τ 1, which is also unavoidable in
this case. A similar situation is handled at the origin in the classic theory by the Cauchy principal value, but we
do not have an analogue for that in discrete calculus at this time. This suggests that there is no integral
formulation for the in� function on this time scale.

We now find the representation of in� as a discrete hypergeometric series.

Lemma 4.2.

= −t t F tin 1, 1; 2, 2; , 1, 1 .

22

� ( ) ( ) (24)

Proof. Compute

+ +
=

+ +
=

k k

k k

k k k k

1

1 1 !

! !

1 ! 1 ! !

1 1

2 2 !

.

k k

k k( )( ) ( ) ( )

( ) ( )

( ) ( )

Hence

∑=
− −

= − −
=

∞

t t
t

k
t F tin

1 1 1 1

2 2 !

1, 1; 2, 2; 1, 1, 1 ,

k

k k
k k

k k
0

22

� ( )
( ) ( ) ( ) ( )

( ) ( )
( )

which completes the proof. □

By combining (9) with (24), we obtain the the relationship with
3 2

� . Also by [6, Corollary 4], the analogue of
(19), we will use to prove an analogue of (18).

Corollary 4.3. The following formula holds:

+
+

= −
t

t
t

in 1

1

1, 1, ;2, 2; 1 .

3 2

�
�

( )
( )

We now derive a difference equation for in� , analogous to (18).

Theorem 4.4. The function = +
+y t
t

t

in 1

1

�
( )

( ) solves the difference equation

− + − + − + − + + =t Δ y t t Δ y t tΔ y t t y t y t y t2 2 5 1 3 Δ 1 4Δ 0.

2 3 2 2 2( ) ( ) ( ) ( ) ( ) ( ) (25)

Proof. Let =θ tρΔ, where = −ρf t f t 1( )( ) ( ) is called the shift operator. By [5, Theorem 7] and (24),

+ + + + + =tρΔ tρΔ tρΔ tρ tρΔ tρΔ y t1 1 1 1 0.[ ( )( ) ( )( )] ( )

Now, factoring inside the brackets, dividing by t, and dropping the shift operator on the left reveal

+ + + =Δ tρΔ tρΔ y t1 1 1 0.( )( )( ) ( )

Performing the first step of this calculation yields

+ + − + =Δ tρΔ t y t y t1 1 Δ 1 0.( )( )( ( ) ( ))

Since − = + −Δ t y t y t tΔ y tΔ 1 Δ 1

2( ( )) ( ) ( ), we have

+ − + − + − + − + =Δ t y t t Δ y t t y t t y t y t1 Δ 1 2 Δ 1 Δ 1 0,

2 2( )([ ( ) ( ) ( )] [ ( ) ( )])

which simplifies to:

+ − + − + =Δ t Δ y t t y t y t1 2 3 Δ 1 0.

2 2( )( ( ) ( ) ( )) (26)
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Finally, since − = − + −Δ t Δ y t tΔ y t t Δ y t2 2 1 2

2 2 2 2 3( ( )) ( ) ( ), substituting +Δ t into (26) yields

− + − + + − + + − + − + =tΔ y t t Δ y t y t tΔ y t y t t Δ y t t y t y t2 1 2 3Δ 3 1 Δ 2 3 Δ 1 0,

2 2 3 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

which simplifies to (25), and the proof is completed □

Equation (25) can be rearranged by the repeated use of (1) to obtain the following result.

Corollary 4.5. The function = +
+y t
t

t

in 1

1

�
( )

( ) solves the difference equation:

+ + + + + + + =t Δ y t t t Δ y t t y t y t4 11 27 3 4 Δ 0.

2 3 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) (27)

Proof. Replace t with +t 2 in (25) to obtain

+ + + + + + + + + + + + + =t Δ y t t Δ y t t Δ y t t y t y t y t2 2 5 2 1 3 2 Δ 1 4Δ 2 2 0.

2 3 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Repeated use of (1) on +Δ y t 1

2 ( ), +y tΔ 1( ), and +y t 2( ) leads to:

+ + + + + + + + + + +

+ + + + =

t Δ y t t Δ y t t Δ y t Δ y t t y t Δ y t Δ y t Δ y t

y t Δ y t y t y t

2 2 5 2 3 2 Δ 4 2

Δ 2Δ 0,

2 3 2 2 2 3 2 3 2

2

( ) ( ) ( ) ( ) ( )[ ( ) ( )] ( )[ ( ) ( )] [ ( ) ( )

( )] [ ( ) ( ) ( )]

which simplifies to (27), and the proof is completed □

We now derive the discrete analogue of (17), which shows that in� is the shadow function associated with
in� (Figure 2).

Theorem 4.6. The following formula holds:

= ⎛
⎝ + ⎞

⎠z
z z

in ; 0

1

log 1

1

.L� �{ }( )

Figure 2: Plot of both tin� ( ) and +
+
t

t

in 1

1

� ( ) and the domain coloring of in� .
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Proof. Using (5), calculate

∑

∑

∑

∑

=
⎧
⎨
⎩

−
+ +

⎫
⎬
⎭

=
−
+

⎧⎨⎩ +
⎫⎬⎭

=
−

+

=
−

+

= ⎛
⎝ + ⎞

⎠

=

∞ +

=

∞ +

=

∞

+

=

∞

+

z
t

k k
z

k

t

k
z

k z

z k z

z z

in ; 0

1

1 1 !

; 0

1

1 1 !

; 0

1

1

1 1

1

1

log 1

1

,

k

k k

k

k k

k

k

k

k

k

k

0

1

0

1

0

2

0

1

L L

L

� �{ }( )
( )

( )( )
( )

( )

( ) ( )
( )

( )

( )

( )

( )

which completes the proof. □

5 Conclusion

We have introduced the discrete analogues of the sine integral and complementary exponential integral
functions. For each, we have expressed it as a series, found its relationship to hypergeometric functions,
and computed its Laplace transform. Analytic continuation is likely a way to extend the domains of existence
of Si and in� beyond > −tRe 1( ) , but doing so is beyond the scope of this article.

We have argued in Remark 4.1 that an integral form for in� like (15) seems unattainable, but this might
merely be a consequence of the discrete exponential −e

1

vanishing. This suggests a future direction for research
into generalizations of Si and in� to time scales where −e

1

does not vanish.
There are other related functions that were not considered here, of most importance would be analogues

of the exponential integrals i� and n� , as well as the cosine integral i� . All of these functions are defined by an
integral that is computed via the Cauchy principal value; the theory needed to do similar work for discrete
special functions does not exist, so developing it is of interest. Some possible directions might include con-
temporary theories of discrete complex analysis [15–17]. Another approach to understand i� might also be to
investigate what the other independent solutions of (25) are.
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