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PEATLAND 
 
MAJOR PROFESSOR:  Dr. Dale Vitt 
 
 Increased nitrogen (N) deposition onto boreal peatlands and forests is anticipated with 

further expansion of Alberta’s oil sands industry and consequently, an increase in sources of 

nitrogen oxide emissions. Increased N deposition has the potential to affect peatland flora and 

alter N cycling patterns in peatlands, therefore it is imperative to investigate at what level of 

excess N deposition these effects take place. This thesis discusses results from the first two 

years of a five year N fertilization study being conducted at a peatland complex near the hamlet 

of Mariana Lake in northeastern Alberta, Canada aimed at quantifying the N “critical load” for 

these peatland ecosystems. At the study site there are forty-two experimental plots – half in an 

ombrotrophic bog, the other half in the poor fen – with varying N fertilization treatments 

ranging from 0 kg/ha/year to 25 kg/ha/year. To investigate nitrogen uptake by plants at the 

Mariana Lake study site, I measured nitrogen (N) and carbon (C) concentrations of Sphagnum 

capitulum tissue and vascular plant foliar tissue. For Sphagnum species, I also analyzed C:N 

ratios and capitulum N storage. To investigate potential growth response of the target 

Sphagnum species, measurements were taken for linear growth (the vertical elongation of the 

Sphagnum shoots), stem mass density (the weight of Sphagnum stems occupying a volume 

after capitula were removed), and ultimately, net primary production (the product of the prior 

two measurements). Capitulum mass density (biomass) was measured as well to investigate 
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possible changes in Sphagnum capitulum growth. Also, during the height of the growing season 

(mid-July, 2011 and 2012), the plant communities in each treatment plot were sampled to 

provide “baseline” data necessary for documenting any shifts in plant distribution or 

community composition that may occur after N additions.  
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CHAPTER I 

INTRODUCTION TO PEATLANDS AND N CYCLING IN PEATLANDS 
 

Overview of Peatlands 

Peatlands are wetland ecosystems where over the long term, net primary production 

exceeds organic matter decomposition, resulting in substantial accumulation of peat, or 

incompletely decomposed organic matter. These ecosystems are carbon (C) sinks since net C 

fixation outweighs C output. Even though peatland ecosystems cover only 2-3% of the earth’s 

land surface, they currently store one third of the world’s organic soil carbon, and thus their 

importance is not proportional to their land surface area. These ecosystems are found in arctic, 

temperate, and tropical climates, but boreal climates have the majority with 80% of the world’s 

peatlands being found in this region (Wieder et al. 2006). Peatlands are a very important 

component of the boreal landscape and comprise nearly a third of the Central Mixedwood Sub-

region of northeastern Alberta (Vitt et al. 1996). 

Bogs are peatlands whose sole source of water and nutrients is precipitation. Fens are 

peatlands whose water and nutrient supplies come from precipitation as well as water that has 

been in contact with upland soils. Bog ecosystems, then, are oligotrophic (nutrient poor) with 

ombrotrophic vegetation and fen ecosystems are either oligotrophic or mesotrophic with a 

dominance of minerotrophic vegetation (Vitt and Wieder 2008).  

Sphagnum Mosses 

The ground layer of peatlands is dominated by mosses, with a typical cover of 90 – 100%. 

Bogs and poor fens are Sphagnum-dominated while rich fens are brown moss-dominated (Vitt 



2 
 

and Wieder 2008). The presence of peat mosses (Sphagnum spp.) has been shown to be 

strongly linked with the capacity for peat formation (Van Breemen 1995), partly because their 

litter decays much slower than that of other plants (Clymo and Hayward 1982). Further slowing 

the decomposition process is the fairly high acidity of many peatlands, particularly bogs and 

poor fens. Various Sphagnum species have the ability to actually acidify their surroundings, 

through cation exchange (Clymo 1967) and sulfate production by Sphagnum (Gorham 1961, 

1967), and production of weak organic acids from humified Sphagnum (Hemond 1980; Andrus 

1986). The acidification properties of Sphagnum allow it to be a driver of succession under 

some conditions. Also relevant to its role in driving succession is the immense water-holding 

capacity of Sphagnum, which can result in a raising of a local water table that facilitates lateral 

expansion of peatlands into nearby upland areas (Andrus 1986; Vitt and Kuhry 1992). 

Sphagnum plants can hold up to 10 – 25 times their dry weight in water, which is due to a 

distinct morphology of leaves that consist of a single layer of alternating small, living green cells 

with large, dead hyaline cells, which are specialized to retain high quantities of water (Vitt et al. 

1975; Andrus 1986).  

Sphagnum species typically occur along a microtopographic gradient from hummock to 

hollow, or high to low distance from water table (Vitt et al. 1975; Andrus et al. 1983). 

Competition may affect the composition of Sphagnum assemblages, but probably only in 

hollow environments, whereas tolerance to the physical environment seems more important in 

hummocks (Rydin 1986). Throughout the western boreal region, a sequence of species from S. 

angustifolium in the hollows to S. magellanicum at mid-hummock to S. fuscum on the 

hummock top is normally present (Vitt et al. 1988). 
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The moss layer of peatlands influences ecosystem functioning in various ways, including 

nutrient uptake. Sphagnum acts as a “gatekeeper” for accessibility of nitrogen into peatlands, 

scavenging nearly all atmospherically deposited nitrogen when its tissues are un-saturated with 

nitrogen (Vitt and Wieder 2008). The efficient capture of nitrate in rainwater by Sphagnum 

deprives higher plants rooted in the peat column of this nutrient supply (Woodin et al. 1985). 

Thus, the living Sphagnum layer can effectively control subsequent nutrient availability, and 

hence plant production. The ground layer typically produces about 41% of the total annual 

plant production, with trees, shrubs, and herbaceous plants making up the rest (Vitt and 

Wieder 2008). 

Nitrogen Cycling in Peatlands 

Peatlands contain 9-16% of the world’s soil nitrogen (N) (8-15 Pg of N), retaining a high 

percentage of the N they receive, and thus are generally regarded as effective N sinks (Limpens 

et al. 2006). When discussing N cycling in peatlands, it is important to remember the different 

types of peatlands (bogs and fens) and their differing nutrient sources. The main N inputs to 

peatlands are N deposition from the atmosphere, N2-fixation by bacteria/algae, and N inflow 

through upland runoff or discharge, with the latter only being a considerable input in fens or 

raised bogs with a lagg zone. Intrasystem N cycling in peatlands primarily includes N uptake by 

vegetation, N retention and retranslocation in Sphagnum, and decomposition/N mineralization. 

N losses in peatlands are fairly minimal – there are negligible gaseous N losses via 

denitrification or volatilization and low N losses by hydrologic export (Limpens et al. 2006). 
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 N Inputs 

In ombrotrophic bogs, atmospheric N deposition is considered the main N input, providing 

13-80% of the nutrient requirements of plants (Limpens et al. 2006). However, several studies 

propose that other N inputs to peatlands have been underestimated (eg. Damman 1978; Moore 

et al. 2004; Vile et al. in review). Moore et al. (2004) found that N accumulation in bog cores 

taken from study sites across eastern Canada was about four times the N that could be 

accounted for by wet deposition. Other sources of N for an ombrotrophic bog include organic N 

depostion, dry deposition, and N2-fixation. Total N deposition consists of both wet and dry 

deposition; it is fairly plausible that estimates of N contributions to peatlands via dry deposition 

have historically been underestimated since measuring dry deposition is very difficult (Limpens 

et al. 2006). Dry deposition may be smaller in bog systems than in forests since there is a small 

vascular leaf surface area (Moore et al. 2002, 2004), however, Sphagnum has a large moist leaf 

surface, and may be a very effective absorber of dry N deposition (Limpens et al. 2006). Thus, 

the N input via dry deposition could potentially be even larger than wet N deposition and 

Sphagnum may have access to more atmospheric deposition than previously assumed (Limpens 

et al. 2006). Overall deposition may increase by roughly 50% above the wet deposition if 

organic N deposition is taken into account as well, since DON (dissolved organic nitrogen) forms 

a variable proportion of atmospheric N deposition (Moore et al. 2004).  

In addition to dry deposition and inorganic N deposition, N2-fixation also has been a much 

overlooked contribution to N in peatlands. Biological N2-fixation is the process by which 

specialized prokaryotic microorganisms containing the enzyme nitrogenase convert 

atmospheric N2 to NH3, thereby taking a non-reactive N form and transforming it into a 
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reactive, organic form that is biologically useful (Schlesinger 1997). A wide array of prokaryotes 

carry out biological N2-fixation in peatlands including cyanobacteria, symbiotic actinomycetes, 

and free-living bacteria (Limpens et al. 2006). Reported amounts of N input attributable to N2-

fixation have ranged from 0.03 to 11.5 g N m-2 yr-1, showing a great deal of spatio-temporal 

variability (Limpens et al. 2006). Consequently, it has been difficult to quantify N2-fixation in 

peatlands and determine its importance as an N input. Since the process of N2-fixation is 

energetically costly (16 ATP for every mole of N fixed) and environmental conditions typical of 

peatlands (e.g. low pH and low mean annual temperatures of 1°C) may be constraining for 

nitrogen-fixing organisms, contributions from N2-fixation often have been assumed to be 

insignificant (Vile et al. in review). However, recently it has been shown that in boreal peatlands 

in Alberta, N2-fixation is an extremely significant process, providing a substantial amount of 

newly fixed N (with mean rates ranging from 7.2-26.4 kg N ha-1 yr-1) that can account for the 

aforementioned discrepancies in the amount of N deposition and the measured N 

accumulation at various peatland sites (Vile et al. in review).  

 Intrasystem N Cycling 

As mentioned earlier, Sphagnum is a critical component in within-ecosystem N cycling. 

Although there is considerable variation among sites, Sphagnum is generally very effective at 

capturing N inputs and retaining N (retention rates range from 11 to almost 100%) (Limpens et 

al. 2006). When un-saturated, Sphagnum can scavenge nearly all atmospherically deposited N, 

thus restricting the nutrient supply to vascular plants (Aldous 2002a; Vitt and Wieder 2008; 

Woodin et al. 1985). Sphagnum also limits nutrient availability to vascular plants by slowing 

down decomposition through its recalcitrant litter (Limpens et al. 2006). Following N uptake, 
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Sphagnum is able to assimilate NO3
- almost immediately due to its ability to quickly activate 

nitrate reductase (Woodin et al. 1985). Despite Sphagnum lacking vascular conducting tissues, 

10-50% of the N in Sphagnum stems can be retranslocated upwardly to support new growth 

(Bragazza et al. 2004).  

Since Sphagnum does not uptake and retain 100% of atmospherically deposited N, there is 

some amount that makes it past the moss layer (Aldous 2002a). However, since this is a limited 

amount of N that makes it downward to the lower peat column, vascular plants and microbes 

must also rely on the mineralization of peat (Damman 1988; Malmer et al. 1994). In peatlands, 

both decomposition and N mineralization rates are low, owing to abiotic factors such as low 

temperature soils, poor aeration, high water tables, and low pH, as well as factors associated 

with the presence of Sphagnum, including poor litter quality and anti-microbial chemicals 

produced by Sphagnum (Clymo 1984; Regina et al. 1996; Aerts et al. 1999; Vitt 2006; Bragazza 

and Freeman 2007).  It has been proposed that the organic material in Sphagnum dominated 

peatlands, which is predominantly composed of litter and peat formed by Sphagnum, consists 

of a labile cell protoplasm component with a high N:C ratio and a recalcitrant cell wall 

component with a very low N:C ratio (Verhoeven et al. 1988; Koerselman and Verhoeven 1992). 

Therefore, microbes may mineralize labile N forms rapidly (high N:C ratio of litter exceeds the 

ratio required for the growth of microbes) and then may take longer to mineralize N within 

recalcitrant compounds (very low N:C ratio of litter results in net immobilization rather than net 

mineralization) (Limpens et al. 2006). This hypothesis has been supported by several studies, 

including Brock and Bregman (1989) who found that Sphagnum recurvum litter lost only 18 % of 

its dry weight after one year of decomposition, but nearly 45 % of its N.   
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 N Outputs 

The main N losses from undisturbed peatlands are gaseous losses from denitrification and 

losses from hydrolic export (runoff or streamflow). As discussed earlier, Sphagnum is efficient 

at retaining N, and therefore, concentrations of inorganic N in pore water are typically low 

(Limpens et al. 2006). Thus, N losses via hydrolic export are relatively small (1.5-6.3 kg ha-1 yr-1) 

and mainly take place in organic forms (dissolved organic nitrogen). Denitrifcation is the 

microbial reduction of NO3
- to N2O and N2, taking place under anaerobic conditions (Limpens et 

al. 2006). Denitrification requires the presence of NO3
-, and denitrifying bacetria prefer wet 

soils rich in organic matter that express a neutal pH (Schlesinger 1997).  In peatlands, the supply 

of NO3
- is generally low since the peatland flora, Sphagnum especially, usually take up nitrate 

inputs (from atmospheric deposition and nitrification of NH4
+) before they reach anaerobic 

zones where denitrification takes place. Thus, N losses via denitrification are fairly minimal as 

well, though fens, which have a greater supply of inorganic N and a higher pH that does not 

inhibit nitrification of NH4
+, may have substantial losses (Limpens et al. 2006). N losses via 

volatilization are even smaller than hydrolic export or denitrification; Hemond (1983) found 

that only trace amounts of NH3-N were lost directly as ammonia gas at his study site. Under 

anaerobic conditions, facultative anaerobes are able to use NO3
- as a terminal electron acceptor 

in place of oxygen to meet their energy demands, and NH4
+

 is released as an end product. 

Volatilization can also occur under aerobic conditions, whereby NH3 is released as a byproduct 

of bacteria breaking down amino acids (Limpens et al. 2006). 
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Peatland Response to Increased Nitrogen Deposition 

Investigations concerning peatland response to increased N deposition began with studies 

examining the effects of increased N deposition associated with acid precipitation. Research on 

this topic arose in Europe, where many regions were experiencing acid precipitation and greatly 

increased levels of atmospheric N deposition since the last century. An initial finding in these 

investigations was that increased atmospheric N deposition can have deleterious effects on 

bogs through negative impacts on Sphagnum (Press and Lee 1982). Poor growth of Sphagnum 

was observed in bogs that were in regions of high atmospheric N deposition and was found to 

be associated with increases in tissue N concentrations. Evidence strongly suggested that 

higher N supplies in polluted regions were supra-optimal for Sphagnum growth (Press et al. 

1986).  

These early investigations established the importance of taking ambient atmospheric N 

deposition into account when interpreting results. The study by Press et al. (1986) had study 

plots at differing proximity to major pollution sources, and thus with differing levels of 

atmospheric N deposition. Later studies conducted in unpolluted areas of western Canada and 

northern Sweden investigated the effect of increased N deposition where prior ambient 

atmospheric N deposition was low.  Aerts et al. (1992) found that Sphagnum responded quickly 

to increased N deposition at a low-N site, increasing its productivity almost fourfold upon the 

initial N addition. Vitt et al. (2003) revealed similar results, finding that 34 years after oil sands 

mining startup, sites where N deposition had increased (from initially low levels) showed 

enhanced Sphagnum production.  
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The N required for this observed increase in production came partially from atmospheric N 

deposition, but also internal N cycling processes, such as mineralization and N2-fixation, and N 

translocation (Aldous 2002a, 2002b). Contrary to expectations, Aldous (2002a, 2002b) found 

that greater amounts of N were translocated from older to younger parts of Sphagnum at a 

high-N deposition site than at a low-N deposition site. Not only does this lend further evidence 

that peatlands with varying levels of ambient atmospheric N deposition may respond 

differently to N additions, it also suggests that internal nutrient cycling must be investigated 

when examining the effects of N additions as well. 

The Triphasic Response 

In central Canada, a four-year experimental acidification study by Rochefort et al. (1990) 

found stimulated growth in two of the three dominant Sphagnum species for the initial two 

years of acidification, but then a decline or complete cease in the luxurious growth after the 

fourth year. In this study, the effect of the acid treatment changed over the years, from a short-

term fertilizer effect to a possibly deleterious effect (Rochefort et al. 1990). Later investigations 

supported this idea of a “multi-phasic” peatland response pattern. In a three-year experiment, 

Gunnarsson and Rydin (2000) found that Sphagnum at a low N deposition site showed an 

increased growth in length with their intermediate N treatment after the first season. However, 

in the second and third seasons, the control treatment had the highest growth in length. To 

explain this observed inconsistency in Sphagnum response, a hypothesis was formed for a 

“triphasic” N cycling pattern in Sphagnum spp. subjected to increased N deposition (Lamers et 

al. 2000; Limpens et al. 2003). 



10 
 

A “triphasic” response to increased N deposition has been documented in N-limited 

peatlands. When Sphagnum are initially exposed to elevated N inputs they first respond by 

utilizing these additional nutrients and accelerating their growth (Aerts et al. 1992; Vitt et al. 

2003). Accelerated growth continues until the plants are no longer N-limited; a further increase 

in the growth rate cannot occur because other minerals and nutrients are limiting, such as 

phosphorus. The second response, then, is the Sphagnum plants begin to store excess N to be 

used at later times. However, the plants are only able to store limited amounts of excess N 

before becoming N saturated. When the Sphagnum plants are N saturated, their N-filtering 

ability fails. Lamers et al. (2000) observed an apparent failure of Sphagnum mosses to intercept 

new N inputs in regions where N deposition rates exceeded approximately 20 kg N/ha/yr. At 

high levels of N deposition, Sphagna become super-saturated and eventually reach a limit 

where they cannot take in any more N. With the living Sphagnum layer no longer able to filter 

N, inorganic N leaches through the living Sphagnum layer to deeper peat. Additional N may 

leach down to the deeper peat as Sphagnum leaches N out of its tissues as DON (dissolved 

organic nitrogen) to prevent accumulating chronic concentrations of internal N content (Gerdol 

et al. 2006). Evidence for this has been shown by Bragazza and Limpens (2004), who found that 

peatlands in high N deposition regions have higher concentrations of pore water DON 

compared to pristine peatlands. Increased DON concentrations in the rhizosphere could 

provide an alternative N source for vascular plants. These additional N inputs to the organic 

matter profile may supply vascular plant species with the opportunity to colonize and 

proliferate (Lamers et al. 2000; Limpens and Berendse 2003). Increased shrub NPP can 

negatively affect Sphagnum NPP by increasing understory shade (Bonnett et al. 2010). 



11 
 

Oil Sands Development and the N “Critical Load” concept 

Alberta has the third-largest proven crude oil reserve in the world, next to Saudi Arabia and 

Venezuela (Government of Alberta (1) 2012). Of the 171.3 billion barrels, 169.9 billion barrels 

consist of bitumen and 1.4 billion barrels consist of conventional oil. These reserves are 

estimated to be enough oil to meet Canada’s current oil demand for almost 400 years. Oil sands 

(also called “tar sands”) refer to bitumen, which is a viscous form of oil that is combined with 

sand and water. Oil sands are located in three major areas – the Athabasca Oil Sands, Peace 

River Oil Sands, and Cold Lake Oil Sands - in northeastern Alberta underlying 140,200 km2. The 

bitumen must be removed from the sand and water prior to being upgraded into crude oil and 

other petroleum products. This extraction can be done in two ways: in situ (which means in 

place) recovery and surface mining. For deeper oil sands reservoirs (about 80% of reservoirs), 

an in situ recovery method is used to produce bitumen through wells that look like those used 

for conventional oil and gas production. In situ operations result in much less land disturbance 

and are able to reclaim areas much sooner than surface mines. In situ projects also eliminate 

the need for tailings ponds. The majority of in situ operations use steam-assisted gravity 

drainage (SAGD), which involves pumping steam underground through a horizontal well to 

liquefy the bitumen, which is then pumped to the surface through a second well. The other 

extraction method, surface mining, requires an open-pit mine operation, similar to many coal, 

iron ore, copper and diamond mine operations. Oil sands are dug up and moved by diesel 

trucks to a cleaning facility where the material is mixed with hot water to separate the 

recoverable oil from sand. The majority of this resource can only be developed using in situ (or 

in place) recovery; as of June 2010, there were 91 active oil sands projects in Alberta and of 
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these, four were mining projects and the remaining projects used various in situ recovery 

methods (Government of Alberta (1) 2012; Oil Sands Truth 2012).  

Unprocessed oil sands contain 3–18% bitumen by weight, along with 2–10% water and 

80–85% mineral matter (such as sand and clay). Bitumen is composed chiefly of polycyclic 

aromatic hydrocarbons (PAHs), sulfur, lead, mercury, arsenic, nickel, vanadium, chromium, and 

selenium. Since it contains far more carbon and far less hydrogen than conventional crude oil, it 

has to be “upgraded” through the addition of hydrogen and the subtraction of carbon, and 

natural gas is added to enable the material to be pumped to a refinery for processing. Much of 

the controversy about oil development centers around tailings ponds, where the remaining 

water and solids, including a small amount of un-extracted bitumen, are discharged as waste. 

Tailings ponds cover more than 130 km2 in northern Alberta. Some large tailings ponds are 

separated by earthen dikes from the Athabasca River, which joins the Mackenzie River to form 

the major watershed of northwest Canada. The water in these ponds often contains arsenic, 

mercury, PAHs, and other toxics found in the bitumen. Oil sands operators maintain interceptor 

ditches and wells to catch leakage from the tailings ponds, but despite these precautions the 

Environmental Defence report calculated that 11 million liters of contaminated wastewater 

nevertheless escapes each day (Tenenbaum 2009; Government of Alberta (3) 2012).  

Emissions from oil sands development are of great concern as well, and the threat they 

pose to the health of peatland ecosystems is the focus of my research. Oil sands development is 

associated with the production of greenhouse gas emissions, nitrogen oxides (NOx), sulphur 

dioxide (SO2), hydrogen sulfide (H2S), ozone and fine particulate matter (Government of Alberta 

(2) 2012). Since oil sands production and upgrading are more energy intensive than the 
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production of conventional oil, it creates more greenhouse gas emissions (Government of 

Alberta (4) 2012). Increased concentrations of the potent greenhouse gas nitrous oxide (N2O) 

are particularly worrisome because not only does nitrous oxide have a tremendous ability to 

trap heat in the atmosphere, it also can catalyze the destruction of stratospheric ozone by 

reacting with excited oxygen atoms in the stratosphere (Vitousek et al. 1997). The presence of 

other nitrogen oxides (NOx) in the atmosphere has known health and environmental effects as 

well. Nitrogen dioxide, which is part of the family of gases known as nitrogen oxides (NOx), is a 

reddish-brown gas formed through burning at high temperatures. Exposure can cause lung 

irritation and lower resistance to respiratory infections, such as influenza. Nitrogen dioxide 

contributes to acid precipitation by reacting with moisture in the air to form nitric acid and is 

also one of the gases responsible for the formation of ground-level ozone (Government of 

Alberta (5) 2012).  

It has been well documented that acid precipitation has contributed substantially to the 

acidification of soils, streams, and lakes in many regions around the world (Schindler 1994; 

Likens et al. 1996; Vitousek et al. 1997). Acidification of soils can lead to significant losses of soil 

nutrients, such as calcium and potassium, which are essential for the long-term maintenance of 

soil fertility. Increased nitrogen additions associated with acid precipitation can lead to 

increased nitrate mobility, which induces nitrate loss – as nitrate (an anion) moves through soils 

to streams and to groundwater, it pulls cations along with it and thereby depletes the soil of 

nutrients such as calcium as well as increasing the soil acidity. Besides increasing the loss of 

nutrients from soils, acidification can disrupt the nitrogen cycle in freshwater ecosystems 

(acidic conditions may slow down or halt biological N2-fixation or nitrification, and possibly 
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stimulate denitrification) and can decrease diversity of animal and plant species in terrestrial 

and aquatic ecosystems (Vitousek et al. 1997). Thus, nitrogen oxide emissions have far-reaching 

impacts that extend beyond just air quality issues.  

Increased nitrogen oxide emissions lead to increased atmospheric nitrogen (N) 

deposition onto the landscape. Increased N deposition onto boreal peatlands and forests is 

anticipated with further expansion of Alberta’s oil sands industry and consequently, an increase 

in sources of nitrogen oxide emissions. As discussed earlier, increased N deposition has the 

potential to affect peatland flora and alter N cycling patterns in peatlands. It is imperative now 

to investigate at what level of excess N deposition these effects take place.  

A nitrogen “critical load” is defined as the quantitative estimate of the level of exposure 

of natural systems to N below which significant harmful effects on specified sensitive elements 

of the environment do not occur (UN Organization for Economic Co-operation and 

Development, 1997). The objective of the CEMA (Cumulative Environmental Management 

Association) project, which my research is within, is to set a regional nitrogen critical load (CL) 

for the Regional Municipality of Wood Buffalo (RMWB). To reach this objective, various 

activities are being undertaken by collaborating researchers from Southern Illinois University 

Carbondale (SIUC), Villanova University, University of Victoria, and Trent University. My 

component of the project is monitoring plant responses, including growth and community 

change, for an experimental nitrogen fertilization study at a peatland site in Alberta, Canada. To 

quantify the N critical load for these peatland ecosystems, both plant responses and 

components of the peatland N cycle (e.g. N2 fixation, N mineralization, nitrification, 

denitrification, and N leaching) must be monitored for deviations from their previously 
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undisturbed background behavior (CEMA grant). Once a nitrogen CL value is determined, it will 

hopefully be utilized in setting nitrogen oxide (NOx) emission standards for the RMWB.  

Research Plan 

 Study Site 

The study site is a peatland complex located near the hamlet of Mariana Lake, Alberta, 

Canada, approximately 101 km south of Fort McMurray, Alberta (N 55.89, W 112.09) (FIGURE 

1.1).  The site includes a large poor fen (≈164,000 m2) and two ombrotrophic bogs (≈43,290 

m2).  Both peatland landforms are dominated in the understory by Sphagnum angustifolium, S. 

magellanicum, S. fuscum, and the bog is wooded (Picea mariana).  Annual bulk N deposition at 

the site is approximately 1 kg N ha-1 yr-1 [0.5 kg NH4
+-N ha-1 yr-1 and 0.5 kg NO3

--N ha-1 yr-1] (Vitt 

et al. 2003).  

 
FIGURE 1.1 Photo of Mariana Lake study site, taken in poor fen looking toward wooded bog (left) and a 
mineral island (right). 
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 Experimental Design 

At Mariana Lake there are forty-two experimental plots – half in an ombrotrophic bog, 

the other half in the poor fen – with varying N fertilization treatments ranging from 0 kg 

N/ha/year to 25 kg N/ha/year (FIGURE 1.2). The twenty-one plots in each area (bog and poor 

fen) are located on three replicate arms, with each arm having the following seven treatment 

plots: water control, 0, 5, 10, 15, 20, and 25 kg N ha/year. The water control plots do not 

receive any nitrogen or water addition. The 0 kg N/ha/year treatment plots (N treatment 

control plots) do not receive any nitrogen addition, but they do receive the same amount of 

additional water as the nitrogen addition plots to account for any benefit that the extra water 

may provide the plants. During each fertilization event, the water added to each plot was 

approximately 205 L (54 gallons); since each year there are eight fertilizations, 1642 L (432 

gallons) of water is added to each plot per year (again, excluding the water control plots), which 

amounts to 288 mm of water over a 7.2 m2 plot (5 x 15 feet). 

 
FIGURE 1.2 Mariana Lake Study Site – boardwalk and plot layout 
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CHAPTER II 
 

PLANT RESPONSES TO INCREASED NITROGEN DEPOSITION – 
NITROGEN UPTAKE AND SPHAGNUM GROWTH RESPONSE 

 

INTRODUCTION 
 

Peatlands characteristically have high, stable water tables and greater rates of primary 

production than decomposition (Vitt 2006; Wieder and Lang 1983). Peatlands have low 

productivity (Frolking et al. 1998), thus formation of peat is attributed more to extremely low 

decomposition rates rather than to high rates of production (Vitt 1990; Moore and Basiliko 

2006). The presence of peat mosses (Sphagnum spp.) has been shown to be strongly linked 

with the capacity for peat formation (van Breemen 1995), partly because their litter decays 

much more slowly than that of other plants (Clymo and Hayward 1982). Sphagnum is 

considered to be the most important plant contributing to peat accumulation, at least for bogs 

and poor fens (Wieder 2006).  

Sphagnum growth and production is influenced by an array of factors including 

nutrients (especially nitrogen), atmospheric CO2 levels, and climate and moisture (Wieder 

2006). In this chapter, I investigate how Sphagnum growth and production are influenced by 

experimental nitrogen (N) fertilization treatments. Prior research has found varying impacts on 

Sphagnum growth and production with N additions due to variables including the background 

levels of atmospheric N deposition and the severity and duration of the N additions. In areas 

with low background levels of N deposition, such as northern Sweden and parts of North 

America, N additions sometimes enhanced Sphagnum production (Aerts et al. 1992; Li and Vitt 
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1997; Rochefort et al. 1990; Vitt et al. 2003). However, in other studies, N additions had no 

effect or had a detrimental effect on Sphagnum production (Berendse et al. 2001; Gunnarsson 

and Rydin 2000; Heijmans et al. 2001; Limpens et al. 2004). 

Under low background N conditions and with increasing nitrogen addition, the first 

expected plant response should be increased nitrogen uptake and subsequently, increased 

growth (Lamers et al. 2000). To investigate nitrogen uptake by plants at the Mariana Lake study 

site, I measured nitrogen (N) and carbon (C) concentrations of Sphagnum capitulum tissue and 

vascular plant foliar tissue. For Sphagnum species, I also analyzed C:N ratios and capitulum N 

storage. To investigate potential growth response of the target Sphagnum species, 

measurements were taken for linear growth (the vertical elongation of the Sphagnum shoots), 

stem mass density (the weight of Sphagnum stems occupying a volume after capitula were 

removed), and ultimately, net primary production (the product of the prior two 

measurements). Capitulum mass density (biomass) was measured as well to investigate 

possible changes in Sphagnum capitulum growth.  

 

Questions and Hypotheses 

Nitrogen uptake: 

Question #1: How is the N concentration (%N) of Sphagnum capitulum affected by various 
supplementary N influxes (0, 5, 10, 15, 20, and 25 kg/ha/yr)? 

Hypothesis #1: The N concentration (%N) of Sphagnum capitulum will increase with increasing 
N addition. 

Rationale #1: This result would be seen if the bog and poor fen ecosystems at Mariana Lake 
displayed a triphasic response to elevated N deposition, such as that observed in European peat 
bogs. With increased N deposition, N would no longer be a limit to Sphagnum growth. The 
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organic N concentration in living Sphagnum tissues would increase as more N would be taken 
up by the growing moss layer.  
 
Question #2: How is the N concentration (%N) of vascular plant foliar tissue affected by various 
supplementary N influxes (0, 5, 10, 15, 20, and 25 kg/ha/yr)? 
 
Hypothesis #2: An increase in the N concentration (%N) of vascular plant foliar tissue will be 
observed following an increase in the N concentration (%N) of Sphagnum capitulum with 
increasing N addition. 
 
Rationale #2: As I discuss above, I predict that the nitrogen concentration (%N) of Sphagnum 
will increase with increasing N addition. Once Sphagnum becomes super-saturated with N, the 
excess N would then leach down to the lower peat layers where it would become available for 
vascular plant species. As vascular plants in peatlands are N-limited, the net primary production 
(NPP) of these plants would increase with an increased N supply. It has been shown for low 
nutrient environments that once a level is reached where the vascular plant NPP is no longer N-
limited, the vascular plants exhibit luxury consumption, increasing the N concentrations in their 
tissues in excess of immediate growth requirements (Chapin 1980). 
 
Sphagnum growth response: 

Question #3: How is Sphagnum production affected by various supplementary N influxes (0, 5, 
10, 15, 20, and 25 kg/ha/yr)? 
 
Hypothesis #3: Sphagnum production in the 20 and 25 kg/ha/yr treatment plots will be lower 
than production in the 0, 5, 10, and 15 kg/ha/yr treatment plots in the second year of N 
fertilization applications (summer 2012). 
 
Rationale #3: Lamers et al. (2000) observed an apparent failure of Sphagnum mosses to 
intercept new N inputs in regions where N deposition rates exceeded approximately 20 kg 
N/ha/yr. At high levels of N deposition Sphagnum become super-saturated and eventually 
reach a limit where they cannot take in any more nitrogen. When this occurs, additional N 
inputs then go to the organic matter profile and may supply vascular plant species with the 
opportunity to colonize and proliferate. Increased vascular shrub NPP can negatively affect 
Sphagnum NPP by increasing understory shade (Bonnett et al. 2010).  
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Study Site 

Site Description: 

The study site is a peatland complex located near the hamlet of Mariana Lake, Alberta, 

Canada, approximately 101 km south of Fort McMurray, Alberta (N 55.89, W 112.09) (FIGURE 

2.1).  The site includes a large poor fen (≈164,000 m2) and two ombrotrophic bogs (≈43,290 

m2).  Both peatland landforms are dominated in the understory by Sphagnum angustifolium, S. 

magellanicum, S. fuscum, and the bog is wooded (Picea mariana).  Annual bulk N deposition at 

the site is approximately 1 kg N ha-1 yr-1 [0.5 kg NH4
+-N ha-1 yr-1 and 0.5 kg NO3

--N ha-1 yr-1] (Vitt 

et al. 2003).  

 
FIGURE 2.1 Photo of Mariana Lake study site, taken in poor fen looking toward wooded bog (left) and a 
mineral island (right). 
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Experimental Design: 
 

At Mariana Lake there are forty-two experimental plots – half in an ombrotrophic bog, 

the other half in the poor fen – with varying N fertilization treatments ranging from 0 kg 

N/ha/year to 25 kg N/ha/year (FIGURE 2.2). The twenty-one plots in each area (bog and poor 

fen) are located on three replicate arms, with each arm having the following seven treatment 

plots: water control, 0, 5, 10, 15, 20, and 25 kg N/ha/year. The water control plots do not 

receive any nitrogen or water addition. The 0 kg N/ha/year treatment plots (N treatment 

control plots) do not receive any nitrogen addition, but they do receive the same amount of 

additional water as the nitrogen addition plots to account for any benefit that the extra water 

may provide the plants. During each fertilization event, the water added to each plot was 

approximately 205 L (54 gallons); since each year there are eight fertilizations, 1642 L (432 

gallons) of water is added to each plot per year (again, excluding the water control plots), which 

amounts to 288 mm of water over a 7.2 m2 plot (5 x 15 feet).  

 
FIGURE 2.2 Mariana Lake Study Site – boardwalk and plot layout. 
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Atmospheric N Deposition: 
 
Rates of bulk atmospheric deposition of ammonium (NH4

+-N), nitrate (NO3
--N), and sulfate 

(SO4
2--S) were determined using resin samplers (ion exchange beads housed in PVC) (2013 

Annual CEMA Report).  During the 2011 growing season (data taken from 5/31/11 to 10/9/11), 

the mean N deposition (NH4
+-N and NO3

--N) was 0.547 mg m-2 day-1 (TABLE 2.1). During the 

2012 growing season (data taken from 5/24/12 to 10/18/12), the mean N deposition (NH4
+-N 

and NO3
--N) was 0.797 mg m-2 day-1 (TABLE 2.1). 

TABLE 2.1 Mean ± SE, N, and Max./Min. values for daily NH4
+, NO3

-, and SO4
2-

 deposition (mg m-2 day-1) 
recorded at the Mariana Lake study site during three separate time intervals (Batch 1-3).  
Source: K. Wieder, personal communication 
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Climate: 

During the 2011 growing season (data taken from 6/8/11 to 10/4/11), the average daily 

temperature was 13.8 °C and the total precipitation was 217.4 mm (FIGURE 2.3). During the 

2012 growing season (data taken from 6/8/12 to 9/12/12), the average daily temperature was 

15.7 °C and the total precipitation was 355.3 mm (FIGURE 2.4). For the 2011 growing season 

(data taken from 6/8/11 to 9/12/11), growing degree days (GDD; summed daily mean 

temperatures above 0 °C) totaled 1442.5, and for the 2012 growing season (data taken from 

6/8/12 to 9/12/12), GDD totaled 1520.3 (FIGURE 2.3 and 2.4).  

 
FIGURE 2.3 Average daily temperature (°C) and precipitation (mm) recorded at the Mariana Lake study 
site (poor fen) from 6/8/11 to 10/4/11. Source: Data from weather station at the Mariana Lake study 
site, operated by Dr. John Gibson, University of Victoria; figure made by Jeremy Graham, SIUC 
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FIGURE 2.4 Average daily temperature (°C) and precipitation (mm) recorded at the Mariana Lake study 
site (poor fen) from 6/8/12 to 9/12/12. Source: Data from weather station at the Mariana Lake study 
site, operated by Dr. John Gibson, University of Victoria; figure made by Jeremy Graham, SIUC 
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METHODS 

 
Nitrogen uptake 

Field Sampling and Lab Techniques 
 

At the height of each growing season (July 10th – 11th 2011 and July 12th-13th 2012), I 

collected volumetric samples of each species of Sphagnum located within each of the 

experimental plots – i.e. Sphagnum fuscum, Sphagnum angustifolium, and Sphagnum 

magellanicum – as well as five replicates of each Sphagnum species from areas outside the 

plots in both the bog and poor fen. These volumetric samples were used for mass density 

calculations. Capitula were removed and counted, and a selection of stems (70 stems for S. 

fuscum cores and 20 stems for S. angustifolium and S. magellanicum cores) were snipped at 2 

cm below the capitulum. Capitulum and stem mass density samples were dried for a minimum 

of 4 days at 55°C, and then weighed to obtain respective mass densities. After being weighed, 

all capitulum samples were then homogenized in a Thomas Wiley Mini-Mill and analyzed for 

carbon (C) and nitrogen (N) concentrations on a Flash EA 1112 Series NC Soil Analyzer. The 

error rate for N was +/- 0.028 and the error rate for C was +/- 0.118. 

At the height of each growing season (July 5th – 9th 2011 and July 8th – 11th 2012), I also 

collected that season’s new growth from several vascular plant species (bog – Smilacina trifolia, 

Rubus chamaemorus, Oxycoccos microcarpus, Ledum groenlandicum, Andromeda polifolia, 

Chamaedaphne calyculata, and Picea mariana; poor fen - Andromeda polifolia, Chamaedaphne 

calyculata, Eriophorum vaginatum, and Scheuchzeria palustris) from all 42 plots as well as 5 

replicates outside the plots in both the bog and poor fen. In order to ensure that I did not re-



26 
 

sample the same plants in subsequent years, I banded plants that I collected from with colored 

zip-ties. This process was implemented for Ledum groenlandicum (purple zip-ties), Andromeda 

polifolia (pink zip-ties), and Chamaedaphne calyculata (yellow zip-ties) as these species are 

perennials and individuals will remain in the plot from year to year. Picea mariana individuals 

that were sampled were marked with orange flagging tape. All vascular plant samples were 

collected in paper bags and brought back to the lab where they were sorted. Only foliar 

material was used for the analysis, so for Oxycoccus microcarpus, leaves were removed from 

the stem, and for Picea mariana, needles were removed from the stem. After being sorted, 

samples were dried for a minimum of 4 days at 55°C. All samples were then homogenized in a 

Thomas Wiley Mini-Mill and analyzed for carbon (C) and nitrogen (N) concentrations on a Flash 

EA 1112 Series NC Soil Analyzer. 

Nitrogen concentrations for Sphagnum capitula and vascular plant samples are 

represented as % N in biomass (mid-July). Sphagnum capitulum carbon to nitrogen ratios (C:N) 

also were compared. To analyze for capitulum N storage, the mass of capitula was extrapolated 

to g m-2
 (assuming 100% cover for the Sphagnum species being analyzed) and multiplied by the 

nitrogen concentration (mid-July).  

Statistical Analyses 

Differences of nitrogen concentration (%N), carbon to nitrogen ratios (C:N), and 

capitulum N storage were analyzed by two-way ANOVA with N treatment and year as factors. 

Normality of residuals were tested using the Shapiro-Wilk’s normality test (α = 0.05) along with 

interpretation of Q-Q residual plots. If the data failed the Shapiro-Wilk’s normality test, the data 

were then rank transformed, and Friedman’s two-way nonparametric ANOVA was performed. 
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When running the two-way ANOVA analyses, I interpreted the output from the Type III tests. 

Type III tests analyze the significance of each factor while controlling for the level of the other 

factors. Post-hoc multiple comparisons were done by Tukey's HSD (honestly significant 

difference) test. For analyses using Friedman’s two-way nonparametric ANOVA, post-hoc 

multiple comparisons were done using the Bonferroni-Dunn test. Statistics were calculated 

using SAS 9.2 (SAS 2009).  

Sphagnum growth response 

Field Sampling and Lab Techniques 
 

To investigate potential growth response of the target Sphagnum species, 

measurements were taken for linear growth (the vertical elongation of the Sphagnum shoots), 

stem mass density (the weight of Sphagnum stems occupying a volume after capitula were 

removed), and ultimately, net primary production (NPP).  On May 25th-26th 2011, 30 wires were 

set in each plot following the cranked wire method (Clymo 1970).  In the bog, cranked wires 

were placed exclusively in S. fuscum, and in the poor fen, wires were set to measure S. fuscum, 

S. angustifolium and S. magellanicum.  Based on the dominant Sphagnum species composition 

in the plot, one plot in the poor fen had all 30 cranked wires in S. fuscum, one had 15 wires in S. 

fuscum and S. angustifolium each, three had 15 wires in S. fuscum and S. magellanicum each, 

nine had 15 wires in S. angustifolium and S. magellanicum each, and seven had 10 wires in S. 

fuscum, S. angustifolium, and S. magellanicum each. The wires were re-measured on October 

7th-8th 2011, when air temperatures were below freezing and it was assumed that annual 

growth had ceased. By subtracting the height the cranked wire was initially set to at the start of 

the growing season (May 2011) from the measurement taken at the end of the growing season, 
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I was able to calculate 2011’s linear Sphagnum spp. growth. The same method was used to 

calculate 2012’s linear Sphagnum spp. growth (with measurements taken on May 24th-25th 

2012 and October 5th-6th 2012).  

Stem mass density is expressed as the mass of the top 1 cm of Sphagnum shoots 

excluding capitula in a meter squared with a unit of g cm-1 m-2. Volumetric samples of 

Sphagnum were collected from each plot for mass density analysis at the height of the growing 

season (mid-July, 2011 and 2012) using a 6.5 cm diameter core. The core was a steel can, open 

on each end, with one side sharpened. Capitula were removed and counted, and a selection of 

stems (70 stems for S. fuscum cores and 20 stems for S. angustifolium and S. magellanicum 

cores) were snipped at 2 cm below the capitula. Capitula and stem mass density samples were 

dried for a minimum of 4 days at 55°C, and then weighed to obtain respective mass densities. 

The mass of stems was then divided by 2 to obtain the mass of 1 cm vertical growth for an area 

of 33 cm2. Stem mass density was then extrapolated to g cm-1 m-2 by dividing by 33 cm2 and 

then multiplying by 10,000 cm2/m2.  

When extracting the Sphagnum cores, a location in the plot with full cover of the 

desired species was selected; however, there were often cores with Sphagnum plants other 

than the desired species. Therefore, in order to find the stem mass density of solely the desired 

species, the “foreigners” (the other Sphagnum spp. individuals) were accounted for. I measured 

the capitulum diameter (mm) of 20 individuals of S. fuscum, S. angustifolium, and S. 

magellanicum each, selected randomly from the study site outside of the treatment plots. I 

calculated the average capitulum diameter for each Sphagnum species and used that value in 

my calculations. For example, the average capitula diameter for S. angustifolium (based on 
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measurements from the sample of 20 individuals) was 8.6 mm (0.86 cm). I then calculated the 

area of one S. angustifolium individual using this value (A = π x (0.8563/2)2 = 0.576 cm2). To 

account for the presence of “foreigners” in a core, I subtracted the estimated area of those 

“foreigners” from the total area of the core. Since capitula sometimes overlap each other when 

individuals are compacted, a correction factor (0.80) was multiplied to the area being 

subtracted so the estimated area more accurately expressed how much of the core those 

“foreigners” were occupying. For the “Bog – Arm 1 – 0 kg/ha” plot, there were 8 S. 

angustifolium individuals in the S. fuscum core that was taken in 2012. Thus, the area of 8 S. 

angustifolium individuals (= 8 x (0.576 cm2) x 0.80) was subtracted from the total area of the 

core, and I was left with the area that only S. fuscum (the desired species for this core) 

occupied. I scaled this area back up to m2 and I was able to calculate stem mass density (g cm-1 

m-2) for just S. fuscum.  

Net primary production (NPP) was calculated as the product of the previous two 

measurements: Linear Growth (cm) x Stem Mass Density (g cm-1 m-2) = NPP (g m-2 year-1).  

Sphagnum Community Response 

 The previous section addressed my investigation into how specific Sphagnum spp. (S. 

fuscum, S. angustifolium, and S. magellanicum) each responded to the N additions; however, I 

also investigated how the Sphagnum community as a whole responded to the N additions in 

the treatment plots. The estimated percent cover of each Sphagnum species utilized in this 

analysis was derived from the number of cranked wires placed in each Sphagnum species in 

each treatment plot. As detailed earlier, 30 wires were set in each plot following the cranked 

wire method (Clymo 1970).  In the bog, cranked wires were placed exclusively in S. fuscum, and 
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in the poor fen, wires were set to measure S. fuscum, S. angustifolium and S. magellanicum.  

Based on the dominant Sphagnum species composition in the plot, one plot in the poor fen had 

all 30 cranked wires in S. fuscum, one had 15 wires in S. fuscum and S. angustifolium each, three 

had 15 wires in S. fuscum and S. magellanicum each, nine had 15 wires in S. angustifolium and 

S. magellanicum each, and seven had 10 wires in S. fuscum, S. angustifolium, and S. 

magellanicum each. Therefore, the twenty-one plots in the bog were assumed to have 100% S. 

fuscum cover for these analyses. In the poor fen, the plots that had 15 wires in two different 

Sphagnum sp. had 50% cover for each of those species and the plots that had 10 wires in three 

different Sphagnum sp. had 33.3̄ % cover for each of those species. Since data were collected 

on the specific Sphagnum sp. individually, to look at the Sphagnum community in each plot, I 

took the data values for each different Sphagnum sp. and multiplied them by the fraction of the 

plot they represented. For example, in the “Fen – Arm 1 – Control” plot, there were 15 cranked 

wires in S. fuscum (50% cover) and 15 cranked wires in S. magellanicum (50% cover); to look at 

the linear growth response of the Sphagnum community in this plot, I took the average linear 

growth value from the 15 wires in S. fuscum (for 2012, 3.64 cm) and multiplied it by 0.50, and 

then added the average linear growth value from the 15 wires in S. magellanicum (for 2012, 

4.13 cm) multiplied by 0.50. This calculation [[(3.64 cm)(0.50) + (4.13 cm)(0.50)] = 3.9 cm] 

determines that the linear growth response of the Sphagnum community in the “Fen – Arm 1 – 

Control” plot is 3.9 cm (for the 2012 growing season). The linear growth response of the 

Sphagnum community in each treatment plot was determined in this manner, as well as stem 

mass density and net primary production (NPP).  
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Statistical Analyses 

Differences of linear growth, stem and capitulum mass densities, production, and 

capitula weight were analyzed by two-way ANOVA with N treatment and year as factors. 

Normality of residuals were tested using the Shapiro-Wilk’s normality test (α = 0.05) along with 

interpretation of Q-Q residual plots. If the data failed the Shapiro-Wilk’s normality test, the data 

were then rank transformed, and Friedman’s two-way nonparametric ANOVA was performed. 

When running the two-way ANOVA analyses, I interpreted the output from the Type III tests. 

Type III tests analyze the significance of each factor while controlling for the level of the other 

factors. Post-hoc multiple comparisons were done by Tukey's HSD (honestly significant 

difference) test. For analyses using Friedman’s two-way nonparametric ANOVA, post-hoc 

multiple comparisons were done using the Bonferroni-Dunn test. Statistics were calculated 

using SAS 9.2 (SAS 2009). 
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RESULTS 

 
Nitrogen uptake 

Sphagnum Capitulum N Concentration (%N)  

N Treatment and Year Effects - Differences in capitulum N concentration (%N) were detected 

for year and N treatment for S. fuscum in the poor fen (year: F = 71.01, p < 0.0001; N: F = 6.45, p 

= 0.003) and S. angustifolium in the bog (year: F = 47.65, p < 0.0001; N: F = 3.24, p = 0.022), 

although for S. fuscum in the poor fen there was also a significant interaction (F = 4.13; p = 

0.022) (FIGURE 2.6 and 2.7; TABLE 2.3) 

Year Effects - For S. angustifolium in the poor fen there was only a significant difference in year 

(F = 37.48; p < 0.0001) (FIGURE 2.8; TABLE 2.3). %N values for S. fuscum in the bog and S. 

magellanicum in the poor fen both failed to meet normality assumptions (Shapiro-Wilk’s test: 

W = 0.869, p = 0.0002; W = 0.828, p = 0.0086), and were examined using Friedman’s two-way 

nonparametric ANOVA based on ranks (FIGURE 2.5 and 2.9; TABLE 2.3). For S. fuscum in the 

bog, there was a significant difference in year (F = 48.51; p < 0.0001) (FIGURE 2.5; TABLE 2.3). 

No Effects - For S. magellanicum in the poor fen, there was a non-significant year (F = 3.09; p = 

0.113) and N treatment (F = 2.61; p = 0.107) effect (FIGURE 2.9; TABLE 2.3) 

Summary of Data - Capitulum N concentrations (%N) were, on average, higher in 2012 than in 

2011 for all species, in both site types (bog and poor fen) (TABLE 2.2). In 2011, the mean S. 

fuscum %N in the bog was 1.1 and in 2012, the mean %N was 1.4 (TABLE 2.2). In 2011, the 

mean S. fuscum %N in the poor fen was 1.1 and in 2012, the mean %N was 1.3 (TABLE 2.2). In 

2011, the mean S. angustifolium %N in the bog was 1.0 and in 2012, the mean %N was 1.2 
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(TABLE 2.2). In 2011, the mean S. angustifolium %N in the poor fen was 0.8 and in 2012, the 

mean %N was 1.2 (TABLE 2.2). In 2011, the mean S. magellanicum %N in the poor fen was 1.0 

and in 2012, the mean %N was 1.3 (TABLE 2.2). 

 

FIGURE 2.5 Mean %N values for S. fuscum capitula collected from bog plots in mid-July, 2011 and 2012. 
Bars represent means ± SE. Letters above the bars represent significant differences between groups 
using the Bonferroni-Dunn post-hoc test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.6 Mean %N values for S. fuscum capitula collected from poor fen plots in mid-July,  2011 and 
2012. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.7 Mean %N values for S. angustifolium capitula collected from bog plots in mid-July, 2011 and 
2012. Bars represent means ± SE. Letters (N treatment) and numbers (year) above the bars represent 
significant differences between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 
unless otherwise noted. 
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FIGURE 2.8 Mean %N values for S. angustifolium capitula collected from poor fen plots in mid-July, 2011 
and 2012. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.9 Mean %N values for S. magellanicum capitula collected from poor fen plots in mid-July, 2011 
and 2012. Bars represent means ± SE. Sample size is n=3 unless otherwise noted. 
 
TABLE 2.2 Mean N concentration (%N) values for Sphagnum fuscum (bog and poor fen), S. angustifolium 
(bog and poor fen), and S. magellanicum (poor fen) capitula collected from the treatment plots in mid-
July, 2011 and 2012. Values represent means ± SE. When no standard error is noted, then n=1.  
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TABLE 2.3 Two-Way ANOVA results of N concentration (%N) for Sphagnum fuscum, S. angustifolium, and 
S. magellanicum as a function of treatment and year. P-value less than 0.05 indicates significant 
differences among means compared using Tukey-Kramer multiple means comparison. 

 

 

Vascular Plant Tissue N Concentration (%N): 

BOG  

N Treatment Effects - Differences in N concentration (%N) were detected for N treatment for 

Oxycoccos microcarpus in the bog (F = 4.01; p = 0.005) (FIGURE 2.10; TABLE 2.5). 

Year Effects - For Picea mariana and Chamaedaphne calyculata in the bog there was a 

significant difference in year (F = 13.23, p = 0.001; F = 18.59, p = 0.0002) (FIGURE 2.13 and 2.15; 

TABLE 2.5). 

No Effects - No differences in %N were detected for N treatment or year for Rubus 

chamaemorus, Smilacina trifolia, Ledum groenlandicum, and Andromeda polifolia in the bog 

(FIGURE 2.11, 2.12, 2.14, and 2.16; TABLE 2.5). 

Summary of Data - In 2011, the mean Oxycoccos microcarpus %N in the bog was 1.6 and in 

2012, the mean %N was 1.6 (TABLE 2.4). In 2011, the mean Rubus chamaemorus %N in the bog 

was 2.8 and in 2012, the mean %N was 2.8 (TABLE 2.4). In 2011, the mean Smilacina trifolia %N 

in the bog was 3.3 and in 2012, the mean %N was 3.2 (TABLE 2.4). In 2011, the mean Picea 

mariana %N in the bog was 0.8 and in 2012, the mean %N was 0.9 (TABLE 2.4). In 2011, the 

mean Ledum groenlandicum %N in the bog was 1.9 and in 2012, the mean %N was 1.8 (TABLE 

2.4). In 2011, the mean Chamaedaphne calyculata %N in the bog was 2.0 and in 2012, the mean 
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%N was 1.8 (TABLE 2.4). In 2011, the mean Andromeda polifolia %N in the bog was 1.7 and in 

2012, the mean %N was 1.6 (TABLE 2.4). 

 

 
FIGURE 2.10 Mean %N values for Oxycoccos microcarpus collected from bog plots in mid-July, 2011 and 
2012. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.11 Mean %N values for Rubus chamaemorus collected from bog plots in mid-July, 2011 and 
2012. Bars represent means ± SE. Sample size is n=3 unless otherwise noted. 
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FIGURE 2.12 Mean %N values for Smilacina trifolia collected from bog plots in mid-July, 2011 and 2012. 
Bars represent means ± SE. Sample size is n=3 unless otherwise noted. 
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FIGURE 2.13 Mean %N values for Picea mariana collected from bog plots in mid-July, 2011 and 2012. 
Bars represent means ± SE. Letters above the bars represent significant differences between groups 
using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.14 Mean %N values for Ledum groenlandicum collected from bog plots in mid-July, 2011 and 
2012. Bars represent means ± SE. Sample size is n=3 unless otherwise noted. 
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FIGURE 2.15 Mean %N values for Chamaedaphne calyculata collected from bog plots in mid-July, 2011 
and 2012. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.16 Mean %N values for Andromeda polifolia collected from bog plots in mid-July, 2011 and 
2012. Bars represent means ± SE. Sample size is n=3 unless otherwise noted. 
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TABLE 2.4 Mean N concentration (%N) values for Oxycoccos microcarpus, Rubus chamaemorus, 
Smilacina trifolia, Picea mariana, Ledum groenlandicum, Chamaedaphne calyculata, and Andromeda 
polifolia samples collected from the bog treatment plots in mid-July, 2011 and 2012. Values represent 
means ± SE. When no standard error is noted, then n=1. 

 

TABLE 2.5 Two-Way ANOVA results of N concentration (%N) for Oxycoccos microcarpus, Rubus 
chamaemorus, Smilacina trifolia, Picea mariana, Ledum groenlandicum, Chamaedaphne calyculata, and 
Andromeda polifolia as a function of treatment and year. P-value less than 0.05 indicates significant 
differences among means compared using Tukey-Kramer multiple means comparison. 
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POOR FEN 

Year Effects - Differences in N concentration (%N) were detected for year for Eriophorum 

vaginatum (F = 7.49; p = 0.011) and Chamaedaphne calyculata (F = 14.05; p = 0.0008) in the 

poor fen (FIGURE 2.17 and 2.19; TABLE 2.7). %N values for Scheuchzeria palustris in the poor 

fen failed to meet normality assumptions (Shapiro-Wilk’s test: W = 0.906; p = 0.0033), and were 

examined using Friedman’s two-way nonparametric ANOVA based on ranks (FIGURE 2.18; 

TABLE 2.7). For Scheuchzeria palustris in the poor fen, there was a significant difference in year 

(F = 8.51; p = 0.007) (FIGURE 2.18; TABLE 2.7). 

No Effects - No differences in %N were detected for N treatment or year for Andromeda 

polifolia in the poor fen (FIGURE 2.20; TABLE 2.7). 

Summary of Data - In 2011, the mean Eriophorum vaginatum %N in the poor fen was 1.7 and in 

2012, the mean %N was 1.9 (TABLE 2.6). In 2011, the mean Scheuchzeria palustris %N in the 

poor fen was 3.3 and in 2012, the mean %N was 3.1 (TABLE 2.6). In 2011, the mean 

Chamaedaphne calyculata %N in the poor fen was 2.1 and in 2012, the mean %N was 1.8 

(TABLE 2.6). In 2011, the mean Andromeda polifolia %N in the poor fen was 1.7 and in 2012, the 

mean %N was 1.7 (TABLE 2.6). 
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FIGURE 2.17 Mean %N values for Eriophorum vaginatum collected from poor fen plots in mid-July, 2011 
and 2012. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.18 Mean %N values for Scheuchzeria palustris collected from poor fen plots in mid-July, 2011 
and 2012. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using the Bonferroni-Dunn post-hoc test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.19 Mean %N values for Chamaedaphne calyculata collected from poor fen plots in mid-July, 
2011 and 2012. Bars represent means ± SE. Letters above the bars represent significant differences 
between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise 
noted. 
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FIGURE 2.20 Mean %N values for Andromeda polifolia collected from poor fen plots in mid-July, 2011 
and 2012. Bars represent means ± SE. Sample size is n=3 unless otherwise noted. 
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TABLE 2.6 Mean N concentration (%N) values for Eriophorum vaginatum, Scheuchzeria palustris, 
Chamaedaphne calyculata, and Andromeda polifolia samples collected from the poor fen treatment 
plots in mid-July, 2011 and 2012. Values represent means ± SE. 

 

TABLE 2.7 Two-Way ANOVA results of N concentration (%N) for Eriophorum vaginatum, Scheuchzeria 
palustris, Chamaedaphne calyculata, and Andromeda polifolia as a function of treatment and year. P-
value less than 0.05 indicates significant differences among means compared using Tukey-Kramer 
multiple means comparison. %N values for Scheuchzeria palustris in the poor fen failed to meet 
normality assumptions (Shapiro-Wilk’s test: W = 0.906; p = 0.0033), and were examined using 
Friedman’s two-way nonparametric ANOVA based on ranks. 
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Sphagnum Capitulum C:N Ratios  

N Treatment and Year Effects - Differences in C:N ratios were detected for year and N 

treatment for S. fuscum in the poor fen (year: F = 75.27, p < 0.0001; N: F = 3.52, p = 0.029) and 

S. angustifolium in the bog (year: F = 52.70, p < 0.0001; N: F = 2.60, p = 0.049) (FIGURE 2.22 and 

2.23; TABLE 2.9). 

Year Effects - For S. fuscum in the bog and S. angustifolium in the poor fen there was only a 

significant difference in year (F = 50.36, p < 0.0001; F = 70.88, p < 0.0001) (FIGURE 2.21 and 

2.24; TABLE 2.9). C:N values for S. magellanicum in the poor fen failed to meet normality 

assumptions (Shapiro-Wilk’s test: W = 0.871; p = 0.043), and were examined using Friedman’s 

two-way nonparametric ANOVA based on ranks (FIGURE 2.25; TABLE 2.9). For S. magellanicum 

in the poor fen, there was a significant difference in year (F = 5.24; p = 0.048) (FIGURE 2.25; 

TABLE 2.9).  

Summary of Data - C:N ratios were, on average, lower in 2012 than in 2011 for all species, in 

both site types (bog and poor fen) (TABLE 2.8). In 2011, the mean S. fuscum C:N ratio in the bog 

was 41.4 and in 2012, the mean C:N was 34.3 (TABLE 2.8). In 2011, the mean S. fuscum C:N 

ratio in the poor fen was 44.8 and in 2012, the mean C:N was 35.0 (TABLE 2.8). In 2011, the 

mean S. angustifolium C:N ratio in the bog was 47.7 and in 2012, the mean C:N was 37.3 (TABLE 

2.8). In 2011, the mean S. angustifolium C:N ratio in the poor fen was 55.7 and in 2012, the 

mean C:N was 38.4 (TABLE 2.8). In 2011, the mean S. magellanicum C:N ratio in the poor fen 

was 43.1 and in 2012, the mean C:N was 34.9 (TABLE 2.8).  
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FIGURE 2.21 Mean C:N values for S. fuscum capitula collected from bog plots in mid-July, 2011 and 2012. 
Bars represent means ± SE. Letters above the bars represent significant differences between groups 
using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 

 

 



55 
 

FIGURE 2.22 Mean C:N values for S. fuscum capitula collected from poor fen plots in mid-July, 2011 and 
2012. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.23 Mean C:N values for S. angustifolium capitula collected from bog plots in mid-July, 2011 
and 2012. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.24 Mean C:N values for S. angustifolium capitula collected from poor fen plots in mid-July, 
2011 and 2012. Bars represent means ± SE. Letters above the bars represent significant differences 
between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise 
noted. 
 
 
 



58 
 

FIGURE 2.25 Mean C:N values for S. magellanicum capitula collected from poor fen plots in mid-July, 
2011 and 2012. Bars represent means ± SE. Sample size is n=3 unless otherwise noted. 
 
TABLE 2.8 Mean C:N values for Sphagnum fuscum (bog and poor fen), S. angustifolium (bog and poor 
fen), and S. magellanicum (poor fen) capitula collected from the treatment plots in mid-July, 2011 and 
2012. Values represent means ± SE. When no standard error is noted, then n=1.  

 



59 
 

TABLE 2.9 Two-Way ANOVA results of C:N ratios for Sphagnum fuscum, S. angustifolium, and S. 
magellanicum as a function of treatment and year. P-value less than 0.05 indicates significant 
differences among means compared using Tukey-Kramer multiple means comparison. C:N values for 
Sphagnum magellanicum in the poor fen failed to meet normality assumptions (Shapiro-Wilk’s test: W = 
0.871; p = 0.043), and were examined using Friedman’s two-way nonparametric ANOVA based on ranks. 

 
 
 

Capitulum N Storage (CNS)  

N Treatment and Year Effects - Differences in capitulum N storage were detected for year and 

N treatment for S. fuscum in the bog (year: F = 5.92, p = 0.022; N: F = 3.43, p = 0.012) and poor 

fen (year: F = 17.77, p = 0.0009; N: F = 7.82, p = 0.001) and S. angustifolium in the bog (year: F = 

52.62, p < 0.0001; N: F = 2.80, p = 0.038; interaction: F = 3.65, p = 0.013) (FIGURE 2.26, 2.27, and 

2.28; TABLE 2.11).  

Year Effects - For S. angustifolium in the poor fen, there was only a significant difference in year 

(F = 86.27; p < 0.0001) (FIGURE 2.29; TABLE 2.11). 

No Effects - For S. magellanicum in the poor fen, there was a non-significant year (F = 4.34; p = 

0.083), N treatment (F = 0.40; p = 0.803), and interaction (F = 0.48; p = 0.709) effect (FIGURE 

2.30; TABLE 2.11). 

Summary of Data - Capitulum N storage was, on average, higher in 2012 than in 2011 for all 

species, in both site types (bog and poor fen), although S. angustifolium had the most drastic 

increases (TABLE 2.10). In 2011, the mean S. fuscum CNS in the bog was 1.2 g m-2 and in 2012, 

the mean CNS was 1.4 g m-2 (TABLE 2.10). In 2011, the mean S. fuscum CNS in the poor fen was 

1.0 g m-2 and in 2012, the mean CNS was 1.5 g m-2 (TABLE 2.10). In 2011, the mean S. 
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angustifolium CNS in the bog was 0.9 g m-2 and in 2012, the mean CNS was 1.5 g m-2 (almost 2 

times greater than the previous year) (TABLE 2.10). In 2011, the mean S. angustifolium CNS in 

the poor fen was 0.5 g m-2 and in 2012, the mean CNS was 1.6 g m-2 (over 3 times greater than 

the previous year) (TABLE 2.10). In 2011, the mean S. magellanicum CNS in the poor fen was 0.6 

g m-2 and in 2012, the mean CNS was 1.0 g m-2 (TABLE 2.10). 

 

 
FIGURE 2.26 Mean capitulum N storage (CNS) values for S. fuscum capitula collected from bog plots in 
mid-July, 2011 and 2012. Bars represent means ± SE. Letters (N treatment) and numbers (year) above 
the bars represent significant differences between groups using a posteriori Tukey’s HSD test (p < 0.05). 
Sample size is n=3 unless otherwise noted. 
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FIGURE 2.27 Mean capitulum N storage (CNS) values for S. fuscum capitula collected from poor fen plots 
in mid-July, 2011 and 2012. Bars represent means ± SE. Letters (N treatment) and numbers (year) above 
the bars represent significant differences between groups using a posteriori Tukey’s HSD test (p < 0.05). 
Sample size is n=3 unless otherwise noted. 
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FIGURE 2.28 Mean capitulum N storage (CNS) values for S. angustifolium capitula collected from bog 
plots in mid-July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent significant 
differences between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless 
otherwise noted. 
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FIGURE 2.29 Mean capitulum N storage (CNS) values for S. angustifolium capitula collected from poor 
fen plots in mid-July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent 
significant differences between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 
unless otherwise noted. 
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FIGURE 2.30 Mean capitulum N storage (CNS) values for S. magellanicum capitula collected from poor 
fen plots in mid-July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent 
significant differences between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 
unless otherwise noted. 
 
TABLE 2.10 Mean capitulum N storage values for Sphagnum fuscum (bog and poor fen), S. angustifolium 
(bog and poor fen), and S. magellanicum (poor fen) capitula collected from the treatment plots in mid-
July, 2011 and 2012. Values represent means ± SE. When no standard error is noted, then n=1.  
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TABLE 2.11 Two-Way ANOVA results of capitulum N storage for Sphagnum fuscum, S. angustifolium, and 
S. magellanicum as a function of treatment and year. P-value less than 0.05 indicates significant 
differences among means compared using Tukey-Kramer multiple means comparison.  

 
 

Sphagnum growth response 

Linear Growth (LG)  

N Treatment and Year Effects - Differences in linear growth were detected for year and N 

treatment for S. fuscum in the bog (year: F = 113.82, p < 0.0001; N: F = 54.06, p < 0.0001) and 

poor fen (year: F = 58.79, p < 0.0001; N: F = 4.78, p = 0.0003), although there was also a 

significant interaction for both (F = 14.15, p < 0.0001; F = 9.22, p < 0.0001) (FIGURE 2.31 and 

2.32; TABLE 2.13). Differences in linear growth were detected for year and N treatment for S. 

angustifolium in the poor fen (year: F = 83.67, p < 0.0001; N: F = 12.34, p < 0.0001) and S. 

magellanicum in the poor fen (year: F = 323.58, p < 0.0001; N: F = 8.59, p < 0.0001), although 

there was also a significant interaction (F = 2.99, p = 0.007; F = 9.04, p < 0.0001) (FIGURE 2.33 

and 2.34; TABLE 2.13). 

Summary of Data – In 2011, the mean S. fuscum LG in the bog was 2.0 cm and in 2012, the 

mean LG was 2.6 cm (TABLE 2.12). In 2011, the mean S. fuscum LG in the poor fen was 2.8 cm 

and in 2012, the mean LG was 3.7 cm (TABLE 2.12). In 2011, the mean S. angustifolium LG in the 

poor fen was 3.7 cm and in 2012, the mean LG was 5.0 cm (TABLE 2.12). In 2011, the mean S. 

magellanicum LG in the poor fen was 2.5 cm and in 2012, the mean LG was 4.4 cm (TABLE 2.12). 
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FIGURE 2.31 Mean linear growth values for S. fuscum measured in bog plots in 2011 and 2012. Bars 
represent means ± SE. Letters above the bars represent significant differences between groups using a 
posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
 

FIGURE 2.32 Mean linear growth values for S. fuscum measured in poor fen plots in 2011 and 2012. Bars 
represent means ± SE. Letters above the bars represent significant differences between groups using a 
posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.33 Mean linear growth values for S. angustifolium measured in poor fen plots in 2011 and 
2012. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
 

 
FIGURE 2.34 Mean linear growth values for S. magellanicum measured in poor fen plots in 2011 and 
2012. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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TABLE 2.12 Mean linear growth values for Sphagnum fuscum (bog and poor fen), S. angustifolium (poor 
fen), and S. magellanicum (poor fen) in 2011 and 2012. Values represent means ± SE. When no standard 
error is noted, then n=1.  

 
 
TABLE 2.13 Two-Way ANOVA results of linear growth for Sphagnum fuscum, S. angustifolium, and S. 
magellanicum as a function of treatment and year. P-value less than 0.05 indicates significant 
differences among means compared using Tukey-Kramer multiple means comparison. 

 
 
Stem Mass Density (SMD)  

Year Effects – For S. angustifolium SMD in the bog, there was a significant year effect (F = 5.96; 

p = 0.024), but no N treatment (F = 1.02; p = 0.438) or interaction (F = 1.14; p = 0.377) effect 

(FIGURE 2.37; TABLE 2.15). For S. angustifolium SMD in the poor fen, there was a significant 
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year effect (F = 56.87; p < 0.0001) and significant interaction (F = 3.81; p = 0.012), but no N 

treatment (F = 0.50; p = 0.802) effect (FIGURE 2.38; TABLE 2.15). 

No Effects – Stem mass density (SMD) values for Sphagnum fuscum in the bog failed to meet 

normality assumptions (Shapiro-Wilk’s test: W = 0.937; p = 0.022), and were examined using 

Friedman’s two-way nonparametric ANOVA based on ranks (FIGURE 2.35; TABLE 2.15). For 

Sphagnum fuscum SMD in the bog, there was a non-significant year (F = 1.15; p = 0.290) and N 

treatment (F = 1.07; p = 0.399) effect (FIGURE 2.35; TABLE 2.15). For S. fuscum SMD in the poor 

fen, there was a non-significant year (F = 1.09; p = 0.314), N treatment (F = 0.59; p = 0.705), and 

interaction (F = 0.34; p = 0.88) effect (FIGURE 2.36; TABLE 2.15). For S. magellanicum SMD in 

the poor fen, there was a non-significant year (F = 0.05; p = 0.825), N treatment (F = 0.72; p = 

0.609), and interaction (F = 0.08; p = 0.970) effect (FIGURE 2.39; TABLE 2.15). 

Summary of Data – In 2011, the mean S. fuscum SMD in the bog was 113.6 g m-2 cm-1 and in 

2012, the mean SMD was 130.4 g m-2 cm-1 (TABLE 2.14). In 2011, the mean S. fuscum SMD in 

the poor fen was 108.2 g m-2 cm-1 and in 2012, the mean SMD was 131.7 g m-2 cm-1 (TABLE 

2.14). In 2011, the mean S. angustifolium SMD in the bog was 44.7 g m-2 cm-1 and in 2012, the 

mean SMD was 69.5 g m-2 cm-1 (over 1½ times greater than the previous year) (TABLE 2.14). In 

2011, the mean S. angustifolium SMD in the poor fen was 47.7 g m-2 cm-1 and in 2012, the mean 

SMD was 99.6 g m-2 cm-1 (over 2 times greater than the previous year) (TABLE 2.14). In 2011, 

the mean S. magellanicum SMD in the poor fen was 77.1 g m-2 cm-1 and in 2012, the mean SMD 

was 75.5 g m-2 cm-1 (TABLE 2.14). 
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FIGURE 2.35 Mean stem mass density (SMD) values for S. fuscum collected from bog plots in mid-July, 
2011 and 2012. Bars represent means ± SE. Sample size is n=3 unless otherwise noted. 
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FIGURE 2.36 Mean stem mass density (SMD) values for S. fuscum collected from poor fen plots in mid-
July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent significant differences 
between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise 
noted. 
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FIGURE 2.37 Mean stem mass density (SMD) values for S. angustifolium collected from bog plots in mid-
July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent significant differences 
between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise 
noted. 
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FIGURE 2.38 Mean stem mass density (SMD) values for S. angustifolium collected from poor fen plots in 
mid-July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent significant 
differences between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless 
otherwise noted. 
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FIGURE 2.39 Mean stem mass density (SMD) values for S. magellanicum collected from poor fen plots in 
mid-July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent significant 
differences between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless 
otherwise noted. 
 
TABLE 2.14 Mean stem mass density (SMD) values for S. fuscum (bog and poor fen), S. angustifolium 
(bog and poor fen), and S. magellanicum (poor fen) samples collected from the treatment plots in mid-
July, 2011 and 2012. Values represent means ± SE. When no standard error is noted, then n=1.  

 



75 
 

TABLE 2.15 Two-Way ANOVA results of stem mass density (SMD) for Sphagnum fuscum, S. 
angustifolium, and S. magellanicum as a function of treatment and year. P-value less than 0.05 indicates 
significant differences among means compared using Tukey-Kramer multiple means comparison. SMD 
values for Sphagnum fuscum in the bog failed to meet normality assumptions (Shapiro-Wilk’s test: W = 
0.937; p = 0.022), and were examined using Friedman’s two-way nonparametric ANOVA based on ranks. 

 

 
Capitulum Mass Density (CMD)  

N Treatment and Year Effects - Differences in capitulum mass density (CMD) were detected for 

year and N treatment for S. angustifolium in the bog (year: F = 17.34, p = 0.0005; N: F = 3.68, p 

= 0.013), although there was also a significant interaction (F = 3.89; p = 0.01) (FIGURE 2.42; 

TABLE 2.17). 

N Treatment Effects - For S. fuscum in the poor fen, there was only a significant difference in N 

treatment (F = 6.43; p = 0.003) (FIGURE 2.41; TABLE 2.17). 

Year Effects - For S. angustifolium in the poor fen, there was only a significant difference in year 

(F = 59.10; p < 0.0001) (FIGURE 2.43; TABLE 2.17). 

No Effects - For S. fuscum in the bog, there was a non-significant year (F = 0.01; p = 0.925), N 

treatment (F = 2.02; p = 0.097), and interaction (F = 0.84; p = 0.552) effect (FIGURE 2.40; TABLE 

2.17). For S. magellanicum in the poor fen, there was also a non-significant year (F = 1.23; p = 

0.309), N treatment (F = 0.60; p = 0.675), and interaction (F = 0.34; p = 0.798) effect (FIGURE 

2.44; TABLE 2.17). 
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Summary of Data - Capitulum mass density was, on average, higher in 2012 than in 2011 for all 

species, in both site types (bog and poor fen), although S. angustifolium in the poor fen had the 

most drastic increases (TABLE 2.16). In 2011, the mean S. fuscum CMD in the bog was 103.0 g 

m-2 and in 2012, the mean CMD was 103.8 g m-2 (TABLE 2.16). In 2011, the mean S. fuscum 

CMD in the poor fen was 96.3 g m-2 and in 2012, the mean CMD was 113.4 g m-2 (TABLE 2.16). 

In 2011, the mean S. angustifolium CMD in the bog was 92.9 g m-2 and in 2012, the mean CMD 

was 128.0 g m-2 (TABLE 2.16). In 2011, the mean S. angustifolium CMD in the poor fen was 58.4 

g m-2 and in 2012, the mean CMD was 127.8 g m-2 (TABLE 2.16). In 2011, the mean S. 

magellanicum CMD in the poor fen was 59.6 g m-2 and in 2012, the mean CMD was 73.1 g m-2 

(TABLE 2.16). 

 
FIGURE 2.40 Mean capitulum mass density (CMD) values for S. fuscum capitula collected from bog plots 
in mid-July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent significant 
differences between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless 
otherwise noted. 
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FIGURE 2.41 Mean capitulum mass density (CMD) values for S. fuscum capitula collected from poor fen 
plots in mid-July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent significant 
differences between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless 
otherwise noted. 
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FIGURE 2.42 Mean capitulum mass density (CMD) values for S. angustifolium capitula collected from bog 
plots in mid-July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent significant 
differences between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless 
otherwise noted. 
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FIGURE 2.43 Mean capitulum mass density (CMD) values for S. angustifolium capitula collected from 
poor fen plots in mid-July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent 
significant differences between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 
unless otherwise noted. 
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FIGURE 2.44 Mean capitulum mass density (CMD) values for S. magellanicum capitula collected from 
poor fen plots in mid-July, 2011 and 2012. Bars represent means ± SE. Letters above the bars represent 
significant differences between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 
unless otherwise noted. 
 
TABLE 2.16 Mean capitulum mass density (CMD) values for S. fuscum (bog and poor fen), S. 
angustifolium (bog and poor fen), and S. magellanicum (poor fen) capitula collected from the treatment 
plots in mid-July, 2011 and 2012. Values represent means ± SE. When no standard error is noted, then 
n=1.  
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TABLE 2.17 Two-Way ANOVA results of capitulum mass density (CMD) for Sphagnum fuscum, S. 
angustifolium, and S. magellanicum as a function of treatment and year. P-value less than 0.05 indicates 
significant differences among means compared using Tukey-Kramer multiple means comparison.  

 
 

Net Primary Production (NPP)  

Year Effects - For Sphagnum fuscum NPP in the bog, there was a significant year effect (F = 

12.80; p = 0.001), but no N treatment (F = 1.63; p = 0.176) or interaction (F = 1.48; p = 0.220) 

effect (FIGURE 2.45; TABLE 2.19). For S. fuscum NPP in the poor fen, there was a significant year 

effect (F = 6.57; p = 0.025), but no N treatment (F = 0.73; p = 0.613) or interaction (F = 1.40; p = 

0.264) effect (FIGURE 2.46; TABLE 2.19). For S. angustifolium NPP in the poor fen, there was a 

significant year effect (F = 56.19; p < 0.0001), but no N treatment (F = 1.22; p = 0.342) or 

interaction (F = 2.24; p = 0.089) effect (FIGURE 2.47; TABLE 2.19). 

No Effects - For S. magellanicum NPP in the poor fen, there was a non-significant year (F = 2.85; 

p = 0.142), N treatment (F = 1.02; p = 0.468), and interaction (F = 0.19; p = 0.936) effect (FIGURE 

2.48; TABLE 2.19). 

Summary of Data - In 2011, the mean S. fuscum NPP in the bog was 217.9 g m-2 yr-1 and in 

2012, the mean NPP was 311.1 g m-2 yr-1 (nearly 1½ times greater than the previous year) 

(TABLE 2.18). In 2011, the mean S. fuscum NPP in the fen was 337.8 g m-2 yr-1 and in 2012, the 

mean NPP was 503.6 g m-2 yr-1 (also nearly 1½ times greater than the previous year) (TABLE 

2.18). In 2011, the mean S. angustifolium NPP in the poor fen was 167.8 g m-2 yr-1 and in 2012, 

the mean NPP was 597.2 g m-2 yr-1 (over 3½ times greater than the previous year) (TABLE 2.18). 
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In 2011, the mean S. magellanicum NPP in the poor fen was 193.5 g m-2 yr-1 and in 2012, the 

mean NPP was 366.6 g m-2 yr-1 (nearly 2 times greater than the previous year) (TABLE 2.18). 

FIGURE 2.45 Mean net primary production (NPP) values for S. fuscum in the bog for 2011 and 2012. Bars 
represent means ± SE. Dashed lines represent the mean value calculated across all treatments for each 
year (2011 and 2012). Letters next to each dashed line represent significant differences between years 
using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.46 Mean net primary production (NPP) values for S. fuscum  in the poor fen for 2011 and 
2012. Bars represent means ± SE. Dashed lines represent the mean value calculated across all 
treatments for each year (2011 and 2012). Letters next to each dashed line represent significant 
differences between years using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless 
otherwise noted. 
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FIGURE 2.47 Mean net primary production (NPP) values for S. angustifolium in the poor fen for 2011 and 
2012. Bars represent means ± SE. Dashed lines represent the mean value calculated across all 
treatments for each year (2011 and 2012). Letters next to each dashed line represent significant 
differences between years using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless 
otherwise noted. 
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FIGURE 2.48 Mean net primary production (NPP) values for S. magellanicum in the poor fen for 2011 
and 2012. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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TABLE 2.18 Mean NPP values for Sphagnum fuscum (bog and poor fen), S. angustifolium (bog and poor 
fen), and S. magellanicum (poor fen). Values represent means ± SE. When no standard error is noted, 
then n=1. Linear Growth (cm) x Stem Mass Density (g cm-1 m-2) = NPP (g m-2 year-1) 

 

TABLE 2.19 Two-Way ANOVA results of net primary production (NPP) for Sphagnum fuscum, S. 
angustifolium, and S. magellanicum as a function of treatment and year. P-value less than 0.05 indicates 
significant differences among means compared using Tukey-Kramer multiple means comparison. 
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Sphagnum Community Response (poor fen)  

N Treatment and Year Effects - Differences in stem mass density (SMD) were detected for year 

and N treatment for the Sphagnum community in the poor fen (year: F = 5.08, p = 0.034; N: F = 

2.52, p = 0.049) (FIGURE 2.50; TABLE 2.21). 

Year Effects - Differences in linear growth (LG) were detected for year for the Sphagnum 

community in the poor fen (F = 67.08; p < 0.0001) (FIGURE 2.49; TABLE 2.21). Differences in net 

primary production (NPP) were detected for year for the Sphagnum community in the poor fen 

(F = 39.83; p < 0.0001) (FIGURE 2.51; TABLE 2.21). 

Summary of Data - Linear growth (cm), stem mass density (g m-2 cm-1), and NPP (g m-2 yr-1) 

values for the Sphagnum community in the poor fen were, on average, higher in 2012 than in 

2011 (TABLE 2.20). In 2011, the mean Sphagnum community LG in the poor fen was 2.9 cm and 

in 2012, the mean LG was 5.0 cm (TABLE 2.20). In 2011, the mean Sphagnum community SMD 

in the poor fen was 73.5 g cm-1 m-2 and in 2012, the mean SMD was 98.9 g cm-1 m-2 (TABLE 2.20). 

In 2011, the mean Sphagnum community NPP in the poor fen was 207.3 g m-2 yr-1 and in 2012, 

the mean NPP was 487.1 g m-2 yr-1 (TABLE 2.20). 
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FIGURE 2.49 Mean linear growth (cm) values for the Sphagnum community in the poor fen treatment 
plots. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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FIGURE 2.50 Mean stem mass density (g m-2 cm-1) values for the Sphagnum community in the poor fen 
treatment plots. Bars represent means ± SE. Letters above the bars represent significant differences 
between groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise 
noted. 
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FIGURE 2.51 Mean NPP (g m-2 year-1) values for the Sphagnum community in the poor fen treatment 
plots. Bars represent means ± SE. Letters above the bars represent significant differences between 
groups using a posteriori Tukey’s HSD test (p < 0.05). Sample size is n=3 unless otherwise noted. 
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TABLE 2.20 Linear growth (cm), stem mass density (g m-2 cm-1), and NPP (g m-2 year-1) values for the 
Sphagnum community in the poor fen treatment plots. Values represent means ± SE. When no standard 
error is noted, then n=1.  

 

 
TABLE 2.21 Two-Way ANOVA results of linear growth (cm), stem mass density (g m-2 cm-1), and NPP (g m-

2 year-1) values for the Sphagnum community (poor fen) as a function of treatment and year. P-value less 
than 0.05 indicates significant differences among means compared using Tukey-Kramer multiple means 
comparison. 
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DISCUSSION 
 
Nitrogen Uptake 
 
Changes in %N, C:N ratios, and capitulum N storage in Sphagnum spp. after two growing 
seasons 
 
 There were differences in capitulum N concentration (%N) between N treatments for S. 

fuscum in the poor fen, but only between the highest N amendment (25 kg/ha) and the lowest 

N amendment (5 kg/ha) and controls (water control and 0 kg/ha) in 2012, and between the 15 

kg/ha and 5 kg/ha treatment plots in 2012. Unfortunately, the %N value for the 25 kg/ha 

treatment was measured from only one sample (n=1), so it may not accurately represent the 

results. The differences in %N between N treatments for S. angustifolium in the bog were only 

for 2012 as well, and were pretty sporadic; the 25 kg/ha treatment plots were different from 

the 20 kg/ha and 5 kg/ha treatment plots. There were no differences in %N between N 

treatments for S. fuscum in the bog or S. angustifolium in the poor fen. Thus, there were no 

clear trends for the effect of N treatments on capitulum N concentration (%N) in these first two 

years. S. fuscum and S. angustifolium in the bog and poor fen had differences in %N between 

years, with 2012 having higher %N values than 2011.  

TABLE 2.22 Visual representation of Two-Way ANOVA results of %N for Sphagnum fuscum and S. 
angustifolium in the bog and poor fen as a function of N treatment and year. 
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Although two-way ANOVA analyses indicated differences in C:N ratios between N 

treatments for S. fuscum in the poor fen (F = 3.52, p = 0.029) and S. angustifolium in the bog (F 

= 2.60, p = 0.049), post-hoc multiple comparisons done by Tukey's HSD test did not reveal any 

significant differences between N treatments. There were no differences in C:N ratios between 

N treatments for S. fuscum in the bog or S. angustifolium in the poor fen. Thus, there were also 

no clear trends for the effect of N treatments on C:N ratios in these first two years. Sphagnum 

fuscum and S. angustifolium in the bog and poor fen, as well as S. magellanicum in the poor fen, 

had differences in C:N ratios between years, with 2012 having lower C:N ratios than 2011. A 

decrease in the C:N ratio of Sphagnum could mean that nitrogen (N) concentrations increased 

or carbon (C) concentrations decreased. I found that Sphagnum capitulum N concentration 

(%N) values were higher in 2012 than in 2011, therefore, the lower Sphagnum capitulum C:N 

ratios in 2012 were due to increased Sphagnum capitulum %N.  

Results for capitulum N storage (CNS) corroborate findings of increased N uptake by 

Sphagnum mosses. Capitulum N storage was, on average, higher in 2012 than in 2011 for all 

Sphagnum species, in both site types (bog and poor fen), with S. angustifolium having the most 

drastic increases. There was one notable exception where 2012 CNS values were lower than 

2011 values: the 20 kg/ha N treatment for S. fuscum in the bog. There were sporadic 

differences in capitulum N storage between N treatments for S. fuscum in the bog and poor fen, 

and S. angustifolium in the bog. There were also differences in capitulum N storage between 

years for S. fuscum in the bog and poor fen, and S. angustifolium in the bog and poor fen. 

However, the N treatment and year effect for S. angustifolium in the bog could just be the 

result of an “outlier”, the water control (n=1). 
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Changes in %N in vascular plant species after two growing seasons 
 

The results for vascular plant tissue N concentration (%N) were not as consistent as 

those for Sphagnum %N. BOG: In the bog, one species (Picea mariana) increased from 2011 to 

2012, two species (Oxycoccos microcarpus and Rubus chamaemorus) remained the same, and 

four species (Smilacina trifolia, Ledum groenlandicum, Chamaedaphne calyculata, and 

Andromeda polifolia) decreased from 2011 to 2012. The only vascular plant species in the bog 

that actually had a significant difference in year were Picea mariana and Chamaedaphne 

calyculata; however, according to post-hoc multiple comparisons done by Tukey's HSD test, the 

only difference for Picea mariana was that the 20 kg/ha treatment in 2012 differed from 2011 

%N values, and the only difference for Chamaedaphne calyculata was that the 20 kg/ha 

treatment in 2011 differed from the 0 kg/ha treatment in 2012. The only vascular species in the 

bog that had a N treatment effect was Oxycoccos microcarpus, but post-hoc multiple 

comparisons done by Tukey's HSD test revealed just the water control and 15 kg/ha treatment 

in 2012 were different. FEN: In the poor fen, one species (Eriophorum vaginatum) increased 

from 2011 to 2012, one species (Andromeda polifolia) remained the same, and two species 

(Scheuchzeria palustris and Chamaedaphne calyculata) decreased from 2011 to 2012 (TABLE). 

Eriophorum vaginatum, Scheuchzeria palustris, and Chamaedaphne calyculata in the poor fen 

all had a significant difference in year. However, according to post-hoc multiple comparisons 

done by Tukey's HSD test, there were not actually any differences between 2011 and 2012 for 

Eriophorum vaginatum, and there was only a difference between the 20 kg/ha treatment in 

2011 and the control in 2012 for Chamaedaphne calyculata. None of the vascular species in the 

poor fen showed a N treatment effect. 
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Possible Explanations?  

There were no clear trends for the effect of N treatments on N concentration (%N) for 

Sphagnum species or vascular plant species in these first two years; however, there were 

differences between years for %N of Sphagnum species and some vascular plant species, as 

well as Sphagnum C:N ratios and capitulum N storage. This year effect is potentially related to 

climatic factors. In 2012, the average daily temperature was 1.9 °C warmer than in 2011 and 

growing degree days were 5.4% higher. The total precipitation during the 2012 growing season 

(data taken from 6/8/12 to 9/12/12) was 137.9 mm, or about 63%, greater than the total 

precipitation recorded during the 2011 growing season (data taken from 6/8/11 to 10/4/11). 

Climate may have been a limiting factor during the 2011 growing season, thus when there were 

wetter conditions in 2012, climate was no longer limiting and measured %N values for 

Sphagnum species and some vascular plant species were higher. The lower C:N ratios found for 

Sphagnum capitula in 2012, as well as the increased capitulum N storages values in 2012, may 

also be a result of the difference in climate. 

 Although Sphagnum is extremely adept at scavenging nitrogen, it is not completely 

efficient at taking up all available nitrogen (Limpens et al. 2006), thus, some nitrogen inputs 

may have become available for vascular plant species. As vascular plants in peatlands are N-

limited, the net primary production (NPP) of these plants would increase with an increased N 

supply (Heijmans et al. 2002; Limpens et al. 2003). It has been shown for low nutrient 

environments that once a level is reached where the vascular plant NPP is no longer N-limited, 

the vascular plants exhibit luxury consumption, increasing the N concentrations in their tissues 

in excess of immediate growth requirements (Chapin 1980). It is possible that the various 
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vascular plant species that I analyzed were in different phases of this predicted response. The 

only analysis I conducted for vascular plant species in the bog and poor fen was N 

concentration (%N) in new leaf tissue. I did not measure NPP for any of the vascular plant 

species. If some N not taken up by Sphagnum became available for vascular plant species, there 

would definitely be competition amongst the vascular plant species to scavenge that N. Some 

particular species may be more adept at scavenging N from the peat than others - for example, 

due to possible differences in root structure or mycorrhizal associations.  

Vascular plant species with shallow roots tend to respond first to increases in N 

availability (Heijmans et al. 2002; Nordbakken et al. 2003).  In a 15N tracing experiment, 

Heijmans et al. (2002) retrieved 79% of the 15N from living Sphagnum, but of the percentage 

that was retrieved from vascular plant species, most was recovered from Vaccinium oxycoccos, 

or bog cranberry (synonymous with Oxycoccos microcarpus). Vaccinium oxycoccos is a shallow-

rooting shrub, known to have mycorrhizal associations which help with nutrient acquisition 

from peat (Vander Kloet 1988). At the Mariana Lake study site, Oxycoccos microcarpus was the 

only vascular plant species to have a N treatment effect (between the water control and the 15 

kg/ha N treatment) for %N in 2012.   

Vascular plant species that showed a decrease in %N from 2011 to 2012, didn’t 

necessarily receive little or no additional N from leaching down the peat column, they could be 

in the phase where they are using the additional N for increased NPP, and are not yet at the 

point where NPP is no longer N-limited. Vascular plant species that showed an increase in %N 

from 2011 to 2012 could have been those species that were more adept at scavenging N, or 

they could have received a similar amount of additional N as the other species, but their growth 



97 
 

may be limited by some nutrient other than nitrogen (such as phosphorus). If the latter was the 

case, then they might begin to have a build-up of nitrogen in their tissue, as expressed by the 

higher %N values.  

Sphagnum Growth Response 
 
Changes in linear growth, stem mass density, capitulum mass density, and net primary 
production in Sphagnum spp. after two growing seasons 
 

There were differences in linear growth (LG) between N treatments for S. fuscum in the 

bog and poor fen, S. angustifolium in the poor fen, and S. magellanicum in the poor fen, but 

there were no clear trends. For the most part, differences between N treatments were only 

apparent in the second growing season (2012). For S. fuscum in the bog, the 10 kg/ha N 

treatment in 2012 was different from all the other treatments. For S. fuscum in the poor fen, 

the 5 kg/ha N treatment in 2012 was different from the water control, and 10 kg/ka and 15 

kg/ha N treatments. For S. angustifolium in the poor fen, the 10 kg/ha N treatment in 2012 was 

different from the 0 kg/ha, 5 kg/ha, 20 kg/ka, and 25 kg/ha N treatments. For S. magellanicum 

in the poor fen, the 25 kg/ha N treatment in 2012 was different from the water control, 0 

kg/ha, 5 kg/ha, 15 kg/ha, and 20 kg/ka N treatments. There were differences in linear growth 

between years for S. fuscum in the bog and poor fen, S. angustifolium in the poor fen, and S. 

magellanicum in the poor fen, with 2012 having higher linear growth values than 2011. 

There were no differences in stem mass density (SMD) between N treatments for S. 

fuscum in the bog and poor fen, S. angustifolium in the bog and poor fen, or S. magellanicum in 

the poor fen. Thus, there were no clear trends for the effect of N treatments on stem mass 

density in these first two years. S. angustifolium in the poor fen had differences in stem mass 
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density between years - the water control (n=1) in 2012 differed from every N treatment (the 

water control and 0 – 25 kg/ha N treatments) in 2011, and the 5 kg/ha N treatment in 2012 

differed from the water control (n=1), 5 kg/ha N treatment, and 10 kg/ha N treatment in 2011. 

Although two-way ANOVA analyses indicated differences in stem mass density between years 

for S. angustifolium in the bog, post-hoc multiple comparisons done by Tukey's HSD test did not 

reveal any significant differences. 2012 had higher stem mass values than 2011, with a few 

exceptions.  

There were differences in capitulum mass density (CMD) between N treatments for S. 

fuscum in the poor fen, but only between the water control and the 10 kg/ha and 15 kg/ha N 

treatments in 2012. There were also differences in capitulum mass density between N 

treatments for S. angustifolium in the bog, but only between the water control and the 10 

kg/ha N treatment, the 15 kg/ha N treatment, the 20 kg/ha N treatment, and the 25 ka/ha N 

treatment in 2012. S. angustifolium in the bog had differences in capitulum mass density 

between years as well, but this year effect may just be the result of an “outlier”, the water 

control (n=1). There were differences in capitulum mass density between years for S. 

angustifolium in the poor fen, but just between the 5 kg/ha N treatment in 2011 and the 20 

kg/ha N treatment in 2012. 2012 had higher capitulum mass values than 2011, with a few 

exceptions.  

 There were no differences in net primary production (NPP) between N treatments for S. 

fuscum in the bog and poor fen, S. angustifolium in the poor fen, or S. magellanicum in the poor 

fen. Thus, there were no clear trends for the effect of N treatments on net primary production 

in these first two years. S. fuscum in the bog had differences in NPP between years, but only 
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between the water control in 2011 and the 10 kg/ha N treatment in 2012. Although two-way 

ANOVA analyses indicated differences in NPP between years for S. fuscum in the poor fen (F = 

6.57, p = 0.025), post-hoc multiple comparisons done by Tukey's HSD test did not reveal any 

significant differences. S. angustifolium in the poor fen had differences in NPP between years, 

but this year effect may just be the result of an “outlier”, the water control (n=1). For every 

case, except S. fuscum measured in the 20 kg/ha N treatment plots in the bog (n=3) and S. 

fuscum measured in the 15 kg/ha N treatment plots in the poor fen (n=1), average NPP values 

were higher in 2012 than in 2011. 

 Looking at how the Sphagnum community as a whole responded to the N additions, 

results were similar to those presented for each Sphagnum species separately. Differences in 

stem mass density (SMD) were detected for year and N treatment for the Sphagnum 

community in the poor fen; however, post-hoc multiple comparisons done by Tukey's HSD test 

did not reveal any significant differences. Differences in linear growth (LG) and net primary 

production (NPP) were detected for year for the Sphagnum community in the poor fen. Linear 

growth (cm), stem mass density (g m-2 cm-1), and NPP (g m-2 year-1) values for the Sphagnum 

community in the poor fen were, on average, higher in 2012 than in 2011. The 15 kg/ha N 

treatment was the only exception where the 2012 mean stem mass density value was lower 

than the 2011 mean stem mass density value.  

Possible Explanations? 

Differences of Sphagnum fuscum, S. angustifolium, and S. magellanicum 

Due to differences in morphology and growth form, I anticipated the various Sphagnum 

species I was investigating to have differing growth responses to increased nitrogen. Since 
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Sphagnum angustifolium grows more rapidly than either of the other two Sphagnum species 

(Sphagnum fuscum and Sphagnum magellanicum), I predicted that it would have the greatest 

linear growth. With additional nitrogen resources, I thought it would likely invest much of it 

towards vertical growth of its shoots. Sphagnum angustifolium did have significant increases in 

linear growth from 2011 to 2012, but it also had significant increases in capitulum and stem 

mass density from 2011 to 2012, suggesting that its allocation of nitrogen was distributed 

throughout the whole plant. Since S. fuscum forms tightly packed hummocks, I predicted that it 

would not have much opportunity to increase its capitula biomass with additional nitrogen, and 

that rather it would have substantial linear growth (but still not as much as S. angustifolium due 

to the nature of its rate of growth) as well as “bulking out” of its stem and branches (i.e. 

increased stem mass density). Due to its compact growth pattern, I predicted that S. fuscum 

would have the highest stem mass density values. Sphagnum fuscum did have the highest stem 

mass density values, but it did not have drastic increases from 2011 to 2012; Sphagnum 

angustifolium had the greatest increases in stem mass density in these first two years, 

particularly in the poor fen. Sphagnum angustifolium and S. magellanicum individuals tend to 

be larger and more robust than S. fuscum individuals, so I predicted they would have larger 

capitulum mass density values. Sphagnum angustifolium had the highest capitulum mass 

density values in 2012, after significant increases from 2011 (CMD for S. angustifolium in the 

poor fen in 2012 was more than double the CMD in 2011), whereas capitulum mass density 

values for S. fuscum changed very little. Sphagnum angustifolium grows fairly loosely in lawns, 

which may have provided more opportunity for increases in capitula biomass with increased 

nitrogen availability.  
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After analyzing the various measures of Sphagnum growth, it was not surprisingly to 

find that S. angustifolium had the greatest primary production, with NPP in the poor fen 

exceeding NPP in the bog in 2012. Sphagnum angustifolium had the most drastic increases in 

linear growth, capitulum and stem mass density, and net primary production (NPP) from 2011 

to 2012. Gunnarsson (2005) revealed that throughout various studies on peatland production, 

greater production is typically measured in lawns versus hummocks, possibly owing to the fact 

that lawn species are generally closer to the water-table than hummock species, which helps to 

keep the capitula moist and able to photosynthesize. As S. angustifolium is found mainly in 

lawns at the Mariana Lake study site (especially in the poor fen), this could be one explanation 

for its high primary production values.  

Climatic Factors 

Some studies have shown that climate (temperature and precipitation) can have a 

considerable influence on Sphagnum production (Gignac et al. 1998; Gunnarsson 2005; Wieder 

2006). As I discuss above, the total precipitation in 2012 was greater than in 2011. The average 

daily temperature was slightly warmer in 2012, and the growing degree days were also higher 

in 2012 than in 2011. Many Sphagnum growth measurements that were taken in both 2011 and 

2012 had significant differences in year (i.e. linear growth for S. fuscum (bog and poor fen), S. 

angustifolium (poor fen), and S. magellanicum (poor fen); stem and capitulum mass density for 

S. angustifolium (bog and poor fen); NPP for S. fuscum (bog and poor fen) and S. angustifolium 

(poor fen)). This year effect may be in part due to the difference in climate between these two 

years. Higher Sphagnum growth predictably occurred in 2012, which had a much wetter, and 

slightly warmer, growing season.  
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Asada et al. (2003) suggested in their study of a hypermaritime coastal peatland that 

Sphagnum growth was positively correlated with precipitation, and to a lesser degree, 

temperature. In their study, they found that hummock Sphagnum species had lower growth 

rates, and that their overall seasonal growth pattern was less variable than lawn Sphagnum 

species, which can possibly be explained by the difference in moisture regime between 

hummocks and lawns. Though the moisture content in hummocks is lower than in lawns, it is 

more constant due to the dense growth form of hummock Sphagnum species that results in 

superior water-holding capabilities (Rydin 1985). Asada et al. (2003) found that hummock 

Sphagnum species were able to grow during dry conditions, albeit slowly, while lawn Sphagnum 

species could not. At the Mariana Lake study site, less growth occurred for Sphagnum 

angustifolium (lawn species) than for Sphagnum fuscum (hummock species) during the 2011 

growing season, which was drier than the 2012 growing season, especially towards the end of 

the season. With increased precipitation in 2012, S. angustifolium grew rapidly, exceeding 

growth of S. fuscum. Thus, S. angustifolium growth was likely limited by water during the 2011 

growing season. 

With substantial growth recorded for all Sphagnum species in 2012, it was surprising to 

see higher capitulum N concentration (%N) values and lower C:N values in 2012 than in 2011. 

With increased growth, Sphagnum would have greater nitrogen requirements to support that 

growth. Yet despite these greater nitrogen requirements to support increased growth, 

Sphagnum still had fairly high %N values for its capitulum tissue. I discussed the possibility of 

nutrient limitation other than N limitation earlier, in light of higher %N values for some vascular 

plant species in 2012. This could also be a potential explanation for higher %N values for 
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Sphagnum capitulum in 2012. Aerts et al. (1992) found that under conditions of high N 

deposition in a peatland, Sphagnum may shift from a nitrogen (N) limitation to a phosphorus (P) 

limitation. Another possible explanation for higher %N values for Sphagnum capitulum in 2012, 

could be Sphagnum was obtaining more nitrogen in 2012, in excess of its growth requirements. 

There are a few possibilities for where Sphagnum could be obtaining additional nitrogen 

beyond that used for its growth requirements. One possibility is that there were greater N 

inputs in 2012 than in 2011. Atmospheric nitrogen deposition values, however, were relatively 

similar in 2011 and 2012 (TABLE 2.1). In 2012, N deposition (NH4
+ and NO3

-) values were slightly 

greater (0.80 versus 0.55 mg m-2 day-1), but that would only amount to an additional 0.25 kg ha-

1 over a 100 day period. Nitrogen mineralization measured across the Mariana Lake study site 

was relatively low with the exception of extremely wet areas; however, even with wetter 

conditions in 2012, differences in N mineralization rates were not found between 2011 and 

2012 (Hartsock 2013). Nitrogen may have been translocated from older to younger parts of 

Sphagnum throughout the growing season, which Aldous et al. (2002b) found to be an 

important process that could contribute 0.5–11% of the annual N requirements for Sphagnum, 

but this is not being measured at the Mariana Lake study site.  

Another much-overlooked N input to peatland ecosystems is N2-fixation. In 2013, there 

were greater rates of N2-fixation for the poor fen at Mariana Lake than in 2012 (N2-fixation 

rates were not recorded during the 2011 growing season) (Jacqueline Popma, personal 

communication). There was a higher average daily temperature and greater total precipitation 

in 2013 than in 2012, which may have contributed to the higher observed rates of N2-fixation 

(currently waiting for source for this data). N2-fixation has been found to occur at greater rates 
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during warmer, wetter periods (Melanie Vile, personal communication). Although we do not 

have N2-fixation rates from 2011, we can possibly guess that they were lower than N2-fixation 

rates in 2012, due to the fact that it had a cooler, drier growing season. The additional N inputs 

from N2-fixation in 2012 could possibly account for the higher %N values for Sphagnum 

capitulum in 2012 observed along with increased Sphagnum growth in 2012.  

Linear Growth – “Early Spring Growth” 

The linear growth values for Sphagnum that I have presented in my thesis are 

measurements of growth that took place between late May and early October (2011 and 2012 

growing seasons). In 2011, cranked wires were set on May 27th, and in 2012, cranked wires 

were set on May 24-25th. There is a possibility that Sphagnum shoots started elongating prior to 

these dates in late May, 2011 and 2012. Once temperatures were above freezing and the upper 

peat layer began to thaw, Sphagnum shoots would have the chance to start growing, however 

wire placement before late May is difficult owing to the presence of late seasonal frost.  On 

May 24th, 2012, before re-setting all the cranked wires, I first measured all the cranked wires to 

see if there was any “early spring growth”. Since I had measured the cranked wires on October 

7th, 2011 (the end of the 2011 growing season), I would be able to determine if there were any 

differences between those values and the values I measured on May 24th, 2012 (for our 

purposes, the start of the 2012 growing season) (FIGURE 2.52). 
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FIGURE 2.52 Visual representation of timeline and calculations used for “early spring growth”. 

With this technique, I did find evidence for “early spring growth” of Sphagnum shoots. 

However, I decided not to add “early spring growth” to my measurements of 2012 linear 

growth because there were too many factors contributing to the uncertainty of my values. For 

instance, there were many “negative” values, which could have been a result of wires being 

pushed up when lower peat layers froze during the winter months. There was very high 

variability among treatment plots – some plots had little to no “early spring growth”, while 

others had up to 20% of their 2012 linear growth accounted for by “early spring growth” (TABLE 

2.23 and 2.24). Also, there was the fact that I had not measured “early spring growth” for 2011, 

so comparing the two seasons having used different methods would have been impossible. 

Despite my decision not to utilize these “early spring growth” values in my results and analyses 

for this thesis, I do believe that my findings are relevant and suggest that studies may be 

underestimating annual Sphagnum linear growth and net primary production depending on 

when they set their cranked wires.  
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TABLE 2.23 % LG accounted for by “early spring growth” for S. fuscum (LEFT, bog; RIGHT, poor fen), 
where COL. 2 = Mean Linear Growth (cm) per Treatment Plot [2012 values] and COL. 3 = [“Early Spring 
Growth” (ESG) / Linear Growth ‘12 (COLUMN 2)] x 100. Color ramp is low to high values : yellow to 
orange. 

   
 
 
TABLE 2.24 % LG accounted for by “early spring growth” for S. angustifolium (LEFT, poor fen) and S. 
magellanicum (RIGHT, poor fen), where COL. 2 = Mean Linear Growth (cm) per Treatment Plot [2012 
values] and COL. 3 = [“Early Spring Growth” (ESG) / Linear Growth ‘12 (COLUMN 2)] x 100. Color ramp is 
low to high values : yellow to orange. 
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CONCLUSIONS 
 

In this chapter I set out to answer three questions in order to complete the objective of 

determining how plants respond to experimentally increased nitrogen deposition after two 

growing seasons. In particular, I asked how might the nitrogen concentration (%N) of 

Sphagnum capitulum and vascular plant foliar tissue be impacted by N fertilization treatments? 

How might Sphagnum production be affected by N fertilization treatments?  

I found that neither nitrogen concentrations (%N) of Sphagnum capitulum and vascular 

plant species, nor Sphagnum production were affected by N fertilization treatments after two 

growing seasons. However, %N of Sphagnum capitulum and some vascular plants species, 

Sphagnum C:N ratios and capitulum N storage, and several growth measurements of Sphagnum 

species differed between years (2011 and 2012), and were possibly affected by climatic factors. 

Wetter conditions in 2012 led to increased Sphagnum growth and production, as well as 

increased %N. Thus, it appears that climatic differences between years may have an over-

arching affect on plant responses and these inter-annual climate-driven responses will need to 

be carefully considered as N-treatments continue over the next three years.  
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CHAPTER III 
 

PLANT RESPONSES TO INCREASED NITROGEN DEPOSITION – SHIFTS IN 
COMMUNITY COMPOSITION AFTER TWO GROWING SEASONS 

 
INTRODUCTION 

Increased nitrogen (N) deposition onto boreal peatlands and forests is anticipated with 

further expansion of Alberta’s oil sands industry and consequently, an increase in sources of 

nitrogen oxide emissions. Increased N deposition has the potential to affect peatland flora and 

alter N cycling patterns, therefore it is imperative to investigate at what level of excess N 

deposition these effects take place. This chapter discusses results from the first two years of a 

five year N fertilization study being conducted at a peatland complex near the hamlet of 

Mariana Lake in northeastern Alberta, Canada aimed at quantifying the N “critical load” for 

these peatland ecosystems. At the study site there are forty-two experimental plots – half in an 

ombrotrophic bog, the other half in a poor fen – with varying N fertilization treatments ranging 

from 0 kg/ha/year to 25 kg/ha/year, with a water control as well.  

During the height of the growing season (mid-July, 2011), the plant communities in each 

treatment plot were sampled to provide “baseline” data necessary for documenting any shifts 

in plant distribution or species composition that may occur after N additions. Sampling took 

place the following season (mid-July, 2012) as well, and data from the two years were analyzed 

for differences in species composition and species richness. With increasing N addition, it is 

expected that plants will respond differently depending on the severity of the N addition and 

the amount of time being submitted to the N addition. The first expected plant response should 
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be increased N uptake and subsequently, increased growth followed by changes in plant 

frequency, and then with further N additions over time, changes in plant occurrence.  

Previous studies have observed shifts in species composition with high ambient levels of 

atmospheric N deposition or experimentally increased N deposition. In Europe, studies in 

polluted regions with high levels of atmospheric N deposition (UK and the Netherlands) found 

declines in Sphagnum mosses (Greven 1992; Press et al. 1986; Woodin et al. 1985). 

Additionally, in eastern Canada, a N fertilization study found declines in Sphagnum mosses with 

increased N addition (Bubier et al. 2007). Sphagnum decline was attributed to indirect effects of 

changes in shrub cover and direct effects of the fertilizer addition (Bubier et al. 2007). 

Sphagnum mosses are a key component for carbon storage in peatland ecosystems because 

they slow down decomposition with their unique water-holding capabilities and recalcitrant 

tissues. If increased N deposition leads to changes in species composition, particularly declines 

in Sphagnum mosses, there could be a decrease in the ability of peatlands to sequester carbon 

(Bubier et al. 2007; Juutinen et al. 2010).  

Questions and Hypotheses 

Question #1: How are plant distributions impacted by the N fertilization treatments? 
 
Hypothesis #1: There will not be a significant change in the distributions of plant species during 
the first two years of this study. 
 
Rationale #1:  Shifts in species composition have been observed at sites in Europe that have 
high ambient levels of atmospheric N deposition. At a Dutch ombrotrophic bog, the 
composition of the moss layer in the small remnants of formerly large bog areas showed 
considerable change over the years as N loads increased up to 20-40 kg N/ha/year; the most 
characteristic Sphagnum species have been replaced by more nitrophilous moss species 
(Greven 1992; Bobbink et al. 2003). High atmospheric N deposition has been linked to 
Sphagnum decline in bogs in polluted areas of the United Kingdom as well (Press et al. 1986; 
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Woodin et al. 1985). However, these studies worked in areas where atmospheric N deposition 
had increased upwards to 30 kg N/ha/year. In the peatland complex we are investigating, there 
are historically low levels of N deposition, and prior research conducted at high-N sites may not 
be a very accurate predictor for plant responses that we may find. I am predicting no significant 
changes in the distributions of plant species during the first two years of this study because I 
think changes at the plant community level will not occur until there have been several seasons 
of N fertilizations.  
 
Question #2: Is there a difference in plant community composition in a bog compared to a poor 
fen after N addition? 

Hypothesis #2: There will not be a significant change in plant community composition during 
the first two years of this study. 
 
Rationale #3: As I discuss above, I am predicting no significant changes in the distributions of 
plant species during the first two years of this study because I think changes at the plant 
community level will not occur until there have been several seasons of N fertilizations.  
 
 
METHODS 
 

Field Sampling Techniques 
 

During the 2011 summer field season I developed a point sampling procedure for 

obtaining a record of plant species occurrences at thirty random points along a transect in each 

plot. The apparatus that I constructed was a point sampling frame that was set over the 

vegetation in each plot with thirty 1/8” diameter steel pins lowered through the plant canopy 

(Bonham 1989) (FIGURE 3.1). I sampled at the height of the growing season (mid-July). The 

record of what plant species were present at the sampling points in 2011 (the first year of N-

additions) provided “baseline” data to use for comparison in later years with what plant species 

are present then. Each year the same points will be sampled and an analysis will be done for 

any changes in species distribution. I sampled the plots on July 17-20, 2011 and July 19-21, 

2012. 
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To ensure that the same points were sampled, several measures were taken. Permanent 

PVC posts were hammered into each plot so that the sampling frame could be easily attached 

each year and remain in the same location. At the mid-point of the frame (the fifteenth wire), a 

thick steel wire was placed in the peat so that when the frame is re-attached in subsequent 

years it can be aligned properly. The point sampling frame was constructed from sturdy 

materials (PVC piping and aluminum v-channel) so the apparatus would not sway in the wind 

and move around while sampling occurred. Thirty holes were drilled through the aluminum v-

channel at a size just slightly wider (9/64” diameter drill bit) than the wires that were placed 

down through the holes so that the wires would go straight down without shifting. Throughout 

the sampling process, the wires were clipped in place to the apparatus with binder clips to 

reduce shifting as well.  

 
FIGURE 3.1 Point frame sampling apparatus being used in the FEN – Arm 1 – Control plot. 
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Statistical Methods 

My sampling technique also gave a measure of estimated plant frequency within each 

plot (i.e. by counting how many times each plant species was “hit” by a pin along the transect). I 

calculated both the relative and absolute frequency of each plant species sampled in each plot. 

Relative frequency is the number of hits for an individual species divided by the total number of 

hits for all species in the plot times 100. For example, if a plant species was sampled 16 times 

(out of 30 sampling points), I would divide that value by the total number of hits for all plant 

species in that plot (ex. 60) X 100, = 26.7% as the relative frequency for that species within that 

plot. Absolute frequency is the number of hits for an individual species divided by the total 

number of possible hits (the total number of sampling points, or pins along the transect) times 

100. For example, if a plant species was sampled 16 times (out of 30 sampling points), I would 

divide that value by 30 (the total number of sampling points, or pins along the transect) X 100, = 

53.3% as the absolute frequency for that species within that plot. I recorded a hit or miss for 

each plant per pin regardless of the number of times the pin hit the plant, so my data cannot be 

accurately used to estimate percent cover; however, since the set up of the point sampling 

frame is in an area of each plot that seemed representative of the dominant vegetative 

community assemblage within that plot, my point sampling data can potentially be used as an 

estimated measure of the species composition of each plot.  

NMDS and PERMANOVA: 

To examine patterns of community composition, I utilized a Non-metric 

Multidimensional Scaling (NMDS) technique to ordinate plots (the sample units in the analysis) 

based on relative frequency values. NMDS searches for an ordination where the distances 



113 
 

between pairs of sample units are in rank-order agreement with their dissimilarities to the 

highest degree, thus providing the strongest structure (McCune and Grace 2002). The NMDS 

ordination used the PRIMERv6 software package from Plymouth Marine Laboratory, UK, 

standardizing the data by maximum for variables (i.e. the plant species) and using Bray-Curtis as 

the dissimilarity measures. Along with an NMDS ordination, I ran PERMANOVA (permutational 

multivariate analysis of variance) to test for differences in community composition among 

groups of sample units. PERMANOVA was run using PRIMERv6 with the PERMANONA+ package 

added on. The PERMANOVA main test was run for three factors – site type (bog and fen; n = 2), 

N treatment designation (n=7), and year (2011 and 2012; n = 2). I selected NMDS for the 

exploratory analyses and PERMANOVA for my explanatory analyses because they were 

appropriate methods to examine patterns of community composition. 

Indicator Species Analysis (ISA): 

Indicator Species Analysis (ISA) was used to identify plant species that were good 

“indicators” of groups of sample units (SUs). The ISA was conducted using PC-ORDv4.34, with 

indicator values being calculated using the method of Dufrêne and Legendre (1997). For the 

ISA, I selected site type (bog and fen) as the group; therefore, I examined whether there were 

plant species that were good “indicators” of the two site types. I chose to do an Indicator 

Species Analysis (ISA) after I discovered the two site types differed in their community 

composition in order to identify species that typified the two site types. 

Species Richness: 

To investigate the plant species richness of the treatments plots I calculated species 

richness (S) for each plot. Species richness is the number of species present in a sample unit (i.e. 
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the treatment plots). I then calculated alpha, beta, and gamma diversity for all plots, and then 

for plots in the bog and fen separately. Alpha diversity is the number of species in individual 

sample units, calculated as a mean of the plot species richness; beta diversity is the amount of 

compositional variation among a collection of sample units, calculated as gamma diversity 

divided by alpha diversity; and gamma diversity is the overall species richness in a collection of 

sample units, calculated as the total number of species in the entire data matrix (McCune and 

Grace 2002).  
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RESULTS 
 
NMDS and PERMANOVA  

Species Differences: The relative frequencies of all plant species (both vascular and non-

vascular) for all plots are shown in APPENDIX A and APPENDIX B. Mean relative frequency 

percentages for each species averaged from all the treatment plots were used as a measure of 

how abundant each plant species was throughout the bog and fen plots (TABLE 3.1). In both 

2011 and 2012, S. fuscum was the most abundant species. In 2011, Dicranum undulatum was 

the least abundant species (sampled at only one plot), and in 2012 it was not found.  

TABLE 3.1 Mean relative frequency percentages for bog and poor fen species (LEFT, 2011 and RIGHT, 
2012), ranked from highest to lowest. Values are mean ± standard error. 
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The mean absolute frequencies of plant species (both vascular and non-vascular) from 

the bog and poor fen in 2011 and 2012 are shown in TABLE 3.2. In general, the ranked order 

and percent frequencies changed little between the two years; however, two changes are 

noteworthy. Shrubs in the poor fen (Andromeda polifolia, Chamaedaphne calyculata, Oxycoccos 

microcarpus, and Kalmia polifolia) increased by 21% in absolute frequency from 2011 to 2012; 

shrubs in the bog (Andromeda polifolia, Chamaedaphne calyculata, Oxycoccos microcarpus, 

Kalmia polifolia, Vaccinium vitis-idaea, and Ledum groenlandicum) increased by 33%. 

Herbaceous plant species in the poor fen (Eriophorum vaginatum and Scheuchzeria palustris) 

increased by 11% in absolute frequency from 2011 to 2012; herbaceous plant species in the bog 

(Smilacina trifolia, Rubus chamaemorus, and Eriophorum vaginatum) increased by 17%. 

 
TABLE 3.2 Mean absolute frequency percentages for poor fen (LEFT) and bog (RIGHT) species in 2011 
and 2012. Values are mean (standard error). 
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Community Differences: The relative frequency data for 2011 and 2012 was compiled into a 

single data matrix, and utilized to ordinate the forty-two plots. The NMDS ordination chosen 

was two-dimensional (2-D) with a computed Kruskal’s stress value of 0.18 (FIGURE 3.2). The 

reported stress value (0.18) allows for a fair ecological interpretation of the plots in ordination 

space (FIGURE 3.3) (Kruskal 1964). The plots formed discrete clusters in the 2-D NMDS 

ordination space. The bog plots (plots #1 – 21, 2011; #43-63, 2012) formed a distinct cluster 

from the fen plots (plots #22-42, 2011; #64-84, 2012) on the ordination space, with one 

exception, the FEN – Arm 1 – 0 kg/ha treatment plot (#23, 2011 and #65, 2012) clustered along 

with the bog plots. Fen plots formed a tighter cluster than bog plots, indicating less dissimilarity 

in species composition between these plots. 

 
FIGURE 3.2 2-D NMDS ordination of treatments plots in the bog and fen at Mariana Lake (sampled in 
mid-July, 2011 and 2012) based on relative frequency values. The bog plots are #1 – 21, 2011 and #43-
63, 2012, and the fen plots are #22-42, 2011 and #64-84, 2012. 
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FIGURE 3.3 Sheppard’s diagram representing the fit of the 2-D NMDS ordination of the 42 plots 
(sampled in both 2011 and 2012, for a total of 84 ordination points) based on Bray-Curtis dissimilarities. 
 

The NMDS ordination was based on a Bray-Curtis dissimilarity matrix, which was 

examined to compare the two sampling years (2011 and 2012) for treatment plots (TABLE 3.3). 

According to two-way ANOVA, there was no difference between dissimilarity values for either 

site type or N treatment (site type: F = 0.21, p = 0.650; N treatment: F = 0.62, p = 0.712). In the 

bog, the plot with the highest dissimilarity value between 2011 and 2012 was the Arm 3 – 5 

kg/ha treatment plot. In the fen, the plot with the highest dissimilarity value between 2011 and 

2012 was the Arm 2 – 10 kg/ha treatment plot. In the bog, the plot with the lowest dissimilarity 

value was Arm 3 – 0 kg/ha. In the fen, the plot with the lowest dissimilarity value was Arm 1 – 5 

kg/ha.  
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TABLE 3.3 Dissimilarity values between 2011 and 2012 for each treatment plot in the bog (LEFT) and 
poor fen (RIGHT). Color ramp expresses values orange to yellow : highest to lowest. 

 
  

The output for the PERMANOVA main-test (TABLE 3.4) revealed a highly significant p-

value for site type (p = 0.001; alpha value = 0.05), N treatment (p = 0.007), and year (p = 0.001). 

There was also a significant interaction - site type crossed with year (p = 0.04). Since there was 

a non-significant interaction for site type crossed with N treatment (p = 0.43) as well as N 

treatment crossed with year (p = 0.45), this means that differences between N treatments were 

not significant within the levels of site type (bog and poor fen) or year (2011 and 2012).  

TABLE 3.4 Output for PERMANOVA main test from PRIMERv6 with PERMANOVA+; significant p-value for 
site type (p = 0.001), N treatment (p = 0.007), year (p = 0.001) and SITExYEAR (p = 0.04). 
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Since there was a significant interaction for site type crossed with year (p = 0.04), I 

decided to investigate further by performing a PERMANOVA pair-wise test for the term 

“SITExYEAR” for pairs of levels of factor “YEAR”. This test examined pairs of years within the 

two site types, bog and fen, separately. The two sampling years, 2011 and 2012, differed for the 

poor fen (p = 0.001), but not for the bog (p = 0.162).  

TABLE 3.5 Output for PERMANOVA pair-wise test from PRIMERv6 with PERMANOVA+; results compare 
pairs of years (2011 and 2012) for plots within the bog and poor fen site types. 

 
 

Indicator Species Analysis (ISA) – The Indicator Species Analysis (ISA) identified species that 

were good “indicators” of the two site types (TABLE 3.6). The bog had more significant indicator 

species than the fen, suggesting more species with high fidelity. For the bog, significant 

indicator species included Chamaedaphne calyculata (shrub), Kalmia polifolia (shrub), Ledum 
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groenlandicum (shrub), Rubus chamaemorus (herbaceous), Smilacina trifolia (herbaceous), and 

Vaccinium vitis-idaea (shrub). For the fen, significant indicator species included Andromeda 

polifolia (shrub), Scheuchzeria palustris (herbaceous), and Sphagnum magellanicum (moss).  

TABLE 3.6 Output for ISA from PC-ORD (calculated from 2011 data); significant indicator species are 
highlighted. Abbreviations are defined as followed: ANDR = Andromeda polifolia, CHAM = 
Chamaedaphne calyculata, DICR = Dicranum undulatum, DROS = Drosera rotundifolia, ERIO = 
Eriophorum vaginatum, KALM = Kalmia polifolia, LEDU = Ledum groenlandicum, MYLI = Mylia anomala, 
OXYC = Oxycoccos microcarpus, PICE = Picea mariana, PLEU = Pleurozium schreberi, POHL = Pohlia 
nutans, RUBU = Rubus chamaemorus, SCHE = Scheuchzeria palustris, SANG = Sphagnum angustifolium, 
SFUS = Sphagnum fuscum, SMAG = Sphagnum magellanicum, SMIL = Smilacina trifolia, and VACC = 
Vaccinium vitis-idaea.  
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Species Richness – Calculations of species richness confirmed that richness of the bog site type 

(2011: alpha diversity = 9.4; beta diversity = 1.8; gamma diversity = 17) was higher than species 

richness of the fen site type (2011: alpha diversity = 7.1; beta diversity = 2.1; gamma diversity = 

15) (TABLE 3.7). Overall richness (bog and fen together) in 2011 was: alpha diversity = 8.3, beta 

diversity = 2.3, and gamma diversity = 19 (TABLE 3.7). 

In 2012, species diversity indices were similar to those calculated in 2011. Species 

richness (S, or α diversity) values for 2011 and 2012 failed to meet normality assumptions 

(Shapiro-Wilk’s test: p < 0.05), and were examined using a Mann-Whitney Rank Sum test. 

According to the Mann-Whitney Rank Sum test, species richness was not different between 

sampling years (p = 0.58) (TABLE 3.8). Overall alpha diversity increased slightly, but beta and 

gamma diversity decreased: alpha diversity = 8.64, beta diversity = 2.08, and gamma diversity = 

18 (TABLE 3.7). Species richness of the bog site type (2012: alpha diversity = 10.05; beta 

diversity = 1.59; gamma diversity = 16) was again higher than species richness of the fen site 

type (2012: alpha diversity = 7.24; beta diversity = 2.07; gamma diversity = 15) (TABLE 3.7). 

Gamma diversity for the bog plots decreased in 2012 (γ = 16 vs. 17) because Dicranum 

undulatum (moss) was not sampled – in 2011, it was sampled in the BOG – Arm 2 – 25 kg/ha 

treatment plot.  
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TABLE 3.7 Species diversity indices (α, β, and γ) calculated in 2011 and 2012 for treatment plots in the 
bog and poor fen, as well as overall richness. 

 
 
TABLE 3.8 Species richness (S, or α diversity) values for 2011 and 2012 failed to meet normality 
assumptions (Shapiro-Wilk’s test: p < 0.05), and were examined using a Mann-Whitney Rank Sum test. 
According to the Mann-Whitney Rank Sum test, species richness was not different between sampling 
years (p = 0.58). 
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DISCUSSION 
 
Shifts in community composition after two growing seasons? 
 

The “baseline” data collected from the point sampling frame in the first year of this 

study (summer 2011) indicate that there are two distinct site types – bog and poor fen - with 

clear indicator species. Work done previously (Graham 2012) in the summer of 2010 found 

similar differences when the entire bog/fen peatland complex was sampled. Thus, the bog and 

poor fen treatment plots are representative of the bog and fen expanse site types in the 

peatland complex overall.  

There were no differences in species composition of the treatment plots between years. 

Also, there was no difference between dissimilarity values for N treatments. These results 

signify that the species composition of the treatments plots in 2012 had little or no change from 

their “baseline” record in 2011. 

There were some changes in plant frequency that were observed between sampling 

years. The ground cover remained relatively the same, with Sphagnum spp. at nearly 100% 

absolute frequency for each plot. However, shrubs had noticeable increases in absolute 

frequency from 2011 to 2012, as well as herbaceous plant species, although to a lesser degree. 

There was no difference in species richness of the treatment plots between sampling years. As 

this was only the first two years of N additions, I did not predict any changes in species richness 

(quantified as the number of species present in a sample unit, i.e. the treatment plots). For 

there to be a change in species richness, that would mean an addition or loss of plant species in 

the treatment plots. With increasing N addition, the first expected plant response should be 

increased N uptake and subsequently, increased growth. The next response should be changes 
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in plant frequency, and then with further N additions over time there should be changes in 

plant occurrence. When there are changes in plant occurrence, one way in which this will be 

revealed is through differences in species richness.  

Shifts in community composition after further increased N deposition? 

 
Shifts in species composition have been observed at sites in Europe that have high 

ambient levels of atmospheric N deposition. At an ombrotrophic bog in the Netherlands, the 

composition of the moss layer in the small bog areas still intact showed considerable change 

over the years as nitrogen loads increased up to 20-40 kg N/ha/year; nitrophilous moss species 

replaced Sphagnum species that were once predominant at the site (Greven 1992; Bobbink et 

al. 2003). High atmospheric N deposition has been linked to Sphagnum decline in bogs in 

polluted areas of the United Kingdom as well (Press et al. 1986; Woodin et al. 1985); however, 

these studies were in areas where atmospheric N deposition had increased upwards to 30 kg 

N/ha/year.  

At Mer Bleue bog, an ombrotrophic bog near Ottawa, Ontario (eastern Canada), Bubier 

et al. (2007) also found shifts in species composition with increasing N additions. Vascular shrub 

biomass increased, as did leaf area (leaf area index, or LAI), which increased vascular plant 

shading and led to greater litter accumulation, both of which contributed to declines in moss 

photosynthesis and moss abundance. The declines in moss photosynthesis and moss 

abundance were also attributable to the direct effect of fertilizer addition, which caused 

nutrient toxicity. An imbalance between N uptake and assimilation can lead to toxic levels of 

NH4
+

 in Sphagnum cells (Limpens and Berendse 2003; Bragazza et al. 2005); however, this study 
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had plots that were treated with phosphorus (P) and potassium (K) as well as N, and there’s the 

possibility that these nutrients were even more toxic to Sphagnum than N (Bubier et al. 2007). 

Also, this study was conducted in the zone with the highest atmospheric nitrogen deposition for 

Canada, estimated at 8 – 12 kg N/ha/year (Bubier et al. 2007). Furthermore, N fertilization 

treatments ranged from 16 – 64 kg N/ha/year, with the two highest N additions (32 and 64 kg 

N/ha/year) being much higher than our highest N addition at the Mariana Lake study site (25 kg 

N/ha/year). In the peatland complex we are investigating, there are historically low levels of N 

deposition, and prior research conducted at high-N sites may not be a very accurate predictor 

for plant responses in pristine western Canada. 

Regardless of effects of N addition, there are possibilities for Sphagnum spp. to change 

their distributions along the hummock-lawn gradient. Individuals of Sphagnum species 

characteristic of lawns, such as S. angustifolium, can grow higher above the water table by 

exploiting the greater capillary conduction and reduced water loss characteristics of Sphagnum 

species on hummock tops, such as S. fuscum, but this greater height above the water table is 

only marginally suitable for them (Titus and Wagner 1984). It is unlikely that hummock tops 

dominated by S. fuscum will be invaded by more than just a few S. angustifolium individuals or 

small clusters of plants. The ability of Sphagnum species typical of hummocks to spread 

downward to lawns is also limited. There is typically a low frequency of S. fuscum at sites close 

to the water table since the fast-growing S. angustifolium can out-compete S. fuscum in wetter 

locations where it has a superior water balance (Titus and Wagner 1984; Andrus 1986). 

However, Andrus et al. (1983) found that hummock species did have a fairly large vertical 

range, greater than that of lawn species, indicating it may have a considerable ability to tolerate 
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the full range of conditions along the hummock-lawn gradient. Thus, competition rather than 

physical tolerance to the environment, is likely excluding S. fuscum from establishing in lawns 

(Rydin 1986). These literature findings suggest that when Sphagnum is positively affected by N-

additions, the faster growing lawn species, S. angustifolium, may expand at the expense of S. 

fuscum, whereas when the growth of lawn species is negatively impacted by the N-additions, 

this may provide an opportunity for hummock species to compete for space more effectively in 

lawn environments. Since I did not predict that N-additions would negatively impact Sphagnum 

growth initially (in the first two years of this study), I did not expect to see any significant shifts 

of S. fuscum into lawns, or consequently a significant increase in its distribution, when I 

sampled again in mid-July, 2012.  

 

CONCLUSIONS 
 

In this chapter I set out to answer two questions in order to complete the objective of 

determining how plants respond to experimentally increased nitrogen deposition after two 

growing seasons. In particular, I asked how might plant distributions be impacted by N 

fertilization treatments? Is there a difference in plant community composition in a bog 

compared to a poor fen after N addition? 

As I hypothesized, there were not any significant changes in the distributions of plant 

species or community composition during the first two years of this study. My data indicated 

that there are two distinct site types – bog and poor fen - with clear indicator species; however, 

both the bog and poor fen had no yearly changes in species composition or species richness. As 

discussed earlier, it appears that both the growth response and sequestration of nitrogen in 
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Sphagnum is tri-phasic. There is no certain time frame for these phases to move from one to 

the next, but I predicted that Sphagnum would remain in the first phase even into our second 

season of fertilizations, maintaining its “gatekeeper” function. This would mean that most of 

the N deposited would be taken up by Sphagnum, with only a small fraction making its way to 

the vascular plants (Li and Vitt 1997). Since the vascular plants are likely not yet receiving much 

of the additional N, I did not expect that their distributions would shift much either. In the 

coming growing seasons, however, this may change. When Sphagnum becomes super-

saturated with N (third phase), N leaches down through the living moss layer and these 

additional N inputs to the organic matter profile may supply vascular plant species with the 

opportunity to colonize and proliferate (Lamers et al. 2000; Limpens and Berendse 2003). 

Increased vascular shrub net primary production (NPP) can negatively affect Sphagnum NPP by 

increasing understory shade and increasing litter accumulation (Bonnett et al. 2010; Bubier et 

al. 2007). Thus, there is potential for significant change in species composition as we continue 

our N fertilizations. One looming fear is that if increased N deposition leads to changes in 

species composition, there could be a decrease in the ability of peatlands to sequester CO2 from 

the atmosphere (Bubier et al. 2007; Juutinen et al. 2010).  
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CHAPTER IV 
 

SYNTHESIS OF THESIS RESEARCH 
 

The aims of this thesis were to monitor and analyze peatland plant responses, including 

plant nitrogen uptake and growth as well as vegetative community change, for an experimental 

nitrogen fertilization study at a peatland site in Alberta, Canada. This research is part of a five-

year study funded by CEMA (Cumulative Environmental Management Association; Fort 

McMurray, AB) aimed at setting a regional nitrogen critical load for the Regional Municipality of 

Wood Buffalo (RMWB). A nitrogen “critical load” is defined as the quantitative estimate of the 

level of exposure of natural systems to N below which significant harmful effects on specified 

sensitive elements of the environment do not occur (UN Organization for Economic Co-

operation and Development 1997). To reach this objective, various activities are being 

undertaken by collaborating researchers from Southern Illinois University Carbondale (SIUC), 

Villanova University, University of Victoria, and Trent University. 

In order to monitor peatland plant responses, I worked on two levels: individual plant 

species responses (Chapter II) and plant community responses (Chapter III). The individual plant 

species level of Chapter II focused on nitrogen uptake responses by Sphagnum species and 

vascular plant species, as well as growth responses of Sphagnum species after two growing 

seasons. The plant community level of Chapter III focused on changes in plant distribution and 

shifts in plant community composition after two growing seasons. 

In Chapter II it was found that experimental nitrogen fertilizations did not have any clear 

effects on nitrogen uptake by Sphagnum species and vascular plant species or growth of 

Sphagnum species after two growing seasons. However, there was a year effect for many 
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measurements, which can likely be attributed to climatic differences between the two sampling 

years (2011 and 2012). There were increased nitrogen concentrations (%N) in Sphagnum 

capitulum tissue and increased growth for Sphagnum species in 2012, which had a wetter, and 

slightly warmer, growing season. Possible sources of increased nitrogen inputs in 2012 included 

atmospheric nitrogen deposition, nitrogen mineralization, nitrogen translocation within 

Sphagnum tissue, and N2-fixation. Evidence suggests that N2-fixation may be a very significant 

contributor of nitrogen to Sphagnum mosses at the Mariana Lake study site, and with more 

precipitation in 2012, there were likely greater rates of N2-fixation and thus, more available 

nitrogen for Sphagnum mosses. Not only is N2-fixation affected by climate, it has also 

responded to experimental nitrogen fertilizations at the Mariana Lake study site (Jacqueline 

Popma, personal communication).  In the face of increased atmospheric nitrogen deposition 

with continued Oil Sands industry expansion, N2

In Chapter III it was found that experimental nitrogen fertilizations did not have any 

effects on plant distributions or plant community composition in the first two years of this 

study. There were some changes in plant frequency that were observed between sampling 

years. The ground cover remained relatively the same, with Sphagnum spp. at nearly 100% 

absolute frequency for each plot. However, shrubs had noticeable increases in absolute 

frequency from 2011 to 2012, as well as herbaceous plant species, although to a lesser degree. 

There was no difference in species richness of the treatment plots between sampling years. As 

this was only the first two years of N additions, I did not predict any changes in species richness. 

For there to be a change in species richness, that would mean an addition or loss of plant 

-fixation will likely be one of the most 

important processes that we must try to understand. 
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species in the treatment plots. With increasing N addition, the first expected plant response 

should be increased N uptake and subsequently, increased growth. The next response should 

be changes in plant frequency, and then with further N additions over time there should be 

changes in plant occurrence. There is certainly potential for significant changes in plant 

community composition with increased atmospheric nitrogen deposition as the Oil Sands 

industry expands, with consequences for the health of Sphagnum mosses and the ability of 

peatlands to store carbon.  

These results emphasize the over-riding affect that annual variation in climate has on 

peatland plant communities and suggests that at least in the short term, increased N deposition 

does not have an effect on plant responses.  The increased growth of Sphagnum, along with an 

increase in N tissue concentrations, suggests that in wet years, factors other than nitrogen may 

be limiting - these factors could include other nutrients (P, K, etc), while in dry years, wetness or 

temperature may have limiting affects.  These results, however, do not rule out that over a 

longer period increases in N may have associated treatment responses on plant growth and 

function. 
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APPENDIX A. Relative frequency matrix for point frame sampling data (2011); #1-21 are bog plots and 
#22-42 are poor fen plots. Species names are given in full in TABLE 3.3. 

 
 
APPENDIX B. Relative frequency matrix for point frame sampling data (2012); #1-21 are bog plots and 
#22-42 are poor fen plots. Species names are given in full in TABLE 3.3. 
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