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Abstract— This paper analyses the stability of paralleled 
voltage source converters in AC distributed power systems. 
An impedance-based stability analysis method is presented 
based on the Nyquist criterion for multiloop system. Instead 
of deriving the impedance ratio as usual, the system stability 
is assessed based on a series of Nyquist diagrams drawn for 
the terminal impedance of each converter. Thus, the effect 
of the right half-plane zeros of terminal impedances in the 
derivation of impedance ratio for paralleled source-source 
converters is avoided. The interaction between the terminal 
impedance of converter and the passive network can also be 
predicted by the Nyquist diagrams. This method is applied 
to evaluate the current and voltage controller interactions of 
converters in both grid-connected and islanded operations. 
Simulations and experimental results verify the effectiveness 
of theoretical analysis.   

 Keywords— Impedance-based analysis, Nyquist criterion, 
paralleled voltage source converters, stability 

I.  INTRODUCTION 

Voltage source converters have commonly been found 
in renewable energy generation systems, energy-efficient 
drives, and high-performance electronics equipment. The 
interactions of the paralleled or cascaded voltage source 
converters are challenging the stability and power quality 
in AC distributed power systems [1]. The constant power 
operation of these converters may destabilize the system 
with low-frequency oscillations [2]. The inner current or 
voltage control loops of converters may also interact with 
each other, and with the resonance conditions brought by 
the output LCL or LC filters and parasitic capacitances of 
power cables, resulting in resonances in a wide frequency 
range [3]. There is, consequently, an increasing research 
concern over the interaction of interconnected converters.  

The impedance-based analytical approach has widely 
been used for the stability analysis of power-electronics-
based power systems [4]-[8]. The minor-loop gain, which 
is defined as the terminal impedance ratio of the source 
and load converters, is proved to be effective to analyze 
the interactions of interconnected converters [4]. Several 
stability criteria have been derived based on the minor-
loop gain, including the Gain Margin and Phase Margin 
(GMPM) criterion [5], the opposing argument criterion 

[6], the Energy Source Analysis Consortium (ESAC) 
criterion [7], and the maximum peak criterion [8]. The 
different forbidden regions are thus defined to derive the 
impedance specification of the load converter for a given 
source converter impedance. All of the impedance-based 
stability criteria assume that the minor-loop gain has no 
Right Half-Plane (RHP) poles [8]. This is justified in the 
source-load converter systems, since each converter is 
designed with a stable terminal behavior. However, in the 
multiple paralleled source-source converter systems, such 
as wind farms, photovoltaic power plants, and paralleled 
uninterruptible power supplies, this prerequisite imposes 
the constraint on the derivation of impedance ratio. The 
presence of RHP zeros in the converter impedance may 
induce the RHP poles in the minor-loop gain [9]-[10].  

To mitigate the influence of RHP zeros, two stability 
criteria have been recently reported, i.e. the passivity-
based stability criterion [9], and the impedance sum type 
criterion [10]. The passivity-based stability criterion is 
derived from the frequency-domain passivity theory [11], 
which has been used earlier for current controller design 
of voltage source converters [12]. Generally, the passivity 
of the converter impedance is defined that the impedance 
has no RHP poles and has a positive real part. The system 
is stable if all the converter impedances are passive. Thus, 
the derivation of impedance ratio is avoided. This method 
allows the robust design of controllers for converters, yet 
is still a sufficient stability condition, since the negative 
real part of impedance does not indicate the instability of 
system. In contrast, the impedance sum type criterion is 
directly based on the characteristic equation of the minor 
feedback loop, which is the sum of converter impedances 
[10]. The encirclement of the origin in the complex plane 
indicates the instability of system. This criterion provides 
a sufficient and necessary stability condition and works 
well in the paralleled source-source converter systems. 
However, by this means, it is difficult to characterize the 
contribution of each converter to the stability in a system 
with multiple paralleled converters.   

To reveal how the paralleled source-source converters 
interact with each other and with the passive components, 
this paper presents an impedance-based stability analysis 
method by means of the Nyquist criterion for multiloop 
systems. Instead of deriving the impedance ratio, a series 
of Nyquist diagrams drawn for the converter impedances 
and passive components are adopted to predict the system 
stability. Thus, the effect of RHP zeros in the converter 
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Fig. 1. A cascaded source-load converter system and equivalent circuit. 
(a) Basic configuration. (b) Equivalent circuit. 

 
impedances can be avoided. This approach is applied to 
evaluate the current and voltage controller interactions of 
converters in both grid-connected and islanded operations. 
Simulations and experiments verify the effectiveness of 
theoretical analysis.    

II. IMPEDANCE-BASED STABILITY CRITERION 

A. Source-Load Converter System 

Fig. 1 shows a typical cascaded source-load converter 
system and the equivalent circuit to illustrate the basic 
principle of the impedance-based stability criterion. The 
closed-loop response of the source converter voltage and 
the load converter current can be given by 
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where Gcli and YL denote the current reference-to-output 
transfer function and closed-loop input admittance of the 
load converter, respectively. Gclv and Zs are the voltage 
reference-to-output transfer function and the closed-loop 
output impedance of the source converter, respectively. If 
the converters are designed with stable terminal behavior, 
i.e. Gcli and Gclv have no RHP poles, the overall system 
stability will be merely dependent on the minor feedback 
loop composed by the impedance product, ZsYL, which is 
also termed as the minor-loop gain.  

In this scenario, due to the stable terminal behaviors of 
converters, the minor-loop gain has no RHP poles and the 
encirclement of the point (-1, j0) indicates the instability 
of the system.  

B. Source-Source Converter System 

Fig. 2 illustrates a paralleled source-source converter 
system operating in grid-connected and islanded modes. 
Similarly, the impedance-based model of this system can 
be derived based on the terminal behaviors of converters, 
which is shown in Fig. 3. The converters are represented  
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Fig. 2. A paralleled source-source converters system operating in grid-
connected and islanded modes.  
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Fig. 3. Impedance-based equivalent circuit of paralleled source-source 
converter system in (a) grid-connected mode and (b) islanded mode.    

 
by the Norton equivalent circuits in the grid-connected 
mode and the Thevenin equivalent circuits in the islanded 
mode. Thus, the closed-loop responses of the converters 
output currents and voltages in grid-connected mode and 
islanded mode, as well as the Point of Common Coupling 
(PCC) voltage can be derived in the following 
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where Gcli,k and Gcli,j are the current reference-to-output 
transfer functions. Ycli,k and Ycli,j denote the closed-loop 



output admittances of converters in grid-connected mode. 
Gclv,k and Gclv,j are the voltage reference-to-output transfer 
functions, and Zclv,k and Zclv,j are the closed-loop output 
impedances of converters in the islanded operation. The 
effect of load, YL and ZL, is disregarded. Ztov,k and Ytoi,k are 
the equivalent system impedance and admittance of the k-
th converter seen from the PCC, respectively. 

Following (1) and (2), the minor-loop gain for the k-th 
converter in the grid-connected and islanded modes can 
be represented by the impedance ratios of Ycli,k/Ytoi,k and 
Zclv,k/Ztov,k, respectively.  However, unlike the source-load 
converter systems, the equivalent system impedance may 
have RHP zeros due to the effect of passive components 
and the j-th converter. Consequently, the minor-loop gain 
will have RHP poles, and the system may be stable even 
if the Nyquist diagram encircles the point (-1, j0). Hence, 
the stability criteria derived for the cascaded source-load 
converter system may not be applicable for the paralleled 
source-source converter system. 

C. Presence of RHP Zeros 

Fig. 4 shows the control block diagrams of converters 
in the grid-connected and islanded operations. Tables I 
and II list the parameters of electrical constants and the 
controllers which are used in this study.  

Since the current and voltage controller interactions of 
converters are concerned in this work, the power control 
and grid synchronization loops are neglected. The single-
loop grid current control is adopted in the grid-connected 
mode for the inherent active damping of LCL resonance 
[13], and the double-loop voltage control scheme is used 
in the islanded mode. The Proportional Resonant (PR) 
controller is used for control the grid current and output 
voltage with zero steady-state error.     

Fig. 5 gives a comparison on the pole-zero maps of the 
system equivalent impedance and the terminal impedance 
of converter. It is clear that the RHP zeros present in the 
system impedance and admittance, yet no RHP zeros can 
be observed in the converter impedance and admittance.   
This implies that even if the terminal impedances has no 
RHP zeros, the interaction of the converters impedances 
and passive components may bring the RHP zeros into 
the system impedances. It is noted that the presence of 
RHP zeros implies that the impedance has the negative 
real part. However, the negative real part of impedance 
does not necessarily indicate the presence of RHP zeros.  
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Fig. 4. Block diagrams of (a) the current control loop in grid-connected 
mode, and (b) the voltage control loop in the islanded mode.    

TABLE I 
ELECTRICAL PARAMETERS 

Symbol Meaning Value 
Vg Line-line grid voltage 400 V 
f1 Grid frequency 50 Hz 
Lg Grid inductance 1.5 mH 
Cg Grid capacitance 2 μF 
Lf,k Filter inductor 1.8 mH 
Cf,k Filter capacitor 10 μF 
Ll,k Line inductance 0.9 mH 
fsw Switching frequency 10 kHz 

Vdc,k DC-link voltage 750 V 
RL Load resistance 80 Ω 
LL Load inductance 166 mH 

 
TABLE II 

CONTROLLER PARAMETERS 
Symbol Meaning Value 

Kpg,k 
Proportional gain of PR 
grid current controller  

8 

Kig,k 
Integral gain of PR grid 

current controller 
500 

Kpv,k 
Proportional gain of PR 

voltage controller 
0.005 

Kiv,k 
Integral gain of PR voltage 

controller 
200 

Kpc,k 
Proportional converter 

current controller 
8 

Ts Sampling period 100 μs 
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Fig. 5. Pole-zero maps of the (a) system equivalent admittance Ytoi,k 

(zoom on origin) and (b) system impedance Ztov,k  (zoom on origin). 



III. PROPOSED ANALYSIS METHOD 

This section reviews the Nyquist stability criterion for 
multiloop systems, and then presents an impedance-based 
stability analysis method to address the influence of RHP 
zeros in the conventional impedance ratio type criteria.  

A. Nyquist Criterion for Multiloop Systems   

The Nyquist criterion was generalized to the multiloop 
systems by Bode [14], which may be stated as follows:  

“A linear multiloop system is stable if and only if the 
total numbers of clockwise and counterclockwise 
encirclements of the point (-1, j0) are equal to each other 
in the series of Nyquist diagrams drawn for the individual 
loops obtained by beginning with all loops open and 
closing the loops successively in any order to their 
normal configuration [15].” 

From Fig. 3, it can be seen that the impedance-based 
equivalent model of the interconnected converter system 
is basically a multiloop system. Thus, instead of deriving 
the overall open-loop gain of the minor feedback loop, 
the system stability can also be predicted by the series of 
Nyquist diagrams of the individual loops according to the 
Nyquist criterion for multiloop systems. Consequently, 
the effect of the RHP zeros in the system impedance can 
be avoided. 

B. Stability Analysis of  Source-Source Converter System 

Fig. 6 illustrates a block diagram representation of the 
impedance-based equivalent circuit in Fig. 3. The minor 
feedback loop for the k-th converter is decomposed into 
two local loops by converter impedances. The stability of 
the minor feedback loop is thus assessed by successively 
closing the two loops and analyzing the Nyquist diagrams 
drawn for them. The system is stable if the total numbers 
of clockwise and counterclockwise encirclements of the 
point (-1, j0) are equal to each other in these Nyquist 
diagrams. Moreover, by this means, how each converter 
contributes to the system stability can be revealed by the 
Nyquist diagrams of local loops. 

Fig. 7 shows the Nyquist diagrams of two loops in the 
grid-connected operation. First, the loop that is composed 
by the grid impedance and the j-th converter admittance, 
Tik,1 is evaluated, and then the loop including the k-th 
converter admittance, Tik,2 is assessed.  
 

, ,
,1 ,2

,

( ) ( )cli j cli k
ik ik

g g cli j

Y Y
T s T s

Y Y Y
  


 (9) 

 
It is seen that only the Nyquist diagram of Tik,1 encircles 
the point (-1, j0) once in the clockwise direction, which 
indicates that the system is unstable. Further, the Nyquist 
diagram of Tik,1 also implies that the interaction between 
the j-th converter and grid impedance leads to instability 
when the k-th converter is disconnected. Thus, to attain a 
stable system, the k-th converter impedance should make 
the minor feedback loop encircle the point (-1, j0) once in 
counterclockwise direction. As a consequence, the design 
specification for the converter admittance can be derived 
from the Nyquist diagrams of local loops.    

Fig. 8 shows the Nyquist diagrams of two loops in the  
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Fig. 6. Block diagram of the impedance-based equivalent system model. 
(a) Grid-connected mode. (b) Islanded mode.  
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Fig. 7. Nyquist diagrams of two loops in the grid-connected operation. 
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Fig. 8. Nyquist diagrams of two loops in the islanded operation. 

 
islanded operation, in which the loop gains are given by  
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Similarly to Fig. 7, the local feedback loop including 
the j-th converter impedance and line impedances is first 
assessed, and then the minor feedback loop with the k-th 
converter impedance is analyzed with Nyquist diagrams. 
It is seen that only the Nyquist diagram of Tvk,1 encircles 
the point (-1, j0), which implies that the overall system is 
unstable. Further, the Nyquist diagram of Tvk,1 shows that 
the interaction of the j-th converter and line impedances 
cause instability when the k-th converter is disconnected. 
Therefore, to stabilize the islanded operation with the k-th 
converter, the terminal impedance Zclv,k should be shaped 
so that the Nyquist diagrams of two loops have the same 
numbers of clockwise and counterclockwise encirclement 
of the point (-1, j0)   

Fig. 9 shows the control diagram for the k-th converter 
to shape the output impedance Zclv,k. A feedback of the 
output voltage of the k-th converter is employed in the 
filter current control loop. In contrast, the control scheme  
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Fig. 9. Block diagram of the k-th converter in the islanded operation 
with the output voltage feedback in the filter current control loop.    
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Fig. 10. Nyquist diagrams of two loops in the islanded operation with 
the modified control diagram for the k-th converter. (a) Full view. (b) 
Zoomed out around (-1, j0). 

for the j-th converter keeps the same as Fig. 4 (b). Fig. 10 
shows the Nyquist diagrams of two loops. The loop Tvk,1 

is the same as Fig. 8, while the loop Tvk,2 has encircles the 
point (-1, j0) once in the clockwise and twice in the 
counterclockwise directions. As a consequence, the total 
numbers of clockwise and counterclockwise encirclement 
of the point (-1, j0) are equal to each other. The islanded 
operation of the system is stable.  

It is worth noting that this stability analysis approach 
can also be generalized to the N-paralleled source-source 
converter systems. The minor feedback loop for a given 
source converter can be divided into the N local feedback 
loops, which include N-1 loops to model the effect of the 
other N−1 paralleled source converters, and the minor 
feedback loop. Thus, how the source converters interact 
with each other and with the passive components can be 
successively assessed by the series of Nyquist diagrams 
drawn for the N loops. 

IV. SIMULATIONS AND EXPERIMENTAL RESULTS 

To validate the theoretical analyses, the time-domain 
simulations using PLECS Blockset and MATLAB, and 
the experimental tests based on two Danfoss frequency 
converters are carried out. The converters are powered by 
the constant DC voltage sources. The control algorithms 
in experiments are implemented in the DS1006 dSPACE 
system, in which the DS2004 high-speed Analog/Digital 
board is used for the sampling and the DS5101 waveform 
generation board is used for the Pulse Width Modulation 
(PWM) pulses generation.      

A. Grid-Connected Operation 

Fig. 11 shows the simulated grid currents of converters 
and the PCC voltage in the grid-connected operation. The 
unstable oscillations can be observed, which confirms the 
stability analysis in Fig. 7. However, due to the presence 
of RHP zeros in the equivalent system impedance, if only 
the admittance ratio Ycli,k/Ytoi,k is evaluated by the Nyquist 
diagram, then the instability cannot predicted.  

Fig. 12 shows the measured grid currents and the PCC 
voltage waveforms in the grid-connected operation. It can  
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Fig. 11. Simulated grid currents of converters and the PCC voltage in 
grid-connected operation.  
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Fig. 12. Measure grid currents of converters and the PCC voltage in the 
grid-connected operation.  
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Fig. 13. Simulated converters output voltages and currents based on the 
control scheme in Fig. 4 (b).   

 
be seen that the experimental tests matches well with the 
simulation results, which also again verify the theoretical 
analysis with the Nyquist criterion for multiloop systems. 

B. Islanded Operation 

Two simulation case studies are carried out to evaluate 
the system stability in the islanded operation, in order to 
validate the theoretical analyses shown in Figs. 8 and 10. 

Fig. 13 shows the simulated converters output voltages 
and currents based on the control scheme shown in Fig. 4 
(b). The converters are connected in parallel at the time 
instant of 0.2 s. It is clear that both of the converters are 
stable when operating standalone, and becomes unstable 
when they are connected together. This implies that the 
stable terminal behaviors of converters are designed. The 
interactions of converters with each other and with the 
line inductances result in the system instability, which 
verifies the stability analysis in Fig. 8. Similarly, if only  
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Fig. 14. Simulated converters output voltages and currents based on the 
control scheme in Fig. 4 (b).   

 
the Nyquist diagram of the impedance ratio Zclv,k/Ztov,k is 
assessed following the conventional stability criteria, the 
opposite conclusion will be drawn. 

Fig. 14 shows the simulated waveforms when one of 
the converters adopts the control scheme shown in Fig. 9. 
A stable system operation can be observed even when the 
two converters are connected in parallel. This agrees with 
the analysis in Fig. 10, and confirms the Nyquist criterion 
for multiloop systems when there are multiple clockwise 
and counterclockwise encirclements of the point (-1, j0).         

 

V. CONCLUSIONS 

This paper has discussed the stability analysis for the 
paralleled source-source converter systems. The effect of 
the RHP zeros in deriving the minor-loop gains of source 
converters has been analyzed. It has been shown that the 
equivalent system impedance may have the RHP zeros, 
due to the interaction of converter impedance and passive 
components. To reveal how each converter interacts with 
each other and with passive components, an impedance-
based stability analysis approach has been proposed with 
the Nyquist stability criterion for multiloop systems. The 
effect of RHP zeros is avoided in this method. Simulation 
and experimental case studies validate the effectiveness 
of the theoretical analyses.   
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