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PITCH ESTIMATION FOR NON-STATIONARY SPEECH

Mads Græsbøll Christensen and Jesper Rindom Jensen

Audio Analysis Lab, AD:MT
Aalborg University, Denmark

email: {mgc,jrj}@create.aau.dk

ABSTRACT

Recently, parametric methods have proven capable of over-
coming the problems of correlation-based methods for pitch
estimation. However, the argument against such methods
is that the underlying model is wrong, particularly for non-
stationary signals, like speech. To investigate whether this is
true, we propose a new, non-stationary harmonic chirp model
for pitch estimation, and we derive an estimator for determin-
ing its parameters. Experimental results show that the new
model and the estimator lead to both improved pitch estimates
and reconstruction quality, but also that the improvements in
pitch are usually quite small, typically in the order of a few
Hertz.

Index Terms— Pitch estimation, chirp model, speech
analysis, non-stationary speech

1. INTRODUCTION

Pitch estimation is a classical problem in speech processing
and remains an active research area today. It is an impor-
tant problem because many signal processing and machine
learning tasks rely on pitch information, some examples being
speech coding, diagnosis of certain illnesses, speech enhance-
ment and speech separation. The de facto standard remains
the nonparametric correlation-based methods, the likely rea-
sons being that these are conceptually simple, fast, and quite
mature, and that implementations are freely available on the
Internet. However, they suffer from a number of problems,
including that the underlying assumptions are not clear, and,
as a result, they are not easy to improve, and they are not par-
ticularly robust towards noise [1]. In recent years, parametric
methods, e.g., [1–4] have been demonstrated to be capable
of overcoming many of the shortcomings of the aforemen-
tioned nonparametric methods (see, e.g., [1, 5]). However, an
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argument against the parametric methods, which are most of-
ten based on the harmonic model, is that there are important
aspects of speech signals that they often do not take into ac-
count, such as modulations in pitch and amplitude, especially
for long segments.

In this paper, we attempt to address this criticism by
proposing a new harmonic chirp model (HCM) for pitch es-
timation that explicitly takes into account that the pitch is
time-varying. Moreover, we derive an estimator for this new
model. In its exact form, this proves to be a difficult, mul-
tidimensional, nonlinear problem, and we propose a simple,
iterative approach for this. We then use the model and its
estimator to investigate the importance of taking the non-
stationarity of the pitch into account in speech analysis.

Much work has, of course, previously been devoted in
the past to analysis of the time-varying aspects of speech,
i.e., modulations, including AM-FM models [6–8]. How-
ever, these models are too general for the purpose of esti-
mating the pitch, as they do not explicitly model the modu-
lation as being generated by the same process. Polynomial
models of modulation have also been considered in, for ex-
ample, [9–12], however these all model the amplitude modu-
lation, which is only an approximation of the harmonic chirp
model proposed herein, and some do not consider its impact
on pitch estimation. It should also be mentioned that the no-
tion of using chirp-like basis functions also has been explored
in the context of time-frequency analysis, even specifically
aimed at harmonic signal and speech [13,14]. However, these
can generally be classified as being nonparametric and are
hence fundamentally different from the proposed approach.
Chirp-like models have also been studied for single sinusoids,
e.g., [15], in the context of sonar, radar, communications, etc.
For speech and audio signals, chirp models (or polynomial
phase models) have also been considered in [16,17], however
these differ from the proposed model in that different modu-
lations are allowed for the different harmonics. Compared to
these, the proposed model is likely to be more robust towards
noise and, hence, lead to more accurate estimates, as fewer
parameters have to be estimated.

The rest of the present paper is organized as follows: First,
the new model, the harmonic chirp model, is introduced and
discussed in Section 2. Then, in Section 3, an estimator for



finding the parameters of the new model is introduced based
on the nonlinear least squares estimator. In Section 4, the
properties of the model and the estimator are explored in de-
tail before Section 5 concludes on the work.

2. HARMONIC CHIRP MODEL

For a segment of a speech signal with n = n0, . . . , n0+N−1
(with n0 being the start of the segment) the new harmonic
chirp model is given by

x(n) =

L∑
l=1

Ale
jθl(n) + e(n) (1)

where L is the number of harmonics (which is here assumed
known or found using some other method, e.g., [2, 18]), Al
the lth amplitude and θl(n) is the instantaneous phase of the
lth harmonic while e(n) represents all stochastic parts of the
observed signal, i.e., background noise, unvoiced speech, etc.
Note that θl(·) is a continuous function. To stress this, we
write it now as a function of t. It is given by

θl(t) =

∫ t

0

lω0(τ)dτ + φl, (2)

where ω0(t) is the time-varying pitch and φl is the initial
phase of the lth harmonic. We confirm that the instantaneous
frequency of the lth harmonic is

ωl(t) =
dθl(t)

dt
= lω0(t). (3)

In pitch estimation, it is most often assumed (explicitly or
implicitly) that the pitch is constant, i.e., ωl(t) = lω0. We
refer to this case as the harmonic model (HM). This is also
often the case for the nonparametric methods, such as those
based on correlations, since it would not be possible to esti-
mate the correlation sequence from time-averaging otherwise.
If we accept that the pitch is slowly and smoothly varying as
a function of time, then an appropriate model would be

ω0(t) = α0t+ ω0, (4)

which yields a second-order polynomial instantaneous phase
model for the lth harmonic, i.e.,

θl(t) =
1

2
α0lt

2 + ω0lt+ φl, (5)

where α0l is then the chirp rate of the lth harmonic. We term
α0 the fundamental chirp rate. We refer to this model as
the harmonic chirp model (HCM). The problem considered
in this paper is then the joint estimation of α0 and ω0 from N
samples of a noisy signal x(n) for the purpose of obtaining
more accurate estimation of the pitch function ω0(n). The
model in (4) can be seen as a first-order Taylor approximation

to a more complicated and possibly nonlinear pitch function,
and the shorter the segments, the more appropriate this model
can be expected to be. Similarly, assuming α0 = 0 corre-
sponds to assuming that the pitch is constant over n, some-
thing that would be more accurate for even shorter segments
yet. When (5) is inserted into (1), we obtain the proposed
harmonic chirp model.

3. PROPOSED ESTIMATOR

It must be stressed that since the fundamental chirp rate and
the fundamental frequency drive the instantaneous phase of
all harmonics, all harmonics should be exploited when esti-
mating these parameters. This means that the application of
methods derived for a single sinusoid, e.g., [15], are not op-
timal for the problem at hand. Consequently, we proceed to
derive an optimal estimator for the harmonic chirp model that
exploits all harmonics. First, we introduce some useful vec-
tors and matrices. Define a vector containing the observed
signal as

x =
[
x(n0) x(n0 + 1) . . . x(n0 +N − 1)

]
(6)

and a vector containing the complex amplitudes, comprised
of the amplitudes Al and the initial phases φl as

a =
[
A1e

jφ1 A2e
jφ2 . . . ALe

jφL
]
. (7)

Then, we define a matrix containing the individual harmonics
in the columns as

Z =
[
z(ω0, α0) z(2ω0, 2α0) . . . z(Lω0, Lα0)

]
, (8)

where we have omitted the dependencies on ω0 and α0 for
notational simplicity. The columns of Z are given by

z(lω0, lα0) =


ej(

1
2α0ln

2
0+ω0ln0)

ej(
1
2α0l(n0+1)2+ω0l(n0+1))

...
ej(

1
2α0l(n0+N−1)2+ω0l(n0+N−1))

 . (9)

Assuming that the stochastic parts of the observed signal in
(1) are white and Gaussian, the maximum likelihood esti-
mator of the model parameters is the nonlinear least squares
(NLS) estimator:

{â, α̂0, ω̂0} = arg min
a,α0,ω0

‖x− Za‖2. (10)

Since the amplitudes in a are not of interest, we substitute
them by their least squares estimate, which yields the concen-
trated estimator

{α̂0, ω̂0} = arg min
α0,ω0

‖x− Z
(
ZHZ

)−1
ZHx‖2. (11)



This involves two-dimensional optimization over the nonlin-
ear parameters α0 and ω0. For convenience, we introduce the
orthogonal projection matrix as

Π(ω0, α0) = Z
(
ZHZ

)−1
ZH , (12)

and its orthogonal complement as Π⊥(ω0, α0) = I −
Π(ω0, α0) which are written as functions of ω0 and α0 to
stress their dependencies on these parameters. To solve the
above difficult optimization problem in a computationally
efficient manner, we propose to proceed as follows.

Let ω̂(i)
0 denote the estimate of ω0 in iteration i. Then,

first obtain an estimate of α0, denoted α̂(i)
0 , from a previous

estimate of the fundamental frequency ω̂(i−1)
0 for i = 1, 2, . . .

as
α̂
(i)
0 = argmin

α0

xHΠ⊥(ω̂
(i−1)
0 , α0)x. (13)

and then the fundamental frequency, ω0, given this estimate
as

ω̂
(i)
0 = argmin

ω0

xHΠ⊥(ω0, α̂
(i)
0 )x. (14)

These iterations are then repeated until convergence, which
can be defined in terms of either the cost function or the es-
timates. Regarding the initialization of this procedure, we
note that the fundamental chirp rate is generally expected to
be low, while the fundamental frequency can be any num-
ber in the interval ω0 ∈ (0, 2π/L). Therefore, it is natural
to initialize the fundamental chirp rate as α(0)

0 = 0 and then
ω̂
(0)
0 is simply the fundamental frequency estimate obtained

using the HM model, which can be found using any of the
methods in [2]. It is possible to implement (14) and (13) effi-
ciently and in a robust manner, because 1) they involve only
one-dimensional searches, albeit nonlinear ones, 2) once the
initial fundamental frequency has been found using the har-
monic model, only small changes in each iteration are ex-
pected. In practice, (14) and (13) are implemented via a grid
search to locate the minimum in a region near the previous
estimate followed by a dichotomous search [19] in the con-
vex region around that minimum. In our experience, this is
much less error-prone than gradient-based methods in nonlin-
ear problems. Moreover, we also note that usually only a few
iterations are needed for convergence, since the fundamental
chirp rates are usually quite small. Regarding implementation
issues, it was shown in [15] that to obtain the minimum esti-
mation error for chirp models (and others), then we should
choose n0 = −(N − 1)/2 (assuming an odd N ), and this is
also what we do here.

4. EXPERIMENTAL RESULTS

We will start the experimental part of the paper by exploring
the differences between the HM, HCM, and a commonly used
approximation of HCM [11,12], where the assumption x ≈ 0
is used to obtain ex ≈ (1+x). For the HCM, this would mean
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Fig. 1. Spectra for the harmonic model (HM), the harmonic
chirp model (HCM), and its approximation.
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Fig. 2. Spectrogram of the speech signal and fundamental
frequency estimates obtained using the proposed method.

that ej(
1
2α0ln

2+ω0ln) ≈ (1+j 12α0ln
2)ejω0ln. However, while

α0 may be small, the chirp rate for the higher harmonics are
given by α0l, which means that such an approximation will
get progressively worse for higher harmonics. In Figure 1,
the spectra of HM, HCM and its approximation are shown for
ω0 = 0.2232 and α0 = 1×10−4 withL = 5. Even though the
number of harmonics is quite low, it can be still be seen that
the spectra of the higher harmonics of the approximate model
do not look much like that of the HCM. Indeed, it appears that
this approximation is quite inaccurate, which is why we here
use the exact model.

We now present some experimental results with the new
model and its estimator. First, an example is shown for the all-
voiced female utterance "why were you away a year, roy?"
sampled at 8 kHz. The signal is converted to the complex
analytic signal using the Hilbert transform. In Figure 2, the
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Fig. 3. Example of cost function for speech signal as a func-
tion of fundamental frequency and chirp rate.

spectrogram of the speech signal is depicted along with the
fundamental frequency estimates obtained using the proposed
method. The method is initialized using the MATLAB func-
tion joint_anls() from the toolbox of [2], which esti-
mates both the pitch and the number of harmonics L, and the
estimates are obtained for segments of 30 ms shifted 5 ms. As
can be seen, the pitch is varying continuously throughout the
signal. In Figure 3, an example of the cost function in (11) is
shown for part of the speech signal in Figure 2, namely 30 ms
at about 1.3 s where the characteristics of the signal changes
rapidly. From the figure, the nonlinear nature of the problem
can be seen. Moreover, it can clearly be seen how a funda-
mental frequency estimate would be highly dependent on the
fundamental chirp rate for this part of the signal. As can be
seen, assuming a higher chirp rates yields a lower fundamen-
tal frequency estimate while a lower one yields a higher one.
Hence, if the HM model is used and the the pitch is rising, the
estimated pitch will be too high, i.e., it will be biased. It can
also be seen that the convex region around the optimal values
contain α0 = 0, which means that the presented optimization
procedure initialized with the HM is likely to converge even
though the problem is not convex.

Next, we will study the impact of the new model on the
resulting pitch estimates. We do this based on all 30 clean
speech sentences from the NOIZEUS database [20], which
are processed in 30 ms segments with in steps of 5 ms. As
before, the signals are mapped to complex ones using the
Hilbert transform and an initial pitch estimate is found us-
ing the harmonic model along with the model order L using
joint_anls(). This estimate is then refined using a di-
chotomous search with an exact NLS cost function and sub-
sequently used for initialization of the proposed method for
finding the parameters of the harmonic chirp model. In Fig-
ure 4, a histogram of the differences (in Hz) between the ini-
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Fig. 4. Histogram of differences (in Hz) between fundamental
frequency estimates obtained using the harmonic model and
the harmonic chirp model.
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Fig. 5. Histogram of reconstruction SNR improvements (in
dB) of using the HCM over the HM.

tial estimates obtained for the harmonic model and the final
estimates obtained using the harmonic chirp model. As can be
seen, the differences are quite small most of the time, usually
in the order of a few Hz, but depending on the application,
such differences might be important. And, if these estimates
are used for synthesis, differences of this size might be audi-
ble in some cases. It should be stressed that the longer the
segments, the bigger the difference can be expected between
the estimates obtained using the HM and HCM models, as the
HCM may better model longer segments. To study the abil-
ity of the new model to capture more complicated behavior of
speech signals, we also compare the reconstruction SNR of
the the two models. The improvements gained with the pro-
posed model are shown in Figure 5 in the form of a histogram
of the SNR improvements for individual segments. For this



experiment, we use the maximum number of possible har-
monics. Note that for both Figure 4 and Figure 5, the results
only include segments that are detected to be voiced. This
is done with the the generalized likelihood ratio test (GLRT)
for deterministic signals with a linear model with unknown
parameters and unknown noise parameters [21] with a false
alarm probability of 1 × 10−5 to ensure that only segments
that are very likely to be voiced are included. This resulted in
about 12,000 voiced segments for the 30 signals.

5. CONCLUSION

In this paper, a new chirp model, called the harmonic chirp
model, for pitch estimation has been proposed along with an
estimator. The new model captures the non-stationary nature
of speech signals using a linear model, parametrized by a fun-
damental frequency and chirp rate, of the change of the pitch
over a segment of speech. The estimator is a nonlinear least
squares estimator, which is equivalent to the maximum likeli-
hood estimator for white Gaussian noise. To find the param-
eters, we propose to first find the pitch and the model order
using the usual harmonic model and then use this to initial-
ize the new estimator, which then finds refined estimates of
the fundamental chirp rate and the fundamental frequency in
an iterative fashion. The resulting method is simple to imple-
ment, fast, and provides very accurate pitch estimates. In sim-
ulations on speech signals, it has been demonstrated that the
proposed model and estimator result in both improved pitch
estimates, but also that the improvements are usually quite
small, typically in the order of a few Hertz. Moreover, it has
been shown that the reconstruction signal-to-noise ratio is im-
proved with the new model compared to the harmonic model.
For applications where very accurate pitch estimates are de-
sired, the new model and the estimator may be of interest.

6. REFERENCES

[1] J. Tabrikian, S. Dubnov, and Y. Dickalov, “Maximum a pos-
teriori probability pitch tracking in noisy environments using
harmonic model,” IEEE Trans. Audio, Speech, and Language
Process., vol. 12(1), pp. 76–87, 2004.

[2] M. G. Christensen and A. Jakobsson, Multi-Pitch Estimation,
ser. Synthesis Lectures on Speech & Audio Processing. Mor-
gan & Claypool Publishers, 2009, vol. 5.

[3] E. Fisher, J. Tabrikian, and S. Dubnov, “Generalized likelihood
ratio test for voiced-unvoiced decision in noisy speech using
the harmonic model,” IEEE Trans. Audio, Speech, and Lan-
guage Process., vol. 14(2), pp. 502–510, 2006.

[4] J. K. Nielsen, M. G. Christensen, ans S. H. Jensen, “De-
fault Bayesian estimation of the fundamental frequency,” IEEE
Trans. Audio, Speech, and Language Process., vol. 21(3), pp.
598–610, 2013.

[5] M. G. Christensen, “Accurate estimation of low fundamental
frequencies,” IEEE Trans. Audio, Speech, and Language Pro-
cess., vol. 21(10), pp. 2042–2056, 2013.

[6] B. Santhanam and P. Maragos, “Multicomponent AM-FM
demodulation via periodicity-based algebraic separation and
energy-based demodulation,” IEEE Trans. Commun., vol.
48(3), pp. 473–490, 2000.

[7] A. Rao and R. Kumaresan, “On decomposing speech into mod-
ulated components,” IEEE Trans. Speech and Audio Process.,
vol. 8(3), pp. 240–254.

[8] M. G. Christensen, S. V. Andersen and S. H. Jensen, “Am-
plitude modulated sinusoidal models for audio modeling and
coding,” in Knowledge-Based Intelligent Information and En-
gineering Systems, ser. Lecture Notes in Artificial Intelligence,
V. Palade, R. J. Howlett, and L. C. Jain, Eds. Springer-Verlag,
2003, vol. 2773, pp. 1334–1342, invited.

[9] S. Godsill and M. Davy, “Bayesian harmonic models for mu-
sical pitch estimation and analysis,” in Proc. IEEE Int. Conf.
Acoust., Speech, and Signal Process., vol. 2, 2002, pp. 1769–
1772.

[10] G. Li, L. Qiu, and L. K. Ng, “Signal representation based on in-
stantaneous amplitude models with application to speech syn-
thesis,” IEEE Trans. Speech Audio Process., vol. 8(3), pp. 353–
357, 2000.

[11] M. Zivanovic and J. Schoukens, “Single and piecewise poly-
nomials for modeling of pitched sounds,” IEEE Trans. on Au-
dio, Speech and Language Process., vol. 20(4), pp. 1270–1281,
2012.

[12] Y. Pantazis, O. Rosec, and Y. Stylianou, “Chirp rate estimation
of speech based on a time-varying quasi-harmonic model,” in
Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process.,
2009, pp. 3985–3988.

[13] M. Képesi and L. Weruaga, “Adaptive chirp-based time-
frequency analysis of speech signals,” Speech Communication,
vol. 48(5), pp. 474–492, 2006.

[14] L. Weruaga and M. Képesi, “The fan-chirp transform for non-
stationary harmonic signals,” Signal Processing, vol. 87(6), pp.
1504–1522, 2007.

[15] P. Djuric and S. M. Kay, “Parameter estimation of chirp sig-
nals,” IEEE Trans. Acoust., Speech, Signal Process., vol.
38(12), pp. 2118–2126, 1990.

[16] E. B. George and M. J. T. Smith, “A new speech coding model
based on a least-squares sinusoidal representation,” in Proc.
IEEE Int. Conf. Acoust., Speech, and Signal Process., 1987,
pp. 1641–1644.

[17] F. Myburg, A. C. den Brinker, and S. van Eijndhoven, “Multi-
component chirp analysis in parametric audio coding,” in
Fourth IEEE Benelux Signal Processing Symposium, 2004.

[18] J. K. Nielsen, M. G. Christensen, A. T. Cemgil, and S. H.
Jensen, “Bayesian model comparison with the g-prior,” IEEE
Trans. Signal Process., vol. 62(1), pp. 225–238, 2014.

[19] A. Antoniou and W.-S. Lu, Practical Optimization: Algorithms
and Engineering Applications. Springer Verlag, 2007.

[20] Y. Hu and P. Loizou, “Subjective evaluation and comparison
of speech enhancement algorithms,” Speech Communication,
vol. 49, pp. 588–601, 2007.

[21] S. M. Kay, Fundamentals of Statistical Signal Processing: De-
tection Theory. Prentice-Hall, 1998.


