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The ability to accurately sense the surrounding wireless spectrum, without having

any prior information about the type of signals present, is an important aspect for

dynamic spectrum access and cognitive radio. Energy detection is one viable method,

however its performance is limited at low SNR and must adhere to Nyquist sampling

theorem. Compressive sensing has emerged as a potential method to recover wideband

signals using sub-Nyquist sampling rates, under the presumption that the signals are

sparse in a certain domain. In this study, the performance and some of the practical

limitations of energy detection and compressive sensing are compared via simulation, and

also implementation using the Universal Software Radio Peripheral (USRP) software

defined radio (SDR) platform. The usefulness and simplicity of the USRP and GNU

Radio software toolkit for simulation and experimentation, as well as some other

application areas of compressive sensing and SDR, is also discussed.
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CHAPTER 1

INTRODUCTION

The wireless radio spectrum is a resource that continues to see increased use as more

devices go wireless. Under the current spectrum allocation scheme the Federal

Communications Commission (FCC) in the United States licences out specific frequency

bands for very specific uses. This causes many bands to face overcrowding and some

bands to be heavily under-utilized. This introduces the need for more flexible spectral

access methods.

Cognitive radio technology sets out to balance out the usage of the wireless

spectrum. It does this by allowing unlicensed users to access licensed frequency bands,

the only stipulation is that the unlicensed user must not cause harmful interference to the

licensed user. This means that a cognitive radio must be able to sense what is going on

around it at all time, this is called spectrum sensing. Once the radio determines what it is

going on around it, it must then adapt its parameters to be able to access an open

channel, this is called resource allocation. The focus of this thesis is on the spectrum

sensing aspect of a cognitive radio.

In order to implement and also test these flexible access methods, there is a need for

more flexible hardware that can support many different protocols and operate on a wide

range of frequencies. Software defined radio (SDR) is a recent development that uses

flexible hardware, that is defined by software, to define the radios operating parameters.

This makes SDR useful for testing and implementing cognitive radio access methods.

The focus of this thesis is to simulate and test spectrum sensing methods for

cognitive rado applications. Methods exist that can accurately detect a signal when

knowledge of the signal of interest is known. However, a cognitive radio may not always

know what type of signal is present, and thus needs to be able to detect unknown signals.

Methods such as energy detection exist that do not require any knowledge of the signal of
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interest. However, the detectable bandwidth is limited to that allowed by Nyquist

sampling theorem, and thus faces practical constraints on the detectable bandwidth. For

a cognitive radio to be effective, it should be able to sense a large bandwidth in a short

amount of time. Compressive sensing is one method that aims to be able to sense wide

bandwidths while sampling below Nyquist rate.

Both energy detection and compressive sensing are the two spectrum sensing

methods studied in this paper. Both methods are simulated and also implementation

using SDR. MATLAB and Python with GNU Radio toolbox are used for the simulations,

and the Universal Software Radio Peripheral (USRP) SDR platform is used for

implementation. Practical limitations of both methods are discussed and compared.

Chapter 2 discusses cognitive radio and some of its key characteristics. Chapter 3

then discusses spectrum sensing for cognitive radios as a multi-dimensional problem as

well as some common spectrum sensing methods. Chapter 4 discusses SDR as the flexible

technology that enables these methods to be implemented and tested. Chapter 5

discusses energy detection in greater detail, as well as the simulation and implementation

results for energy detection. Chapter 6 discusses compressive sensing and its application

to communications systems. Chapter 6 also discusses the simulation and implementation

results for compressive sensing. Chapter 7 then concludes this report and discusses some

ideas for future work.
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CHAPTER 2

COGNITIVE RADIO

2.1 SPECTRUM SHARING METHODS

The wireless radio spectrum is a resource that has seen a significant increase in usage

over the past few decades. Regulatory agencies such as the Federal Communications

(FCC) in the United States are responsible for determining by whom and for what a

given frequency band is used. Currently, frequency bands are divided up, and certain

users or companies are given licenses by the FCC to transmit and receive in a given

frequency band for a specific purpose. For instance, there are frequency bands that are

used for cellular phones, satellites, marine radio, aviation radio, military communications,

AM/FM Radio etc. Any usage in a frequency band by an unlicensed user is illegal, and

the unlicensed user could face penalty of law.

This methodology has some inherent flaws. Some frequency bands are heavily

utilized and face overcrowding, while some frequency bands are underutilized [1]. The

utilization of frequency bands varies over different time slots and also varies across

different geographic areas. For instance, marine radio bands are not utilized in geographic

areas without large bodies of water, while cellular bands are very heavily utilized in

populated areas. Figure 2.1 shows a plot of the average spectrum usage in Chicago and

New York City. As seen in the plot, the frequency utilization is very uneven, some bands

are very crowded while others are underutilized. An emerging technology called Cognitive

Radio sets out to resolve this problem and make the frequency utilization more efficient.

2.2 INTRODUCTION TO COGNITIVE

The term Cognitive Radio was first coined by Joseph Mitola [2]. The FCC has

defined it as follows,“A cognitive radio is a radio that can change its transmitter

parameters based on interaction with the environment in which it operates.” [3] In other
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Figure 2.1. Spectrum occupancy in Chicago and New York City [1].

words a cognitive radio is a thinking radio that can sense its electromagnetic environment

and then dynamically change its operating parameters to utilize the available wireless

spectrum around it.

The purpose of this technology is to balance out the utilization of the wireless

spectrum. This will in turn support more users with more wireless technologies. This is

done by exploiting underutilized bands of the wireless spectrum. A user that is licensed

or has higher priority to use a specific portion of the spectrum is called a primary user.

An unlicensed user or a user with lower priority on a portion of the spectrum is called a

secondary user. The secondary user utilizes cognitive radio technology to sense the

presence or absence of primary users on a given frequency band, this is called spectrum

sensing. If the primary user is present, the secondary user does not use the band to avoid

causing interference to the primary user. If the primary user is not present, the secondary

user adapts its operating parameters to utilize the given band, this is called resource
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allocation. If the primary user returns to the band, the secondary user must vacate the

band or adapt its operating parameters to avoid causing the primary user interference.

Hence, the two main processes that a cognitive radio uses to exploit a frequency band are

spectrum sensing and resource allocation.

2.3 SPECTRUM SENSING

Spectrum sensing is the process of determining whether or not a primary user is

present in a given frequency band. When a frequency band is vacant, it is called a

spectrum hole. Spectrum sensing sets out to determine where these holes are located.

This process can be done with various methodologies that are discussed in greater detail

in chapter 3.

Spectrum holes can occur in multiple dimensions. Some example dimensions where

spectrum holes may exist are time, space, frequency, power, and code. For example a

spatial hole comes about when a primary user is not present within a geographic area, or

is far enough from a secondary user that the secondary users transmission will not cause

the primary user interference. A temporal hole comes about when a primary user is not

transmitting in a specific time slot. The secondary user then senses the absence of the

primary user in time, and then exploits the vacant channel. In both scenarios it is

imperative that secondary user can sense the return of the primary user so as to not cause

them harmful interference.

2.4 RESOURCE ALLOCATION

Resource allocation in cognitive radio networks aims to minimize utilization of

wireless resources while maintaining quality of service requirements [4]. Some common

methods of doing so are power control, rate adaption, and optimizing various parameters

using optimization methods. Past primary user behavior can also be taken into account

in order to predict their future behaviour.
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Resource allocation in cognitive radio networks differs from standard wireless

networks in a few ways. In cognitive radio networks the available spectrum resources can

fluctuate and vary within different areas of the cognitive radio network whereas in

standard wireless networks the spectrum resources generally remain static. In addition to

the secondary users, the primary users activity must also be taken into account. Power

control is more important in cognitive radio networks because spatial reuse can allow for

more users. [5]

Advanced resource allocation schemes use optimization techniques such as linear,

non-linear, and dynamic programming [4, 6]. This is often done in a centralized manner

which allows for greater computational complexity, however, this poses some network

overhead cost and poses greater challenges to implementation. Some common objective

functions are average data rate, throughput, and spectrum use efficiency. Some common

constraints are hardware limitations, overall transmit power, minimum rate, and channel

limitations [7].

2.5 COGNITIVE RADIO APPLICATIONS

Cognitive radio has some very important areas of application in todays world as well

as looking into the future. Some of the immediate applications areas are TV white spaces,

military use, and emergency response and public safety.

Effective communication is imperative for the next generation warfighter. Military

forces must be able to communicate with multiple units that often require the use of

many different radios with varying operating parameters to communicate. A software

defined radio using cognitive radio technology can consolidate their communications needs

into a single portable radio. Militaries have already invested in the development of this

technology. [8]

Emergency responders must be able to communicate in extreme environments.

Cognitive radio technology can enable first responders to effectively communicate with
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each other and with survivors. The current communication infrastructure cannot

currently meet the future demand [9].

Cognitive radio technology is already in use for exploiting TV white spaces. TV

white spaces are unused frequencies between TV broadcasting channels that are used as a

guard band. There are also unused frequencies that have recently become available due to

the switch from analog to digital TV broadcasts. Cognitive radio technology is used to

allow unlicensed users access to these bands for various purposes, such as the IEEE

802.22 protocol which sets out to create a standard for using TV white spaces for

providing broadband access to rural areas [11].
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CHAPTER 3

SPECTRUM SENSING

Spectrum Sensing is the process determining the presence or absence of a primary

user. In order for a cognitive radio to be effective it must be able to operate without

causing interference to a primary user. In this way spectrum sensing is the most

important aspect of a cognitive radio because it determines the presence of the primary

user, and it also must be able to detect the return of the primary user. This section will

discuss the challenges of spectrum sensing as a multidimensional problem, and also the

tradeoffs and methods of implementing spectrum sensing schemes for cognitive radio

applications.

3.1 SPECTRUM SENSING IN MULTIPLE DIMENSIONS

Spectrum holes can appear in various dimensions. Each dimension has challenges to

implementation and methods of overcoming these challenges. The primary three

dimensions a spectrum hole may appear are time, space, and frequency. Other possible

dimensions are the code and angle dimensions [12]. This paper will focus on some of the

methods of finding spectral opportunities in the primary three dimensions.

3.1.1 Temporal Holes

As introduced in 2.3, a temporal hole is a spectrum hole in time, or determining

when a primary user is absent in a certain slot of time. A temporal hole can be detected

using either a single or dual radio configuration [12]. In a single radio configuration, the

cognitive radio allocates a certain slot in time for sensing and the other portion of the

time for transmitting. This limits the sensing accuracy, whereas a primary user may

return and will not be immediately detected. It also decreases the spectrum utilization

because a portion of the available time slot is spent sensing.
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The other configuration is a dual radio configuration, where a cognitive radio can

transmit and sense simultaneously. The drawback to this configuration is the increased

hardware and power consumption, however, it increases the sensing accuracy and

spectrum efficiency. Many methodologies [13], [14], [15] have set out to optimize the

sensing time to create a balance between sensing time and detection accuracy.

3.1.2 Opportunities in Frequency Domain

A cognitive radio must be able to adaptably detect spectrum holes in the frequency

domain. Since a primary user can return at any time and at any frequency, it should be

able to efficiently detect a wideband of frequencies and accurately determine the presence

and location of a primary user within the band, giving it the flexibility to quickly move

from channel to channel when needed. This poses a challenge for hardware

implementation.

The bandwidth a receiver can accurately sense is governed by Nyquist sampling

theorem (see section 3.2.1). Detecting a wide band of frequencies requires a high rate

ADC or a low rate ADC that must sequentially cycle through narrow bands one by one to

detect a larger band. The high rate ADC can be expensive and require a large amount of

power. The sequential method takes a longer amount of time which can reduce overall

spectral efficiency and is also less accurate because a primary users activity may change

while the channel is not being sensed. Other novel methods of sensing a wideband at a

rate lower than the Nyquist rate are discussed in sections 3.3. Figure 3.1.2 shows how a

cognitive radio can adaptively shift between spectral holes in both the time and frequency

domain.

3.1.3 Opportunities in the Spatial Domain

Spectral opportunities can also become available in the spatial domain when a

certain channel frequency is not utilized within a geographic area. This occurs from the
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Figure 3.1. Channel hopping in the time and frequency domain [12].

signals propagation loss when transmitted over relatively large distances or geographic

obstructions within a signal’s path that degrade the signal. One of the challenges

associated with this type spectral opportunity is called the hidden primary user problem.

Figure 3.2 illustrates this. It occurs when a primary user transmitter is out of range of

the secondary user receiver, and the primary user receiver is within the range of the

secondary user transmitter or base station. The secondary users transmission causes the

primary receiver costly interference.

One solution to this problem is to use cooperative sensing schemes [16], [17], [18],

which allows secondary users to communicate spectral information to one another. One

challenge to cooperative sensing is the network overhead cost and the cooperation

amongst secondary users that is needed in order for them to communicate with one

another.

3.2 NYQUIST RATE SENSING METHODS

The following section outlines some of the common methods used for spectrum

sensing that adhere to Nyquist sampling theorem. One of the major differences between

these methods are whether or not information about the signal needs to be known prior

to detection.
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Figure 3.2. Hidden primary user problem.

3.2.1 Nyquist Sampling Theorem

According to Nyquist Sampling Theorem, in order for a signal to be fully recovered

it must be sampled at or above the Nyquist frequency, fs, which is

fs > 2B, (3.1)

where B is the signal bandwidth.

3.2.2 Matched Filter

When the secondary user knows what type of signal the primary user is

transmitting, the optimum detection method is matched filtering [19]. Using matched

filtering takes a short period of time for the signal to be detected and also produces a low

probability of false alarm [19]. However, in order for the secondary user to use matched

filtering, it must demodulate the signal, which requires knowledge of its frequency and

modulation type. Matched filtering is often impractical because this information may not

always be known. For a cognitive radio, it may also require a receiver with algorithms or

hardware to detect many different modulation schemes which is costly in terms of

hardware, power consumption, and complexity.
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3.2.3 Energy Detection

Energy detection is the most widely used method of spectrum sensing due to its

computational simplicity and ease of implementation compared to other methods [9].

Energy detection operates by sampling a signal and then computing the energy of the

received samples, it then compares the signal energy to a pre-determined threshold to

determine the presence or absence of a signal. Hence, no knowledge of the signal of

interest is required for energy detection.

The uncertainty of noise power limits the performance of energy detection [19]. In

low SNR environments, when the primary user signal falls near or below the noise floor,

the performance of energy detection suffers even when the sensing duration is increased.

This is called the SNR wall limitation. Many variations on the energy detector exist,

such as differential energy detection [20], and an improved energy detection algorithm in

[21]. However these methods increase computational complexity and in [21] require a

priori knowledge of the noise power. Chapter 5 discusses the energy detection algorithm

in greater detail and presents the simulation and implementation results.

3.3 WIDEBAND SENSING METHODS

3.3.1 Compressive Sensing

Compressive sensing aims to allow signal recovery by solving a system of

under-determined equations. It does this by exploiting the sparsity of a signal in a

particular domain, and solving a convex optimization problem. Compressive sensing has

many applications, from astronomy to image processing. The main application for

communications systems, is for recovering wide-band signals at sub-Nyquist rates.

Normally, in order for a signal to be fully recovered it has to be sampled at or above the

Nyquist frequency.

Sampling wideband signals becomes challenging when using conventional Analog to

Digital Converters (ADC). Based on Nyquists theory a signal must be sampled at twice
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the bandwidth of a signal. In wideband applications the bandwidth is large and hence the

sampling rate must be twice this. This is often not practical or too expensive using

conventional ADC due to the very high sampling frequency [22]. For example if a signal

with a bandwidth of 1 GHz is to be sampled, an ADC would need to sample at 2 GHz.

One challenge to the implementation of compressive sensing is the fact that the

measurements need to be taken at random. It is somewhat impractical and difficult to

implement an ADC that does not sample at a constant rate. Regardless of how many

samples are taken, the minimum time between samples in an ADC will be limited.

3.3.2 Filter Bank Spectrum Sensing

Other wideband sensing methods [23], [24], aim to split up the signal into many

smaller sub-bands using multiple bandpass filters, called filter banks. This requires a

large amount of hardware which can be impractical to implement and expensive. These

methods may also require multiple ADC’s to sample each band which can cause a large

amount of power consumption.
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CHAPTER 4

SOFTWARE DEFINED RADIO

4.1 INTRODUCTION TO SOFTWARE DEFINED RADIO

A software defined radio (SDR) is a radio that performs a large portion of the signal

processing using software rather than hardware. Typically, a radio utilizes specialized

hardware (mixers, amplifiers, modulators, demodulators) in order to process a signal [25].

There are many applications and advantages of using SDR. One of the biggest advantages

is its reconfigurability. Where some radios may become out of date due to the use of

newer communication protocols or out of date hardware, the reconfigurability of a SDR

can allow a radio to simply update its software in order to keep up to date with a newer

protocol in use. This can be especially useful when a communication system is part of a

larger system such as an airplane or vehicle. Rather than having to replace expensive

hardware to meet new communications demands, a software update can be a quick and

easy fix.

Another application of SDR is for academic and research use. An efficient SDR can

support many different communication protocols, which makes it a great learning tool.

SDR is also useful for research, because researchers can quickly implement and test

existing or experimental communication protocols using SDR. All of these characteristics

make SDR’s an ideal candidate for the testing and implementation of cognitive radio

technology.

4.2 USRP

The Universal Software Radio Peripheral (USRP) is a software defined radio

platform produced by Ettus Research. The USRP is widely used in academic and

commercial environments due to its relatively low cost and ease of use. Most of the

USRP’s have the ability to interface with a computer and utilize open source or widely
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used commercial software packages such as GNU Radio, Lab View, or Simulink. This can

turn a USRP and a computer into a high bandwidth radio.

The various USRP models follow a similar architecture, they all contain a flexible

RF frontend for analog operations such as filtering and up/down conversion. The RF

frontend connects to a motherboard that contains an ADC/DAC, FPGA, and an interface

to connect with the host computer processor. Most of the high frequency digital signal

processing such as digital filtering, interpolation, and decimation is done using the FPGA.

Depending on the model, the USRP connects to the host computer in different ways.

Some models use USB 2.0 or 3.0, there are network connected models that use ethernet,

and some models contain an embedded processor with a built in Linux environment.

All of the models aim to do all of the waveform specific signal processing such as

modulation and demodulation using the host processor. All of the analog RF and general

purpose IF band processing such as analog/digital conversion or filtering, up/down

conversion, decimation, and interpolation is done using the RF frontend and the USRP

motherboard.

All of the USRP’s use a driver software package called USRP Hardware Driver

(UHD) that is compatible on Linux, Windows, and Mac. UHD contains functions for

controlling all of the major parameters on the USRP such as gain, frequency, sample rate

etc. UHD can easily work with software packages such as GNU Radio (section 4.3.1),

LabView, or simulink, which in combination with a USRP and UHD, create a high

bandwidth software radio [26].

4.2.1 USRP B210

The USRP used for the experimentation in this paper is the USRP B210. The B210

is a fully integrated single board. The RF front end consists of an AD9361 RFIC chip

made by Analog Devices. This provides coverage from 70 MHz-6 GHz with up to 56 MHz

of real time bandwidth. The RFIC chip also contains a flexible rate 61.44 MS/s ADC and
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DAC with 12 bit resolution. The board also features a Xilinx Spartan 6 FPGA that is

fully reconfigurable. The B210 is fully bus powered and interfaces with a host computer

using high speed USB 3.0 that can provide up to 61.44 MS/s data transfer rate in one

direction. The B210 has 2 transmit and 2 receive channels which are capable of operating

in full-duplex mode simultaneously.

The B210 is the first USRP model to offer USB 3.0 compatibility and is also the first

to be fully integrated onto a single bus powered board. This gives it portability and data

rates comparable to Ethernet making it ideal for experimentation. The B210 is currently

only supported by the latest version of UHD, which only has support on Linux and Mac.

The experimentation in this report was all performed using Ubuntu and Debian systems

with the GNU Radio software package.

4.3 GNU RADIO

For the experimentation in this paper, the software package used by the host

computer is GNU Radio. GNU Radio is a free and open source software package that

provides signal processing blocks used in the implementation of software radios. The

software can run stand alone for simulation, or interfaced with hardware to create a

software defined radio system.

4.3.1 GNU Radio Functionality

When interfaced with the USRP, GNU Radio collects or sends streams of digital

data to and from the USRP. The digital data is processed using GNU Radio with built in

signal processing “blocks”. These “blocks” are written in C++ and perform the critical

signal processing functions such as modulation, encoding, filtering etc. GNU Radio

programs are typically written in Python. The user can then tie together the necessary

C++ blocks as well as any other data processing in a Python script. This allows users to

quickly create and configure a program [26].
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GNU Radio also has the functionality to plot data in real time. These functions can

easily be tied into a user’s Python program. GNU Radio also contains a graphical user

interface called GNU Radio Companion (GRC) which allows user to graphically connect

together signal processing blocks, plotting functions, and file operations. The GRC then

automatically compiles a Python script that connects and executes the program.
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CHAPTER 5

ENERGY DETECTION SIMULATION AND IMPLEMENTATION

In this section energy detection is simulated, then implemented and tested. The

simulations are done using Monte Carlo trials in MATLAB. The algorithm is then

implemented using Python and Gnu Radio with the USRP. The energy detector’s

performance is evaluated under varying conditions. The effect of increasing or decreasing

the sensing time is analyzed, as well as the performance in different SNR environments.

5.1 ENERGY DETECTION PROBLEM FORMULATION

Energy detection is the most widely used method of spectrum sensing due to its

computational simplicity and ease of implementation compared to other methods [9].

Energy detection operates by sampling a signal and then computing the energy of the

received samples, it then compares the signal energy to a pre-determined threshold to

determine the presence or absence of a signal. Hence, it does not require any prior

information about the primary user signal.

For a received signal y(n), energy detection decides between two hypotheses

y(n) =


s(n) + w(n) : H1,

w(n) : H0,

(5.1)

where s(n) is the primary user signal, and w(n) is additive white Gaussian noise

(AWGN). Thus, hypothesis H1 implies the presence of the primary user signal, and H0

implies the absence of the primary users signal.

The decision statistic, T (y), used for energy detection is the energy of the received

samples, which is

T (y) =
1

N

N∑
n=1

|y(n)|2 , n = 1, ..., N − 1 , (5.2)
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where N is the number of signal samples taken. The decision statistic is then compared

to a threshold, γ. The hypothesis test for energy detection is then

if


T (y) > γ decide : H1 .

T (y) < γ decide : H0 .

(5.3)

The most important performance metrics for the detection algorithms are the probability

of detection PD, and the probability of false alarm PF . The probability of detection is the

probability of accurately detecting the presence of a signal, and can be formulated as

PD = Pr(T (y) > γ |H1) . (5.4)

The probability of false alarm, is the probability of incorrectly deciding H1 (primary user

present) when the primary user is actually absent. It can be formulated as

PF = Pr(T (y) > γ |H0) . (5.5)

PD should be maximized to ensure the best chance of accurately detecting the signal,

while PF should be kept as small as possible to minimize missed spectrum use

opportunities. PD and PF can be optimized by adjusting the value of the decision

statistic.

A bandpass filter is typically placed before the energy detector to remove any out of

band components and prevent them from contributing to the decision statistic. When

there is no bandpass filter, the FFT with a windowing function is typically used to help

filter out any out of band components. The decision statistic for energy detection then

becomes

T (y) =
1

N2

N∑
k=1

|Xf (k)|2 , (5.6)

where |Xf (k)| is the magnitude of the N point FFT bins of y(n).

The uncertainty of noise power limits the performance of energy detection [19]. In

low SNR environments, when the primary user signal falls near or below the noise floor,
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the performance of energy detection suffers even when the sensing duration is increased

[9]. This is called the SNR wall limitation. This may lead to a high PF or a low PD.

5.2 ENERGY DETECTION SIMULATION

In order to simulate the energy detector algorithm, Monte Carlo trials were used.

The threshold value, γ, is swept through a range of values. M simulations are then done

at each threshold value. The presence and absence of the primary user signal is fluctuated

by generating a random stream of zeroes and ones, and then multiplying this stream by

the primary user signal, thus acting as a switch turning on or off the primary user signal.

The probability of detection and probability of false alarm are then calculated based on

the results.

The primary user signal is represented by a Gaussian random signal with zero mean,

variance of σs. The noise is represented by a Gaussian random noise with zero mean and

variance of σn. The SNR is then swept through a discrete range of values, and the PD vs.

γ, PF vs. γ, and PD vs. PF are then plotted for each SNR value. The SNR for each case

is given by

SNR = 10 ∗ log10
σs

σn

. (5.7)

The SNR is value is modified in these simulations by changing the variance of the noise.

The number of samples, N , used to compute each decision statistic is held constant at

N = 128. The number of Monte Carlo trials done at each point is M = 80000.

Figure 5.1 shows the PD vs. PF plot for each SNR value used. It is easily seen from

the plot that as the SNR increases, the detection probability increases and the probability

of false alarm decreases. Figure 5.2 and figure 5.3 shows the plot PD vs. γ and PF vs. γ

respectively. As the SNR decreases, the threshold required to achieve a certain PD or PF

is increased.

The SNR is then held constant at -3 dB, and the number of samples, N , used in each

computation of the decision statistic is then swept through six discrete values to show the
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Figure 5.1. PD vs. PF at different SNR.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
d

 

 

SNR = 0.25 dB

SNR = 0 dB

SNR = −1 dB

SNR = −1.5 dB

SNR = −3 dB

Figure 5.2. PD vs. threshold at different SNR.
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Figure 5.3. PF vs. threshold at different SNR.

effect of increasing the sampling time. PD vs. γ, PF vs. γ, and PD vs. PF are then

plotted for each value of N . In practice the sampling time, τ , is given by

τ =
N

fs
, (5.8)

where fs is the sampling frequency. Thus an increase in N correlates to an increase in the

sampling time.

Figure 5.4 shows the PD vs. PF for different values of N , with the SNR fixed at -3

dB. As shown in the plot, a higher sampling time yields an increase in the PD and a

decrease in PF . Figure 5.5 and figure 5.6 shows the PD vs. δ and PF vs. δ plots

respectively, for varying values of N . An increase in N corresponds to an increase of the

slope of the corresponding plot. At low SNR, increasing the sampling time will increase

the sensing accuracy. The least accurate result from figure 5.1 is when the SNR is equal

to -3 dB and N is fixed at 128 samples. Figure 5.4 shows that when N is increased to

1024 from 128, it results in a drastic increase in sensing accuracy.
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Figure 5.4. PD vs. PF at different values of N .
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Figure 5.5. PD vs. threshold at different values of N .
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Figure 5.6. PF vs. threshold at different values of N .

When the SNR is very low, the increase in sensing time will yield only a small

increase in sensing accuracy. This is called the SNR wall problem for the energy detector.

Figure 5.7 shows the PD vs. PF plot when the SNR is -6.43 dB, and N is stepped from

128 samples up to 4096 samples. When 4096 samples are used, PD does not go above 0.9

and the PF does not fall below 0.1. A PD below 0.9 and PF above 0.1 is likely

unacceptable for most purposes.

In practice, increasing the sensing time introduces a tradeoff. In a single radio

configuration, if a radio is sensing, it is wasting an opportunity to be utilizing a spectrum

hole. In a dual radio configuration, increasing sensing time will increase the amount of

power used by cognitive radio. When a wide band needs to be sensed, an energy detector

may need to sequentially cycle through narrow bands in order to cover a large bandwidth.

This causes an increase in overall sensing time.
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Figure 5.7. PD vs. PF demonstrating the SNR wall limitation for energy detection.

5.3 ENERGY DETECTION IMPLEMENTATION

In order to implement the energy detector, GNU Radio and the USRP software

defined radio platform were used. Energy detection implementation is studied in [27],

[28]. The results in this report focus on the performance at different SNR.

5.3.1 Receiver

The receiver was constructed using a USRP B210 connected to a laptop. The energy

detection is done using a GNU Radio program written in Python. The energy detector is

implemented using equation 6. The energy detection program written for theses

experiments is a modification GNU Radio’s usrp spectrumsense.py program that outputs

the magnitude squared of the FFT points. The energy detection program then computes

the decision statistic and compares it to a threshold. The program cycles through a

specified range of threshold values, and computes M decision statistics at each threshold
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value. The program outputs a file with the corresponding probability of detection or false

alarm at each threshold value.

5.3.2 Transmitter

A USRP B100 and a laptop computer were used to construct the transmitter in

these experiments. The laptop utilizes the GNU Radio Companion (GRC), which is a

graphical user interface provided with GNU Radio that allows users to quickly build a

software defined radio system. GRC is used to construct a system that transmits a BPSK

modulated waveform centered at 1.5 GHz and/or white Gaussian Noise. The USRP’s are

connected together using an SMA cable. Since very little noise is present in this

configuration, an artificial noise source is added at the transmitter side to produce a lower

SNR environment. Figure 5.8 shows experimental setup used for the experimentation.

Figure 5.8. Experimental setup.

5.3.3 Experimental Results

The implemented energy detector is tested using a method similar to that of the

simulations. Rather than cycling the primary user signal on and off, the noise only and

signal plus noise cases are tested individually.

The transmitter first transmits the simulated noise only, so the receiver receives the
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simulated noise plus the small amount of channel noise. The program cycles through

threshold values and computes M = 1000 decision statistics at each threshold value. The

PF for that threshold value is then computed by dividing the number of times the

received energy was greater than the threshold divided by M .

PD is then computed by transmitting the signal plus the noise. The program again

computes M = 1000 decision statistics at each threshold value. PD is then calculated by

dividing the number of times the received energy was greater than the threshold divided

by the M .
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Figure 5.9. PD vs. PF at different SNR.

PD is computed at three separate signal strengths. Figure 5.9 shows the plot of PD

vs. PF for each of the three SNR’s. As expected the detection becomes more accurate as

the SNR increases. Figure 5.10 and figure 5.11 show PD vs. γ and PF vs. γ respectively.

The plot of PF vs. γ shown in figure 5.11 remains relatively stable regardless of the

SNR. This is because the noise level is not changed for the implementation experiments.

As the signal SNR is increased, the PD vs. γ curves shift to the right, meaning a

higher threshold is needed to obtain a certain PD. This is the opposite of figure 5.2 which

was obtained during the simulations. This is because in the simulations, the noise was
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increased rather than the signal strength. An increase in noise corresponds to a decrease

in SNR, however, it results in overall larger received energy and decision statistic. In the

case of the implementations, an increase in signal strength increases the SNR and the

total received energy or decision statistic, which results in the need for a higher threshold

value.
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Figure 5.10. PD vs. γ at different SNR.
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CHAPTER 6

COMPRESSIVE SENSING SIMULATION AND IMPLEMENTATION

In this section, compressive sensing theory is discussed in detail. The performance

and some of the limitations to compressive sensing for communications systems are then

analyzed through simulation and implementation. The simulation is done using

MATLAB and Python. The implementation is done using USRP’s.

6.1 COMPRESSIVE SENSING PROBLEM FORMULATION

Compressive sensing sets out to exploit the sparseness of a signal in a certain domain.

A signal is said to be k-sparse if it has at most k nonzero elements. For instance a

discrete signal of interest, z, may have sparse representation in the basis Ψ. Thus making

x = Ψz , (6.1)

where x is the sparse representation of z in the domain of Ψ. A wideband signal is often

sparse in the frequency domain or in other words it has relatively few non-zero frequency

components [29].

Based on the theory given in [30], compressive sensing allows an undetermined

system of equations,

y = Ax , (6.2)

to be solved. Where y is a set of measurements of the signal of interest, z, and x is a

k-sparse unknown matrix representing z in the domain of Ψ, and A is an encoding or

sampling matrix. The matrix A is an m x n matrix, matrix y has n elements, and the

matrix x has m elements where n << m. Hence, there are far fewer samples in y than

there are values in the undetermined matrix x. Solving x initially seems impossible,

because there are many more unknowns than known variables. However it has been

proven in [30] the underdetermined system can be solved that if the matrix A meets
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certain requirements, and the matrix x is sparse, the system can be solved.

The matrix x can be recovered by finding the sparsest matrix x that solves the

system, meaning that the solution with the fewest nonzero elements in a particular

domain solves the underdetermined system of equations. The sparsest solution is found

by minimizing the l0-norm as follows,

min∥x∥l0 s.t. Ax = y . (6.3)

Hence it finds x such that it contains the least amount of non-zero elements. However, it

has been found that finding the l0-norm is not computationally feasible, so the l1-norm

can be found instead, which is a convex optimization problem that can easily be solved

using methods readily available [29]. The problem is then

min∥x∥l1 s.t. Ax = y . (6.4)

If the desired signal is sparse in a certain domain, typically frequency for communications

systems applications, the samples must be taken in a different domain, typically time.

This is an important mixing property. As stated by Terrence Tao, the measurement

matrix must mix up all the basis vectors of data together.

In order for the above computation to successfully recover x, the matrix A must

meet the restricted isometry property (RIP) which was introduced in [31]. The RIP

constraint states that there must exist a constant δs, such that

(1− δs)∥x∥2l2 ≤ ∥Ax∥2l2 ≤ (1 + δs)∥x∥2l2 . (6.5)

The RIP says that the matrix A preserves the distance between any two k-sparse vectors,

when they are mapped to the lower dimension of A. As determined in [32], determining if

a matrix A satisfies the RIP is difficult, and thus it has been shown that there are three

types of matrices that have a high probability of satisfying the RIP. The first type is a

sub-gaussian matrix where all of the elements are i.i.d. Gaussian distributed, the second
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case is a Bernoulli matrix where all of the elements are i.i.d. binary distributed, and the

third case is when the matrix A is a random Fourier sub-matrix. Hence in the third case,

A can be random rows of a Fourier matrix. In communications applications of compressed

sensing, this is the most useful case.

In the presence of noise the problem can be adapted to solving y = Ax+ e, where e

is the error term. The problem is then formulated as:

min∥x∥l1 s.t. ∥Ax− y∥l2 ≤ ϵ , (6.6)

where ϵ is the magnitude of the error vector. In the presence of noise, the signal will

contain many small but non-zero entries, however it has been shown in [30] that the

sparsest solution is still recoverable in the presence of noise.

6.2 COMPRESSIVE SENSING SIMULATIONS

Compressive sensing theory is then applied to sparse signals in the frequency

domain. Section 6.2.1 uses MATLAB to analyze examine the ability of compressive

sensing to recovering signals in the time domain. Section 6.2.2 focuses on signal recovery

in the frequency domain using Python and GNU Radio.

6.2.1 Compressive Sensing for Time Domain Recovery

Compressive sensing is applied to a simulated signal in a noiseless environment to

examine its operation. In order to apply compressive sensing to the noiseless signal, the

optimization problem of equation 3.11 must be solved, where the vector x with the

smallest l1-norm is found. This is a basis pursuit problem, which is solved in these

scenarios using l1-Magic from [33].

The simulated signal to be recovered is the summation of three sinusoids with

frequencies of 1 kHz, 1.9 kHz, and 3.95 kHz at amplitudes of 1, 0.4, and 0.7 respectively.

The signal is sampled at 8.192 kHz, and then plotted in both the time domain and the
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frequency domain, shown in figure 6.1 and figure 6.2 respectively. From the figure, the

signal is clearly sparse in the frequency domain, consisting of just three sinusoidal spikes,

and the rest of the components are zero over a bandwidth of 4.096 kHz. In the time

domain the signal is very densely populated with non-zero elements. Hence, in order to

recover this signal with compressive sensing, the signal must be randomly sampled in the

time domain, in order to recover the sparsest possible frequency domain representation of

the samples, which corresponds to the vector x. The length of the original signal is
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Figure 6.1. Original Signal FFT.

m = 8.192k samples. Since the signal is sparse in the frequency domain, random rows of

the inverse DFT matrix are used as the measurement matrix, A. The selected rows

correspond to the random sample in the time domain, i.e. if sample 2 of the m samples is

chosen in the time domain, row 2 of the mxm inverse DFT matrix will be used in the

order that they are selected. In order to fully recover the sparse vector x, n = 1024

random samples of the time domain signal are taken. This yields an overall compression

ratio of 0.2.

Compressive sensing is applied to the original time domain signal. The recovered

signal in the frequency domain is shown in figure 6.3. The inverse FFT can be applied to
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Figure 6.2. Original Signal FFT.

the frequency domain signal to recover the time domain signal which is shown in figure

6.4. As seen from the figures, compressive sensing is able to accurately recover the signal

in both time and frequency domain using only 1024 samples.
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Figure 6.3. FFT of recovered signal.
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Figure 6.4. Recovered Signal.

6.2.2 Compressive Sensing for Frequency Domain Recovery

The result in section 6.2.1 shows the ability of compressive sensing to recover a

sparse signal in the frequency domain, and then apply the inverse Fourier transform in

order to recover the original time domain signal. The time domain signal is not always

needed. A cognitive radio typically does not need to decode the signal, as discussed in

section 3, it just needs to know which frequencies are being occupied. Thus, for the

duration of this study, the focus is on the performance and limitations for recovering

noisy signals in the frequency domain.

In order to simulate compressive sensing in varying SNR environments a program is

written in Python that utilizes GNU Radio signal processing blocks. The blocks are used

to generate a sparse signal in the frequency domain, and then collect and store m samples

to a vector. The Python program then applies compressive sensing to the data stored in

the vector.

The Python program applies compressive sensing following a similar setup to that

used in 6.2.1. The measurement matrix, A, is again constructed by selecting the
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corresponding n rows of the inverse FFT matrix. In the presence of noise, the

compressive sensing problem is reformulated as given in equation 6.6. The l1-norm is still

minimized, however the problem is now constrained by the l2-norm of Ax− y being

smaller than a constraint, ϵ. An adequate value of the constraint is given in [30] as

ϵ2 = σ2(n+ λ
√
n) , (6.7)

where σ2 is the noise standard deviation, and λ is a constant. For the results in this

paper, λ = 2. In order to recover the signal, a Python CVX l1minimization solver in

Python from [34] is used.

The setup of the experiment to study the compressive sensing at varying SNR is as

follows. A sparse frequency domain signal is created by generating and adding two

sinusoidal signals with frequencies of -10 kHz and 12 kHz, each with an amplitude of 1.

Gaussian random noise is also added to the signals to simulate different SNR values. The

SNR is varied by changing the Amplitude/standard deviation of the noise source. The

SNR is calculated in this study using

SNR = 20 log10
ASignal

ANoise

, (6.8)

where ASignal is the amplitude of the sinusoids, and ANoise is the amplitude or the

standard deviation of the noise source. Hence ANoise = σ. The sampling rate used is 32000

complex (IQ) samples per second. Based on Nyquist theory this results in a detectable

bandwidth of 32 kHz, spanning from -16 kHz to 16 kHz. Figure 6.5 shows a block

diagram in GRC used to generate the signal and collect the samples for the simulations.

The size, m, of the original time domain signal, and the size of the recovered

frequency domain signal, x, is held constant at m = 1024 for this study. The number of

time domain samples, n, used to recover the signal was varied at values between 64 and

868 samples with the noise source disabled. The program was able to perfectly recover

the signal at all of the values. As the number of samples increased, the recovery time
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Figure 6.5. Simulation signal generation block diagram.

decreased. Thus, n = 512 was chosen as a good tradeoff between recovery time and

compression ratio.

With the m = 1024 and n = 512, compressive sensing is then applied to the signal at

different SNR values. The constraint for the l1 solver given in equation 6.7 is adjusted

accordingly for the noise variance in each scenario. The accuracy of the recovered

frequency domain signal is measured by computing and plotting the 1024 point FFT and

visually comparing it to the recovered frequency domain signal, and also analytically

comparing it to the recovered spectrum. This is done analytically by comparing the

percent error magnitudes of the FFT points at frequencies -10 and 12 kHz of the original

and recovered signal. The percent error is given by

Xf−error = 100 · |Xf−recovered −Xf−original|
Xf−original

, (6.9)

where Xf−recovered is the magnitude of the recovered point in the spectrum and Xf−original

is the magnitude of the original spectrum point at 10 or 12 kHz. The dynamic range is

also measured for 10 and 12 kHz to show its robustness to noise, which is given by

D.R.f = Xf−recovered −XNoise , (6.10)
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where XNoise is the magnitude of the largest noise component, and f corresponds to the

frequency of -10 kHz or 12 kHz.

Table 6.1 shows the results when compressive sensing is applied to the signal at

varying SNR with a 50% compression ratio. The recovery took approximately 90 seconds

for all of the scenarios. It should be noted that the recovered spectrum is compared to the

computed FFT of the spectrum in the presence of the respective amount of noise. Figure

6.6 and 6.7 show the original and recovered spectrum respectively when the SNR is 1.25.

Figure 6.8 and 6.9 shows the original and recovered spectrum respectively when the SNR

is -3.25 dB.

The largest resulting error for the range of SNR’s covered is 70.39% when the SNR is

-8.79 dB. This is relatively large, however the dynamic range is 278. Figure shows the a

plot of the recovered spectrum when the SNR is -8.79 dB. Based on the dynamic range

and as shown in the figure, the location of the spike can still easily be resolved.

Figure 6.6. Original spectrum with SNR = -1.94 dB.

Compressive sensing was applied in the same scenario with SNR values below -10.23
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Table 6.1. Compressive sensing performance with m = 1024 and n = 512.

Anoise, σ SNR (dB) X(−10kHz)error (%) X(12kHz)error (%) D.R. − 10kHz D.R. 12kHz

0 ∞ 0 0 1024 1024

50m 26.02 1.27 1.17 1009 1014

200m 13.98 5.69 5.73 960 971

500m 6.02 7.44 5.11 918 970

750m 2.50 9.51 10.23 939 909

1.0 0 7.78 18.50 893 839

1.25 -1.94 22.91 22.03 700 779

1.75 -4.86 27.39 31.84 680 673

2.25 -7.04 32.28 20.82 585 776

2.75 -8.79 70.39 51.67 278 534

3.25 -10.23 62.12 43.42 300 582
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Figure 6.7. Recovered spectrum with SNR = -1.94 dB and n = 512.

Figure 6.8. Original spectrum with SNR = -10.23 dB.
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Figure 6.9. Recovered spectrum with SNR = -10.23 dB and n = 512.

dB, however the signal was not able to be consistently recovered. At low SNR, the number

of samples used for signal recovery can be increased to increase the accuracy of the

recovered signal. The number of samples n is increased to 768 and compressive sensing is

again applied to recover the signal. Table 6.2 shows the results of the recovery at lower

SNR values. Increasing the number of samples results in an increase in overall recovery

time, the results in for n = 768 took approximately 140 seconds to recover the signal.

Figure 6.10 shows the recovered spectrum when the SNR is -3.25 dB, the accuracy is

greater than that of figure 6.9 when only 512 samples are used. With n increased to 768,

compressive sensing was able to accurately recover the spectrum down to -13.06 dB.

Figures 6.11 and 6.12 shows the original and recovered spectrum respectively at an SNR

of -13.06 dB. As the SNR falls, the overall accuracy decreases, however the location of the

spikes can be still be recovered. One possible way to recover the location of the spike in

practice, would be to apply energy detection to each FFT bin. With a dynamic range of

291, the energy detector would be able to detect the spike with high probability.
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Figure 6.10. Recovered spectrum with SNR = -10.23 dB and n is increased to 768.

Figure 6.11. Original spectrum with SNR = -13.06 dB.
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Table 6.2. Compressive sensing performance with m = 1024 and n = 768.

Anoise, σ SNR (dB) X(−10kHz)error (%) X(12kHz)error (%) D.R. − 10kHz D.R. 12kHz

3.25 -10.23 22.14 3.29 510 864

3.6 -11.13 20.58 25.62 469 603

4.0 -12.04 12.96 17.83 491 652

4.5 -13.06 26.26 30.42 291 453

Figure 6.12. Recovered spectrum with SNR = -13.06 dB and n = 768.

6.3 COMPRESSIVE SENSING IMPLEMENTATION

Compressive sensing is then implemented using the USRP’s. The experimental setup

is similar to that of the simulations. Two sinusoidal signals are transmitted, compressive

sensing is then applied at the receiving end.

A USRP B210 and an ultra wideband antenna that are connected to a laptop

computer acts as the receiver for these experiments. More information on the antenna
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can be found in [35]. The same Python program from the simulations is used to perform

the compressive sensing. The only major difference is that rather than generating the

signal using GNU Radio blocks, the USRP receives the signals wirelessly. This is

implemented into the program by adding a GNU Radio block that interfaces with the

computer with the USRP. The number collect, as well as the sampling and center

frequencies for the USRP are also done using GNU Radio functions.

The experiment is done in an anechoic chamber in order to use a transmitter with

known SNR. The experiment is done at relatively low transmission power, so the chamber

also provides isolation from outside interference, and also isolates the USRP transmission

from causing any harmful interference to other devices.

Since two sinusoidal signals are transmitted, two separate transmitters are used and

they each transmit one sinusoid. A USRP B210 connected to a separate laptop acts as

the first transmitter. A network analyzer signal generator and waveguide is used as the

second transmitter.

Figure 6.13. Experimental setup.
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The sampling frequency of the receiving USRP is set to 10.666667M complex (IQ)

samples per second. Hence, the bandwidth of the recovered spectrum is also 10.666667

MHz. For this experiment, the center frequency of the USRP is tuned to 4.996667 GHz.

The spectrum analyzer is tuned to transmit a continuous sinusoid at 5 GHz, and other

transmitting USRP is set to transmit a continuous sinusoid at 4.994667 GHz. Thus, the

transmitted signals are approximately 5.333 MHz apart. In the frequency domain the

signals will appear as two continuous spikes a 4.994667 GHz and 5 GHz.

Following the same setup as the simulations, m = 1024 samples are collected by the

receiving USRP and n = 512 samples are used to apply recover the signal. Figure 6.14

shows the FFT recovered spectrum of the collected samples from the USRP. A large spike

is present at the center frequency of the plot. The center frequency corresponds to a zero

baseband frequency, so the spike is due to a DC bias. Figure 6.15 shows the recovered

spectrum when compressive sensing is applied. The constraint is adjusted in order to get

more accurate results. 6.16 shows the recovered spectrum with a tighter constraint for the

solver.
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Figure 6.14. Original spectrum.

Figure 6.15. Recovered spectrum.
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Figure 6.16. Recovered spectrum.
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CHAPTER 7

CONCLUSION

Compressive sensing and energy detection are both viable detection methods when

no knowledge of the signal of interest is known. As shown from the results, the

performance of both is limited at low SNR. Compressive sensing uses far fewer samples

than that required by Nyquist sampling theorem, giving it the potential to accurately

recover a much wider bandwidth. Energy detection is simple and efficient with narrow

bands, however, for wide band sensing it requires high rate ADC’s or filter banks, which

take space and can be expensive.

The effectiveness of Python and GNU Radio for simulation and implementation was

demonstrated in this study. When a simulation is set up using Python and GNU Radio,

it can then be implemented to the USRP by just switching out a few blocks of code. This

can simplify designs and save time.

The USRP is an effective means of testing the performance of spectrum sensing

schemes. Having been the first work done on the USRP’s in the Telecommunications lab,

this work can serve as a guide for future students to build upon in the area of spectrum

sensing and or compressive sensing for cognitive radios. It can also serve as a guide to

help future students implementing and testing designs for other research topics. The

compressive sensing results can be expanded to study the recovery performance for

different types of signals with different levels of sparsity. The constraint can also be

varied to examine the tradeoff between recovery time and accuracy of the recovery. When

SNR is relatively high, it is likely that lowering the constraint will reduce recovery time,

while also lowering the recovery accuracy. The locations of the occupied frequencies

should still be able to be easily determined up to a certain point. Another wide band

detection method such as wavelet based detection or sparse fast Fourier transform can

also be a focus of future implementation.
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This study focused on using Python and GNU Radio for the USRP. Future work can

utilize the FPGA to implement custom designs onto the USRP. Custom programs can

also be implemented using C++ and GNU Radio rather than Python. This can allow

better performance and also make it easier for designs to be reused by building custom

C++ blocks that can then be reused in a Python script.

48



REFERENCES

[1] M.A. Mchenry, D. Mccloskey & D.Roberson, “Spectrum Occupancy Measurements

Chicago, Illinois November 16-18, 2005,” Dec. 20, 2005. [Online].

[2] J. Mitola; G.Q. Maguire, Jr., “Cognitive radio: making software radios more

personal,” Personal Communications, IEEE , vol.6, no.4, pp.13,18, Aug 1999

[3] Federal Communications Commission “Notice of Proposed Rule Making and Order,”

ET Docket No.03-322m Dec. 30, 2003

[4] Y. Tachwali; B.F. Lo,; I.F. Akyildiz, ; R. Agusti, “Multiuser Resource Allocation

Optimization Using Bandwidth-Power Product in Cognitive Radio Networks,”

Selected Areas in Communications, IEEE Journal on, vol.31, no.3, pp.451,463,

March 2013

[5] Jui-Chi Liang; Jyh-Cheng Chen, “Resource Allocation in Cognitive Radio Relay

Networks,” Selected Areas in Communications, IEEE Journal on , vol.31, no.3,

pp.476,488, March 2013

[6] L. Gao; P. Wu; S. Cui, “Power and Rate Control with Dynamic Programming for

Cognitive Radios,”Global Telecommunications Conference, 2007. GLOBECOM ’07.

IEEE, pp.1699,1703, 26-30 Nov. 2007

[7] Z. Han & K.J. Liu,“Resource allocation for wireless networks. Basics, techniques, and

applications”, New York: Cambridge University Press, 2008

[8] A. Feickert “The Joint Tactical Radio System (JTRS) and the Armys Future Combat

System (FCS): Issues for Congress,” CRS Report for Congress, November 2005

[9] L. Lu, X. Zhou, U. Onunkwo, G.Y. Li “Ten years of research in spectrum sensing

and sharing in cognitive radio,” EURASIP Journal on Wireless Communications and

Networking, 2012, 2012:28

[10] C. Stevenson, G. Chouinard, L. Z. Lei, W. Hu, S.J. Shellhammer, W. Caldwell,

“IEEE 802.22: The first cognitive radio wireless regional area network standard,”

49



Communications Magazine, IEEE, vol. 47, no.1, pp.130,138,January 2009

[11] C.S. Sum; G.P. Villardi; M.A. Rahman; T. Baykas; H.N. Tran; Z. Lan; C. Sun; Y.

Alemseged; J. Wang; C. Song; C.W. Pyo; S. Filin; H. Harada “Cognitive

communication in TV white spaces: An overview of regulations, standards, and

technology [Accepted From Open Call],” Communications Magazine, IEEE , vol.51,

no.7, pp.138,145, July 2013

[12] T. Yucek; H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio

applications,” Communications Surveys & Tutorials, IEEE , vol.11, no.1, pp.116,130,

First Quarter 2009

[13] W.H. Chung, “Sequential Likelihood Ratio Test under Incomplete Signal Model for

Spectrum Sensing,” Wireless Communications, IEEE Transactions on , vol.12, no.2,

pp.494,503, February 2013

[14] Y. Xin; H. Zhang; L. Lai, “A Low-Complexity Sequential Spectrum Sensing

Algorithm for Cognitive Radio,” Selected Areas in Communications, IEEE Journal

on , vol.32, no.3, pp.387,399, March 2014

[15] S.J. Kim; G.B. Giannakis, “Sequential and Cooperative Sensing for Multi-Channel

Cognitive Radios,” Signal Processing, IEEE Transactions on , vol.58, no.8,

pp.4239,4253, Aug. 2010

[16] A. Bagwari, G.S. Tomar, S. Verma, “Cooperative Spectrum Sensing Based on

Two-Stage Detectors With Multiple Energy Detectors and Adaptive Double

Threshold in Cognitive Radio Networks,” Electrical and Computer Engineering,

Canadian Journal of , vol.36, no.4, pp.172,180, Fall 2013

[17] K. Letaief, W. Zhang, “Cooperative Communications for Cognitive Radio

Networks,” Proceedings of the IEEE , vol.97, no.5, pp.878,893, May 2009

[18] Y.E. Lin, K.H. Liu, H.Y. Hsieh, “On Using Interference-Aware Spectrum Sensing for

Dynamic Spectrum Access in Cognitive Radio Networks,” Mobile Computing, IEEE

Transactions on , vol.12, no.3, pp.461,474, March 2013

50



[19] D. Cabric; S.M. Mishra; R.W. Broderen, “Implementation issues in spectrum sensing

for cognitive radios” Signals, Syst. and Comput. Conference, 2004

[20] Z. Ling-ling, H. Jian-guo, T. Cheng-kai, “Novel energy detection scheme in cognitive

radio,” Signal Processing, Communications and Computing (ICSPCC), 2011 IEEE

International Conference on , vol., no., pp.1,4, 14-16 Sept. 2011

[21] Y. Chen, “Improved energy detector for random signals in gaussian noise,” Wireless

Communications, IEEE Transactions on , vol.9, no.2, pp.558,563, February 2010

[22] H. Sun; A. Nallanathan; C.X. Wang; Y. Chen, “Wideband spectrum sensing for

cognitive radio networks: a survey,” Wireless Communications, IEEE, vol.20, no.2,

pp., April 2013 .12, pp.5406,5425, Dec. 2006

[23] B. Farhang-Boroujeny, “Filter Bank Spectrum Sensing for Cognitive Radios,” Signal

Processing, IEEE Transactions on , vol.56, no.5, pp.1801,1811, May 2008

[24] T. Sato; M. Umehira, “A new spectrum sensing scheme using overlap FFT

filter-bank for dynamic spectrum access,” Cognitive Radio Oriented Wireless

Networks and Communications (CROWNCOM), 2011 Sixth International ICST

Conference on pp.6,10, 1-3 June 2011

[25] Huseyin, A., ed. Cognitive radio, software defined radio, and adaptive wiereless

systems. Vol. 10. Berlin: Springer, 2007.

[26] http://gnuradio.org/redmine/projects/gnuradio/wiki

[27] M.A. Sarijari; A. Marwanto; N. Fisal; S.K. Yusof; R.A. Rashid; M.H. Satria, “Energy

detection sensing based on GNU radio and USRP: An analysis study,”

Communications (MICC), 2009 IEEE 9th Malaysia International Conference on

pp.338,342, 15-17 Dec. 2009

[28] R.A. Rashid, M. Sarijari, N. Fisal, S.K.S. Yusof, N.H. Mahalin, “Spectrum Sensing

Measurement using GNU Radio and USRP Software Radio Platform”, Wireless and

Mobile Communications, 2011 IEEE 7th Internaitonal Conference on, pp.237,242,

23-25 Sep.

51



[29] Y.C. Eldar & G. Kutyniok, “Introduction to compressed sensing,” from Compressed

Sensing, Cambridge, UK; Cambridge University Press, pp. 1-64.

[30] E.J. Candes, J.K. Romberg, and T. Tao, “Stable signal recovery from incomplete and

inaccurate measurements,” Communications on Pure and Applied Mathematics, vol.

59, pp. 1207-1223, 2006.

[31] E.J. Candes, J.K. Romberg, and T. Tao, “Decoding by linear programming,” IEEE

Trans. on Inform. Theory, vol. 51, pp. 4203-4215, 2005.

[32] E.J. Candes, T. Tao, “Near-optimal signal recovery from random projections:

Univesal Encoding Strategies,” Information Theory, IEEE Transactions on, vol.52,

no

[33] E. Candes and J. Romberg, “L1-magic: recovery of sparse signals via convex

programming”, October 2005

[34] M. Mahmudimanesh, “General purpose norm-1 minimization solver in Python”,

sourceforge.net/projects/pyl1min

[35] H.R. Gorla, K. Shaw, D. Addison, F. Harackiewicz, “Ultra wideband dual square

trident planar antenna,” Antennas and Propagation and USNC-URSI Radio Science

Meeting, 2014 IEEE International Symposium on, [Accepted] July 6-11.

[36] B. Wang; K.J.R. Liu, “Advances in cognitive radio networks: A survey,” Selected

Topics in Signal Processing, IEEE Journal of , vol.5, no.1, pp.5,23, Feb. 2011

[37] I.F. Akyildiz; W.Y. Lee; M.C. Vuran; S. Mohanty, “NeXt generation/dynamic

spectrum access/cognitive Radio Wireless Networks: A Survey,” Computer Networks

Journal, vol. 50, pp. 2127-2159, 2006.

52



VITA

Graduate School
Southern Illinois University

Jason Stegman

jstegs94@gmail.com

Southern Illinois University at Carbondale
Bachelor of Science, Electrical Engineering, December 2012

Thesis Title:
Wideband and Narrowband Spectrum Sensing Methods Using Software Defined Radios

Major Professor: Dr. X. Zhou

53


