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MAJOR PROFESSOR: Dr. Saadiq F. El-Amin III 

 

Introduction: Bone defects and non-unions caused by trauma, tumor resection, pathological 

degeneration, or congenital deformity pose a great challenge in the field of orthopedics. 

Traditionally, these defects have been repaired by using autografts and allografts. Autografts 

have set the gold standard for clinical bone repair because of their osteoconductivity, 

osteoinductivity and osteogenicity. Nevertheless, the application of autografts is limited because 

of donor availability and donor site morbidity. Allografts have the advantage that the tissues are 

readily available and can be easily applied, especially when large segments of bone are to be 

reconstructed. However, their use is also limited by the risk of disease transfer and immune 

rejection. To circumvent these limitations tissue engineering has evolved as a means to develop 

viable bone grafts. An ideal bone graft should be both osteoconductive and osteoinductive, 

biomechanically strong, minimally antigenic, and eliminates donor site morbidity and quantity 

issues. The biodegradable polymer, Poly lactic-co-glycolic acid (PLAGA) was chosen because 

of its commercial availability, biocompatibility, non-immunogenicity, controlled degradation 

rate, and its ability to promote optimal cell growth. To improve the mechanical properties of 

PLAGA, Single Walled Carbon Nanotubes (SWCNT) were used as a reinforcing material to 

fabricate composite scaffolds. The overall goal of this project is to develop a Single Walled 

Carbon Nanotube composite (SWCNT/PLAGA) for bone regeneration and to examine the 

interaction of MC3T3-E1 cells (mouse fibroblasts) and hBMSCs (human bone marrow derived 

stem cells) with the SWCNT/PLAGA composite via focusing on extracellular matrix production 
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and mineralization; and to evaluate its toxicity and bio-compatibility in-vivo in a rat 

subcutaneous implant model.  We hypothesize that reinforcement of PLAGA with SWCNT to 

fabricate SWCNT/PLAGA composites increases both the mechanical strength of the composites 

as well as the cell proliferation rate on the surface of the composites while expressing osteoblasts 

phenotypic, differentiation and mineralization markers; and SWCNT/PLAGA composites are 

biocompatible and non-toxic, and are ideal candidates for bone tissue engineering. 

Methods: PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of 

SWCNT (5, 10, 20, 40 and 100mg), characterized and degradation studies were performed. 

PLAGA (poly lactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were 

fabricated; characterized and mechanical testing was performed. Cells were seeded and cell 

adhesion/morphology, growth/survival, proliferation and gene expression analysis were 

performed to evaluate biocompatibility. Sprague-Dawley rats were implanted subcutaneously 

with Sham, poly lactic-co-glycolic acid (PLAGA) and SWCNT/PLAGA composites, and 

sacrificed at 2, 4, 8 and 12 week post-implantation. The animals were observed for signs of 

morbidity, overt toxicity, weight gain, food consumption, hematological and urinalysis 

parameters, and histopathology. 

Results: Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA 

matrix and addition of SWCNT did not affect the degradation rate. Composites with 10mg 

SWCNT resulted in highest rate of cell proliferation (p<0.05) among all composites. Imaging 

studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform 

incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing 

manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of 

10mg SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging 
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studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, non-

stressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell 

proliferation rate and gene expression compared to PLAGA. No mortality and clinical signs were 

observed. All the groups showed consistent weight gain and rate-of-gain for each group was 

similar. All the groups exhibited similar pattern for food consumption. No difference in 

urinalysis parameters, hematological parameters; and absolute and relative organ weight was 

observed. A mild to moderate summary toxicity (sumtox) score was observed for animals treated 

with the PLAGA and SWCNT/PLAGA whereas the sham animals did not show any response. At 

all the time intervals both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox 

score compared to the Sham group. However, there was no significant difference between 

PLAGA and SWCNT/PLAGA groups. 

Conclusion: Our SWCNT/PLAGA composites, which possess high mechanical strength and 

mimic the microstructure of human trabecular bone, displayed tissue compatibility similar to 

PLAGA, a well known biocompatible polymer over the 12 week study. Thus, the results 

obtained demonstrate the potential of SWCNT/PLAGA composites for application in BTE and 

musculoskeletal regeneration. Future studies will be designed to evaluate the efficacy of 

SWCNT/PLAGA composites in bone regeneration in a non-union ulnar bone defect rabbit 

model. As interest in carbon nanotube technology increases, studies must be performed to fully 

evaluate these novel materials at a nonclinical level to assess their safety. The ability to produce 

composites capable of promoting bone growth will have a significant impact on tissue 

regeneration and will allow greater functional recovery in injured patients. 
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CHAPTER 1 

BACKGROUND 

Bone 

Bone, or osseous tissue, is an active, rigid living organ, which forms an important part of the 

endoskeleton of vertebrates. It is lightweight in comparison to the work it performs to support the 

body. It is basically composed of the hard part of the bone, marrow, which is the soft tissue 

present as red and yellow marrow, bone cells present in both cortex and medulla, nerves which 

carry information to and from the brain, blood vessels for the supply of essential nutrients and 

cartilage for attachment with bones and joint formation. Bones provide some or all of the 

following functions:  

1) A shell for the protection of our internal organs.  

2) A structure to support and shape our body.  

3) A lever to create movements like walking, with the coordinated help from muscles, 

ligaments, tendons and joints.  

4) A base for the production of blood cells from its marrow content.  

5) A reservoir for essential elements and compounds like calcium, phosphorous and fatty 

acids.  

6) A buffer for blood pH levels.  

7) A filter for toxic elements and also for their removal from the system.  

The three most substantial properties that this dense, semi-rigid, porous, calcified 

connective tissue provides to vertebrate survival are mechanical, synthetic and metabolic 

functions.  
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Mechanical Functions of Bone 

The mechanical functions of the bone include protection, structure and movement. Bones such as 

the skull and ribs are known to protect the brain and the lungs and heart respectively. The 

framework provided by bone lends to its structural function and provides support for the entire 

body. Finally, bones work in conjunction with skeletal muscles, ligaments and joints to generate 

and transfer forces in its mechanical function of „movement‟. In this way, individual body parts 

or the whole body can be adjusted and moved in a variety of ways.  

Synthetic Function of Bone 

Another major role of bone is the production of blood. This function is accomplished by the 

marrow, located within the medullary cavity of long bones and interstices of cancellous bone. 

These areas of the bone produce blood cells in a complex process known as hematopoiesis. 

Metabolic Functions of Bone 

Bone serves many metabolic functions in the body as well. Bone acts as a reserve for important 

minerals that the body requires such as calcium and phosphorus. Similarly, bones store growth 

factors like insulin-like growth factors, transforming growth factor and bone morphogenic 

proteins in their mineralized matrices. Additional storage capacities that bone has include the 

storage for fatty acids in the yellow bone marrow.       

 Bones further support the metabolic functions of the body by buffering the blood against 

excessive pH changes by absorbing or releasing alkaline salts. Bone has detoxification abilities 

since it can store heavy metals and other foreign elements, thus removing them from the blood 

and reducing their negative effects on other tissues of the body.    

 Bone can be thought of as an endocrine organ of sorts because it controls phosphate 

metabolism by releasing fibroblast growth factor – 23 (FGF-23), which acts on the kidneys in 

http://en.wikipedia.org/wiki/Ligament
http://en.wikipedia.org/wiki/Joint
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order to reduce a hormone released from bone known as osteocalcin, contributes to the 

regulation of blood sugar (glucose) and fat deposition. It increases both the insulin secretion and 

sensitivity, in addition to boosting the number of insulin-producing cells and reducing stores of 

fat (Lee et al., 2007).  

Structure of Bone 

Morphologically bones exist in two different structural forms: compact and trabecular. Compact 

or cortical bone forms the cortex, or outer shell, of most bones and contributes to about 80 

percent of the weight of a human skeleton. Cortical bone is made of a system of functional units 

called osteons (or Haversian system), each formed by concentric lamellae of compact bone 

surrounding the Haversian canal, in which blood vessels and nerves are contained. In between 

the lamellae osteocytes are laid down, the most abundant cells found in compact bone, which 

intercommunicate via long cytoplasmic extensions that occupy tiny canals called canaliculi. Each 

osteon is in direct contact with the periosteoum, the bone marrow and other osteons through the 

Volkmann‟s canals. Trabecular or cancellous bone instead consists of a series of fine spicules 

(trabeculae) forming an interconnected network of bone tissue. Each trabecula is made of several 

concentric lamellae with osteocytes located between the lamellae. The cavities of the cortical 

bone are filled with bone marrow and occupied by blood vessels. The surface of bones is covered 

by the periosteum (outer) and endosteum, two membranes of connective tissue containing the 

osteoprogenitor cells, which develop into osteoblasts and provide a continuous supply of cells 

supporting bone growth, remodeling and repair.  

Cellular Structure of Bone 

Bones are mainly constituted of three different cell types, categorized as osteoblasts, osteocytes 

and osteoclasts. Osteoblasts, which derive from mesenchymal stem cells (MSCs), are cuboidal 

http://en.wikipedia.org/wiki/Osteocalcin
http://en.wikipedia.org/wiki/Blood_sugar
http://en.wikipedia.org/wiki/Glucose
http://en.wikipedia.org/wiki/Body_fat
http://en.wikipedia.org/wiki/Insulin
http://en.wikipedia.org/wiki/Beta_cell
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post-proliferative cells with high synthetic activity and responsible for bone extracellular matrix 

deposition and mineralization. Osteocytes are star-shaped mature osteoblasts, smaller in size, 

which are embedded in a mineralized matrix and represent 90 percent of all cells in bone. 

Osteoclasts are instead multinucleated cells of hematopoietic origin with osteolytic properties, 

and are responsible for bone resorption. The coordinated action of osteoblasts and osteoclasts 

secure bone homeostasis during development and remodeling throughout lifetime. 

Molecular Structure of Bone 

The majority of the bone is made up of the bone matrix. It consists of inorganic and organic 

parts. Bone is formed by the hardening of this matrix entrapping the cells (Osteoblasts).  

Inorganic: The inorganic composition of bone (bone mineral) is formed from carbonated 

hydroxyapatite (Ca10(PO4)6(OH)2) with lower crystallinity (Legros, Balmain, & Bonel, 1987; 

Field, Riley, Mello, Corbridge, & Kotula, 1974). The matrix is initially laid down as 

unmineralized osteoid (manufactured by osteoblasts). Mineralization involves osteoblasts 

secreting vesicles containing Alkaline Phosphatase. This cleaves the phosphate groups and acts 

as the foci for calcium and phosphate deposition. The vesicles then rupture and act as a centre for 

crystals to grow on. More particularly, bone mineral is formed from globular and plate 

structures, distributed among the collagen fibrils of bone and forming yet larger structure. 

Organic: The organic part of matrix is mainly composed of Type I collagen. This is synthesized 

intracellularly as tropocollagen and then exported, forming fibrils. The organic part is also 

composed of various other factors such as glycosaminoglycans, osteocalcin, osteonectin, bone-

sialo protein, osteopontin and Cell Attachment Factor.  

 

http://en.wikipedia.org/wiki/Bone_mineral
http://en.wikipedia.org/wiki/Hydroxyapatite
http://en.wikipedia.org/wiki/Vesicle_%28biology%29
http://en.wikipedia.org/wiki/Alkaline_phosphatase
http://en.wikipedia.org/wiki/Collagen
http://en.wikipedia.org/wiki/Fibril
http://en.wikipedia.org/wiki/Glycosaminoglycan
http://en.wikipedia.org/wiki/Osteocalcin
http://en.wikipedia.org/wiki/Osteonectin
http://en.wikipedia.org/wiki/Bone_sialo_protein
http://en.wikipedia.org/wiki/Bone_sialo_protein
http://en.wikipedia.org/wiki/Osteopontin
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Histologically/Microscopically, two types of bone can be identified based on the pattern of 

collagen forming the osteoid.  

Woven Bone: which is characterized by haphazard organization of collagen fibers and is 

mechanically weak 

Lamellar Bone: which has a regular parallel alignment of collagen into sheets (lamellae) and is 

mechanically strong 

Woven bone is produced when osteoblasts produce osteoid rapidly, which occurs initially 

in all the fetal bones (but is later replaced by more resilient lamellar bone). In adults woven bone 

is created after fractures or in the Paget's disease. Woven bone is weaker, with a smaller number 

of randomly oriented collagen fibers, but forms quickly. It is soon replaced by lamellar bone, 

which is highly organized in concentric sheets with a much lower proportion of Osteocytes to 

surrounding tissue. Lamellar bone is stronger and filled with many collagen fibers parallel to 

other fibers in the same layer (these parallel columns are called osteons). In cross-section, the 

fibers run in opposite directions in alternating layers, assisting in the bone's ability to resist 

torsion forces. After a fracture, woven bone forms initially and is gradually replaced by lamellar 

bone during a process known as "bony substitution."  

Bone Formation 

Bone formation is considered to be one of the most fascinating forms of tissue development 

throughout the body. It requires a process shared by a controlled mechanism of regeneration and 

remodeling that exists coherently to maintain the skeletal framework. The formation of bone 

during the fetal stage of development occurs by two processes: 

 

http://en.wikipedia.org/wiki/Fetus
http://en.wikipedia.org/wiki/Bone_fracture
http://en.wikipedia.org/wiki/Paget%27s_disease_of_bone
http://en.wikipedia.org/wiki/Concentric
http://en.wikipedia.org/wiki/Cross_section_%28geometry%29
http://en.wikipedia.org/wiki/Torsion_%28mechanics%29
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Intramembranous Ossification: It mainly occurs during the formation of the flat bones of the 

skull, mandible, maxilla, and clavicles. The bone is formed from the connective tissue such as 

mesenchymal connective tissue rather than from cartilage. The steps in Intramembranous 

ossification are:   

a. Development of ossification center      

b. Calcification  

c. Formation of trabeculae 

d. Development of periosteum 

Endochondral Ossification:  It occurs in long bones and most of the rest of the bones in the 

body. It involves an initial hyaline cartilage that continues to grow. The steps in involved in 

Endochondral ossification are: 

a. Development of cartilage model 

b. Growth of cartilage model 

c. Development of the primary ossification center 

d. Development of the secondary ossification center 

e. Formation of articular cartilage and epiphyseal plate 

Tissue Engineering of Bone 

Bone defects and non-unions caused by congenital deformity, trauma, tumor resection, peri-

prosthetic fractures or pathological deformation pose a great challenge in the field of 

orthopedics. Traditionally, these have been treated using autografts and allografts. Autografts are 

described as tissue/organ that is taken from the same individual to repair a specific medical 

problem (R. S. Langer & Vacanti, 1999). The autografts have set the gold standard for clinical 

bone repair because of their osteoconductivity, osteoinductivity and osteogenicity (C. T. 

http://en.wikipedia.org/wiki/Epiphyseal_plate
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Laurencin, Ambrosio, Borden, & Cooper, 1999). Allografts, on the other hand, are described as 

organs transferred from one individual to another individual of same species (R. S. Langer & 

Vacanti, 1999). This is currently the most widely used method of organ transplantation and 

replacement today (Berggren, Weiland, & Dorfman, 1982).  Although, the use of autografts is 

limited by donor shortage and donor site morbidity, whereas, the use of allografts is limited by 

the risk of disease transfer and immune rejection (Burg, Porter, & Kellam, 2000). To circumvent 

these limitations, tissue engineering has evolved as a more effective means for bone defect repair 

and regeneration.          

 Tissue engineering can be described as a compilation of several different disciplines of 

science utilized to create a functional organ or tissue with specific emphasis on ameliorating an 

individual's existence and alleviating musculoskeletal defects and disorders. Laurencin defined 

tissue engineering as, "an application of biological, chemical and engineering principles towards 

the repair, restoration, or regeneration of living tissues using biomaterials, cells, and factors 

alone or in combination" ( Laurencin et al., 1999). The fundamentals of tissue engineering allow 

a unique discipline to be studied because all facets of science can be incorporated simultaneously 

to create a new form of research to better understand the musculoskeletal conditions.   

 The ability to decipher the intricate underlying factors of tissue engineering will 

introduce a new way of approaching tissue and organ growth. Tissue engineering applications 

offer biocompatibility, availability, and diversity when being applied to various areas of bone 

and tissue regeneration. Over the last decade there has been an increased push for the use of 

alternative materials in the fields of medicine and science, especially in Orthopedics with an 

emphasis on addressing musculoskeletal disorders (Jackson & Simon, 1999).  Such interests 

have led to the introduction of synthetic materials for use in various tissue engineering 
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applications. The understanding for such needs has generated a keen interest in developing 

biodegradable polymers based on various monomers combined to achieve a specific polymer 

type (Ignatius & Claes, 1996). 

Biodegradable Polymers 

The success of the scaffold-based bone regeneration approach relies heavily on effectiveness of 

the biodegradable scaffold (Hutmacher, 2000). The use of biodegradable polymers for tissue 

engineering offers several advantages. Polymeric materials are unlimited in quantity, can be 

fabricated to promote optimal cellular compatibility (Attawia, Uhrich, Botchwey, Langer, & 

Laurencin, 1996), can be surface treated to resemble tissue like qualities (Brekke & Toth, 1998), 

and can eliminate the need for surgical removal once placed in vivo (Royals et al., 1999). With 

all of the aforementioned advantages, biodegradable polymers offer a new and exciting challenge 

for the field of medicine, particularly in the areas of cartilage and bone regeneration. The ability 

to create matrices capable of promoting bone growth will produce unlimited potential for both 

the molecular and engineering sides of research.  

The polyesters are a group of biodegradable polymers that include polyglycolic acid 

(PGA), polylactic acid (PLA) and the copolymer, polylactic-co-glycolic acid (PLAGA). These 

polymers are currently approved by the Food and Drug Administration for certain orthopedic 

applications (Mikos, Sarakinos, Leite, Vacanti, & Langer, 1993), and are currently on the market 

as suture materials, fixation pins and staples (Grizzi, Garreau, Li, & Vert, 1995; Ignatius & 

Claes, 1996). The advantages of these materials are their ability to degrade via bulk erosion into 

harmless by-products (Grizzi et al., 1995; Migliaresi, Fambri, & Cohn, 1994).    

 The PGA polymer is highly crystalline, thus giving the material a high melting point and 

decreased solubility in organic solvents. The PGA polymer was one of the first polymers used as 



9 
 

surgical suture material and is currently on the market as DEXON®. Its reported degradation rate 

is between 6 and 8 months, causing the material to lose mechanical strength at an accelerated 

rate (Ignatius & Claes, 1996).
 

The addition of a methyl group to PGA led to the introduction of a lactic acid group, 

leading to formation of PLA polymer. This cyclic dimer exists in both the L and D isoforms, 

which can also be combined in a mixture to create the synthetic polymer D, L-PLA. PLA is also 

a semi-crystalline polymer that possesses a more hydrophobic profile with a higher molecular 

weight and melting point (Migliaresi et al., 1994). This allows a longer degradation time that is 

reported to take more than 2.5 years (Migliaresi et al., 1994). Degradation studies have revealed 

that PLA is broken down through hydrolytic cleavage, where the monomeric lactide groups are 

removed via the glycolytic process occurring in the surrounding muscle (Vert, Li, & Garreau, 

1994; Vert, Mauduit, & Li, 1994). Currently, PLA material is on the market as suture anchors 

and interference screws.   

      In an attempt to obtain a more controllable material with better characteristics, the 

combination of both PLA and PGA was introduced in various ratios such as 50:50, 25:75 and 

85:15. Poly lactic-co-glycolic acid (PLAGA) is used as a scaffold material because of its 

excellent biocompatibility and bioresorbability, commercial availability, non-immunogenicity, 

controlled degradation rate, and its ability to promote optimal cell growth (Athanasiou, 

Niederauer, & Agrawal, 1996; Lu, Garcia, & Mikos, 1999). Several studies have examined the 

uses of PLAGA matrices as evidenced by the literature describing the polymer‟s acceptance in 

the areas of tissue engineering and orthopedics (Thomson, Yaszemski, Powers, & Mikos, 1995; 

Cohen, Alonso, & Langer, 1994). Currently, the combined material is on the market for 

craniomaxillofacial fixation devices and interference screws (R. Zhang & Ma, 1999). Studies by 
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various laboratories have demonstrated good biological fixation with the copolymers and the 

ability to use these materials for drug delivery devices as well (Cohen et al., 1994; Jalil & Nixon, 

1990; Miyamoto et al., 1993; Vert, Mauduit, et al., 1994).  

Carbon Nanotubes (CNT) 

One of the essential requirements of the scaffold material is to have the desired mechanical 

properties (elastic modulus and tensile strength) which can be increased by reinforcing with a 

second-phase material. Carbon Nanotubes (CNT) due to their unprecedented properties in terms 

of size, strength and surface area have made them a potential reinforcement in the production of 

nanocomposites with ceramics, metals and polymers, including biodegradable polymers (N. 

Sinha & Yeow, 2005; Armentano, Dottori, Puglia, & Kenny, 2008). Data from literature reveals 

that CNT that were incorporated into a polymer matrix substantially improve upon the original 

mechanical properties of that material (Hu, Ni, Montana, Haddon, & Parpura, 2004; Schwartz et 

al., 1999; Bagambisa, Kappert, & Schilli, 1994). CNT combined with chitosan generated a 

matrix that enhanced the mechanical properties, including the Young‟s modulus, and tensile 

strength as much as 93% and 99% respectively (Mattson, Haddon, & Rao, 2000). Similar results 

were seen when CNT were uniformly distributed into a brittle hydroxyapatite bioceramic 

coating.  The improved fracture toughness of 56% was attributed to the incorporation of the CNT 

(Webb, Hlady, & Tresco, 2000). Apart from the polymer enhancement, they have also been used 

to reinforce the ceramic matrices, where the addition of CNT increased the fracture toughness 

(Arsecularatne & Zhang, 2007).        

 In addition, a lot of researchers have reported that CNT act as an excellent substrate for 

cell growth and differentiation (Shi Kam, Jessop, Wender, & Dai, 2004; Liopo, Stewart, Hudson, 

Tour, & Pappas, 2006; Hu et al., 2004). CNT are allotropes of carbon with a cylindrical 

http://en.wikipedia.org/wiki/Allotropes_of_carbon
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nanostructure. They have been constructed with length-to-diameter ratio of up to 132,000,000:1 

(X. Wang et al., 2009) which is significantly larger than compared to any other material. 

Nanotubes are members of the fullerene structural family. Their name is derived from their long, 

hollow structure with the walls formed by one-atom-thick sheets of carbon, called graphene. 

These sheets are rolled at specific and discrete ("chiral") angles, and the combination of the 

rolling angle and radius decides the nanotube properties, for example, whether the individual 

nanotube shell is a metal or semiconductor. Nanotubes are categorized as single-walled 

nanotubes (SWCNT) and multi-walled nanotubes (MWCNT).     

 SWCNT have a diameter close to 1 nanometer, with a tube length that can be many 

millions of times longer. The structure of a SWCNT can be conceptualized by wrapping a one-

atom-thick layer of graphite called graphene into a seamless cylinder. MWCNT consist of 

multiple rolled layers (concentric tubes) of graphene. There are two models that can be used to 

describe the structures of multi-walled nanotubes. In the Russian Doll model, sheets of graphite 

are arranged in concentric cylinders whereas in the Parchment model, a single sheet of graphite 

is rolled in around itself, resembling a scroll of parchment or a rolled newspaper (Dai, 2002).  

 The material of interest in our laboratory is SWCNT. They are solely made up of carbon 

with same scale size of DNA and the fact that all living entities are carbon based makes them an 

ideal candidate for introduction into the biological systems (Dai, 2002).  

Cell adhesion receptors (Integrins) 

For the PLAGA/SWCNT composites to be successful in the field of bone tissue engineering, 

their interaction with the cellular tissue needs to be examined. One way to examine the 

interaction of these composites with the surrounding tissue is to look into the receptors involved 

in the cellular adhesion, integrins. Integrins are transmembrane heterodimeric proteins that 
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contains α and β subunits which localize to form a receptor that has been demonstrated to be 

involved in the cellular adhesion, signal transduction and gene expression (Ruoslahti, 1996; 

Hughes, Salter, Dedhar, & Simpson, 1993; Gronowicz & McCarthy, 1996).   

 The integrins were first introduced to the field of science and molecular biology during 

the discovery of the RGD sequence found in the fibronectin gene.  Studies by Pytela et al. 

(Pytela, Pierschbacher, & Ruoslahti, 1985) discovered that the RGD sequence, which stands for 

Arg-Gly-Asp, adheres directly to the integrin α5β1. Further studies on chicken receptors, platelet 

adhesion proteins GP IIb/IIIa and lymphocytic adhesion proteins, all of which have structural 

similarities to the fibronectin integrin receptor (Ruoslahti, 1996)
 
further supports the presence of 

integrins. The aforementioned finding demonstrated that integrins are a large family of related 

adhesion proteins from different species performing the same function. Ruoslahti states that the 

term “integrin” is appropriately given because of the receptor‟s ability to integrate with the 

extracellular matrix proteins that were found to adhere to these receptors (Ruoslahti, 1996).
 

These findings were important and led to the increased investigation of the integrins in the field 

of medicine, science, and orthopedics. The structural diversity of integrins is important to the 

receptor function. The integrin receptor consists of α and β subunits that combines to form a 

transmural receptor that functions together. The carboxyl end of the subunit is located on the 

extracellular side of the receptor and is involved in adhesion, whereas the N-terminal region that 

contains NH2 is located intracellularly and is involved in signal transduction and communication. 

To date over 12 different α subunits and over 8 different β subunits have been reported that form 

to create a receptor that is specific for a certain ligand sequence (T. Saito, Albelda, & Brighton, 

1994). For example, the pairing of α2β1 is specific for the abundant extracellular matrix molecule 

collagen, whereas α5β1 is more specific for fibronectin (Hautanen, Gailit, Mann, & Ruoslahti, 
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1989; Pierschbacher & Ruoslahti, 1984; R. K. Sinha & Tuan, 1996). It is this specific pairing of 

the integrin subunits that gives the receptor the specificity that allows it to bind, as well as the 

diversity that has been described to date (Hynes, 1992).       

 Several studies have confirmed integrins involvement in the following: cell adhesion to 

the surface, cell-cell adhesion, platelet function, leukocyte activity, wound repair and 

embryological development of muscle (Fernandez, Clark, Burrows, Schofield, & Humphries, 

1998; Gullberg, Velling, Lohikangas, & Tiger, 1998; Johansson, Svineng, Wennerberg, Armulik, 

& Lohikangas, 1997). Studies by El-Amin et al. have demonstrated that Integrin expression is 

critical to human osteoblast cell adhesion to biomaterials, including the biodegradable polyesters. 

These results introduced the concept that adhesion of osteoblasts could be up-regulated 

depending on the surface of the polymer and composition. Other researchers such as Sinha et al. 

described the abundant accumulation and expression of integrins on orthopedically-related 

metals, such as titanium and cobalt chrome (R. K. Sinha & Tuan, 1996), which are currently 

used to produce implants for hip arthroplasty. The human osteoblasts‟ expression of integrins on 

metallic surfaces occurred at varied levels depending on the surface of the material and the type 

of metal employed, again supporting integrins' role in cellular attachment. In addition to 

biomaterial surfaces designed from either polymers or metals, growth on matrices created with 

either various protein or peptides were also investigated. Saito et al. demonstrated that in the 

presence of surfaces coated with type I collagen, fibronectin, vitronectin and poly-D-lysine, cell 

adhesion was enhanced 60-70% for cells seeded on these surfaces, whereas only 40-50% was 

observed for cells plated on surfaces covered with type IV collagen, laminin and gelatin (T. Saito 

et al., 1994). In addition, they demonstrated an increase in the specific integrin receptors (α1β1, 

α3β1, α5β1, and αvβ1) that bind to the previously mentioned proteins (T. Saito et al., 1994). They 
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also reported that integrins interaction in bone cells are important in determining skeletal 

development, bone matrix production, the pathological processes of fracture repair, osteogenic 

tumors, and metabolic bone diseases. Additionally, integrins involvement in various other cells, 

ranging from neural to endothelial cells, has been demonstrated by several investigators (Hynes, 

1992).
  
However, to obtain a deeper understanding of the connection with tissue engineered bone, 

Integrin expression by osteoblasts needs to be more thoroughly evaluated in the orthopedic 

realm.             

 Several other studies have looked at the type of integrins expressed from various types of 

osteoblasts that are currently being used in the field of cellular adhesion (Attawia et al., 1996; 

Puleo & Nanci, 1999). Albeda et al. reported that the following integrins: α1, α5, α6, αv, β1 and β2, 

were observed at various levels on rat calvarial cells. They also reported a negative staining for 

the α2 and α3 integrins, indicating their absence. When evaluating Integrin expression in fetal 

bone in vivo, a large amount of α4, α5, αv, β1 and β3 were detected, but other integrins such as α1, 

α2 and α3 were not investigated, thus leaving their presences unknown (Albelda & Buck, 1990). 

When evaluating Integrin expression on human osteoblasts isolated in vitro, studies by Sinha et 

al. reported the presence of α2, α3, α4 α5, αv, β1 and β3, thus demonstrating that various growth 

methods lead to the production of a vast repertoire of integrins (R. K. Sinha & Tuan, 1996).  

Alkaline Phosphatase 

Alkaline phosphatase (ALP) is a hydrolase enzyme responsible for removing phosphate groups 

from many molecules like nucleotides, proteins, and alkaloids. The process of removing the 

phosphate group is called dephosphorylation. ALPs are most effective in an alkaline 

environment. It is sometimes used synonymously as a basic phosphatase. In humans, alkaline 

phosphatase is present in all tissues throughout the entire body, but is particularly concentrated in 
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liver, bile duct, kidney, bone, and the placenta.      

 The growth of preosteoblastic cells to mature osteoblasts has been correlated with levels 

of alkaline phosphatase (ALP) expression, which has widely been used as a bone marker to 

evaluate bone formation (Aubin, Liu, Malaval, & Gupta, 1995). Even though it is widely used, 

few studies have demonstrated the role of ALP but many have speculated its involvement in 

mineralization. Aubin et al. demonstrated poor levels of alkaline phosphatase in bone-

metabolizing diseases such as Hypophosphatasia and Ricketts due to the inability to mineralize 

bone (Coelho & Fernandes, 2000).  From a basic science research perspective, ALP is present in 

preosteoblasts and appears in differentiating osteoblasts before expression of matrix proteins, 

such as osteocalcin.  Overall, the ALP protein is associated with the cellular membrane and plays 

a role in the regulation of osteoprogenitor/ osteoblast migration and or differentiation (Coelho & 

Fernandes, 2000).  

Osteocalcin 

Osteocalcin, also known as bone gamma-carboxyglutamic acid-containing protein (BGLAP), is a 

noncollagenous protein found in bone and dentin. In humans, the osteocalcin is encoded by the 

BGLAP gene (Puchacz et al., 1989; Cancela, Hsieh, Francke, & Price, 1990). Osteocalcin is 

secreted solely by osteoblasts and thought to play a role in the body's metabolic regulation and is 

pro-osteoblastic, or bone-building, by nature (Lee et al., 2007). It is implicated in bone 

mineralization and calcium ion homeostasis. Osteocalcin, described as a member of the gla 

protein group, is referred to as both bone gla protein and matrix gla protein (Reinholt, Hultenby, 

Oldberg, & Heinegård, 1990). The gla proteins are secreted by both osteoblasts and chondrocytes 

and are a family of mineral binding–ECM proteins. The family of gla proteins contains glutamic 

acid residues that help in the binding of Ca
2+

 and hydroxyapatite crystals. The osteocalcin has 
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been reported to be involved in regulating bone remodeling (Reinholt et al., 1990), where the 

levels are increased during the growth of mineral crystal formation.    

  In addition to bone formation, osteocalcin has also been reported to affect osteoclast 

activity. Studies have demonstrated that osteocalcin increases osteoclast activity leading to bone 

resorption.
 
The ability of osteocalcin to affect osteoclast activity can also be supported by its 

binding to another ECM protein, osteopontin (Reinholt et al., 1990).  The binding of both 

molecules leads to a complex that initiates the recruitment of Osteoclasts to a particular area of 

bone and induces cellular attachment.        

  Osteocalcin also acts as a hormone in the body, causing beta cells in the pancreas to 

release more insulin, and at the same time directing fat cells to release the hormone adiponectin, 

which increases sensitivity to insulin (Lee et al., 2007; Pi, Wu, & Quarles, 2011; Fulzele et al., 

2010). Another study by Oury et al. demonstrated endocrine function of Osteocalcin in male 

fertility regulation. They reported that by binding to a G protein-coupled receptor expressed in 

the Leydig cells of the testes, osteocalcin regulates in a CREB-dependent manner the expression 

of enzymes that is required for testosterone synthesis thus promoting germ cell survival (Oury et 

al., 2011). 

RUNX2 

Runt-related transcription factor 2 (RUNX2) or core-binding factor subunit alpha-1 (CBF-alpha-

1) is a protein which in humans is encoded by the RUNX2 gene. RUNX2 is a key transcription 

factor associated with osteoblast differentiation. This protein is a member of RUNX family of 

transcription factors and has a Runt DNA-binding domain. RUNX2 is essential for the 

osteoblastic differentiation and skeletal morphogenesis and acts as a scaffold for nucleic acids 

and regulatory factors involved in the skeletal gene expression. The protein can bind DNA either 
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as a monomer or, with more affinity, as a subunit of a heterodimeric complex. Transcript variants 

of the gene that encode different protein isoforms result from the use of alternate promoters as 

well as alternate splicing. 
 
Differences in RUNX2 are hypothesized to be the cause of the skeletal 

differences between modern humans and early humans such as Neanderthals. These differences 

include a different shape of the skull, a bell-shaped chest in Neanderthals (Green et al., 2010).
 

The binding interactions of RUNX2 change as cells go through mitosis, with binding affinity 

increasing as chromosomes condense and then decreasing through subsequent mitotic phases. 

The increased residence of RUNX2 at mitotic chromosomes may reflect its epigenetic function 

in "bookmarking" of target genes in cancer cells (Pockwinse et al., 2011; Tandon et al., 2012).  

Collagen 

Collagen is a group of naturally occurring proteins found in animals, especially in the flesh and 

connective tissues of vertebrates (Müller, 2003). It is the main component of connective tissue, 

and is the most abundant protein present in the ECM in mammals (Groessner-Schreiber & Tuan, 

1992; Di Lullo, Sweeney, Korkko, Ala-Kokko, & San Antonio, 2002). The collagen family 

consists of more than 15 different types that have been described in vertebrates and are divided 

into subgroups. Some of the most important ones are fibrillar collagen, which includes Type I, II, 

III, V and XI; the fibril-associated class, which includes IX and XII; the network forming group 

IV; and the filamentous group VI.  The collagen families contain a triple helix, which is 

composed of folded alpha chains that assume a proper helical formation involving glycine at 

every third amino acid residue (Shoulders & Raines, 2009). The alpha chains that make up the 

triple helix can be found to possess a triplet sequence of Gly-X-Y, where the X is usually proline 

and the Y is found to be hydroxyproline.  The abundance of the hydroxyproline adds stability to 

the helical structure and its presence has been described as crucial for collagen to have good 
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structural integrity (Shoulders & Raines, 2009). Another key amino acid is lysine, which has 

been shown to be involved in the cross-linking between the alpha chains that comprise the 

collagen framework. 

 The fibrillar class, which contains the more abundant types of collagen, has been reported 

to be involved in various locations in the body. For instance, Type I collagen has been found 

primarily in skin, bone, tendon, corneas, and fibrous matrices. However, very little has been 

reported in cartilage. On the other hand, Type II collagen is found in abundance in cartilage and 

is associated with both corneal stroma and the notochord.  Type III is a main component of 

reticular fibers (Waldrop, Puchtler, Meloan, & Younker, 1980).     

 In addition to the several classes of collagen molecules found and reported throughout the 

body, collagen has also been demonstrated to be involved in cellular adhesion. Studies have 

exhibited cellular adhesion to collagen and collagen-coated surfaces via receptors such as the 

integrins.  

Osteopontin 

Osteopontin (OPN) is another bone protein that is mainly involved in, but not limited to, matrix 

mineralization (Reinholt et al., 1990). It has been described as a glycoprotein known to be 

involved in many tissue and organ types.  Moreover, it has been demonstrated to be expressed in 

a variety of tissues, such as kidney, chondrocytes, odontoblasts, both bone and bone-derived 

marrow gland cells, and a whole host of other epithelial types of tissues (Butler, 1989). In 

particular, the main expression of osteopontin is in bone and related cellular tissues and 

structures. Early analysis of osteopontin revealed that this acidic glycoprotein contains high 

amounts of sialic acid synthesized by a variety of tissue types including fibroblasts (Ashizawa et 

al., 1996), preosteoblasts, osteoblasts, osteocytes (Reinholt et al., 1990; Butler, 1989; Denhardt 
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& Guo, 1993), odontoblasts, some bone marrow cells, hypertrophic chondrocytes, dendritic cells, 

macrophages (Murry, Giachelli, Schwartz, & Vracko, 1994), smooth muscle (Ikeda, Shirasawa, 

Esaki, Yoshiki, & Hirokawa, 1993), skeletal muscle myoblasts (Uaesoontrachoon et al., 2008), 

endothelial cells, and extraosseous (non-bone) cells in the inner ear, brain, kidney, deciduum, 

and placenta. Synthesis of osteopontin is stimulated by calcitriol (1, 25-dihydroxy-vitamin D3).  

  OPN has been described to be involved in the early stages of osteogenesis where-by 

osteoblasts bind to the ECM matrix (Denhardt & Guo, 1993), in osteoclast attachment which is a 

key factor during bone absorption via the regulation of bone crystal size (Reinholt et al., 1990). 

Intracellular signaling events have also been described to be regulated by OPN through its 

GRGDS amino acid binding sequence involvement with the αvβ3 integrin receptor. This was 

confirmed through studies performed in the presence of OPN and other RGD-peptides involving 

the αvβ3 receptor where osteoclast chicken cells, secreted Ca
2+

 via ATPase in a calmodulin-

dependent manner (Butler, 1989).        

 Osteopontin also plays an important role in chemotaxis by recruiting neutrophils in 

alcoholic liver diseases (Banerjee, Apte, Smith, & Ramaiah, 2006; Apte, Banerjee, McRee, 

Wellberg, & Ramaiah, 2005). OPN causes cell activation by inhibiting production of Th2 

cytokine IL-10 thus leading to enhanced Th1 response; enhance B cell immunoglobulin 

production and proliferation; and induces mast cells degranulation (K. X. Wang & Denhardt, 

2008; Nagasaka et al., 2008). OPN is also an important anti-apoptotic factor in many 

circumstances. It blocks the activation-induced cell death of macrophages and T cells as well as 

fibroblasts and endothelial cells exposed to harmful stimuli (Denhardt, Noda, O'Regan, Pavlin, & 

Berman, 2001; Standal, Borset, & Sundan, 2004) and prevent non-programmed cell death in 

inflammatory colitis (Da Silva et al., 2006).
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Bone Sialoprotein 

Bone Sialoprotein (BSP) is a component of mineralized tissues such as bone, dentin, cementum 

and calcified cartilage. It is a significant component of the bone ECM and has been suggested to 

constitute approximately 8% of all non-collagenous proteins found in bone and the cementum 

(Fisher, McBride, Termine, & Young, 1990). The amount of BSP in bone and dentin is nearly 

equal (Qin et al., 2001), however the function of BSP in these mineralized tissues is not known. 

One possibility is that it acts as a nucleus for the formation of the first apatite crystals (Hunter & 

Goldberg, 1994) and as the apatite forms along the collagen fibres within the ECM, it could then 

help direct, redirect or inhibit the crystal growth. Additional roles of BSP are MMP-2 activation, 

angiogenesis, and protection from complement-mediated cell lysis. Therefore, the regulation of 

the BSP gene is important to bone matrix mineralization, osteoblasts differentiation and tumor 

growth in bone (Ogata, 2008).  

 

RESEARCH OBJECTIVE 

The overall goal of this project is to develop a Single Walled Carbon Nanotube composite 

(SWCNT/PLAGA) for bone regeneration and to examine the interaction of MC3T3-E1 cells and 

hBMSCs with the SWCNT/PLAGA composite via focusing on extracellular matrix production 

and mineralization; and to evaluate its toxicity and bio-compatibility in-vivo in a rat 

subcutaneous implant model.   
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HYPOTHESIS 

We hypothesize that: 

1. Reinforcement of PLAGA with SWCNT to fabricate SWCNT/PLAGA composites 

increases both the mechanical strength of the composites as well as the cell proliferation 

rate on the surface of the composites while expressing osteoblasts phenotypic, 

differentiation and mineralization markers. 

2. SWCNT/PLAGA composites are biocompatible and non-toxic, and are ideal candidates 

for bone tissue engineering. 

 

SPECIFIC AIMS 

1. To fabricate the two-dimensional Poly lactic acid (PLA) and Poly (lactic-co-glycolic) 

acid (PLAGA) polymeric scaffolds, and to determine the cellular adhesion and 

proliferation rate on these scaffolds. 

2. To fabricate and evaluate the two-dimensional Single Walled Carbon Nanotubes 

(SWCNT) composites (SWCNT/PLAGA) for bone tissue engineering. 

3. To fabricate, characterize and evaluate the three-dimensional SWCNT/PLAGA 

composites for bone tissue engineering. 

4. To evaluate the toxicity and bio-compatibility in-vivo in a rat subcutaneous implant 

model. 
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CHAPTER 2 

EVALUATION OF TWO DIMENSIONAL PLA AND PLAGA COMPOSITES FOR 

BONE TISSUE ENGINEERING 

CHAPTER 2-1 

INTRODUCTION 

Bone defects and non-unions caused by congenital deformity, trauma, tumor resection, 

peri-prosthetic fractures or pathological deformation pose a great challenge in the field of 

orthopedics. Traditionally, these bone defects have been treated using autografts and/or 

allografts, with or without the use of biological agents. Autografts have been traditionally 

thought of as the gold standard for use in bony defects because of their osteoconductivity, 

osteoinductivity and osteogenicity (R. S. Langer & Vacanti, 1999; C. T. Laurencin et al., 1999). 

Allografts provide a good osteoconductive environment, however their osteoinductive 

capabilities are poor. Autograft use is limited by donor shortage and donor site morbidity, 

whereas, the use of allografts is limited by the risk of disease transfer, immune rejection and the 

lack of adequate osteoinductivity and osteogenicity (R. S. Langer & Vacanti, 1999; Burg et al., 

2000). To circumvent the limitations posed by autografts and allografts, tissue engineering has 

evolved as a means to develop viable bone grafts.        

 Bone tissue engineering has evolved in order to attempt to provide a gold standard 

synthetic bone substitute for which large bony defects can be adequately addressed. Bone tissue 

engineering involves the combination of biodegradable scaffolds with or without the use of cells 

and growth factors to regenerate bone (Petite et al., 2000). The success of the scaffold-based 

bone regeneration approach relies heavily on the effectiveness of the biodegradable scaffold 

(Hutmacher, 2000). The use of biodegradable polymers for tissue engineering offers several 
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advantages. Polymeric materials are unlimited in quantity, can be fabricated to promote optimal 

cellular compatibility (Attawia et al., 1996), can be surface treated to resemble tissue like 

qualities (Brekke & Toth, 1998), and can eliminate the need for surgical removal once placed in 

vivo (Royals et al., 1999). With all of the aforementioned advantages, biodegradable polymers 

offer a new and exciting challenge for the field of medicine, particularly in the areas of cartilage 

and bone regeneration. The ability to create matrices capable of promoting bone growth will 

produce unlimited potential for both the molecular and engineering sides of the research.   

 Some of the important classes of polymers are polyanhydrides, polyphosphazenes and 

polyesters. Polyanhydrides are synthesized through the dehydration of diacid molecules via 

polycondensation (C. T. Laurencin & Langer, 1987). They have been described as being very 

hydrolytically unstable and they degrade by surface erosion which leads to a faster degradation 

rate (R. Langer, 1995). Polyanhydrides have been approved as implantable devices in the brain 

by the FDA for controlled drug delivery of the chemotherapeutic agent (BCNU) to treat brain 

tumors (R. Langer & Vacanti, 1993). Studies from literature also showed that addition of imide 

group leads to enhanced mechanical properties (Uhrich, Ibim, Larrier, Langer, & Laurencin, 

1998). Another study by Fan et al. reported that, mild inflammatory reactions were observed 

after implantation of the polymer (Fan, Li, Jiang, Tang, & Wang, 2008).    

 Polyphosphazenes consists of an inorganic phosphorous-nitrogen backbone connected to 

various amino acid groups, such as glycine. They have an amorphous profile with a molecular 

weight in the millions and it degrades by both bulk and surface erosion (Elgendy, Norman, 

Keaton, & Laurencin, 1993). Study by Laurencin et al. showed the biocompatible nature of 

polyphosphazenes (C. T. Laurencin, El-Amin, et al., 1996). They are still a new class of 

polymers and their applications for tissue engineering are yet to be established.   
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 Another important class is the polyesters, which are a group of biodegradable polymers 

that include polyglycolic acid (PGA), polylactic acid (PLA) and the copolymer, polylactic-co-

glycolic acid (PLAGA). These polymers are currently approved by the Food and Drug 

Administration for certain orthopedic applications (Mikos et al., 1993), and are currently on the 

market as suture materials, fixation pins and staples (Grizzi et al., 1995; Ignatius & Claes, 1996). 

The advantages of these materials are their ability to degrade via bulk erosion into harmless by-

products (Grizzi et al., 1995; Migliaresi et al., 1994).      

 The PGA polymer is highly crystalline, thus giving the material a high melting point and 

decreased solubility in organic solvents. Its reported degradation rate is between 6 and 8 months, 

causing the material to lose mechanical strength at an accelerated rate (Ignatius & Claes, 1996). 

The addition of a methyl group to PGA led to the introduction of a lactic acid group, leading to 

formation of PLA polymer. PLA is a semi-crystalline polymer that possesses a more 

hydrophobic profile with a higher molecular weight and melting point (Migliaresi et al., 1994). 

This allows a longer degradation time that is reported to take more than 2.5 years (Migliaresi et 

al., 1994). In an attempt to obtain a more controllable material with better characteristics, the 

combination of both PLA and PGA was introduced in various ratios such as 50:50, 60:40, 75:25 

and 85:15. Poly lactic-co-glycolic acid (PLAGA) is used as a scaffold material because of its 

excellent biocompatibility and bioresorbability, commercial availability, non-immunogenicity, 

controlled degradation rate, and its ability to promote optimal cell growth (Athanasiou et al., 

1996). Several studies have examined the uses of PLAGA matrices as evidenced by the literature 

describing the polymer‟s acceptance in the areas of tissue engineering and orthopedics (Thomson 

et al., 1995; Cohen et al., 1994).           
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The purpose of this study was to develop 2-D PLA and PLAGA scaffolds and to 

determine the MC3T3-E1 and rMSCs (rat mesenchymal stem cells) cells adhesion and 

proliferation rate on these matrices. We hypothesize that the biodegradable polymers PLA and 

PLAGA with known biocompatibility and controlled degradability can be fabricated and 

optimized into suitable composites for bone tissue engineering applications. 
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CHAPTER 2-2 

METHOD 

Biomaterials 

Poly lactic acid (PLA) (Purasorb PL38, Purac Biomaterials, Netherlands) and Poly lactic-co-

glycolic acid (PLAGA 85:15) (Purasorb PLG8523, Purac Biomaterials, Netherlands) were 

obtained and stored at -80
0
C to prevent degradation.  

Fabrication of PLA Scaffolds 

PLA scaffolds were fabricated by dissolving 1g of PLA in 14ml solution of dichloromethane 

(Fisher Scientific, USA) in a 20ml scintillation vial. The solution was vortexed for 8 hours at a 

constant speed to dissolve the polymer. The dissolved polymer was then poured in a glass Petri-

plate with Bytac paper and was immediately kept at -80
0
C for 3 days. The plate was then kept at 

room temperature for 3 days or until the solvent was completely evaporated. The thin film 

obtained was bored into circular disks with a 12mm diameter and placed in a desiccator for 24 

hours in order to remove the residual solvent. 

Fabrication of PLAGA Scaffolds 

PLAGA scaffolds were fabricated by dissolving 1g of PLAGA in 12ml solution of 

dichloromethane (Fisher Scientific, USA) in a 20ml scintillation vial. The solution was vortexed 

for 8 hours at a constant speed to dissolve the polymer. The dissolved polymer was then poured 

in a glass Petri-plate with Bytac paper and was kept under a vacuum hood for 30 minutes. The 

plate was then kept at -20
0
C overnight and then brought to room temperature for complete 

evaporation of the solvent. The thin film obtained was bored into circular disks with a 12mm 

diameter and placed in a desiccator for 24 hours in order to remove the residual solvent. 
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Cell Culture 

MC3T3-E1 cells were obtained from ATCC (MC3T3-E1 subclone 4). The cells were grown in 

Alpha Minimal Essential Medium (Alpha MEM) with ribonucleosides, deoxyribonucleosides, 

2mM L-Glutamine, and 1mM sodium pyruvate (Hyclone, Thermo Scientific, USA) 

supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, Invitrogen, USA) and 1% Penicillin-

Streptomycin (PS) (Lonza, USA). The cells were kept in humidified air under 5% CO2 at 37
0
C. 

 Rat Mesenchymal Stem Cells (rMSCs) were cultured in Alpha Minimal Essential 

Medium (Alpha MEM) with ribonucleosides, deoxyribonucleosides, and 2mM L-Glutamine 

supplemented with 20% Fetal Bovine Serum (FBS) (Gibco, Invitrogen, USA) and 1% Penicillin-

Streptomycin (PS) (Lonza, USA). The cells were kept in humidified air under 5% CO2 at 37
0
C. 

rMSCs were obtained from Dr. Cady‟s lab at Bradley University.    

 The PLA and PLAGA scaffolds were fabricated as described above and exposed to UV 

light for 15 minutes to insure sterilization. Tissue culture polystyrene (TCPS) (Fisherbrand 

Coverglass, Fisher Scientific, USA) served as a control. After sterilization the scaffold disks 

were placed in a 24 well plate and soaked in the complete culture medium for 1 hour. The 

desired number of cells (MC3T3-E1 and rMSCs) were counted using hemacytometer (Hausser 

Scientific, USA) and were then seeded on the disks for cell adhesion/morphology/proliferation 

studies. 

Immunofluorescence Staining 

MC3T3-E1 cells are flat and polygonal in shape and rMSCs are spindle like and fibroblastic in 

shape (Horikawa, Okada, Sato, & Sato, 2000; Chang et al., 2012). The morphology of the cells 

can be used to determine the cellular behavior on the polymeric scaffolds. Cellular morphology 

and adhesion (qualitatively) were determined by using Immunofluorescence staining. At day 3, 4 
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and 5; the scaffolds seeded with MC3T3-E1 cells were washed with PBS. The cells were then 

fixed with chilled 70% ethanol for 10 minutes. Post fixation, the cells were incubated with 1% 

Bovine Serum Albumin (BSA) in PBS having 0.05% Triton X-100 for 20 minutes at room 

temperature followed by immersing the samples in 1% Tween. The cells were then incubated 

overnight at 4
0
C with monoclonal mouse Anti-β-actin antibody (1:400, catalog number- A5441, 

Sigma Aldrich, USA). They were then washed with 0.05% Tween and incubated with secondary 

antibody (goat anti-mouse F (ab‟) 2 fragment of IgG conjugated with an Alexa Fluor® 488 

fluorescence probe, 1:400, catalog number- 4408, Cell Signaling, USA) for 1 hour at room 

temperature. This was followed by washing the cells with PBS, and staining for the nucleus 

(Hoechst dye), mounting using 80% Glycerol and viewing under a Confocal Microscope (Leica 

TCS SP5 spectral laser scanning confocal microscope) (Vandrovcová et al., 2011). Similarly, 

rMSCs were observed at day 3. 

Scanning Electron Microscopy 

Cell adhesion on the polymeric scaffolds surface was determined qualitatively by using SEM 

(Hitachi S-3000 scanning electron microscope). At day 3, the scaffolds seeded with cells 

(MC3T3-E1 and rMSCs) were washed with PBS. The cells were then fixed with 1.5% 

Glutaraldehyde in 0.1M Cacodylate buffer followed by post-fixation with 2.5% OsO4 in 0.1M 

Cacodylate buffer. After fixation the cells were washed with 0.1M Cacodylate buffer and then 

dried using serial ethanol dehydration, followed by Hexamethyldisilazane (HMDS). The dried 

samples were then sputter coated with Gold/ palladium and viewed using the SEM. 

Cell Proliferation Assay 

Cell adhesion and proliferation was determined quantitatively using MTS assay at day 3, 5 and 7 

post-seeding (5,000 rMSCs cells) on PLA and PLAGA scaffolds using TCPS as control. At 
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desired time points, media was removed, cells were washed with PBS and 20µl of Cell titer 96
®
 

AQueous One solution reagent (Promega, USA) was added in each well having 100µl of culture 

medium followed by incubating the plate at 37
0
C for 1-4 hours in a humidified; 5% CO2 

atmosphere. The absorbance/ optical density (O.D.) was measured at 490nm by using a 

microplate reader.  

Statistical Analysis 

MTS assay was performed three times in duplicate and mean ± SEM values along with statistical 

analysis using two-way ANOVA were performed. The results were considered significant when 

p < 0.05. 
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CHAPTER 2-3 

RESULTS 

Fabrication of PLA and PLAGA Scaffolds 

PLA and PLAGA two-dimensional (2-D) scaffolds were fabricated using solvent evaporation 

method. Figure 2-1 shows the fabrication process of these polymeric scaffolds and the film 

obtained. 12mm diameter disks were cut from the films obtained and used for cell 

adhesion/morphology and proliferation studies. 
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Figure 2-1: Schematic representation of steps involved in fabrication of 2-D PLA and 

PLAGA scaffolds using solvent evaporation method. 
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Immunofluorescence Staining 

The adhesion and the morphology of the MC3T3-E1 cells (Figure 2-2) on the various scaffold 

surfaces was observed using Immunofluorescence staining. The cells were stained with β-actin 

and nuclear hoechst stain and were observed at day 3, 4 and 5 under a confocal microscope. The 

images revealed that the cells adhered, grew and exhibited a normal, non-stressed morphological 

pattern on both the surfaces (PLA and PLAGA).       

 To make sure that the scaffolds fabricated are not cell type specific, rMSCs were 

observed at day 3 post-seeding (Figure 2-3). The results demonstrated that rMSCs also adhered 

and grew on the polymeric scaffold surface and exhibited their normal morphology.  
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Figure 2-2: Immunofluorescence staining (green: β-actin and blue: hoechst stain) images 

captured using a confocal microscope (at 10X 3.1 zoom) at day 3, 4 and 5. MC3T3-E1 cells 

adhered, grew and retained their morphology on PLA and PLAGA scaffolds. 
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Figure 2-3: Immunofluorescence staining (green: β-actin and blue: hoechst stain) images 

captured using a confocal microscope (at 10X 3.1 zoom) at day 3. rMSCs adhered, grew 

and retained their morphology on PLA and PLAGA scaffolds. 
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Scanning Electron Microscopy 

MC3T3-E1 cell and rMSCs adhesion on the PLA and PLAGA 2-D scaffolds was determined by 

using Scanning Electron Microscopy (SEM) at day 3. Both MC3T3-E1 cells (Figure 2-4) and 

rMSCs (Figure 2-5) adhered and grew on both the scaffolds. Cells covered almost the entire 

surface of the scaffolds. The cells exhibited their characteristic morphology on both scaffold 

surfaces.  
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Figure 2-4: SEM micrographs of MC3T3-E1 cells cultured on PLA and PLAGA scaffolds 

(at 300 and 1000X magnifications). MC3T3-E1 cells adhered and grew on all the surfaces. 
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Figure 2-5: SEM micrographs of rMSCs cultured on PLA and PLAGA scaffolds (at 300 

and 1000X magnifications). rMSCs cells adhered and grew on all the surfaces. 
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Cell Proliferation 

Quantitatively cell proliferation for rMSCs was determined using MTS assay on both the 

polymeric scaffold surfaces and TCPS (as control) at day 3, 5 and 7. The results demonstrated 

significantly higher rate of cell proliferation on PLAGA compared to PLA at day 5 and day 7 (p 

< 0.05) and compared to control TCPS (Figure 2-6). The rate of cell proliferation was also higher 

on PLA compared to control TCPS.  
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Figure 2-6: (A & B) MTS assay for proliferation of rMSCs cultured on PLA and PLAGA 

scaffolds at day 3, 5 and 7. Results show higher proliferation rate on PLAGA compared to 

PLA and control TCPS. Data represents mean ± SEM and p<0.05 was considered 

significant. 
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CHAPTER 2-4 

DISCUSSION 

We were able to successfully fabricate 2-D PLA and PLAGA scaffolds. Our results 

suggested that these tissue engineered PLA and PLAGA scaffolds promote cell adhesion and 

proliferation. Cells (MC3T3-E1 and rMSCs) adhered and grew on these scaffolds, and covered 

the entire surface of the scaffolds while maintaining their normal morphology. Higher rate of cell 

proliferation was observed on PLAGA compared to PLA and control TCPS at day 7. These 

results demonstrate the potential for use of PLAGA scaffolds for bone tissue engineering. Future 

studies will focus on optimizing these PLAGA scaffolds to enhance cell proliferation and 

mechanical strength, and to understand the biocompatibility of these scaffolds in-vivo. 
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CHAPTER 3 

SINGLE WALLED CARBON NANOTUBES COMPOSITES FOR BONE TISSUE 

ENGINEERING 

CHAPTER 3-1 

INTRODUCTION 

Bone defects and non-unions caused by trauma, tumor resection, peri-prosthetic fractures 

or pathological deformation pose a great challenge in the field of orthopaedics. Traditionally, 

these bone defects have been treated using autografts and/or allografts, with or without the use of 

biological agents. Both autografts and allografts have certain pros and cons (C. T. Laurencin et 

al., 1999; Burg et al., 2000). To circumvent the limitations posed by them BTE has evolved to 

provide a gold standard synthetic bone substitute for which large boney defects can be 

adequately addressed. BTE involves the combination of biodegradable composites with or 

without the use of cells and growth factors to regenerate bone (Petite et al., 2000). The success of 

this approach relies heavily on the effectiveness of the biodegradable composite (Hutmacher, 

2000). PLAGA is used as a composite material because of its excellent biocompatibility, 

bioresorbability, commercial availability, non-immunogenicity, controlled degradation rate, and 

ability to promote optimal cell growth (Athanasiou et al., 1996; Lu et al., 1999).  

One of the essential requirements of composite material in BTE is to have the desired 

mechanical properties, which can be increased by reinforcement with a second-phase material. 

Carbon-based biomaterials have been used in the past as coatings and fillers in implants. 

Materials such as pyrolytic carbon, diamond-like carbon (DLC), carbon nitride (CN), and carbon 

fibers all have biomedical applications and have been found to produce blood biocompatibility 

with good adherence of endothelial cells. Both DLC and CN are considered options for coatings 
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and implants due to their inherent properties such as hardness, low coefficient of friction, 

chemical inertness, and high wear and corrosion resistance.  Carbon nanotubes (CNT) are 

nanomaterials that have also been looked into for their use in biomedical systems and devices. 

CNT are an ideal second-phase material due to their unprecedented properties in terms of size, 

strength and surface area and possess high tensile strength, are ultra light weight and have 

excellent thermal and chemical stability which make them a potential reinforcement in the 

production of nanocomposites with ceramics, metals and polymers, including biodegradable 

polymers (N. Sinha & Yeow, 2005; Armentano et al., 2008). Due to these properties, CNT can 

be used as nanofillers in polymeric materials for mechanical property enhancement. In addition, 

researchers have reported that carbon nanotubes act as an excellent substrate for cell growth and 

differentiation (Shi Kam et al., 2004; Liopo et al., 2006; Hu et al., 2004). Both multi-walled 

carbon nanotubes-polyurethane composites and poly (carbonate urethanes) have an inert nature 

and biocompatible chemical surfaces that have shown excellent cellular adhesion and 

proliferation (Meng et al., 2005). The use of CNT for tissue engineering applications has 

presented several major drawbacks. CNT are difficult to align when they are used as 

reinforcement in composite fabrication and the result is a nanocomposite that cannot exhibit 

adequate mechanical properties. In order to circumvent this major hurdle, a multitude of 

innovations have been attempted, such as electrospinning a polymer based material in 

conjunction with the CNT and the incorporation of CNT into matrices of varying shapes (Koh, 

Rodriguez, & Venkatraman, 2009). Aside from fabrication, very little has been explored in terms 

of optimization and biocompatibility of these materials for orthopedic applications. 

In this study, we used Single Walled Carbon Nanotubes (SWCNT) which are each a one-

atom thick layer of graphite, called graphene, rolled into a cylinder. SWCNT are solely made up 
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of carbon with same scale size of DNA. The fact that all living entities are carbon based makes 

SWCNT an ideal candidate for introduction into the biological systems (Dai, 2002). The purpose 

of this study was to develop composites comprised of SWCNT and PLAGA and to evaluate the 

interaction of hBMSCs via cell adhesion/growth and proliferation, and MC3T3-E1 cells via cell 

adhesion/growth, survival, gene expression, extracellular matrix production and mineralization. 

We hypothesize that the novel SWCNT/PLAGA composites can be designed and optimized to 

support both hBMSCs and MC3T3-E1 cell growth, and represent potential candidates for 

synthetic BTE.  
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CHAPTER 3-2 

METHOD 

Fabrication and Characterization of PLAGA and SWCNT/PLAGA Composites 

SWCNT were obtained (Carbon nanotechnologies incorporated, USA) and stored in the 

desiccator. PLAGA (Purasorb PLG8523, Purac Biomaterials, Netherlands) was obtained and 

stored at -80
0
C. PLAGA composites were fabricated by dissolving 1g of PLAGA in 12ml 

solution of dichloromethane (Fisher Scientific, USA) in a 20ml scintillation vial. The solution 

was vortexed for 8 hours at a constant speed to dissolve the polymer. It was then poured in a 

glass Petri-plate with Bytac paper and kept under a vacuum hood for 30 minutes. For 

SWCNT/PLAGA composites, once the PLAGA was dissolved various amounts of SWCNT 

(5mg, 10mg, 20mg, 40mg and 100 mg) were used in order to produce the desired composites. 

These amounts of SWCNT were added to the above polymer solution and the vials were 

vortexed for another 8 hours. This uniform mixture of PLAGA and SWCNT was then poured 

and kept under a vacuum hood for 30 minutes. For both composites, the plate were then kept at -

20
0
C overnight and then brought to room temperature for complete evaporation of the solvent. 

The thin films obtained were bored into circular disks with a 12mm diameter and placed in a 

desiccator for 24 hours to remove the residual solvent. For characterization, both the composites 

were mounted on a carbon coated SEM stub, sputter coated with Gold/Palladium and viewed 

under a SEM.  

Degradation Studies 

Degradation studies were performed on PLAGA and SWCNT/PLAGA composites over 21 days. 

The studies were performed in 0.1M Phosphate Buffered Saline (PBS) (pH= 7.4). Disks with 

diameters of 12mm were obtained, weighed and then placed in 15ml conical centrifuge tubes 
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containing 3ml PBS at 37
0
C with constant stirring. The PBS was changed every 8 hours for first 

24 hours, then once a day for the first week. For the remainder of the study, the PBS was 

changed once every 7 days. At days 1, 3, 5, 7, 14 and 21, disks were removed from the tubes, 

stored in a desiccator overnight and weighed to determine percentage mass loss over time.   

Cell Culture 

MC3T3-E1 cells were obtained from ATCC (MC3T3-E1 subclone 4, pre-osteoblasts). The cells 

were grown in Alpha Minimal Essential Medium (Alpha MEM) with ribonucleosides, 

deoxyribonucleosides, 2mM L-Glutamine, and 1mM sodium pyruvate (Hyclone, Thermo 

Scientific, USA) supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, Invitrogen, USA) 

and 1% Penicillin-Streptomycin (PS) (Lonza, USA). Characterized hBMSCs were obtained from 

Prockop‟s lab (at the Center for Gene Therapy, Tulane University Health Sciences Center, New 

Orleans, USA) (Sekiya et al., 2002) and were cultured in same medium with 20% FBS. Both 

cells were kept in humidified air under 5% CO2 at 37
0
C (Sekiya et al., 2002). The PLAGA and 

SWCNT/PLAGA composites were fabricated as described above and exposed to UV light for 15 

minutes to insure sterilization. Tissue-culture polystyrene (TCPS) served as a control. After 

sterilization the composite disks were placed in a 48 well plate and soaked in the complete 

culture medium for 1 hour. The desired number of cells were counted using hemacytometer and 

were then seeded on the disks for cell adhesion/morphology/proliferation, cell growth/ survival, 

and gene expression studies. 

Scanning Electron Microscopy (SEM) 

Cell adhesion on the polymeric composites surface was determined qualitatively by using SEM 

(Hitachi S-3000 scanning electron microscope). At day 3, the TCPS (control) and the composites 

seeded with 20,000 cells/ composite (MC3T3-E1 and hBMSCs) were washed with PBS. The 
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cells were then fixed with 1.5% Glutaraldehyde in 0.1M Cacodylate buffer followed by post-

fixation with 2.5% OsO4 in 0.1M Cacodylate buffer. After fixation the cells were washed with 

0.1M Cacodylate buffer and then dried using serial ethanol dehydration, followed by 

Hexamethyldisilazane (HMDS). The dried samples were then sputter coated with Gold/ 

palladium and viewed using the SEM. 

Immunofluorescence Staining 

The morphology of the cells can be used to determine the cellular behavior on the polymeric 

composites. Cellular morphology and adhesion (qualitatively) were determined by using 

immunofluorescence staining as MC3T3-E1 cells are flat and polygonal in shape and hBMSCs 

are spindle shaped (Sekiya et al., 2002; Horikawa et al., 2000). At day 3, the TCPS (control) and 

the composites seeded with 20,000 cells/ composite were washed with PBS. The cells were then 

fixed with chilled 70% ethanol for 10 minutes. Post fixation, the cells were incubated with 1% 

Bovine Serum Albumin (BSA) in PBS having 0.05% Triton X-100 for 20 minutes at room 

temperature  followed by immersing the samples in 1% Tween. The cells were then incubated 

overnight at 4
0
C with monoclonal mouse Anti-β-actin antibody (1:400, Sigma Aldrich, USA). 

They were then washed with 0.05% Tween and incubated with secondary antibody (goat anti-

mouse F (ab‟) 2 fragment of IgG conjugated with an Alexa Fluor® 488 fluorescence probe, 

1:400, Cell Signaling, USA) for 1 hour at room temperature. This was followed by washing the 

cells with PBS, and staining for the nucleus (Hoechst dye), mounting using 80% Glycerol and 

viewing under a Confocal Microscope (Leica TCS SP5 spectral laser scanning confocal 

microscope) (Vandrovcová et al., 2011). 
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Cell Proliferation Assay 

Cell adhesion and proliferation was determined quantitatively using MTS assay kit at day 3, 5 

and 7 post-seeding (5,000 hBMSCs cells) on 20% BGS (Bovine Growth Serum)(negative 

control), PLAGA and SWCNT/PLAGA composites. At desired time points, media was removed, 

cells were washed with PBS and 20µl of Cell titer 96
®

 AQueous One solution reagent (Promega, 

USA) was added in each well having 100µl of culture medium followed by incubating the plate 

at 37
0
C for 1-4 hours in a humidified; 5% CO2 atmosphere. The absorbance/ optical density 

(O.D.) was measured at 490nm by using a microplate reader.  

Live/Dead Assay 

LIVE/DEAD® Viability/Cytotoxicity kit (Invitrogen, Carlsbad, CA, USA) was used to 

determine the cell growth and survival in the PLAGA and SWCNT composites. 20,000 MC3T3-

E1 cells/ composite were seeded. At day 3, 5 and 7, the cells were taken out of the culture, 

washed with PBS and stained for live-dead cells according to the manufacturer‟s instructions. 

The stained cells were visualized using a Confocal Microscope in which live cells were stained 

green and dead cells were stained red. 

Real Time Reverse Transcriptase Polymerase Chain Reaction 

20,000 MC3T3-E1 cells/ composite were seeded on TCPS, PLAGA and SWCNT/PLAGA 

composites and at day 7 after culturing the cells in the osteogenic medium (per osteogenesis kit, 

Millipore, USA), the cells were harvested and the RNA was isolated using Qiagen RNeasy mini 

kit. 200ng of isolated RNA was reverse transcribed into cDNA using Thermo Scientific maxima 

first strand cDNA synthesis kit. Real Time Reverse Transcriptase Polymerase Chain Reaction 

(RT-PCR) was carried out using the Taqman® (Invitrogen) gene expression assays to determine 

the expression of Alkaline Phosphatase (ALP), Osteocalcin (OC), Osteopontin (OPN), Bone 
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Sialoprotein (BSP), Runx-2, Type I collagen (TIC) and GAPDH (as control). The mouse primers 

were purchased from Applied Biosystems (Igwe, Mikael, & Nukavarapu, 2012) and RT-PCR 

was performed using an Eppendorf Realplex cycler. 

Statistical Analysis 

MTS assay was performed three times in duplicate and degradation study was performed two 

times in duplicate and mean ± SEM (Standard error of mean) values along with statistical 

analysis using two-way ANOVA were performed to assess the possible interaction between time 

and SWCNT concentration. Independent groups t -tests were performed at each time point to test 

pre-planned comparisons between the concentrations of SWCNT composites to control PLAGA 

scaffold. The results were considered significant when p < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

CHAPTER 3-3 

RESULTS 

Fabrication of PLAGA and SWCNT/PLAGA Composites 

PLAGA and SWCNT/PLAGA two-dimensional composites were fabricated using solvent 

evaporation method. Figures 2-1 and 3-1 shows the fabrication process of PLAGA and 

SWCNT/PLAGA composites respectively and the films obtained (Figure 3-2). 12mm diameter 

disks (Figure 3-3) were cut from the films obtained and used for cell adhesion/morphology, 

growth, survival, and proliferation and gene expression studies. 
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Figure 3-1: Schematic representation of steps involved in fabrication of 2-D 

SWCNT/PLAGA scaffolds using solvent evaporation method. 
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Figure 3-2: Images of 2D PLAGA and SWCNT/PLAGA composites (100mm diameter) 

obtained.  
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Figure 3-3: Disks (12mm diameter) cut from the PLAGA and SWCNT/PLAGA composites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

Characterization of PLAGA and SWCNT/PLAGA Composites 

The SEM micrographs obtained for the SWCNT/PLAGA composites (Figure 3-4) demonstrated 

that the SWCNTs were embedded in the polymer matrix and appeared to be uniformly 

distributed throughout the composite. In some areas, the SWCNTs were emerging from the 

surface of matrix and the surface roughness of the composites increased with increasing SWCNT 

concentration, although SWCNT were still surrounded by PLAGA.  
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Figure 3-4: SEM micrographs of PLAGA and SWCNT/PLAGA composites (at 100, 300, 

1000, 5000, 10000 and 20000X magnifications). SWCNT can be seen homogenously 

distributed in PLAGA matrix. 
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Degradation Studies 

The degradation rate of PLAGA and SWCNT/PLAGA composites was investigated over a 

period of 21 days. Figure 3-5 demonstrates the percentage of mass lost over time. The results 

demonstrated that incorporation of SWCNT (in various concentrations) in PLAGA matrix did 

not have any significant effect (p > 0.05) on the degradation rate of the matrices when compared 

to the degradation rate of PLAGA alone.  
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Figure 3-5: Degradation profile of PLAGA and SWCNT/PLAGA composites as a function 

of % mass loss over time (days). Results show no significant difference in the degradation 

rate of SWCNT/PLAGA composites compared to PLAGA. Data represents mean ± SEM. 
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Scanning Electron Microscopy 

Both hBMSCs (Figure 3-6) and MC3T3-E1 cells (Figure 3-7) adhered and grew on the PLAGA 

as well as SWCNT/PLAGA composites. Cells were nearly confluent over the entire surface of 

the composites. The cells exhibited their characteristic morphology on TCPS and were consistent 

with all the polymeric composite surfaces.  
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Figure 3-6: SEM images (at 1,000 X) of hBMSCs cultured on TCPS (A), PLAGA (B), and 

SWCNT/PLAGA composites (C–G). hBMSCs adhered and grew on all the surfaces. 
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Figure 3-7: SEM images (at 1,000 X) of MC3T3-E1 cells cultured on TCPS (A), PLAGA 

(B), and SWCNT/PLAGA composites (C–G). MC3T3-E1 cells adhered and grew on all the 

surfaces. 
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Immunofluorescence Staining 

The actin staining revealed that the hBMSCs (Figure 3-8) and MC3T3-E1 cells (Figure 3-9) 

adhered to all surfaces; grew and exhibited a normal, non-stressed morphological pattern (flat 

and polygonal morphology for MC3T3-E1 cells and spindle or elongated morphology for 

hBMSCs) observed by cells on both the experimental and control surfaces. 
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Figure 3-8: Immunofluorescence staining (green: β-actin, blue: hoechst stain) images 

captured using a confocal microscope (at 10 X 3.1 zoom). hBMSCs adhered, grew and 

retained morphology on TCPS (A), PLAGA (B), and SWCNT/PLAGA composites (C–G). 
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Figure 3-9: Immunofluorescence staining (green: β-actin, blue: hoechst stain) images 

captured using a confocal microscope (at 10 X 3.1 zoom). MC3T3-E1 cells adhered, grew 

and retained morphology on TCPS (A), PLAGA (B), and SWCNT/PLAGA composites (C–

G). 
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Live/Dead Assay 

Live MC3T3-E1 cells were stained green and adhered and attained their normal polygonal 

morphology on all concentrations of the SWCNT/PLAGA composites. Dead cells were stained 

red and were very few in number (Figure 3-10). By day 7, the cell density increased on all the 

composite surfaces. No dead cells were observed by day 7.  
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Figure 3-10: Growth and survival of MC3T3-E1 cells on PLAGA and SWCNT/PLAGA 

composites (at 10 X 3.1 zoom). Images show live (green) and dead (red) cells cultured on 

the composites at day 3, 5, and 7. 
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Cell Proliferation 

At day 3, SWCNT/PLAGA composites with 5, 10 and 40mg of SWCNT showed higher rate of 

hBMSCs proliferation compared to other SWCNT/PLAGA composites, PLAGA alone and 

negative control BGS. At day 5, SWCNT/PLAGA composites with 10 and 40mg of SWCNT 

showed higher cell proliferation compared to other composites. At day 7, SWCNT/PLAGA 

composite with 10mg of SWCNT showed the highest rate of cell proliferation, which was 

statistically significant (p < 0.05), followed by SWCNT/PLAGA composites with 40, 20 and 

100mg of SWCNT. SWCNT/PLAGA composites with 5mg of SWCNT showed similar 

proliferation rates as that of PLAGA alone, and higher proliferation compared to BGS (Figure 3-

11).  
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Figure 3-11: MTS assay for proliferation of hBMSCs cultured on PLAGA and 

SWCNT/PLAGA composites at day 3, 5 and 7. Data represents mean ± SEM and p<0.05 

was significant (compared to hBMSCs cultured on PLAGA). * is significant over all 

groups. 
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Gene Expression Analysis 

The results demonstrated the expression of osteoblast phenotypic markers (Col I, OPN), 

mineralization markers (ALP1, OC, BSP) and osteoblast differentiation marker (Runx-2) on all 

the composites and the expression on all the SWCNT/PLAGA composites is similar to that of 

PLAGA and control TCPS by end of day 7 (Figure 3-12). 
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Figure 3-12: Gene expression profile of MC3T3-E1 cells grown on PLAGA and 

SWCNT/PLAGA composites. Panels showing mRNA levels detected by qPCR for Col I (A), 

OPN (B), RUNX-2 (C), ALP 1 (D), OC (E) and BSP (F).  
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CHAPTER 3-4 

DISCUSSION 

An ideal composite for BTE applications must be biodegradable, biocompatible, and 

promote cell growth and proliferation (Janicki & Schmidmaier, 2011). This study demonstrated 

that SWCNT/PLAGA composites imparted beneficial cellular (both MC3T3-E1 and hBMSCs) 

growth capabilities and gene expression, and mineralization abilities were well established. The 

most important finding of this study was that the addition of SWCNT to form SWCNT/PLAGA 

composites promoted cell proliferation as well as supported normal growth and gene expression 

of the cells.  

In the development of ideal composites for bone defect, several key issues should be 

addressed, including the degradation rate of the composite. Optimally, the composite should 

degrade at a comparable rate to cell proliferation. The composite should also function as a 

temporary support, encouraging the proliferation process while providing the appropriate 

biomechanical stability (Jackson & Simon, 1999). One of the factors that attracted BTE to 

PLAGA in the past is the polymer‟s degradation rate, which is more ideal than other polymers 

for biological applications (Lu et al., 1999).  This study showed that the SWCNT have the ability 

to be completely incorporated into a PLAGA matrix, while having no significant affect on the 

degradation rate of the composites when compared to those of PLAGA alone. This is in 

accordance with the study done by Armentano et al. which also showed that PLAGA and 

SWCNT/PLAGA composites have similar degradation rates (Armentano et al., 2008). Also, the 

uniform distribution and incorporation of SWCNT at all concentrations, indicates that these two 

materials are compatible and capable of existing together in a solid composite structure. It can 

also be deduced that the SWCNT did not impart any significant change to the chemical 
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composition of the PLAGA polymer, and thus the SWCNT/PLAGA composite may represent an 

ideal composite for bone regeneration.  

Along with the need for a physiologically appropriate degradation rate, the composite 

must also allow for cellular attachment and proliferation. On all composites in this study, SEM 

and immunofluorescence demonstrated that both hBMSCs and MC3T3-E1 cells adhered to the 

surface and exhibited normal, healthy cell morphology. The cellular growth of hBMSCs and 

MC3T3-E1 cells was equally well-spread on the SWCNT/PLAGA composites as they appeared 

to be on the PLAGA composite alone. The successful growth of cells of differing types 

demonstrates that the surface of the SWCNT/PLAGA composites is potentially non-cell type 

specific based on the analysis of two cell types used. This study demonstrated the ability to 

preserve the inherent properties of PLAGA as well as increase its cellular proliferative 

capabilities by including SWCNT. Experimentation with various concentrations of the SWCNT, 

uncovered the fact that a concentration of 10mg actually increased the cellular proliferation of 

hBMSCs. This promotion of cellular proliferation provides further evidence to support the use of 

a SWCNT/PLAGA composite for tissue engineering purposes. Similar to cellular growth on 

PLAGA, gene expression of osteoblast phenotypic markers, mineralization markers, and 

osteoblast differentiation markers were seen on composites of all SWCNT concentrations using 

real time PCR. The expression of the genes and presence of these markers indicate that the 

MC3T3-E1 cells were able to thrive under the conditions provided by the SWCNT composites. 

This further supports the assertion that the presence of SWCNT in the composites does not alter 

the properties of the PLAGA and, in fact, imparts beneficial components to this material. 

This study was the first step in evaluating the effectiveness of SWCNT/PLAGA 

composites as potential synthetic substitute for bone regeneration. Future studies are planned to 
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investigate the biomechanical compatibility of the SWCNT/PLAGA composite along with their 

cellular proliferation capabilities. The creation of 3-D composites for in vivo use will allow for 

bone defect models that will help in further determining the SWCNT/PLAGA composites ability 

to serve as a bone substitute. The incorporation of drugs or bioactive molecules to these 

composites will also be further explored, as these molecules may enhance new tissue formation 

and aid in targeting specific conditions, such as the treatment of bone defects following 

osteomyelitis, and will potentially enhance the clinical implications of SWCNT composites 

(Ambrose et al., 2004; Babensee, McIntire, & Mikos, 2000; Luginbuehl, Meinel, Merkle, & 

Gander, 2004).  

In conclusion, this study showed that the addition of SWCNT to PLAGA 2-D composites 

resulted in a similar degradation rate as PLAGA alone and concentration of 10mg SWCNT 

resulted in the highest cell proliferation rate. The SWCNT imparted beneficial cellular growth 

capabilities to the SWCNT/PLAGA composites and the gene expressions and mineralization 

abilities were well established with these constructs. These results demonstrate the potential of 

SWCNT/PLAGA composites for musculoskeletal regeneration and bone tissue engineering. 
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CHAPTER 4 

IN-VITRO EVALUATION OF THREE DIMENSIONAL SINGLE WALLED CARBON 

NANOTUBES COMPOSITES FOR BONE TISSUE ENGINEERING 

CHAPTER 4-1 

INTRODUCTION 

Bone related injuries are among the most common orthopaedic injuries and account for 

more than three million surgeries annually (Giannoudis, Dinopoulos, & Tsiridis, 2005). More 

than half of these surgeries require bone grafting by either autograft or allograft (Greenwald et 

al., 2001). Although autografts and allografts are typically used to treat bone defects and non-

unions caused by trauma, pathological deformation, or tumor resection (Thein-Han & Misra, 

2009; C. T. Laurencin et al., 1999), bone grafts pose limitations due to the need of a secondary 

surgery, inadequate bone supply, risk of immunological response and disease transmission 

(Mistry & Mikos, 2005; Pellegrini, Seol, Gruber, & Giannobile, 2009).  

To alleviate the limitations posed by autografts and allografts, bone tissue engineering 

(BTE) has evolved as an alternative strategy to develop bone grafts. This approach relies on the 

use of biodegradable polymers with or without the use of specific cell types and growth factors 

(Petite et al., 2000). The success of this strategy depends on the effectiveness of the 

biodegradable composite. An ideal composite must be commercially available, non-

immunogenic, biodegradable, bioresorbable, biocompatible, and exhibit high mechanical 

strength (C. T. Laurencin et al., 1999; Gupta et al., 2013). PLAGA is used as a composite 

material because it exhibits all of these properties except high mechanical strength (Athanasiou 

et al., 1996; Lu et al., 1999).  
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Mechanical strength can be increased by reinforcing PLAGA with a second-phase 

material. Carbon based biomaterials such as pyrolytic carbon, diamond-like carbon, carbon 

nitride, and carbon fibers, all have been widely used as coatings and fillers in implants due to 

inherent properties like hardness, low coefficient of friction, chemical inertness, and high wear 

and corrosion resistance. These materials are highly applicable to the medical field due to their 

biocompatibility. Carbon Nanotubes (CNT) have also been looked into for their use in 

biomedical systems and devices due to their unprecedented properties in terms of size, strength 

and surface area. Additionally, CNT possess high tensile strength, are ultra light weight and have 

excellent thermal and chemical stability (N. Sinha & Yeow, 2005; Armentano et al., 2008; N. 

Saito et al., 2009). Due to these properties, CNT are excellent candidates for use as nanofillers in 

polymeric materials to increase mechanical properties. In addition, several researchers have 

reported that CNT act as an exceptional substrate for cell growth and differentiation (Hu et al., 

2004; Zanello, Zhao, Hu, & Haddon, 2006).
 

In our previous study (Gupta et al., 2013)
 
we demonstrated that addition of SWCNT to 

PLAGA formed a SWCNT/PLAGA composite with beneficial cellular growth capabilities, gene 

expression and mineralization. Degradation rate remained unaffected by addition of SWCNT. 

Although our results showed tremendous promise for BTE, the two-dimensional (2-D) design of 

the SWCNT/PLAGA composites must be modified to produce a three-dimensional (3-D) 

composite that facilitates cell proliferation and provides adequate mechanical strength.    

Composite design and construction prove to be a difficult obstacle in BTE. Bone is a 

highly metabolic tissue that requires a constant supply of oxygen and essential nutrients. To 

accommodate these needs, highly porous scaffolds are often preferred (Dias, Fernandes, Guedes, 

& Hollister, 2012). Although highly porous scaffolds allow for greater perfusion of oxygen and 
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nutrients, a porous design may compromise the mechanical strength of the scaffold (Q. Zhang et 

al., 2012). A balance between structure and mechanical strength must be achieved to meet the 

strength and metabolic needs of bone.     

In our previous study we demonstrated that composites reinforced with 10mg SWCNT 

imparted the highest cell proliferation rate (Gupta et al., 2013).
 
The purpose of this study was to 

develop 3-D SWCNT/PLAGA composites using 10mg SWCNT, based on previous results, to 

determine the mechanical strength of the composites and to evaluate the interaction of MC3T3-

E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. We hypothesize 

that the 3-D SWCNT/PLAGA composites can be designed and optimized to support MC3T3-E1 

cell growth, possess adequate mechanical strength, and can be applied for use in BTE.        
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CHAPTER 4-2 

METHOD 

Preparation of 1% PVA Solution 

1.5g of poly vinyl alcohol (PVA) (Fisher Scientific, USA) was dissolved in 150ml of pre-

warmed de-ionized (DI) water with continuous stirring on a magnetic stirrer. The solution was 

left on the stirrer for 2min and then again heated in the microwave for 40-45sec. The above steps 

were repeated until a homogenous solution was obtained. The solution was allowed to cool down 

and then moved to a steadystir machine.  

Fabrication and Characterization of PLAGA and SWCNT/PLAGA Microspheres 

PLAGA (Purac Biomaterials, Netherlands) and SWCNT (Sigma Aldrich, USA) were obtained 

and stored at -80
0
C and in the desiccator, respectively.  PLAGA and SWCNT/PLAGA 

microspheres were fabricated by an oil-in-water (o/w) emulsion method. For PLAGA 

microspheres, 1g of PLAGA was dissolved in 12ml solution of dichloromethane (Fisher 

Scientific, USA) in a 20ml scintillation vial and the solution was vortexed for 8hrs at a constant 

speed to dissolve the polymer. For SWCNT/PLAGA microspheres, once the PLAGA was 

dissolved, 10mg of SWCNT was added to the polymer solution and vortexed for another 8hrs. 

Both the solutions were then transferred to a 10ml syringe and, using an 18G 1½ inch needle, 

were injected at uniform speed to the continuously stirring PVA solution (at 300rpm). After 

20hrs the stirring was stopped and the formed microspheres settled to the bottom. The 

microspheres were washed 3-4 times with DI water and then filtered using a Whatman filter 

paper. They were then air-dried for 24hrs and were stored in a desiccator. Scanning electron 

microscopy (SEM) was performed to study the surface and to determine the diameter of the 
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microspheres. They were mounted onto a carbon coated SEM stub, sputter coated with 

Gold/Palladium and viewed under the SEM. 

Fabrication and Characterization of 3-D PLAGA and SWCNT/PLAGA Composites 

PLAGA and SWCNT/PLAGA composites were fabricated via a thermal sintering technique. The 

microspheres, consisting of highly varied sizes, were packed into aluminum molds designed to 

produce 10mm diameter X 2mm thickness circular disks. The molds were heated at 100
0
C for 

4hrs to get desired disks and the disks were stored in a desiccator. SEM was performed to study 

the composites‟ surface. They were mounted onto a carbon coated SEM stub, sputter coated with 

Gold/Palladium and viewed under a SEM. 

Composites Mechanical Characterization 

Mechanical testing of PLAGA and SWCNT/PLAGA composites (n=6) was carried out using an 

Instron 5869 (Instron, USA) at 10% strain/min under physiological conditions. The calculated 

stress and strain were used to compute the compressive modulus and ultimate compressive 

strength. 

Cell Culture 

MC3T3-E1 cells (MC3T3-E1 subclone 4, precursor osteoblasts) were obtained from American 

Type Culture Collection (ATCC, USA). The cells were grown in Alpha Minimal Essential 

Medium (α-MEM) containing ribonucleosides, deoxyribonucleosides, 2mM L-Glutamine, and 

1mM sodium pyruvate (Hyclone, Thermo Scientific, USA), and supplemented with 10% Fetal 

Bovine Serum (FBS) (Gibco, Invitrogen, USA) and 1% Penicillin-Streptomycin (P/S) (Lonza, 

USA). The 3-D PLAGA and SWCNT/PLAGA composites were fabricated as described above. 

Both sides were exposed to UV light for 15min each to insure sterilization. After sterilization the 

composites were placed in a 48-well plate and soaked in the complete culture medium for 1hr. 
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Cells were enzymatically lifted from the expansion flask, counted using a hemacytometer and 

50,000 MC3T3-E1 cells/composite were seeded onto the composites and analyzed for cell 

adhesion/morphology/proliferation, cell growth/viability, and gene expression. 

Scanning Electron Microscopy (SEM) 

Cell adhesion on the composites surface was determined qualitatively by SEM (Hitachi S-3000 

scanning electron microscope). At day 7, the composites seeded with 50,000 MC3T3-E1 

cells/composite were washed with PBS. The cells were fixed with 1.5% Glutaraldehyde in 0.1M 

Cacodylate buffer, followed by 2.5% OsO4 in 0.1M Cacodylate buffer for post-fixation. After 

fixation the cells were washed with 0.1M Cacodylate buffer and dried using serial ethanol 

dehydration and hexamethyldisilazane (HMDS). The dried samples were sputter coated with 

Gold/ palladium and viewed under SEM. 

Immunofluorescence Staining 

Normal unstressed MC3T3-E1 cells are flat and polygonal in shape and general cellular 

morphology was used to determine the cellular behavior (or stress) on the composites. Cellular 

morphology and adhesion (qualitatively) were determined by using immunofluorescence 

staining. At day 7, the composites were seeded with 50,000 MC3T3-E1 cells/composite and 

washed with PBS. The cells were then fixed with 70% ethanol at -20˚C for 10min. After fixation, 

the cells were incubated with 1% Bovine Serum Albumin (BSA) in PBS containing 0.05% 

Triton X-100 for 20min at room temperature (RT), followed by  immersing in 1% Tween for 

20min at RT. The cells were then incubated overnight at 4
0
C with monoclonal mouse Anti-β-

actin antibody (1:400, Sigma Aldrich, USA) followed by washing with 0.05% Tween. They were 

then incubated with secondary antibody (goat anti-mouse F (ab‟) 2 fragment of IgG conjugated 

with an Alexa Fluor® 488 fluorescence probe, 1:400, Cell Signaling, USA) for 1hr at RT. The 
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cells were then washed with PBS, and nuclei stained using Hoechst dye, mounted using 80% 

glycerol and viewed under a confocal microscope. 

Live/Dead Assay 

LIVE/DEAD® Viability/Cytotoxicity kit (Invitrogen, USA) was used to determine cell growth 

and survival on the PLAGA and SWCNT/PLAGA composites. 50,000 MC3T3-E1 

cells/composite were seeded. At day 7, 14 and 21, the cells were taken out of the culture and 

washed with PBS. They were then stained for live-dead cells according to the manufacturer‟s 

instructions. The stained cells were visualized using a Confocal Microscope in which live cells 

were stained green and dead cells were stained red. 

Cell Proliferation Assay 

Cell proliferation was determined using CyQUANT® cell proliferation assay (Invitrogen, USA) 

as per manufacturer‟s instructions at day 7, 14 and 21 post-seeding 50,000 MC3T3-E1 

cells/composite on 20% BGS (Bovine Growth Serum) as a negative control, PLAGA and 

SWCNT/PLAGA composites. Briefly, at desired time points, media was removed; cells were 

washed with PBS and trypsinized. The suspended cells were centrifuged and the cell pellet was 

stored at -80
0
C. A total of 200µl of CyQUANT® GR dye/cell-lysis buffer was added to the 

pellet at RT. After incubating the samples for 2-5min at RT, protected from light, the 200µl 

sample was transferred to a microplate and fluorescence was measured at ~480nm excitation and 

~520nm emission maxima using a microplate reader.  

Real Time Reverse Transcriptase Polymerase Chain Reaction 

50,000 MC3T3-E1 cells/ composite were seeded on control tissue-culture polystyrene (TCPS), 

PLAGA and SWCNT/PLAGA composites. At day 7, 14 and 21, after culturing the cells in the 

osteogenic medium (Igwe et al., 2012), the cells were harvested and the RNA was isolated using 
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RNeasy mini kit (Qiagen, USA). 200ng of isolated RNA was reverse transcribed into cDNA 

using maxima first strand cDNA synthesis kit (Thermo Scientific, USA). Real Time Reverse 

Transcriptase Polymerase Chain Reaction (RT-PCR) was carried out using the Taqman® 

(Invitrogen, USA) gene expression assays to determine the expression of Alkaline Phosphatase 

(ALP), Osteocalcin (OC), Osteopontin (OPN), Bone Sialoprotein (BSP), RUNX2, Type-I 

collagen (TIC) and GAPDH (as control). The mouse primers were purchased from Applied 

Biosystems (Igwe et al., 2012) and RT-PCR was performed using an Eppendorf Realplex cycler. 

Statistical Analysis 

CyQUANT® cell proliferation assay was performed two times in duplicate and gene expression 

analysis was performed three times in duplicate and mean + SEM (Standard error of mean) 

values along with statistical analysis using two-way analysis of variance (ANOVA) with Tukey 

post hoc test were performed. Mechanical Testing was done with n=6 and a two-tailed, unpaired 

Student‟s t-test were performed to compare two groups, followed by one-way ANOVA with 

Tukey post hoc test.  The results were considered significant when p < 0.05. 
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CHAPTER 4-3 

RESULTS 

Characterization of PLAGA and SWCNT/PLAGA Microspheres 

The SEM micrographs for PLAGA (Figure 4-1) and SWCNT/PLAGA (Figure 4-2) microspheres 

demonstrated uniform shape and smooth surface with size ranging from 250-750µm. The light 

microscopy image for SWCNT/PLAGA microspheres (Figure 4-2) demonstrated that the 

SWCNT were incorporated and uniformly distributed in the PLAGA matrix.  
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Figure 4-1: Fabrication of PLAGA microspheres using oil-in-water emulsion method. In 

addition, figure also shows SEM image for PLAGA microspheres demonstrating uniform 

shape and smooth surface. 
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Figure 4-2: Fabrication of SWCNT/PLAGA microspheres using oil-in-water emulsion 

method. In addition, figure also shows light microscopy and SEM image for 

SWCNT/PLAGA microspheres demonstrating uniform incorporation of SWCNT into 

PLAGA, and uniform shape and smooth surface of the microspheres.  
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Fabrication and Characterization of PLAGA and SWCNT/PLAGA composites 

The composites obtained via thermal sintering technique are shown in Figure 4-3. The SEM 

images for PLAGA and SWCNT/PLAGA composites showed bonding of the microspheres in 

random packing manner. The microspheres maintained their spacing, resembling trabeculae of 

cancellous bone (Figure 4-4).  
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Figure 4-3: Fabrication of 3-D PLAGA and SWCNT/PLAGA composites using thermal 

sintering technique.  
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Figure 4-4: SEM micrographs of PLAGA and SWCNT/PLAGA composites. The 

microspheres bonded in a random packing arrangement while maintaining spacing, 

resembling trabeculae of cancellous bone. 
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Mechanical Characterization 

 SWCNT/PLAGA composites yielded a significantly greater compressive modulus and ultimate 

compressive strength compared to PLAGA composites. The computed compressive modulus and 

ultimate compressive strength for the SWCNT/PLAGA were 22.5415.8MPa and 

2.631.39MPa respectively, whereas the values for the PLAGA control were 7.653.97MPa and 

0.6630.24Mpa respectively (Figure 4-5).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 
 

 

 

Figure 4-5: Compressive Modulus (A) and Ultimate Compressive Strength (B) of PLAGA 

and SWCNT/PLAGA composites. * represents significant difference (p<0.05) compared to 

PLAGA. 

 

 

 

 

 

 

 

 

 

 

 

 



88 
 

Scanning Electron Microscopy 

SEM images of MC3T3-E1 cells cultured on both PLAGA and SWCNT/PLAGA composites 

were taken at day 7. We observed that the cells adhered to the surface of the microspheres and 

also formed cytoplasmic extensions and bridged the gaps between the microspheres (Figure 4-6). 

At day 14 and 21, the proliferation progressed to the point where the entire surface of the 

microspheres was covered with the cells.  
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Figure 4-6: SEM image (at 300X and 1000X) of MC3T3-E1 cells cultured on PLAGA and 

SWCNT/PLAGA composites. Cells adhered and grew on both the composites surface.  
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Immunofluorescence Staining 

The β-actin staining revealed that the MC3T3-E1 cells adhered, grew and exhibited a normal, 

non-stressed morphological pattern (flat and polygonal morphology) on both of the composites 

surface at day 7 (Figure 4-7). At day 14 and 21, cells were confluent over the entire surface of 

composites (data not shown).  
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Figure 4-7: Immunofluorescence staining (green: β-actin, blue: hoechst stain) images 

captured using a confocal microscope (at 10X 3.1zoom). MC3T3-E1 cells adhered, grew 

and retained morphology on both PLAGA and SWCNT/PLAGA composites. 

 

 

 

 

 

 

 

 

 

 



92 
 

Live/Dead Assay 

Live MC3T3-E1 cells were stained green, and adhered and attained their normal morphology on 

both PLAGA and SWCNT/PLAGA composites. Dead cells were stained red and were very few 

in number (Figure 4-8). By day 7, the cells adhered and grew on the composites surface. By day 

14, the cells began migrating on the surface of composites. By day 21, the cell density increased 

on both the composites surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

 

 

Figure 4-8: Growth and survival of MC3T3-E1 cells on PLAGA and SWCNT/PLAGA 

composites (at 10X 3.1 zoom) at day 7, 14 and 21. Images show live (green) and dead (red) 

cells. 
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Cell Proliferation 

A significantly higher MC3T3-E1 cell proliferation rate was observed on SWCNT/PLAGA 

compared to PLAGA composites and the negative control BGS at all time intervals (day 7, 14 

and 21). At day 21, the cell proliferation rate for SWCNT/PLAGA composites was significantly 

greater than all other groups. For PLAGA, the cell proliferation rate significantly increased from 

day 7 to 14 and plateaued by day 21; whereas, for SWCNT/PLAGA, the cell proliferation rate 

significantly increased from day 7 to 14 and day 14 to 21 (Figure 4-9).    
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Figure 4-9: CyQUANT® cell proliferation assay for proliferation of MC3T3-E1 cells 

cultured on PLAGA and SWCNT/PLAGA composites. Data represents Mean + SEM and * 

represents significant difference in proliferation on SWCNT/PLAGA composites compared 

to PLAGA composites at the same time point at significance level p< 0.05. $ is significant 

over all groups. 
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Gene Expression Analysis 

The results demonstrated the expression of osteoblast phenotypic markers (Col I, OPN), 

mineralization markers (ALP1, OC, BSP) and differentiation marker (RUNX2) on PLAGA and 

SWCNT/PLAGA composites normalized to control TCPS at day 7, 14 and 21 (Figure 4-10). 

There was a non-significant trend of increased gene expression levels on SWCNT/PLAGA 

compared to PLAGA composites on day 7 for Col I, OPN, ALP1, BSP and OC, with the 

difference being significant for RUNX2 only. By day 14, gene expression levels showed a trend 

toward increased levels for all genes, with only Col I, ALP and RUNX2 showing a significant 

increase. By day 21 again all genes showed a trend for increased mRNA expression levels, with 

only Col I, ALP, OC and RUNX2 showing a significant increase. 
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Figure 4-10: Gene expression profile of MC3T3-E1 cells grown on PLAGA and 

SWCNT/PLAGA composites. Panels showing mRNA levels detected by qPCR for Col I (A), 

OPN (B), ALP (C), OC (D), BSP (E), and RUNX2 (F). Data represents Mean + SEM and * 

represents significant difference in gene expression on SWCNT/PLAGA composites 

compared to PLAGA composites at the same time point at significance level p< 0.05. 
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CHAPTER 4-4 

DISCUSSION 

Fabricating a tissue engineered scaffold with appropriate mechanical strength and 

biocompatibility poses many difficulties in the field of BTE. Bone is a highly organized tissue 

with a complex macrostructure, microstructure, nanostructure, and ECM (Rho, Kuhn-Spearing, 

& Zioupos, 1998). Designing an ideal scaffold that mimics the complex physiognomy of native 

bone is an impossible task; however, our lab has developed a novel 3-D SWCNT/PLAGA 

composite fabricated by sintering microspheres that resembles bone microstructure and 

macrostructure. We hypothesized that the 3-D SWCNT/PLAGA composite would be able to 

support MC3T3-E1 cell growth, possess appropriate mechanical strength, and be applied for use 

in BTE.      

In this study, we fabricated PLAGA and SWCNT/PLAGA microspheres with uniform 

shape and smooth surface using o/w emulsion method. Sintering PLAGA and SWCNT/PLAGA 

microspheres of varying sizes (250-750µm) led to microspheres arranged in a random packing 

manner with their spacing maintained. This uneven size distribution of microspheres produced 

highly porous networks that resemble the microstructure of the bone. The highly porous network 

allowed for optimal nutrient perforation, and the addition of SWCNT to the PLAGA composite 

increased the mechanical properties of the composite. In support of our hypothesis, the results 

demonstrated a 3-fold increase in compressive modulus and 4-fold increase in ultimate 

compressive strength with addition of 10mg SWCNT to PLAGA. The increased stress value at 

which the SWCNT/PLAGA failed can be likely contributed to the addition of the SWCNT. 

SWCNT are flexible nanotube bundles, which absorb energy and forces from multiple directions 

without failing. The structure of these nanotubes can be described as a continuous fiber that 
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allows for the release of stresses in the composite without breaking, and will provide toughness 

to the composite. This absorption of energy is evident with increased compressive modulus and 

ultimate compressive strength when the SWCNT are incorporated into PLAGA. Without 

SWCNT, the PLAGA composite failed and plastically deformed at a lower stress values.  

In addition to mechanical strength, the composite must allow for cell adhesion and 

proliferation. Several studies have demonstrated cell adhesion and proliferation on CNT and 

PLAGA composites (Hu et al., 2004; Cheng, Rutledge, & Jabbarzadeh, 2013). In line with our 

previously published study, our recent results demonstrated that the addition of 10mg SWCNT to 

PLAGA imparted beneficial MC3T3-E1 cell adhesion and proliferation. Qualitative analysis via 

immunofluorescence staining and SEM demonstrated MC3T3-E1 cells adhered and exhibited 

normal, healthy morphology on these composites by day 7. At day 14 and 21 cells were 

confluent, covering the entire surface of the composites. Quantitative analysis via CyQUANT® 

cell proliferation assay confirmed larger cell density on the SWCNT/PLAGA composites 

compared to PLAGA composites at day 7, 14 and 21. These results are in accordance with a 

study performed by Cheng et al., which also showed addition of CNT increased both cell 

proliferation and mechanical strength (Cheng et al., 2013). Additionally, cell proliferation and 

differentiation may be enhanced by the incorporation of growth and differentiation factors to our 

SWCNT/PLAGA composites. Previous studies have incorporated biological agents into PLAGA 

microspheres for applications in BTE (Ambrose et al., 2004; Fei et al., 2008). Future studies 

must evaluate whether the incorporation of growth and differentiation factors to our 

SWCNT/PLAGA composites will impact cell proliferation and differentiation. 
 

Furthermore, the potential of SWCNT/PLAGA composites to promote osteogenic 

differentiation was observed. The results demonstrated significantly increased expression of 
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genes on SWCNT/PLAGA compared to PLAGA composites. A significant increase in amount 

of Col I, ALP1 and RUNX2 was observed at day 14 and 21. In addition, upregulation of late 

mineralization marker, Osteocalcin (OC), at day 21 showed an osteoinductive potential for the 

SWCNT/PLAGA composites. Significantly higher expression of osteoblast differentiation 

marker, RUNX2, at all intervals is consistent with increased cell proliferation at all intervals. We 

believe that this upregulation of gene expression in SWCNT/PLAGA composites is due to 

increased integrin receptor expression. Future studies will evaluate the expression of integrin 

receptors involved in the initial adhesion of cells on the composites and to determine the role of 

integrin ligand RGD in the cellular adhesion on these composites.   

The synthetic polymer PLAGA is an attractive composite for BTE due to its attractive 

degradation profile; but lacks mechanical strength to provide adequate support as a bone graft 

(Lu et al., 1999). In our previous study (Gupta et al., 2013), we determined that SWNCT 

completely integrated with the PLAGA matrix without altering the degradation profile of 

PLAGA. In this study we build on that analysis, demonstrating that the addition of SWCNT to 

PLAGA increases the compressive modulus and ultimate compressive strength of PLAGA along 

with cell proliferation rate. These results further demonstrate the effectiveness of 

SWCNT/PLAGA composites as potential scaffolds for BTE and musculoskeletal regeneration. 

Future studies will involve pore size and pore volume determination using mercury intrusion 

porosimetry. Future studies will also involve assessing mineral formation to determine 

composites‟ ability to induce bone formation. Future studies must evaluate the in-vivo 

biocompatibility and toxicity of SWCNT/PLAGA composites, and test its ability to regenerate 

bone in an animal model. While it is first important to understand the biocompatibility of these 
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novel composites, successful future studies will likely represent the clinical applicability of 

SWCNT/PLAGA in BTE.    
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CHAPTER 5 

IN-VIVO BIOCOMPATIBILITY AND TOXIXITY OF SINGLE WALLED CARBON 

NANOTUBES COMPOSITES FOR BONE TISSUE ENGINEERING 

CHAPTER 5-1 

INTRODUCTION 

Bone defects and non-unions caused by trauma, tumor-resection, pathological 

deformation and peri-prosthetic fractures occur within both young and aging populations 

accounting for more than three million surgeries annually (Korompilias, Lykissas, Soucacos, 

Kostas, & Beris, 2009; Borrelli, Prickett, & Ricci, 2003; Giannoudis et al., 2005). With this high 

level of demand, the repair of these bone defects poses a great challenge to the field of 

orthopaedics. Current methods for bone repair rely heavily on the use of autografts and 

allografts. However, the many disadvantages surrounding their use have influenced researchers 

to study other alternatives for bone growth and repair (Soucacos, Johnson, & Babis, 2008; Beris 

et al., 2004; Soucacos, Kokkalis, Piagkou, & Johnson, 2013). Bone tissue engineering (BTE) has 

evolved as an alternative that relies on the use of biodegradable polymers with or without the use 

of cells and growth factors (Petite et al., 2000). Biodegradable polymers are of interest in 

medicine and are an ideal candidate for BTE because of their commercial availability, 

biocompatibility, ease of use, degradation into non-toxic products and the ability to control the 

material's characteristics such as mechanical properties, porosity and surface charges (C. T. 

Laurencin et al., 1999).           

 Poly lactic-co-glycolic acid (PLAGA) is widely used as a composite material for BTE as 

it can be easily processed into the desired configuration, and its mechanical, physical, chemical 

and degradation properties can be engineered to fit a particular need (Lu & Mikos, 1996). 
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PLAGA exhibits the properties of an ideal bone graft but lacks adequate mechanical strength 

(Athanasiou et al., 1996; Lu et al., 1999). Reinforcing PLAGA with a second-phase material can 

increase the mechanical properties of PLAGA. Carbon based biomaterials such as diamond-like 

carbon, carbon nitride, pyrolytic carbon and carbon fibers, all have been used as fillers and 

coatings in implants due to intrinsic properties like a low coefficient of friction, chemical 

inertness, hardness, and high wear and corrosion resistance (Lu et al., 1999). These materials are 

relevant to medicine due to their biocompatibility. Carbon Nanotubes (CNT) have also been 

researched for their use in biomedical systems due to their unique properties in terms of size, 

strength and surface area. CNT also possess high tensile strength, are ultra-light weight, have 

excellent thermal and chemical stability, and act as an exceptional substrate for cell growth and 

differentiation (N. Sinha & Yeow, 2005; Armentano et al., 2008; N. Saito et al., 2009; Hu et al., 

2004). These properties make CNT an excellent candidate for use as nanofillers in polymeric 

materials to increase mechanical properties.
 

In our previous study (Gupta et al., 2013), we demonstrated that reinforcing PLAGA with 

Single Walled Carbon Nanotubes (SWCNT), producing a novel SWCNT/PLAGA composite, 

imparted beneficial cell growth, gene expression and mineralization. The results demonstrated 

that degradation rate of PLAGA remained unaffected by the addition of SWCNT, and the 

addition of 10mg SWCNT resulted in the highest rate of cell proliferation. In our another study 

(Gupta et al., 2014), we demonstrated that the addition of 10mg SWCNT to fabricate three 

dimensional SWCNT/PLAGA composites led to a greater compressive modulus and ultimate 

compressive strength in addition to a higher cell proliferation rate and gene expression compared 

to PLAGA alone. These results demonstrated the potential use of SWCNT/PLAGA composites 

for musculoskeletal regeneration and BTE with promising applications for orthopedic 
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procedures.           

 Although, in-vitro results indicated the biocompatibility of SWCNT/PLAGA composites, 

adequate testing of their biocompatibility in-vivo is necessary for their use in biological systems 

because factors such as shape, texture, vasculature of the surrounding tissue, and the location of 

the implant affect biocompatibility (Sethuraman et al., 2006). Cellular response to biomaterials 

range from localized inflammation to no response, and the degree of cellular response is 

determined by the extent of fibrous tissue encapsulation of the implant (Kasemo & Lausmaa, 

1994). Inert biomaterials often cause fibrous tissue encapsulation, while toxic biomaterials lead 

to cell death (Hench & Wilson, 1984). Composites must be certified as biocompatible and non-

toxic to ensure that they are safe for use in clinical applications. The goal of this study was to 

evaluate the in-vivo biocompatibility and toxicity of SWCNT/PLAGA composites via 

subcutaneous implant in a rat model. We hypothesized that SWCNT/PLAGA composites are 

biocompatible, non-toxic, and are ideal candidates for bone regeneration. 
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CHAPTER 5-2 

METHOD 

Fabrication of PLAGA and SWCNT/PLAGA Composites 

SWCNT (Sigma Aldrich, USA) and PLAGA (Purasorb PLG8523, Purac Biomaterials, 

Netherlands) were obtained and stored in the desiccator and at -80
0
C, respectively. PLAGA 

composites were fabricated by dissolving 1g PLAGA in 12ml solution of dichloromethane 

(Fisher Scientific, USA) in a 20ml scintillation vial. The solution was vortexed for 8hrs at a 

constant speed to dissolve the polymer, poured in a glass Petri-plate with Bytac paper and kept 

under a vacuum hood for 30min. For SWCNT/PLAGA composites, once the PLAGA was 

dissolved, 10mg of SWCNT was added to the polymer solution and the vials were vortexed for 

an additional 8hrs. The uniform mixture of PLAGA and SWCNT was then poured in a glass 

Petri-plate with Bytac paper and kept under a vacuum hood for 30min. For both composites, the 

plates were then kept at -20
0
C overnight and then brought to room temperature for complete 

evaporation of the solvent. The thin films obtained were bored into circular disks (12mm 

diameter) and placed in a desiccator for 24hrs to remove the residual solvent.  

Animals, Housing and Implantation of Scaffolds 

All animal experiments were performed after receiving approval from the Laboratory Animal 

Care and Use Committee (LACUC) of Southern Illinois University, School of Medicine. NIH 

guidelines for the care and use of laboratory animals were observed. Sixty (5animals/group/time 

point), 36-40 day old male Sprague-Dawley rats were purchased from Harlan, USA.  Animals 

were acclimatized for a week before surgical procedures were performed. The animals were 

housed individually in animal rooms with environmentally controlled temperature, relative 

humidity and 12hr light/dark cycle. Animals were anaesthetized using isoflurane which was 
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delivered using an anesthetic vaporizer. The dorsa of the animals were shaved and sterile 

prepped with betadine and alcohol. Two incisions approximately 15mm in length (about 15mm 

apart) were made laterally on the dorsum using a No. 10 surgical blade. A subcutaneous pouch 

on opposite sides of each incision was made using blunt-dissection technique. The PLAGA and 

SWCNT/PLAGA disks were unsealed in a sterilized environment (previously sterilized with 

UV light) and each animal was implanted with 2 polymer disks of same type. Sham implanted 

rats were used as negative controls. Following implantation the skin was closed using sterile 

auto-clips (Figure 5-1). The animals were given buprenorphine (0.05mg/kg subcutaneously) for 

pain management and were allowed to recover. At specific time points post implantation (2, 4, 8 

and 12 weeks); the animals were euthanized by carbon dioxide inhalation. The implants and 

surrounding tissues in addition to major organs were excised for further evaluation.  

Morbidity and Clinical Signs 

All the animals were observed for signs of morbidity and overt toxicity once daily post-

implantation throughout the study. The clinical signs included visual examination in addition to 

physical examination of the animal and/or palpation. They were observed for any lesions or 

abnormalities in behavior or function.  

Body Weights 

Individual body weights were recorded prior to the study (before surgery) and at day 1, 3 and 7 

after surgery for the first week and then weekly thereafter. 

Food Consumption 

Food consumption was measured for individual rats at day 1, 3 and 7 after surgery for the first 

week and then weekly thereafter. The amount of food was measured before it was supplied to 



107 
 

each cage and its remnants were measured at the next time point to calculate the difference. 

Amounts were then used to calculate the daily food consumption (g/animal/day).  

Urinalysis 

Urine was collected from 5animals/group once at 12 weeks post implantation. Animals were 

placed in metabolic racks on the day of collection for 4 hours with access to water and the urine 

was collected in the collection container at the bottom of the racks. The parameters determined 

in the urinalysis included pH, specific gravity, leucocytes, nitrite, protein, ketone, ascorbic acid, 

urobilinogen, bilirubin, glucose and occult blood using a Urispec
TM

 11-way test strips (Henry 

Schein, USA). 

Hematology 

Blood samples were collected in EDTA-containing tubes using cardiac puncture after 

euthanasia. The parameters including WBC count, RBC count, hemoglobin concentration, mean 

corpuscular volume, mean corpuscular hemoglobin, platelet count etc. were determined using 

an automated hematology machine (VetScan HM2, Abaxis, Union City, CA). WBC differential 

counts including neutrophil, lymphocyte, eosinophil, basophil and monocyte were determined 

from blood smears stained with Wright-Giemsa. 

Necropsy 

The animals were euthanized as described at the specified intervals and were observed for 

macroscopic abnormalities. Major organs including heart, lungs, liver, spleen, kidneys and 

adrenal glands were collected, weighed (absolute and relative to body weights) and observed for 

abnormalities. All the organs and implant areas were fixed using 10% neutral-buffered formalin. 
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Histopathology 

The collected organs along with the polymer and the surrounding tissues were fixed in 10% 

neutral-buffered formalin solution for at least 7 days. The samples were embedded in paraffin, 

sectioned using a microtome to 4-5µm thickness, and stained with hemotoxylin and eosin. All 

organs and the implant sites were analyzed by a veterinary pathologist blinded to the treatment 

group. Two implant sites were evaluated for each animal.  For the implant sites, a scoring 

system utilizing 11 parameters was used to calculate a final summary toxicity score for each 

animal. Scores for the 11 individual parameters ranged from 0 (no finding) to 4 (severe) with 

the parameters including necrosis, inflammation, polymorphonuclear neutrophils, macrophages, 

lymphocytes, plasma cells, giant cells, fibroplasia, fibrosis, presence of lipid material and 

relative size. Summary toxicity scores could range from 0 (no findings) to a maximum score of 

44.  

Statistical Analysis 

Mean ± SEM values along with statistical analysis using one-way ANOVA with Tukey post hoc 

test were performed for body weight, food consumption, hematology, absolute and relative 

organ weights, and histopathology. For urinalysis, qualitative interpretations was presented 

descriptively and mean ± SEM values along with statistical analysis using one-way ANOVA 

with Tukey post hoc test were performed for urine volume. The results were considered 

significant when p < 0.05. 
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CHAPTER 5-3 

RESULTS 

 

 

Figure 5-1: Schematic representation of surgical procedure involved in subcutaneous 

implantation of Sham, PLAGA and SWCNT/PLAGA composites in the rat. 
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Morbidity and Clinical Signs 

No mortality occurred during the study. No behavioral changes or visible signs of physical self-

mutilation indicating localized or neurological toxicity were observed during the post-op 

examinations or at the time of euthanasia. No treatment-related signs were observed for any of 

the animals.  
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Body Weights 

All the groups i.e. Sham; PLAGA; and SWCNT/PLAGA showed consistent weight gain and 

followed the same pattern of rate-of-gain throughout the study period (Figure 5-2).  
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Figure 5-2: Body weight changes in rats implanted with Sham, PLAGA and 

SWCNT/PLAGA composites. Data represents mean ± SEM and p < 0.05 was considered 

significant.  

 

 

 

 

 

 

 



113 
 

Food Consumption 

The food consumption for male rats implanted with Sham, PLAGA and SWCNT/PLAGA 

exhibited a similar pattern by 14 days (2 weeks) (Figure 5-3A), 28 days (4 weeks) (Figure 5-3B) 

and 84 days (12 weeks) (Figure 5-3D). All treatment groups showed a significant increase in 

food consumption initially following the post surgical period and then food consumption 

plateaued. However, the food consumption of rats implanted with PLAGA was significantly 

higher than that of Sham at day 35 of 56 days (8 weeks) period (Figure 5-3C).  
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Figure 5-3: Food consumption in rats implanted with Sham, PLAGA and 

SWCNT/PLAGA composites at 2 weeks (A), 4 weeks (B), 8 weeks (C) and 12 weeks (D) 

post-implantation. Data represents mean ± SEM and p < 0.05 was considered significant. 

*, PLAGA was significantly different from Sham. 
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Urinalysis 

No significant difference between the Sham, PLAGA and SWCNT/PLAGA occurred for any of 

the urinalysis parameters (Table 5-1). However, the urine volume collected for the 

SWCNT/PLAGA group was significantly higher compared to the PLAGA group. There was no 

significant difference for urine volume collected between Sham and PLAGA; and Sham and 

SWCNT/PLAGA groups. 
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Table 5-1 

 Urinalysis values of rats implanted with Sham, PLAGA and SWCNT/PLAGA composites at 

12 weeks post-implantation. 

    RATS 

PARAMETERS 

GROUP 

 

SHAM 

(5)
n
 

PLAGA 

(5) 

SWCNT/PLAGA 

(5) 

Blood, hemolyzed (Ery/µl) ca. 10 - - - 

  ca. 50 - - - 

  ca. 250 - - - 

Blood, non-hemolyzed (Ery/µl) negative 5 5 4 

  ca. 5-10 - - 1 

  ca. 50 - - - 

  ca.250 - - - 

Urobilinogen (mg/dl) normal 5 5 5 

  2 - - - 

  4 - - - 

  8 - - - 

  12 - - - 

Bilirubin negative 4 4 5 

  + 1 1 - 

  ++ - - - 

  +++ - - - 

Protein (mg/dl) negative - - - 

  30 2 2 1 

  100 3 3 4 

  500 - - - 

Nitrite negative 5 5 5 

  positive - - - 

  every pink color - - - 

Ketones negative 5 5 5 

  + - - - 

  ++ - - - 

  +++ - - - 

Ascorbic acid negative 1 2 2 

  + 4 2 3 

  ++ - 1 - 

Glucose (mg/dl) negative 5 5 5 

  normal - - - 
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  50 - - - 

  150 - - - 

  500 - - - 

  ≥1000 - - - 

pH 5 - - - 

  6 - - - 

  7 5 5 4 

  8 - - 1 

  9 - - - 

Specific gravity 1 - - - 

  1.005 3 1 2 

  1.01 - - 2 

  1.015 1 2 1 

  1.02 1 2 - 

  1.025 - - - 

  1.03 - - - 

Leucocytes (leuco/µl) negative - - - 

  ca. 25 - - - 

  ca. 75 1 1 1 

  ca.500 4 4 4 

     n
, number in parentheses represents the number of animals examined. 
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Hematology 

In rats a significantly higher value for mean corpuscular hemoglobin (MCH) was observed for 

Sham and SWCNT/PLAGA compared to PLAGA at 4 weeks (Table 5-3); and higher 

granulocyte percent (GR %) value for Sham compared to SWCNT/PLAGA at 12 weeks (Table 

5-5). No significant difference was observed for any of the hematological parameters at 2 weeks 

(Table 5-2) and 8 weeks (Table 5-4).  

 For WBC differential count (Figure 5-4), segmented neutrophils count was significantly 

higher for rats implanted with PLAGA compared to Sham at 4 weeks (Figure 5-4A).  No other 

significant difference was observed for any of parameters at 2 weeks, 8 weeks and 12 weeks. 

All of these statistically significant differences observed were within the normal range of values 

reported for rats. 
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Table 5-2  

Hematological values of rats implanted with Sham, PLAGA and SWCNT/PLAGA composites 

at 2 weeks post-implantation. 

 
2 Weeks 

 
Sham (5)

n
 PLAGA (5) SWCNT/PLAGA (5) 

WBC (10^9/l) 9.258 ± 1.81 8.988 ± 1.20 11.074 ± 0.72 

LYM  (10^9/l) 7.556 ± 1.48 6.678 ± 0.88 8.964 ± 0.59 

MON  (10^9/l) 0.264 ± 1.12 0.158 ± 0.06 0.32 ± 0.10 

GRA  (10^9/l) 1.436 ± 0.34 2.154 ± 0.36 1.79 ± 0.10 

LY% (%) 81.46 ± 3.09 74.3 ± 1.41 80.9 ± 0.96 

MO% (%) 2.68 ± 1.02 1.6 ± 0.61 2.72 ± 0.69 

GR% (%) 15.86 ± 3.24 24.06 ± 1.96 16.36 ± 1.20 

RBC  (10^12/l) 8.4 ± 0.12 8.314 ± 0.24 8.264 ± 0.15 

HGB (g/dl) 15.52 ± 0.38 15.22 ± 0.64 15.82 ± 0.35 

HCT (%) 47.154 ± 0.25 45.418 ± 1.02 46.072 ± 0.84 

MCV (fl) 56.2 ± 0.66 54.6 ± 0.60 55.6 ± 0.87 

MCH (pg) 18.5 ± 0.32 18.28 ± 0.36 19.16 ± 0.20 

MCHC (g/dl) 32.92 ± 0.77 33.46 ± 0.75 34.34 ± 0.25 

RDWc (%) 16.68 ± 0.09 16.4 ± 0.12 16.46 ± 0.29 

PLT (10^9/l) 435.6 ± 86.19 523.6 ± 126.94 506 ± 91.27 

PCT (%) 0.344 ± 0.06 0.374 ± 0.09 0.376 ± 0.07 

MPV (fl) 8.36 ± 0.56 7.54 ± 0.42 7.48 ± 0.04 

PDWc (%) 32.8 ± 1.72 31.46 ± 1.18 30.14 ± 0.51 

 

Each value represents mean ± SEM. 
n
, number in parentheses represents the number of animals 

examined. p < 0.05 was considered significant. 
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Table 5-3 

Hematological values of rats implanted with Sham, PLAGA and SWCNT/PLAGA composites 

at 4 weeks post-implantation. 

 
4 Weeks 

 
Sham (5)

n
 PLAGA (5) SWCNT/PLAGA (5) 

WBC (10^9/l) 7.908 ± 1.58 9.57 ± 0.84 9.19 ± 0.57 

LYM  (10^9/l) 6.272 ± 1.29 7.596 ± 0.67 8.254 ± 0.63 

MON  (10^9/l) 0.222 ± 0.12 0.124 ± 0.05 0.114 ± 0.03 

GRA  (10^9/l) 1.41 ± 0.42 1.85 ± 0.17 0.824 ± 0.30 

LY% (%) 80.44 ± 3.43 79.44 ± 1.14 89.8 ± 3.30 

MO% (%) 2.5 ± 0.94 1.18 ± 0.36 1.28 ± 0.34 

GR% (%) 17.04 ± 4.08 19.36 ± 1.25 8.98 ± 3.14 

RBC  (10^12/l) 8.61 ± 0.08 9.032 ± 0.13 8.9 ± 0.04 

HGB (g/dl) 15.84 ± 0.16 16.14 ± 0.17 16.62 ± 0.12 

HCT (%) 48.056 ± 0.57 49.06 ± 0.54 49.798 ± 0.46 

MCV (fl) 55.8 ± 0.66 54.2 ± 0.58 56 ± 0.63 

MCH (pg) 18.4 ± 0.08* 17.84 ± 0.13 18.68 ± 0.19* 

MCHC (g/dl) 32.98 ± 0.22 32.84 ± 0.20 33.38 ± 0.19 

RDWc (%) 15.78 ± 0.17 16 ± 0.25 15.88 ± 0.18 

PLT (10^9/l) 664.2 ± 29.27 736.4 ± 43.08 683.8 ± 30.53 

PCT (%) 0.508 ± 0.02 0.546 ± 0.03 0.522 ± 0.02 

MPV (fl) 7.66 ± 0.09 7.44 ± 0.09 7.64 ± 0.10 

PDWc (%) 30.6 ± 0.19 29.96 ± 0.15 30.9 ± 0.25 

 

Each value represents mean ± SEM. 
n
, number in parentheses represents the number of animals 

examined. p < 0.05 was considered significant. *, Sham and SWCNT/PLAGA were significantly 

different from PLAGA. 
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Table 5-4 

Hematological values of rats implanted with Sham, PLAGA and SWCNT/PLAGA composites 

at 8 weeks post-implantation. 

 
8 Weeks 

 
Sham (5)

n
 PLAGA (5) SWCNT/PLAGA (5) 

WBC (10^9/l) 6.672 ± 1.13 7.08 ± 0.85 5.136 ± 0.38 

LYM  (10^9/l) 5.194 ± 0.68 5.706 ± 0.50 4.162 ± 0.36 

MON  (10^9/l) 0.132 ± 0.05 0.202 ± 0.03 0.062 ± 0.01 

GRA  (10^9/l) 1.342 ± 0.53 1.17 ± 0.36 0.91 ± 0.09 

LY% (%) 80.1 ± 3.88 81.9 ± 2.87 80.8 ± 1.61 

MO% (%) 2.42 ± 0.92 2.88 ± 0.56 1.32 ± 0.32 

GR% (%) 17.5 ± 4.58 15.22 ± 3.17 17.86 ± 1.65 

RBC  (10^12/l) 8.782 ± 0.21 9.208 ± 0.14 8.774 ± 0.09 

HGB (g/dl) 16.26 ± 0.31 16.64 ± 012 15.96 ± 0.20 

HCT (%) 47.806 ± 1.01 49.518 ± 0.84 47.198 ± 0.75 

MCV (fl) 54.6 ± 0.75 53.8 ± 0.58 53.6 ± 0.51 

MCH (pg) 18.56 ± 0.18 18.1 ± 0.19 18.2 ± 0.08 

MCHC (g/dl) 34.04 ± 0.46 33.62 ± 0.42 33.84 ± 0.35 

RDWc (%) 15.78 ± 0.16 15.88 ± 0.18 16.38 ± 0.09 

PLT (10^9/l) 730 ± 112.88 757.6 ± 36.24 723.8 ± 25.42 

PCT (%) 0.62 ± 0.12 0.584 ± 0.03 0.564 ± 0.02 

MPV (fl) 8.4 ± 0.37 7.68 ± 0.06 7.78 ± 0.18 

PDWc (%) 32.12 ± 0.79 30.58 ± 0.35 30.8 ± 0.29 

 

Each value represents mean ± SEM. 
n
, number in parentheses represents the number of animals 

examined. p < 0.05 was considered significant. 
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Table 5-5 

Hematological values of rats implanted with Sham, PLAGA and SWCNT/PLAGA composites 

at 12 weeks post-implantation. 

 
12 Weeks 

 
Sham (5)

n
 PLAGA (5) SWCNT/PLAGA (5) 

WBC (10^9/l) 4.548 ± 0.90 6.546 ± 1.50 5.838 ± 1.24 

LYM  (10^9/l) 3.536 ± 0.68 5.402 ± 1.18 4.98 ± 1.13 

MON  (10^9/l) 0.046 ± 0.01 0.138 ± 0.05 0.174 ± 0.09 

GRA  (10^9/l) 0.966 ± 0.23 1.006 ± 0.29 0.684 ± 0.07 

LY% (%) 78.14 ± 1.20 83.1 ± 1.82 84.08 ± 1.81 

MO% (%) 1.12 ± 0.34 1.9 ± 0.51 2.42 ± 0.86 

GR% (%) 20.72 ± 1.09* 15 ± 1.65 13.5 ± 2.51 

RBC  (10^12/l) 8.934 ± 0.18 8.896 ± 0.17 8.984 ± 0.19 

HGB (g/dl) 15.98 ± 0.28 16.24 ± 0.08 16.3 ± 0.19 

HCT (%) 46.902 ± 1.10 46.97 ± 0.55 46.684 ± 0.66 

MCV (fl) 52.8 ± 0.49 53 ± 0.89 52.4 ± 0.87 

MCH (pg) 17.88 ± 0.14 18.3 ± 0.35 18.18 ± 0.21 

MCHC (g/dl) 34.08 ± 0.40 34.6 ± 0.30 35 ± 0.33 

RDWc (%) 16.84 ± 0.10 16.64 ± 0.18 16.52 ± 0.23 

PLT (10^9/l) 648.2 ± 65.05 553.774 ± 140.93 657.2 ± 19.67 

PCT (%) 0.494 ± 0.05 0.504 ± 0.04 0.502 ± 0.02 

MPV (fl) 7.64 ± 0.07 7.78 ± 0.16 7.62 ± 0.08 

PDWc (%) 30.48 ± 0.27 31.3 ± 0.33 30.78 ± 0.41 

 

Each value represents mean ± SEM. 
n
, number in parentheses represents the number of animals 

examined. p < 0.05 was considered significant. *, Sham was significantly different from 

SWCNT/PLAGA. 
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Figure 5-4: WBC differential count of rats implanted with Sham, PLAGA and 

SWCNT/PLAGA composites. The parameters include segmented neutrophils (A), 

immature neutrophils (B), lymphocyte (C), monocyte (D), eosinophil (E) and basophil (F). 

Data represents mean ± SEM and p < 0.05 was considered significant. *, PLAGA was 

significantly different from Sham. 
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Gross findings at necropsy, absolute and relative organ weights 

Implants did not migrate from their original location even though no immobilization (sutures, 

adhesives etc.) was used. No macroscopic abnormalities were noted in any of the animals 

(Sham, PLAGA and SWCNT/PLAGA) at 2, 4, 8 and 12 weeks. Subcutaneous tissue surrounding 

the implants appeared grossly normal with no overt evidence of inflammation and all incision 

sites were healed (Figure 5-5) (data shown for 8 and 12 weeks only).     

 No significant differences in absolute and relative organ weights were observed in the 

rats post-implantation with Sham, PLAGA or SWCNT/PLAGA composites at 2, 4, 8 and 12 

weeks (Figure 5-6 and 5-7). 
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Figure 5-5: Gross pathology images of subcutaneous tissue surrounding the implants 

(Sham, PLAGA and SWCNT/PLAGA) at 8 and 12 weeks post-implantation. All incision 

sites were healed and the tissue surrounding the implants appeared grossly normal with no 

overt evidence of inflammation. 
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Figure 5-6: Absolute organ weight in rats implanted with Sham, PLAGA and 

SWCNT/PLAGA composites. The parameters include body weight (A), adrenal glands 

(B), Lungs (C), spleen (D), heart (E), liver (F) and Kidneys (G). Data represents mean ± 

SEM and p < 0.05 was considered significant.  
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Figure 5-7: Relative organ weight in rats implanted with Sham, PLAGA and 

SWCNT/PLAGA composites. The parameters include adrenal glands (A), Lungs (B), 

spleen (C), heart (D), liver (E) and Kidneys (F). Data represents mean ± SEM and p < 0.05 

was considered significant. 
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Histopathology 

There were no lesions observed in the major organs of the rats related to implantation of 

PLAGA and SWCNT/PLAGA. The sham animals were uniformly without observable response 

to the sham operation, with a summary toxicology (sumtox) of zero for all four time periods 

following surgery. Animals treated with the both the PLAGA composite and SWCNT/PLAGA 

composite tended to have mild to moderate sumtox scores. Both PLAGA and SWCNT/PLAGA 

composites showed a significant decrease in sumtox score from week 2-4 and no change was 

observed for weeks 4-8 and 8-12 and between weeks 2 and 8, and 2 and 12. Also, at all the time 

intervals both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score 

compared to Sham group. However, there was no significant difference between PLAGA and 

SWCNT/PLAGA at all the time intervals (Figures 5-8, 5-9, 5-10, 5-11, and 5-12). 
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Figure 5-8: Histopathology changes to Sham, PLAGA and SWCNT/PLAGA in rat 

subcutaneous tissue as a function of summary toxicity score on a scale of 0-44 over a 

period of 12 weeks post-implantation. Data represents mean ± SEM and p < 0.05 was 

considered significant. *, PLAGA and SWCNT/PLAGA were significantly different from 

Sham; #, Both PLAGA and SWCNT/PLAGA showed significant decrease from week 2 to 

week 4. 
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Figure 5-9: Micrograph of subcutaneous skin tissues of rats implanted with Sham, 

PLAGA and SWCNT/PLAGA at 2 weeks post-implantation stained with H&E (at X4 and 

X20 magnification). C= composite (PLAGA or SWCNT/PLAGA) implant site, M= 

muscular tissue, N= polymorphonuclear neutrophils, Fp= fibroplasia. 
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Figure 5-10: Micrograph of subcutaneous skin tissues of rats implanted with Sham, 

PLAGA and SWCNT/PLAGA at 4 weeks post-implantation stained with H&E (at X4 and 

X20 magnification). C= composite (PLAGA or SWCNT/PLAGA) implant site, M= 

muscular tissue, N= polymorphonuclear neutrophils, Fp= fibroplasia. 
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Figure 5-11: Micrograph of subcutaneous skin tissues of rats implanted with Sham, 

PLAGA and SWCNT/PLAGA at 8 weeks post-implantation stained with H&E (at X4 and 

X20 magnification). C= composite (PLAGA or SWCNT/PLAGA) implant site, M= 

muscular tissue, Fb= fibrosis. 
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Figure 5-12: Micrograph of subcutaneous skin tissues of rats implanted with Sham, 

PLAGA and SWCNT/PLAGA at 12 weeks post-implantation stained with H&E (at X4 

and X20 magnification). C= composite (PLAGA or SWCNT/PLAGA) implant site, M= 

muscular tissue, Fb= fibrosis. 
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CHAPTER 5-4 

DISCUSSION 

Biodegradable composites are of interest in clinical medicine because of their 

biocompatibility, bioresorbability, non-immunogenicity, high mechanical strength, and 

essentially circumvent the need to surgically remove the implanted scaffold (Ibim et al., 1998). 

The introduction of biodegradable synthetic polymers has increased considerably by researchers 

in the area of tissue engineering in recent years. Copolymers such as PLAGA are ideal 

biodegradable scaffolds for tissue engineering applications and are currently used in the 

biomedical industry (C. T. Laurencin, Attawia, Elgendy, & Herbert, 1996; Lim, Poh, & Wang, 

2009). PLAGA scaffolds exhibit excellent biocompatibility, bioresorbability, non-

immunogenicity, and high mechanical strength. In our previous published studies we 

demonstrated that incorporation of SWCNT to PLAGA significantly enhanced cell proliferation 

and mechanical strength against a PLAGA control (Gupta et al., 2014; Gupta et al., 2013). 

Before a composite can be applied in a clinical application, it has to be certified as biocompatible 

and non-toxic (Khouw et al., 2000). 

The goal of this study was to evaluate tissue biocompatibility and toxicity of a 

SWCNT/PLAGA composite in Sprague-Dawley (SD) rats for 12 weeks to demonstrate that 

SWCNT/PLAGA composites are biocompatible, non-cytotoxic, and potentially safe for clinical 

use. Rats were implanted with Sham, PLAGA and SWCNT/PLAGA composites subcutaneously 

and 5 rats from each group were euthanized at 2, 4, 8, and 12 weeks. No mortality, 

inflammation, behavioral changes or visible signs of physical self-mutilation indicating 

localized, systemic or neurological toxicity were observed during the post-op examinations and 

at the time of euthanasia. No treatment-related signs were observed for any animals. All the 
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groups showed consistent weight gain throughout the study appropriate for the age of the 

animals and the rate-of-gain for each group was similar. The food consumption by the animals 

in all the groups followed the same pattern. All treatment groups showed a significant increase 

in food consumption initially following the post surgical period and then food consumption 

plateaued. This pattern can be attributed to necessity of more food consumption during wound 

healing period. The urinalysis showed no significant difference between the Sham, PLAGA and 

SWCNT/PLAGA for any of the urinalysis parameters. For the hematology analysis, the 

statistically significant differences observed were all for values that nonetheless were within the 

normal range of values reported for rats. Therefore, it was considered that there were no 

hematological effects due to implantation of SWCNT/PLAGA composite compared to Sham 

and PLAGA.  

 It is documented that inflammation around implants is a process of normal host defense 

mechanisms brought about by the result of surgical implantation along with the presence of the 

implanted material (Menei et al., 1993; Ibim et al., 1998). In a polymeric implant the 

inflammatory reaction is dependent on several factors such as the extent of injury or defect, size, 

shape, degradation rates of the polymers, as well as the physical, chemical and mechanical 

properties of the implant material (Homsy, 1970; LITTLE & PARKHOUSE, 1962; Wood, 

Kaminski, & Oglesby, 1970). Biodegradable polymers such as polyphosphazenes, 

polyanhydrides, PLAGA and many non-degradable polymers have been shown to produce 

inflammatory responses (Leong, D'Amore, Marletta, & Langer, 1986; C. Laurencin et al., 1990;  

Brady, Cutright, Miller, & Barristone, 1973; Turner, Lawrence, & Autian, 1973). In this study, 

no macroscopic abnormalities were observed in any of the animals at any time interval. 

Subcutaneous tissue surrounding the implants appeared grossly normal with no overt evidence of 
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inflammation and all incision sites were healed. There were no lesions observed in the major 

organs of the rats related to implantation of PLAGA and SWCNT/PLAGA. The absolute and 

relative organ weight of the animals in all the groups at all the intervals was similar and did not 

show any significant difference. The sham animals did not show any response to the sham 

operation, with a sumtox score of zero for all four time periods following implantation. A mild to 

moderate sumtox score was observed for animals treated with the PLAGA and SWCNT/PLAGA 

composites. At all the time intervals both PLAGA and SWCNT/PLAGA showed a significantly 

higher sumtox score compared to the relative Sham group however,  there was no significant 

difference between PLAGA and SWCNT/PLAGA implanted groups.  

In conclusion, our SWCNT/PLAGA composites, which possess high mechanical strength 

and mimic the microstructure of human trabecular bone (Gupta et al., 2014), displayed tissue 

compatibility similar to PLAGA, a well known biocompatible polymer over the 12 week study. 

Thus, the results obtained demonstrate the potential of SWCNT/PLAGA composites for 

application in BTE and musculoskeletal regeneration. Future studies will be designed to evaluate 

the efficacy of SWCNT/PLAGA composites in bone regeneration in a non-union ulnar bone 

defect rabbit model. As interest in carbon nanotube technology increases, studies must be 

performed to fully evaluate these novel materials at a nonclinical level to assess their safety. The 

ability to produce composites capable of promoting bone growth will have a significant impact 

on tissue regeneration and will allow greater functional recovery in injured patients. 
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