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Introduction 

In contemporary healthcare, quality improvement remains a critical concern globally, particularly in the 

United States (US), as evidenced by various scholarly reports (WHO, 2018; ARHQ, 2018). The 

ramifications of suboptimal quality encompass diverse challenges such as overuse, underuse, and 

misallocation of services, resulting in avoidable patient complications, increased healthcare costs, and even 

fatalities (ARQH, 2018). These issues significantly impact financial expenditures, with overtreatment alone 

accounting for 2%-2.7% of US healthcare spending in 2019, accumulating an estimated $76 billion in 

additional costs (Health Affairs Research Brief, 2022; Shrank et al., 2019). Concurrently, failures in care 

delivery and coordination contributed to an estimated $102-166 billion and $27-78 billion in costs, 

respectively, in the same year (Health Affairs Research Brief, 2022; Shrank et al., 2019). 

 

Among these concerns, hospital readmission rates have become a pivotal indicator of healthcare quality, 

subsequently influencing healthcare policy, such as the Affordable Care Act's Hospital Readmissions 

Reduction Program (HRRP) (NEJM Catalyst, 2018b). In 2011, hospital readmissions accounted for 3.3 
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million cases, imposing $41.3 billion in associated costs (NEJM Catalyst, 2018b). The implementation of 

HRRP led to a decline in readmission rates from 21.5% in 2007 to 17.8% in 2015 (Zuckerman et al., 2016), 

reflecting positive strides in quality improvement. 

The term "Big Data" has been widely used, but until recently, there was no universally accepted definition 

for it. According to McKinsey, Big Data refers to datasets too large for typical database software tools to 

handle effectively. Gartner proposed the "3V" definition: Big Data is characterized by volume, velocity, 

and variety and requires innovative forms of information processing to gain insights and make decisions. 

Some definitions also include a fourth dimension called "Veracity," which refers to the data's quality, 

authenticity, and trustworthiness. 

Big Data in healthcare has been sourced from, but not limited to, medical imaging, Electronic Health 

Records (EHRs), payor records, genomic sequencing, pharmaceutical research, wearables, and medical 

devices (NEJM Catalyst, 2018a). Harnessing this data, alongside machine learning, holds promise in 

enhancing patient outcomes, curbing readmission rates, and potentially reducing costs (Kumar et al., 2018). 

 

Methodology  

 

This study aims to explore the impact of big data utilization on quality improvement in inpatient facilities, 

specifically assessing its influence on readmission rates, patient outcomes, and potential cost savings. This 

study utilized mixed methodologies with a literature review complemented by semi-structured interviews 

to gain perspectives about big data utilization on quality improvement in inpatient facilities. The Marshall 

University Institutional Review Board (IRB) approved the interview. This study’s conceptual framework 

(Figure 1) was adapted from the research framework of Yao, Chu, and Li (Yao et al., 2010). The framework 

displays the reasoning of and approach to big data and machine learning for improving healthcare quality, 

specifically readmission rates and patient outcomes. The adoption of the use of big data begins with the 

need for tools and algorithms to support clinical and administrative functions due to big data’s ability to 

support these improvements.   

 

Results 

Integrating big data analytics and machine learning has significantly transformed healthcare practices, 

offering predictive models that demonstrate substantial promise in improving patient outcomes and curbing 

hospital readmission rates. 

In the Golas et al. (2018) study, developing a predictive model for 30-day heart failure readmissions 

utilizing Deep Unified Networks (DUNs) displayed promising accuracy. Trained on data from over 11,000 

patients and 27,000 admissions, this model showcased an accuracy rate of 76.4%, highlighting its potential 

to identify candidates who would benefit from disease management programs, consequently reducing 

readmission rates and yielding cost savings of up to 3.403 ± 0.536. Rojas et al. (2018) delved into ICU 

readmission predictions using machine learning, demonstrating superior performance to existing algorithms 

such as SWIFT and MEWS. Achieving a specificity of 95% and a sensitivity rate of 28%, this model 

signaled enhanced capabilities in predicting ICU readmissions. Additionally, Stehlik et al. (2020) explored 

remote monitoring for heart failure using implantable cardiac sensors, which showcased notable sensitivity 

and specificity in predicting heart failure exacerbation. The platform detected precursors of hospitalization 

with a sensitivity range of 76% – 88% and a specificity of 85%, significantly aiding in timely interventions 

and reducing readmission occurrences. 

Romero-Brufau et al. (2020) introduced a tool to assess readmission risks for general care unit patients, 

identifying high-risk hospitalizations. Their tool exhibited a 25% reduction in relative readmission rates, 

emphasizing its potential to stratify patients and intervene proactively. Furthermore, Moradi et al. (2023) 

leveraged machine learning on a massive National COVID Cohort Collaborative (N3C) dataset to predict 
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outcomes for COVID-19 patients. With an accuracy rate of 81% in predicting patient mortality, their 

Gradient Boosted Decision Tree model presented promising results in forecasting patient outcomes. 

Daghistani et al. (2020) explored appointment no-show predictions using machine learning techniques. 

Their Gradient Boosting model achieved an accuracy rate of 79%, assisting in establishing reliable 

appointment scheduling strategies and addressing concerns related to underutilized resources. Moreover, 

Taylor et al. (2015) designed a predictive model for sepsis mortality, with the random forest model 

exhibiting an 86% confidence level in predicting mortality among patients meeting sepsis criteria. Finally, 

Du et al. (2020) utilized machine learning to predict coronary heart disease onset among hypertensive 

patients. Their XGBoost model displayed a high % accuracy rate of 94% in predicting 3-year CHD onset 

based on electronic health record data. 

Discussion 

 

The review suggested that big data and machine learning applications have significant potential to achieve 

the study's objectives. Studies have demonstrated that predictive models accurately identify at-risk patients, 

enabling proactive interventions to lower readmission rates. The accuracy rates of these models, which 

range between 70% and 80%, highlight their potential to identify patients requiring additional care post-

discharge.  These studies illustrated the potential and effectiveness of leveraging big data and machine 

learning in healthcare. These models contributed to improved patient outcomes and offer promising 

strategies to mitigate readmission rates across various healthcare domains. However, the study faced 

limitations in directly confirming associated cost savings. The absence of concrete financial statistics 

hindered the ability to support the hypothesis regarding cost reductions unequivocally, thus presenting a 

deviation from the initial aim. While these findings present a promising outlook for integrating big data and 

machine learning in healthcare, several considerations warrant attention. 

 

Practical Implications 

 

The findings of this research present several practical implications that hold substantial importance for 

healthcare administrators, clinicians, and policymakers aiming to integrate big data and machine learning 

in inpatient facilities: Inpatient facilities require a structured strategy for incorporating predictive models 

into existing workflows. Collaboration among healthcare IT specialists, clinicians, and data scientists is 

crucial to embedding these models seamlessly into daily clinical practices. Healthcare professionals must 

receive adequate training to interpret and act upon predictions generated by these models. Targeted resource 

allocation and proactive patient management can optimize healthcare resources and reduce unnecessary 

costs. Continuous evaluation and refinement of predictive models is vital, with adherence to regulatory 

compliance and ensuring patient privacy central to deploying these models. Long-term studies and 

interdisciplinary collaborations foster innovation and drive the evolution of these models toward more 

excellent utility and reliability. Developing guidelines and incentives and encouraging research and funding 

initiatives could provide concrete evidence of the cost-saving potential of these models. In summary, these 

practical implications underscore the need for meticulous planning, effective integration strategies, 

continuous evaluation, ethical considerations, and collaborative efforts to harness the transformative 

potential of big data and machine learning in improving quality and optimizing healthcare outcomes in 

inpatient facilities. 

 

Limitations  

 

The need for comprehensive financial statistics limits the validation of the proclaimed cost-saving potential 

of these models. Moreover, challenges about data quality and the seamless integration of these predictive 

models into routine clinical practices necessitate further exploration. 

 



169 
 

Proceedings of the Appalachian Research in Business Symposium, Marshall University, April 4-5, 2024. 
 

Future Research Directions 

 

More research is needed to validate the cost-saving benefits of these predictive models. Comprehensive 

evaluation is necessary for implementing these models in natural healthcare settings. Continued research 

and practical implementation strategies are crucial for realizing the potential of these innovative healthcare 

approaches. 

 

Conclusion 

 

In conclusion, while affirming the transformative potential of big data and machine learning in enhancing 

inpatient facility quality and patient outcomes, this study underscores the need for further research to 

validate cost-saving benefits and address implementation challenges.  
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Figure 1: Conceptual Framework, adapted from (Yao, Chu, Li., 2010) 
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Table 1:  Accuracy of different models on predicting outpatient no-show using different alidation 

methods. Data retrieved from (Daghistani et al., 2020). 

 
Model Accuracy (70/30 

holdout method) 
Accuracy (80/20 
holdout method) 

Accuracy (tenfold 
cross validation) 

Random Forest 0.76 0.75 0.76 
Gradient Boosting 0.79 0.79 0.79 

Logistic Regression 0.75 0.75 0.75 
SVM 0.73 0.54 0.73 

Multilayer Perceptron 0.77 0.75 0.77 
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