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Abstract

Traffic monitoring and analysis can be done for multiple different reasons: to investigate
the usage of network resources, assess the performance of network applications, adjust
Quality of Service (QoS) policies in the network, log the traffic to comply with the law,
or create realistic models of traffic for academic purposes. We define the objective of
this thesis as finding a way to evaluate the performance of various applications in a high-
speed Internet infrastructure. To satisfy the objective, we needed to answer a number
of research questions. The biggest extent of them concern techniques for traffic classifi-
cation, which can be used for nearly real-time processing of big amounts of data using
affordable CPU and memory resources. Other questions are related to methods for real-
time estimation of the application Quality of Service (QoS) level based on the results
obtained by the traffic classifier. This thesis is focused on topics connected with traffic
classification and analysis, while the work on methods for QoS assessment is limited to
defining the connections with the traffic classification and proposing a general algorithm.

We introduced the already known methods for traffic classification (as by using trans-
port layer port numbers, Deep Packet Inspection (DPI), statistical classification) and
assessed their usefulness in particular areas. We found that the classification techniques
based on port numbers are not accurate anymore as most applications use dynamic port
numbers, while DPI is relatively slow, requires a lot of processing power, and causes
a lot of privacy concerns. Statistical classifiers based on Machine Learning Algorithms
(MLAs) were shown to be fast and accurate. At the same time, they do not consume a
lot of resources and do not cause privacy concerns. However, they require good quality
training data. We performed substantial testing of widely used DPI classifiers (PACE,
OpenDPI, L7-filter, nDPI, Libprotoident, and NBAR) and assessed their usefulness in
generating ground-truth, which can be used as training data for MLAs. Our evaluation
showed that the most accurate classifiers (PACE, nDPI, and Libprotoident) do not pro-
vide any consistent output – the results are given on a mix of various levels: application,
content, content container, service provider, or transport layer protocol. On the other
hand, L7-filter and NBAR provide results consistently on the application level, however,
their accuracy is too low to consider them as tools for generating the ground-truth. We
also contributed to the open-source community by improving the accuracy of nDPI and
designing the future enhancements to make the classification consistent.

Because the existing methods were shown to not be capable of generating the proper
training data, we built our own host-based system for collecting and labeling of network
data, which depends on volunteers and, therefore, was called by us Volunteer-Based
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System (VBS). The client registers the information about all the packets transferred
through any network interface of the machine on which it is installed. The packets are
grouped into flows, which are labeled by the process name obtained from the system
sockets. The detailed statistics about the network flows give an overview how the net-
work is utilized. The data collected by VBS can be used to create realistic traffic profiles
of the selected applications, which can server as the training data for MLAs.

We assessed the usefulness of C5.0 Machine Learning Algorithm (MLA) in the classi-
fication of computer network traffic. We showed that the application-layer payload is
not needed to train the C5.0 classifier to be able to distinguish different applications in
an accurate way. Statistics based on the information accessible in the headers and the
packet sizes are fully sufficient to obtain high accuracy. We also contributed by defining
the sets of classification attributes for C5.0 and by testing various classification modes
(decision trees, rulesets, boosting, softening thresholds) regarding the classification ac-
curacy and the time required to create the classifier.

We showed how to use our VBS tool to obtain per-flow, per-application, and per-content
statistics of traffic in computer networks. Furthermore, we created two datasets com-
posed of various applications, which can be used to assess the accuracy of different traffic
classification tools. The datasets contain full packet payloads and they are available to
the research community as a set of PCAP files and their per-flow description in the
corresponding text files. The included flows were labeled by VBS.

We also designed and implemented our own system for multilevel traffic classification,
which provides consistent results on all of the 6 levels: Ethernet, IP protocol, application,
behavior, content, and service provider. The Ethernet and IP protocol levels are iden-
tified directly based on the corresponding fields from the headers. The application and
behavior levels are assessed by a statistical classifier based on C5.0 Machine Learning
Algorithm. Finally, the content and service provider levels are identified based on IP
addresses. The system is able to deal with unknown traffic, leaving it unclassified on
all the levels, instead of assigning the traffic to the most fitting class. Our system was
implemented in Java and released as an open-source project.

Finally, we created a method for assessing the Quality of Service in computer networks.
The method relies on VBS clients installed on a representative group of users from
the particular network. The per-application traffic profiles obtained from the machines
belonging to the volunteers are used to train the C5.0 Machine Learning based tool to
recognize the selected applications in any point of the network. After the application is
being identified, the quality of the application session can be assessed. For that purpose,
we proposed a hybrid method based on both passive and active approaches. The passive
approach can be used to assess jitter, burstiness, download and upload speeds, while
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the active one is needed when we want to measure delay or packet loss.
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Resumé

Der er adskillige grunde til at foretage trafikovervågning og trafikanalyse: For at un-
dersøge hvordan netværksressourcerne anvendes, vurdere hvor godt forskellige applika-
tioner afvikles, justere Quality of Service (QoS) politikker i netværket, logge trafik
for at overholde lovgivning, eller indsamle data med henblik på at skabe realistiske
modeller for netværkstrafik. Vi definerer at målet med denne afhandling er at finde
en måde at vurdere hvor godt forskellige applikationer afvikles, i en højhastigheds
Internet infrastruktur. For at nå dette mål er det nødvendigt at besvare en række
forskningsspørgsmål, der primært omhandler teknikker til trafikklassificering som bruges
til næsten-realtidsbehandling af store mængder af data, uden at stille alt for store
krav til beregningsressourcer som CPU og hukommelse. Andre spørgsmål relaterer sig
til metoder til realtidsestimering af applikationernes Quality of Service (QoS) niveau
baseret på resultater opnået gennem trafikklassifikation. Denne afhandling fokuserer
især på emner i forbindelse med trafikklassifikation og analyse, hvorimod arbejdet
med metoder til QoS vurdering er afgrænset til at definere forbindelserne ved hjælp
af trafikklassifikation, og foreslå en generel algoritme.

Vi introducerede allerede kendte metoder til trafikklassifikation (portnumre på trans-
portlaget, Deep Packet Inspection (DPI) og statistisk klassifikation), og vurderede deres
brugbarhed på forskellige områder. Vi nåede frem til at klassfikationsteknikker baseret
på portnumre ikke længere er præcise, da mange mange applikationer bruger dynamiske
portnumre, mens DPI er relativt langsomt, kræver mange CPU ressourcer, og også
giver anledning til betænkelighed i forhold til sikring af privatliv og følsome data. Vi
viste at statistiske klassifikatorer baseret på Maskin Lærings Algoritmer (MLAs) er
både hurtige og præcise. Samtidig kræver de kun begrænsede ressourcer, og giver ikke
anledning til betænkeligheder i forhold til datahåndtering/privatliv. De kræver deri-
mode gode træningsdata. Vi gennemført grundige test af udbredte DPI klassifikatorer
(PACE, OpenDPI, L7-filter, nDPI, Libprotoident og NBAR) og vurderet deres brug-
barhed i forhold til at generere ground-truth, som kan bruges til klassfikation af data
for MLAs. Vores undersøgelser viste at de mest præcise klassifikatorer (PACE, nDPI og
Libprotoident) ikke giver konsistente output – resultaterne præsenteres i en blanding af
forskellige niveauer: Applikation, indhold, indholdscontainer, serviceudbyder, or trans-
portlagsprotokol. På den anden side giver L7-filter og NBAR konsekvent resultater på
applikationsniveau. Disse er imidlertid for upræcise til at kunne bruges til at generere
ground-truth. Vi bidrog også til det open-source samfund ved at forbedre nøjagtigheden
af nDPI og designe fremtidige forbedringer for at gøre klassificeringen konsekvent.
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Da de eksisterende metoder ikke er i stand til at generere korrekte træningsdata byggede
vi vores eget host-baserede system til indsamling og mærkning af netværksdata. Sys-
temet afhænger af frivillig, og kaldes derfor Volunteer-Based System (VBS). Klienter reg-
istrerer information om alle pakker der sendes gennem et hvilket som helst netværksin-
terface på maskine med VBS installeret. Disse pakker grupperes så i flows, og mærkes
med procesnavnet der fås fra system sockets. De detaljeres netværksflow-statistikker
giver et overblik over hvordan netværket anvendes. Desuden kan data indsamlet via
VBS bruges til at danne realistiske trafikprofiler for udvalgte applikationer, hvilket kan
anvendes som træningsdata for MLAs.

Vi vurderede brugbarheden af C5.0 Maskin Lærings Algoritmen (MLA) i forhold til
klassifikation af computernetværkstrafik. Vi viste at applikations-lag payload ikke er
nødvendigt for at træne C5.0 klassifikatoren for at kunne skelne mellem forskellige ap-
plikationer på en præcis måde. Statistik baseret på den information der er tilgængeligt
i headers og ud fra pakkestørrelser er helt tilstrækkeligt til at opnå en høj præcision.
Vi har også bidraget ved at definere klassifikationsattributter for C5.0, og ved at teste
forskellige klassifikationstilstande (decision trees, rulesets, boosting, softening thresh-
olds) i forhold til klassifikationspræcision og hvor lang tid det tager at generere klassi-
fikatoren.

Vi viste hvordan vores VBS værktøj kan bruges til at indsamle per-flow, per-applikation
og per-indhold statistik for trafik i computernetværk. Derudover har vi tilvejebragt to
datasæt bestående af forskellige applikationer, hvilket kan bruges til at vurdere præci-
sionen af forskellige trafikklassifikationsværktøjer. Disse datasæt indeholder komplette
pakker med payload, og er tilgængelige for forskere som PCAP filer, og deres per-flow
beskrivelser i tilhørende tekstfiler. De inkluderede flows er mærket med VBS.

Vi har også designet og implementeret vores eget system til multiniveau trafik klas-
sifikation, der giver konsistente resultater på alle 6 niveauer: Ethernet, IP protocol,
application, behavior, content og service provider. Niveauerne Ethernet og IP proto-
col er identificeret direkte baseret på de tilsvarende felter i headerne. Niveauerne ap-
plication og behavior er fastlagt af en statistisk klassifikator baseret på C5.0 Maskin
Lærings Algoritmen. Nivauerne content og service provider er identificeret på baggrund
af IP-adresser. Systemet er i stand til at håndtere ukendt trafik, og lade det forblive
uklassificeret på alle niveauer i stedet for at vælge den nærmeste klasse. Vores system
er implementeret i Java og frigivet som open-source projekt.

Vi har også udviklet en metode til at vurdere Quality of Service i computernetværk.
Denne metode bygger på VBS-klienter installeret ved en repræsentativ gruppe af brugere
på et specifikt netværk. De per-application trafikprofiler der fås fra de frivllige bruges
til at træne et C5.0 Maskin Lærings baseret værktøj, så det kan genkende de valgte
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applikationer et hvilket som helst sted i netværket. Efter applikationen er blevet iden-
tificeret kan kvaliteten af en applikations-session vurderes. Til det formål foreslår vi
en hybrid metode baseret på både aktive og passive tilgange. Den passive tilgang kan
bruges til at vurdere jitter, burstiness, download og upload hastigheder, mens den aktive
er nødvendig når vi vil måle forsinkelsestid og pakketab.
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Summary

1 Introduction
One of the most important challenges in today’s world is how to measure the perfor-
mance of computer network infrastructures, when different types of networks are merged
together. In the last few years, the data-oriented networks evolved into converged struc-
tures, in which real-time traffic, like voice calls or video conferences, is more and more
important. The structure is composed of traditional cable or more modern fiber links,
mobile and wireless networks. There are numerous methods for the measurement of
Quality of Service (QoS) in current use, which provide the measurements both on the
user side and in the core of the network. Internet Service Providers are interested in
centralized measurements and detecting problems with particular customers before the
customers start complaining about the problems, and if possible, before the problems
are even noticed by the customers.

Each network carries data for numerous different kinds of applications. QoS re-
quirements are dependent on the service. The main service-specific parameters are
bandwidth, delay, jitter, and packet loss. Therefore, in order to provide detailed infor-
mation about the quality level for the given service in the core of the network, we need
to know, what kind of data is flowing in the network at the present time. Processing
all the packets flowing in a high-speed network and examining their payload to get the
application name is a very hard task, involving large amounts of processing power and
storage capacity. Furthermore, numerous privacy and confidentiality issues can arise.
A solution for this problem can be the use of Machine Learning Algorithms (MLAs),
which depend on previously generated decision rules based on some statistical informa-
tion about the traffic. In our research, we used one of the newest MLAs – C5.0. MLAs
need very precise training sets to learn how to accurately classify the data, so the first
issue to be solved was to find a way to collect high-quality training data.

In order to collect the necessary statistics and generate training sets for C5.0, a
new system was developed, in which the major role is performed by volunteers. Client
applications installed on their computers collect the detailed information about each
flow passing through the network interface, together with the application name taken
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from the description of system sockets. The information about each packet belonging
to the flow is also collected. Our volunteer-based system guarantees obtaining of precise
and detailed datasets, which can be successfully used to generate statistics used as the
input to train MLAs and to generate accurate decision rules.

In the thesis, we also show an alternative strategy of traffic identification. We intro-
duce nDPI, a high-performance traffic classification tool based on Deep Packet Inspec-
tion (DPI), for which we proposed numerous improvements, making it the only DPI
tool able to consistently label the data.

The summary part of this thesis is structured as follows. At first, we introduce our
research objective and methodology in Section 2. Then, in Section 4, we present the
questions, which we needed to answer in order to achieve the final objective. Main
contributions are described in in Section 3, while Section 5 summarizes the contents
of each paper included in this thesis. In Section 6, we synthesize the impact of our
research on the scientific community and our collaboration partners and in Section 7,
we describe the potential of the future work to be done in the field of traffic analysis
and classification.

2 Research Objective and Methodology
The research objective of this thesis can be defined as finding a way to evaluate the
performance of applications in a high-speed Internet infrastructure. To satisfy the ob-
jective, we needed to answer a number of research questions. The biggest extent of
them concern techniques for traffic classification, which can be used for nearly real-
time processing of big amounts of data using affordable CPU and memory resources.
Other questions are about methods for real-time estimation of the application Quality
of Service (QoS) level based on the results obtained by the traffic classifier. This thesis
is focused on topics connected with traffic classification and analysis, while the work
on methods for QoS assessment is limited to defining the connections with the traffic
classification and proposing a general algorithm.

There are 2 main methods to deal with research questions: analytical and experi-
mental. The first one focuses on the mathematical approach to illustrate the questioned
problem as a set of equations and formulas, while the second one uses simulation tech-
niques or experiments based on the real data. However, it is very difficult to create a
model, which includes all the existing parameters so it behaves like the real-life scenario.
Therefore, the functionality of such models is quite limited. Simulations allow to test
non-complex scenarios in a research environment, which is easier and faster than creat-
ing a mathematical model. However, the particular parts of the simulators are created
with different precision, so in many cases not all of the actual properties are reflected by
the simulator. This thesis in its entire whole relies on the last approach – experiments
based on real data. That was made possible due to our collaboration with Bredbånd
Nord, a Danish provider of fiber-based Internet connections. Studies performed on real
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data are characterized by high diversity of the situations reflected by the data, high
accuracy, and possibilities to analyze the information, which are not accessible in any
other way. Such information includes IP addresses or HTTP headers. All the results
presented in the attached papers were generated by performing experiments using real-
life scenarios. Thanks to that, they are characterized by high significance for a practical
appliance.

3 Main Contributions
This thesis contains several contributions, which are mostly distributed among the re-
search papers. The main contributions are summarized below:

1. We designed, developed, and evaluated a host-based traffic monitoring tool, called
Volunteer-Based System (VBS). This contribution is presented in Paper I. The
system is an extension of the already existing Volunteer-based Distributed Traffic
Data Collection System developed at Aalborg University during the previous years
[1, 2]. It consists of clients installed on computers belonging to volunteers and
of a server. The client registers the information about all the packets transferred
through any network interface of the machine on which it is installed. The packets
are grouped into flows based on 5-tuple: local and remote IP addresses, local and
remote ports, and the transport layer protocol. Additionally, the process name
obtained from the system sockets is registered and collected together with other
information about the flow. Detailed information about each packet is collected
as well: direction, size, state of the TCP flags, and timestamp. For the privacy
reasons, the normal version of VBS does not collect the actual application-layer
payload. However, another version of the system was developed and shown in
Paper VII and Paper IX, where the full Ethernet frame is collected as well. VBS
is a tool, which can be used for numerous useful tasks distributed among the
research community and the industry:

• The detailed statistics about the network flows give an overview how the
network is utilized. That knowledge allows to better allocate the available
bandwidth (by creating or improving the Quality of Service policies in the
network), tune the network parameters on routers and switches, or to cre-
ate special facilities for particular application or services (as proxy or cache
servers, local DNS servers).
• Users located in the same network can be compared and assigned to specific
profiles, e.g. VoIP users, heavy downloaders, etc. The users can be directly
targeted by recommending special Internet packages by their ISPs, as a low-
latency one, but also low-throughput connection, or unlimited download rates
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at night. Assigning these users to separate VLANs allows to control the traffic
in a more efficient way, when one user does not interfere with another one.

• The data collected by VBS can be used to create realistic traffic profiles
of the selected applications. They can be used to build application traffic
generators, where the characteristics of the generated traffic match the real
characteristics of the simulated applications.

• Collected HTTP flows are also marked by the type of the content, which they
carry. This information can be used to discover the most often transferred
type of traffic (as audio, video, other binary files, websites) from the particular
hosts, and to improve the user’s experience by tweaking the network settings.

• The traffic profiles can be used as the ground-truth for testing and building
new network traffic classifiers. A special version of VBS, which collects full
Ethernet frames, can be also used to evaluate the accuracy of Deep Packet
Inspection classification tools.

2. We created a method for assessing the Quality of Service in computer networks.
This contribution is presented in Paper III. The method relies on VBS clients
installed on a representative group of users from the particular network. The
per-application traffic profiles obtained from the machines belonging to the vol-
unteers are used to train the C5.0 Machine Learning based tool to recognize the
selected applications in any point of the network. The tool uses only attributes
based on packet headers or some statistical parameters (as packet sizes), so there
is no problem with users’ privacy issues due to the inspection of the traffic. After
the application is being identified, the quality of the application session can be
assessed. For that purpose, we proposed a hybrid method based on both passive
and active approaches. The passive approach can be used to assess jitter, bursti-
ness, download and upload speeds, while the active one is needed when we want
to measure delay or packet loss.

3. We assessed the usefulness of C5.0 Machine Learning Algorithm (MLA) in the
classification of computer network traffic. This contribution is shown in Paper II
and Paper IV. MLAs require good quality training data in order to be able to
create accurate classification rules. Therefore, as the source of the training data,
we used the information collected by VBS. The particular contributions associated
with C5.0 classification are pointed out below:

• In both papers, we showed that the application-layer payload is not needed
to train the C5.0 classifier to be able to distinguish different applications in
an accurate way. Statistics based on the information accessible in the headers
and the packet sizes are fully sufficient to obtain high accuracy.
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• In Paper II, the method was shown to reach 99.9% accuracy while recognizing
the traffic belonging to 7 different groups: Skype, FTP, BitTorrent, web
browsing, web radio, interactive gaming, and SSH. In Paper IV, the method
was shown to reach around 83% accuracy while recognizing various types of
content transported by HTTP.
• In both papers, we contributed by defining the sets of classification attributes
for C5.0.
• In Paper II, we tested various classification modes (decision trees, rulesets,
boosting, softening thresholds) regarding the classification accuracy and the
time required to create the classifier.
• In Paper II, we also assessed the dependency between the number of training
cases and the classification accuracy by C5.0.
• In Paper II, we showed how the number of packets in the sample from which
the statistics are calculated influences the classification accuracy.
• In Paper IV, we showed how the information from the content-type field
in HTTP headers can be used to split the transport-layer flows into parts
transporting different files.
• In Paper IV, we compared statistical profiles of flows transmitting different
types of HTTP contents. We showed that the profiles do not depend on the
type of the transmitted content, but on the particular application or web
service. We demonstrated that there is no difference between the profiles of
transfers of video files (f.x. from YouTube) and transfer of other big binary
files (as ZIPs) by HTTP and, therefore, different content types cannot be
distinguished based on the statistical attributes. However, the paper shows
that we can identify the content if it is associated with a particular protocol
or behavior, as for example we can recognize video streaming (by RTMP
protocol) or audio streaming (by both RTMP and HTTP).

4. We showed how to obtain per-flow, per-application, and per-content statistics of
traffic in computer networks. This contribution is shown in Paper V and Paper VI.
Specifically:

• In Paper V, our VBS was used to obtain overall and per-user statistics based
on flows. We showed the distribution of TCP and UDP flows, average lengths
and durations of TCP and UDP flows, and the distribution of flows belonging
to top 5 applications. Finally, the cumulative number of flows for each user
over the time was shown on the graph to provide the overview of the users’
network activity during several months.
• In Paper VI, we extended our research by including statistics regarding the
traffic volume. It enabled us to compare the number of flows and their
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distribution with the corresponding amount of data for all monitored users
altogether and for each user separately.

• In Paper VI, statistics regarding transferred files by HTTP were included
in our evaluation. Therefore, we identified the most common types of files
transferred by HTTP and presented which share of the overall HTTP traffic
they represent.

• In Paper VI, we showed how by the monitoring of download and upload rates
we can identify users, which have asymmetric Internet connections.

5. We created two datasets composed of different applications, which can be used to
assess the accuracy of different traffic classification tools. The datasets contain
full packet payloads and they are available to the research community as a set
of PCAP files and their per-flow description in the corresponding text files. The
included flows were labeled by VBS. Specifically:

• The first dataset, shown in Paper VII, contains 1 262 022 flows, where 490 355
flows were labeled with the following applications and protocols: eDonkey,
BitTorrent, FTP, DNS, NTP, RDP, NETBIOS, SSH, HTTP, and RTMP; the
rest flows were left unlabeled.

• The second dataset, shown in Paper IX, contains 767 690 flows labeled on
a multidimensional level. The flows can be associated with one or more of
17 application protocols, 19 applications (also various configurations of the
same application), and 34 web services. The included application protocols
are: DNS, HTTP, ICMP, IMAP (STARTTLS and TLS), NETBIOS (name
service and session service), SAMBA, NTP, POP3 (plain and TLS), RTMP,
SMTP (plain and TLS), SOCKSv5, SSH, and Webdav. The included appli-
cations (and their configurations) are: 4Shared, America’s Army, BitTorrent
clients (plain and encrypted modes), Dropbox, eMule clients (plain and ob-
fuscated modes), Freenet, FTP clients (active and passive modes), iTunes,
League of Legends, Pando Media Booster, PPLive, PPStream, RDP, Skype
(including audio conversations, file transfers, video conversations), Sopcast,
Spotify, Steam, TOR, and World of Warcraft. The included web services
are: 4Shared, Amazon, Apple, Ask, Bing, Blogspot, CNN, Craigslist, Cy-
world, Doubleclick, eBay, Facebook, Go.com, Google, Instagram, Justin.tv,
LinkedIn, Mediafire, MSN, Myspace, Pinterest, Putlocker, QQ.com, Taobao,
The Huffington Post, Tumblr, Twitter, Vimeo, VK.com, Wikipedia, Windows
Live, Wordpress, Yahoo, and YouTube.

6. We evaluated the ability of several Deep Packet Inspection tools (PACE, OpenDPI,
L7-filter, nDPI, Libprotoident, and NBAR) to label flows in order to create datasets
serving as a ground-truth for the subsequent evaluation of various traffic classifi-
cation tools. This contribution is shown in Paper VII. Specifically:
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• We showed that PACE achieves the best classification accuracy from all the
tested tools, while the best performing open-source classifiers are nDPI and
Libprotoident. L7-filter and NBAR, however, should not be considered as
reliable tools.
• We described the methodology of testing Cisco NBAR, which is difficult to
evaluate, because it works only on Cisco devices. Therefore, we presented
how to re-play the collected packets from PCAP files back to the network in
a way that the router is able to inspect them. Resolving that issue involved
re-writing destination MAC addresses of each packet, as Cisco routers do
not support the promiscuous mode. Additionally, the packets needed to be
labeled by the identifier of the flow to which they belong. For this purpose, we
used the source MAC addresses of the packets, which were re-written in order
to contain the encoded flow identifier. We also described how to configure the
Cisco router to inspect the traffic by NBAR with Flexible NetFlow, which is
able to generate per-flow records. Finally, we showed how to capture NetFlow
records from the router, configure the software for inspecting the NetFlow
records, and generate a readable output.

7. We designed, developed, and evaluated a multilevel traffic classifier. This contri-
bution is presented in Paper VIII. Specifically:

• The classification is performed on six levels: Ethernet, IP protocol, applica-
tion, behavior, content, and service provider.
• The Ethernet and IP protocol levels are identified directly based on the cor-
responding fields from the headers (EtherType in Ethernet frames and Type
in IP packet).
• The application and behavior levels are assessed by a statistical classifier
based on C5.0 Machine Learning Algorithm.
• Finally, the content and service provider levels are identified based on IP
addresses.
• The system is able to deal with unknown traffic, leaving it unclassified on all
the levels, instead of assigning the traffic to the most fitting class.
• The training data for the statistical classifier and the mappings between the
different types of content and the IP addresses are created based on the
data collected by Volunteer-Based System, while the mappings between the
different service providers and the IP addresses are created based on the
captured DNS replies.
• Support for the following applications is built into the system: America’s
Army, BitTorrent, DHCP, DNS, various file downloaders, eDonkey, FTP,
HTTP, HTTPS, NETBIOS, NTP, RDP, RTMP, Skype, SSH, and Telnet.
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• Within each application group we identify a number of behaviors – for ex-
ample, for HTTP, we selected file transfer, web browsing, web radio, and
unknown.

• Our system built based on the method provides also traffic accounting and
it was tested on 2 datasets created by VBS.

• The design and the detailed implementation steps are described.
• Our system was implemented in Java and released as an open-source project.
• Finally, the accuracy of the classification on the application level by our sys-
tem was compared with the accuracy given by several Deep Packet Inspection
tools (PACE, OpenDPI, L7-filter, nDPI, Libprotoident, and NBAR) on the 2
datasets. We showed that our system outperforms other classifiers regarding
the applications, which it supports.

8. We developed a method for labeling non-HTTP flows, which belong to web services
(as YouTube). Classically, labeling was done based on the corresponding domain
names taken from the HTTP header. However, that could allow to identify only
the HTTP flows. Other flows (as encrypted SSL / HTTPS flows, RTMP flows)
were left unlabeled. Therefore, we implemented a heuristic method for detection
of non-HTTP flows, which belong to the specific services. To be recognized as
a non-HTTP web flow, the application name associated with the flow should be
the name of the web browser (as chrome), a name of a web browser plugin (as
plugin-container, flashgcplay), or the name should be missing. Then, we looked at
the HTTP flows, which were originated from 2 minutes before to 2 minutes after
the non-HTTP web flow. If all the corresponding (originated from the same local
machine and reaching the same remote host) HTTP flows had a web service label
assigned, and the service label was the same for all of the flows, the non-HTTP
flow obtained the same web service label. That allows us to test how the classifiers
identify encrypted and other non-HTTP traffic belonging to various web services.
This contribution is shown in Paper IX.

9. We directly compared the ability of several DPI tools (PACE, OpenDPI, two con-
figurations of L7-filter, nDPI, Libprotoident, and NBAR) to classify 17 application
protocols, 19 applications (also various configurations of the same application),
and 34 web services on a dataset of 767 690 labeled flows. This contribution is
shown in Paper IX. Specifically:

• The evaluated application protocols are: DNS, HTTP, ICMP, IMAP (START-
TLS and TLS), NETBIOS (name service and session service), SAMBA, NTP,
POP3 (plain and TLS), RTMP, SMTP (plain and TLS), SOCKSv5, SSH, and
Webdav.
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• The evaluated applications (and their configurations) are: 4Shared, Amer-
ica’s Army, BitTorrent clients (using plain and encrypted BitTorrent pro-
tocol), Dropbox, eDonkey clients (using plain and obfuscated eDonkey pro-
tocol), Freenet, FTP clients (in active and passive modes), iTunes, League
of Legends, Pando Media Booster, PPLive, PPStream, RDP clients, Skype
(including audio conversations, file transfers, video conversations), Sopcast,
Spotify, Steam, TOR, and World of Warcraft.
• The evaluated web services are: 4Shared, Amazon, Apple, Ask, Bing, Blogspot,
CNN, Craigslist, Cyworld, Doubleclick, eBay, Facebook, Go.com, Google,
Instagram, Justin.tv, LinkedIn, Mediafire, MSN, Myspace, Pinterest, Put-
locker, QQ.com, Taobao, The Huffington Post, Tumblr, Twitter, Vimeo,
VK.com, Wikipedia, Windows Live, Wordpress, Yahoo, and YouTube. We
showed that PACE is able to identify the highest number of various web
services among all the studied classifiers. PACE detected 16 web services,
nDPI 10, OpenDPI 2, L7-filter in its default version only 1, Libprotoident
1, and NBAR none. We have also shown that L7-filter is characterized by
a very high number of misclassified flows belonging to web services (usually
80–99%) – the flows were recognized in a vast majority as Finger and Skype.
• We evaluated the impact of flow or packet truncation on the detection rate by
the particular classifiers. We tested the classifiers on 3 sets of data: containing
full flows with entire packets, with truncated packets (the Ethernet frames
were overwritten by 0s after the 70th byte), and with truncated flows (we
took only 10 first packets for each flow).
• We evaluated the impact of protocol encryption or obfuscation on the detec-
tion rate by the particular classifiers. Protocol encryption made the detection
rate lower in all the cases, while we did not see such dependency while us-
ing obfuscated eDonkey protocol – in this case, PACE demonstrated even
increased detection rate from 16.50% (for plain traffic) to 36.00%.
• We showed that only PACE is able to identify accurately some applications,
which are supposed to be hard to detect, as Freenet or TOR.

10. We showed the design, implementation, and validation of the nDPI traffic classifier.
This contribution is presented in Paper X. Specifically:

• We presented the background and motivations for creating the classifier.
• nDPI is compared with its predecessor – the OpenDPI library.
• The current design and implementation of the classifier is described in detail,
including the way how the encrypted traffic is handled.
• After implementing support for new applications, the classifier was validated
against 31 popular protocols and applications, and 7 commonly used web
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services. We showed that the classifier in the current version is characterized
by high accuracy and a very low rate of misclassified flows (for most classes
less than 1%).

• We demonstrated that the test application using nDPI processes packets at
an average speed of 3.5Mpps / 8.85Gbps using a single core CPU and a
PCAP file as the packet source.

• We proposed future enhancements, which make the nDPI classifier consistent.
Most of them were already implemented, which resulted in creating nDPIng.
More about this project can be read in Section 7.1.

3.1 Bredbånd Nord
Bredbånd Nord A/S1, a regional fiber networks provider, was our collaboration partner
throughout the PhD study. The initial objective of our collaboration was to develop
a solution for assessing the Quality of Service and Quality of User Experience in the
network belonging to the company. For us, the collaboration benefits included the access
to real network data and real production environment, which were supposed to result in
the development of an accurate monitoring solution. Our research and the performed
measurements were going to be subsequently used to improve the performance of the
network and to prove to the users that the quality of their connection is fulfilling the
agreement.

The first part of our collaboration was focused on the development of the Volunteer-
Based System (VBS). The network users selected by the company agreed to participate
in testing the software and volunteered by giving us access to their network data. That
allowed us to harden VBS by eliminating the detected bugs and to collect data from
various users, which use the network in a different way. These data were used by us
in the next phases of the PhD project, for example, as the input for training statistical
classifiers based on Machine Learning Algorithms (MLAs), for investigating behaviors
of various applications, or as the source of IP addresses associated with different kinds
of files transmitted by HTTP. The company obtained a host-based traffic monitoring
solution, which could be used for many purposes. The detailed statistics about the
network flows give an overview how the network is utilized. That knowledge allows to
better allocate the available bandwidth (by creating or improving the Quality of Service
policies in the network), tune the network parameters on routers and switches, or to
create special facilities for particular application or services (as proxy or cache servers,
local DNS servers). Users located in the same network can be compared and assigned
to specific profiles, e.g. VoIP users, heavy downloaders, etc. The users can be directly
targeted by recommending special Internet packages by their ISPs, as a low-latency one,
but also low-throughput connection, or unlimited download rates at night. Assigning

1See http://www.bredbaandnord.dk/

http://www.bredbaandnord.dk/
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these users to separate VLANs allows to control the traffic in a more efficient way, when
one user does not interfere with another one.

The second part of our collaboration was focused on the development of a traffic
accounting solution, which would be able to provide an overview how the network is
utilized. The solution needed to work in a central point in the network, be able to
process the traffic at speeds reaching 10Gbit/s, and was not allowed to compromise
users’ privacy. We contributed by designing and development of a traffic classifier, which
is able to classify the traffic in a consistent manner on all 6 levels: Ethernet, IP protocol,
application, behavior, content, and service provider. The Ethernet and IP protocol levels
are identified directly based on the corresponding fields from the headers (EtherType
in Ethernet frames and Type in IP packet). The application and behavior levels are
assessed by a statistical classifier based on C5.0 Machine Learning Algorithm. To train
C5.0, we used the data collected by VBS. Finally, the content and service provider levels
are identified based on IP addresses. Bredbånd Nord contributed by giving us access
to anonymized one-week traces of the DNS traffic in their network. Thanks to that,
we were able to obtain the mappings between the queried domain names and the IP
addresses as well as the number of queries for the particular domain. Our system was
implemented in Java and released as an open-source project, which is our contribution
to the scientific community.

4 State of the Art and Research Questions
This section enumerates and explains the research questions, which needed to be an-
swered in order to achieve the objective. It introduces the relationship between them,
our contributions, and the scientific papers included in the thesis. That also positions
our work to the state of the art.

4.1 Traffic Classification
Each network application and service has different requirements according to bandwidth,
delay, jitter, packet loss, burstiness, and other network parameters. Therefore, in order
to assess the quality of the particular session, we need to know what application or
service is associated with the examined network flow. To assess the quality in real-time,
the involved traffic classification techniques must fulfill some important requirements,
which cause numerous questions:

Q: How to classify the traffic in high-speed networks in real-time, maintaining afford-
able level of allocated resources (CPU, memory usage, bandwidth supported by
the network interfaces and the mainboard)?

A: To be classified, the traffic in computer networks must be logically grouped into
entities, which represent the packets being transferred between two end points.
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The already existing methods for traffic classification usually use for this purpose
transport-layer flows, defined as groups of packets, which have the same end IP
addresses, ports, and use the same transport layer protocol. Flows can be treated
as unidirectional or bidirectional – in the latter case the packets going from the
local to the remote host and from the remote to the local host are treated as a
part of the same flow.
000The first and the easiest solution for the classification of computer traffic is
to use transport protocol port numbers [3, 4]. This method is shown to have
numerous advantages: it is very fast, low-resource consuming, support for it is
implemented by many network devices and it does not inspect the application
payload, so it does not compromise users’ privacy. However, it is useful only to
detect protocols and applications, which use fixed port numbers. P2P applications
(including Skype) or FTP data flows cannot be recognized by this method [5–7].
Some applications also can try to use well-known port numbers in order to cheat
the security policies in the network.
000Deep Packet Inspection (DPI) was designed to address the drawbacks of the
classification based on port numbers. Inspecting the actual packet payload makes
able to detect applications and services regardless of the port numbers or other
values stored in packet headers. However, the existing DPI tools also have numer-
ous drawbacks. At first, they are not able to accurately classify traffic belonging to
some applications, as Skype. The reason is that some applications do not have any
clear patterns, so the detection is based on the statistical analysis, for example,
one of the most commonly used DPI classifier l7-filter (proposed in [8]) is shown
to produce a lot of false positives and false negatives [9]. Moreover, the DPI clas-
sification is quite slow and requires a lot of processing power [5, 6]. Application
signatures for every application must be created outside the system and kept up
to date [5], which can be problematic. Encryption techniques in many cases make
DPI impossible.
000Statistical classification of computer network traffic usually relies on Machine
Learning Algorithms, as K-Means, Naive Bayes Filter, C4.5, J48, or Random
Forests. They can be used in any point of the network, providing very fast statis-
tical detection of the application, to which the traffic belongs. Achievable detection
rate correctness is over 95% [3–5, 7, 8, 10–12]. It was demonstrated in [5] that all
the P2P applications behave similarly, so it is possible to use statistical analysis
to detect even unknown applications.
000Therefore, we can conclude that according to our studies, statistical methods
are the best choice for the real-time classification of traffic in computer networks,
while maintaining affordable resource usage.

Q: How to ensure the privacy and confidentiality of the inspected data, and how to
conform with the legal terms in the country?
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A: We need to avoid performing Deep Packet Inspection in the network as it relies
on inspecting the user data and therefore privacy and confidentiality issues can
appear [5]. Additionally, DPI is illegal in some countries.

Q: How to perform the classification in a way that it would appear as transparent to
the network and its users?

A: A good classification method should be non-visible to the network and its users,
which means that it must not influence the performance of the network and the
services, which are provided to the users. Again, the statistical classification is
the best method regarding these conditions, as it does not slow-down the network,
while it provides accurate results.

Q: How to classify the traffic in a consistent manner, i.e. the results should reveal
the application, which generated the flow, its content, or a web service provider?
However, it is not acceptable to obtain a mix of results on various levels for each
flow.

A: All the classification methods described above have one thing in common: they are
not able to identify the traffic on multiple levels in a consistent manner. The port-
based classification usually gives the name of the application protocol. The results
provided by the DPI tools are usually a mix of application names, content names,
and service provider names. For some flows only the application is identified (as
HTTP, BitTorrent, or Skype), for others only the content (as audio, video) or
content container (as Flash), for yet others only the service provider (as Facebook,
YouTube, or Google). Machine Learning based tools are not easily able to detect
the content carried by the traffic or its service provider.
000To overcome the drawbacks of already existing methods, we developed a novel
hybrid method shown in Paper VIII to provide accurate identification of computer
network traffic on six levels: Ethernet, IP protocol, application, behavior, content,
and service provider. The Ethernet and IP protocol levels are identified directly
based on the corresponding fields from the headers (EtherType in Ethernet frames
and Type in IP packet). The application and behavior levels are assessed by a
statistical classifier based on C5.0 Machine Learning Algorithm. Finally, content
and service provider levels are identified based on IP addresses. The training
data for the statistical classifier and the mappings between the different types of
content and the IP addresses are created based on the data collected by a host-
based traffic monitoring system, while the mappings between the different service
providers and the IP addresses are created based on the captured DNS replies.
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4.2 Machine Learning Algorithms
The previous point led to the conclusion that the traffic classification must be done using
the information taken from the packet headers, which is used directly (as Ethernet or
IP protocol) or to generate relevant statistics. Statistical classification methods usually
involve the usage of Machine Learning Algorithms (MLAs). That creates a new bunch
of questions to answer:

Q: Which MLA is the best one for traffic classification?

A: Several tries were made to classify accurately P2P and Skype traffic using older
implementations of MLAs, like REPTree, C4.5, or J48. In [5], the authors pro-
posed few simple algorithms based on REPTree and C4.5, which were shown to be
able to classify P2P traffic using the first 5 packets of the flow. Their method based
on C4.5 performed highly accurately (97% of P2P traffic was classified properly),
but the accuracy was not tested when starting packets from the flow were not in
possession.
000Another approach to classify P2P applications was taken in [6] using a Java
implementation of C4.5 called J48 to distinguish between 5 different applications.
The authors tried to skip a number of packets in the beginning of the flow ranging
from 10 to 1000 and they obtained only a little fluctuation in performance, with
classification accuracy over 96%. It was shown in [13] that the original C4.5 and
J48 perform much different on relatively small or noisy data sets (accuracy of
J48 and C5.0 was in tested cases similar, and worse than C4.5). J48 processing
using statistics based on sizes was implemented in [14] for detection of BitTorrent
and FTP traffic, reaching an accuracy of around 98%. This publication showed
that behavior of data parameters contained in encrypted and unencrypted traffic
generated by the same application looks almost the same. Moreover, it was shown
that zero-payload packets (ACK) can distort statistics based on sizes.
000In [15], different algorithms of classification of the network traffic were evalu-
ated, including C5.0. The achieved accuracy was around 88–97% on traffic be-
longing to 14 different application classes. The loss in the classification accuracy
was probably partly due to preparing both training and test cases, where the de-
cision attribute (application name) was obtained by DPI tools (PACE, OpenDPI,
and L7-filter). These DPI solutions use multiple methods (including statistical
analysis) to obtain the application name. Therefore, both training and test data
were in some degrees inaccurate, what caused also more errors from the side of
C5.0.
000Based on the state of the art, we assessed that C5.0 is the most suitable tool
for our purposes, as the successor of C4.5 and J48, which are the most common
MLAs successfully used for the traffic classification problem.



4. State of the Art and Research Questions 15

Q: How should the C5.0 MLA be configured to perform the best?

A: In Paper II, we have tested various configurations of how C5.0 creates the decision
model and classifies the subsequent cases: decision trees, rules, boosting, and
softening thresholds. The test was performed on a dataset containing 93 572 cases
composed of 7 different traffic groups: Skype, FTP, BitTorrent, web except web
radio, web radio, games, and SSH. The lowest error rate of 0.1% was achieved by
using the boosted classifier, comparing to 0.4% error rate when using the standard
classification without any options. However, creating the boosted classifier took
around 10 times more time than creating the standard classifier. Furthermore,
our research demonstrated that creating the rules instead of decision trees, or
using softened thresholds had no or only a little impact on the error rate, while it
extended dramatically the time used for constructing the classifier. Concluding,
C5.0 should be left with its default configuration (decision trees), or configured to
create a boosted classifier.

Q: How to obtain high-quality training data for C5.0?

A: All the MLAs require a significant amount of training data for the initial learning.
The precision of the future classification by MLAs depends heavily on quality of
the training data. Most papers show that researchers usually obtain their ground-
truth through port-based or DPI-based techniques [12, 16–20]. The poor reliability
of port-based techniques is already well known, given the use of dynamic ports or
well-known ports of other applications [21–23]. Although the reliability of DPI-
based techniques is still unknown, according to conventional wisdom they are, in
principle, one of the most accurate techniques.
000The use of private datasets is derived from the lack of publicly available
datasets with payload. Mainly because of privacy issues, researchers and practi-
tioners are often not allowed to share their datasets with the research community.
To the best of our knowledge, just one work has tackled this problem. Gringoli et
al. in [24] published anonymized traces without payload, but accurately labeled
using his proprietary system called GT.
000To address the problem with obtaining a good quality ground-truth, we decided
to create our own ground-truth generation system called Volunteer-Based System
(VBS), which is described in Paper I.

Q: How many and which classification attributes should we choose?

A: The choice of the classification attributes for computer network traffic is a chal-
lenging task, which we have addressed preliminarily in Paper II and in a modified,
updated version in Paper VIII. Generally, the selected parameters depend the pur-
pose, for which the traffic classification is performed. If it is done for a real-time
QoS monitoring (as in Paper II), we can inspect only parts of some selected flows
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from the network, which gives us other possibilities and challenges than traffic
classification for data accounting, which was shown in Paper VIII. However, in
both cases, we decided to rely on the parameters based on packet sizes, while
avoiding the usage of any time-based parameters (as flow duration or frame inter-
arrival time). The reason was that we assumed that flow characteristics based
on packet sizes within a network are independent of current conditions, contrary
to the flow characteristics based on time parameters (which change quickly dur-
ing e.g. congestion). Other attributes contain the transport layer protocol name,
remote port numbers, number of packets having selected set of TCP flags, or num-
ber of packets without any payload in the sample. The number of the attributes
for traffic classification is not so important as for clustering techniques, when it
must be kept on a relatively low level, as each new attribute prolongs the time of
constructing the cluster in an exponential way. However, it is important to avoid
including attributes that contain values specific only for a small number of cases
belonging to a particular class. That can result in overtraining the classifier – it
will be extremely good at recognizing the class of the training cases, while it will
not be able to identify a yet unknown case.

Q: How should the selected classification attributes be calculated for each flow? Do
we need to possess the entire flow, or is it enough to have just a number of packets?
If yes, how many packets, and from which part of the flow?

A: As shown in Paper II, it is enough to calculate the classification attributes for a
sample containing 5 consecutive packets to achieve the classification accuracy of
95% or more. The test was performed on a dataset containing cases composed
of 7 different traffic groups: Skype, FTP, BitTorrent, web except web radio, web
radio, games, and SSH. However, we showed that the accuracy can be significantly
improved (to above 99%), when the statistics are calculated based on 35 consec-
utive packets. Further increasing of the number of packets in the sample does not
increase the classification accuracy. It is worth mentioning that first few packets
in each flow can have different characteristics than the rest, so we decided to skip
first 10 packets in each flow from being included in the sample.

Q: How to handle flows, which belong to other categories than the ones selected by
us and trained by MLAs?

A: Generally, classifiers based on MLAs do not have any possibility to recognize
the class of the elements, if the class was not present among the training data.
Furthermore, such classifiers cannot leave any case as unknown – each case is
processed according to the decision tree and assigned to a class. A good example
can be a situation, when among the training data we have only 2 classes: DNS
and HTTP, and among 50 different classification attributes we have the transport
protocol name. Then, probably the classifier is going to construct the decision
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tree in a very simple way: All the cases, which are associated with TCP will be
assigned to the HTTP class, and all the cases, which are associated with UDP
will be assigned to the DNS class – in both cases regardless of other classification
attributes. If the generated decision tree will be used to classify a case originated
from BitTorrent traffic, it is going to be assigned to either DNS or HTTP class,
depending on the used transport layer protocol.
000This problem was addressed by us in Paper VIII, Section 3.1 on page 178. The
solution was to include selected cases, which do not fall into any of the tested
traffic classes, to the UNKNOWN class. Then, the classifier is able to distinguish
other kinds of traffic from the groups of traffic defined by us. The procedure of
selecting the proper cases to be included in the UNKNOWN class is described in
detail in the paper referenced above.

Q: Can we use MLAs to recognize the content transmitted by the flow, its behavior,
or the web service provider (for web flows)?

A: Normally, Ethernet, IP and TCP/UDP packet headers do not contain any infor-
mation about the content (as audio, video, etc) transported by the flow, or about
the web service provider (as Yahoo, Facebook), with which the flow is associated.
In some cases, these information can be extracted from HTTP headers, which can
be considered as a DPI technique. Therefore, MLAs are not the best solution
for determining such flow characteristics, but they can be recognized with high
probability based on the IP addresses – an example of a such solution is shown
in Paper VIII. However, the behavior of a flow (as streaming, web browsing, bulk
download) influences directly its classification arguments, as packet sizes, distri-
bution of packets without payload or with certain TCP flags, upload to download
ratio, etc. So, in this case, MLAs do a good job.

4.3 Ground-Truth for MLAs
We emphasized that it is almost impossible to use already pre-classified data (as public
network traces) as the training data for MLAs, nor use DPI tools or other classification
tools to pre-classify the data generated by us. Therefore, we were challenged by many
new questions:

Q: How to label the collected network flows, so they can be used as the training data
for MLAs?

A: A good solution for obtaining accurate training data can rely on collecting the
flows at the user side along with the name of the associated application. We did
that by using our Volunteer-Based System (VBS). The basic idea and design of
the system was described in [1] and our current implementation in Paper I. The
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system consists of clients installed on users’ computers, and a server responsible
for storing the collected data. The task of the client is to register the information
about each flow passing the Network Interface Card (NIC), with the exception of
traffic to and from the local subnet, to prevent capturing transfers between local
peers.

Q: Which information should we collect about the network flows?

A: In order to calculate the statistics based on the header information and packet
sizes, we need to collect both the information, which is common for the flow, and
the information, which is specific for each packet. In case of our VBS, the following
attributes of the flow are captured: start and end time of the flow, number of
packets contained by the flow, local and remote IP addresses, local and remote
ports, transport layer protocol, name of the application, and identifier of the client
associated with the flow. The client also collects information about all the packets
associated with each flow: direction, size, TCP flags, and relative timestamp to
the previous packet in the flow. One transport-layer flow can contain multiple
application-layer streams of HTTP data, and each of them can carry different
kinds of content, such as audio or video. For that reason, packets belonging to
flows which carry HTTP content require additional information to be collected.
Therefore, in this case, we additionally store the information about the content
type for each packet of the flow. In fact, the information about the content type
is present only in the first packet of the response made to an HTTP request. It
means that for each HTTP request we have one packet containing the information
about the content type, which allows us to logically split all the application-layer
HTTP streams.

Q: How to protect the users’ privacy?

A: Our VBS does not perform any type of DPI except the inspection of HTTP headers
to extract the value of the content-type field. All the other stored information
originates directly from IP or TCP/UDP headers or system sockets. To enforce
the users’ privacy, the IP addresses are processed by one-way hash function before
they are transmitted from the user’s computer to the server.

Q: Can we say anything about the content carried by the flows or the web service
providers? If yes, how can we use this information in our research?

A: We only can recognize the content transmitted by HTTP due to the presence of
the content-type field in HTTP headers.

Q: How can we distinguish between different kinds of data transmitted by the same
application?
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A: Well, it is possible only in some cases. At first, when the applications uses HTTP
to transfer different types of data. At second, when the application uses HTTP
together with another protocol, so we can at least separate HTTP. At third, we can
use the port numbers, if we know that the selected application uses the concrete
port numbers for the selected things.

4.4 DPI Tools in Ground-Truth Establishment
Many researchers use various DPI tools to pre-classify their data, which become the
input to train and test MLAs. As high-quality training data is crucial for our MLA-
based classification system, we needed to evaluate the use of DPI tools as a common
ground-truth establishment technique and answer several important questions:

Q: Which DPI tools are the best for establishing the ground-truth?

A: Some works tried to evaluate the accuracy of DPI-based techniques [18, 20, 25].
However, their results rely on a ground-truth generated by another DPI-based
tool [20], port-based technique [18], or a methodology of unknown reliability [25].
To the best of our knowledge, only [26] addressed this problem. Using a dataset
obtained by GT [24], the reliability of L7-filter and a port-based technique was
compared, showing that both techniques present severe problems to accurately
classify all the traffic.
000In Paper VII, we have compared the performance of six DPI tools (PACE,
OpenDPI, L7-filter, nDPI, Libprotoident, and NBAR), which are usually used for
the traffic classification. In order to make the study trustworthy, we have created
a dataset using VBS [27]. This tool associates the name of the process to each
flow making its labeling totally reliable. The dataset of more than 500K flows
contains traffic from popular applications like HTTP, eDonkey, BitTorrent, FTP,
DNS, NTP, RDP, NETBIOS, SSH, and RDP. The total amount of data properly
labeled is 32.61GB. We found that PACE is the best classifier. Even while we
were not using the last version of the software, PACE was able to properly classify
94% of our dataset. Surprisingly for us, Libprotoident achieves similar results,
although this tool only inspect the first four bytes of payload for each direction.
On the other hand, L7-filter and NBAR perform poorly in classifying the traffic
from our dataset.

Q: Considering the accuracy and the consistence of the given output by the DPI tools,
can we use them as an alternative to VBS?

A: As shown in Paper VIII, Section 6 (page 192), the most accurate classifiers (PACE,
nDPI, and Libprotoident) do not provide any consistent output – the results are
given on a mix of various levels: application, content, content container, service
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provider, or transport layer protocol. On the other hand, L7-filter and NBAR
provide results consistently on the application level, however, their accuracy is
too low to consider them as tools for generating the ground-truth. Therefore, the
currently available DPI tools are not an alternative for systems as VBS.

Q: How can we test the accuracy of Cisco Network-Based Application Recognition
(NBAR), which runs on Cisco hardware?

A: Preparing the data for NBAR classification is more complicated, since no infor-
mation describing the flows (as flow identifiers, start and end timestamps) can be
provided to the router. Therefore, the packets need to be extracted in a way that
allows the router to process and correctly group them into flows and label the
flows, so the output can be associated with the original flow. We achieved that by
changing both the source and destination MAC addresses during the extraction
process. The destination MAC address of every packet must match up with the
MAC address of the interface of the router, because the router cannot process any
packet which is not directed to its interface on the MAC layer. The source MAC
address was set up to contain the identifier of the flow to which it belongs, so the
flows were recognized by the router according to our demands.
000Classification by NBAR required us to set up a full working environment.
We used GNS3 – a graphical framework, which uses Dynamips to emulate our
Cisco hardware. We emulated the 7200 platform, since only for this platform
supported by GNS3 was available the newest version of Cisco IOS (version 15),
which contains Flexible NetFlow. The router was configured by us to use Flexible
NetFlow with NBAR on the created interface. Flexible NetFlow was set up to
create the flows taking into account the same parameters as are used to create
the flow by VBS. On the computer, we used tcpreplay to replay the PCAP files
to the router with the maximal speed, which did not cause packet loss. At the
same time, we used nfacctd, which is a part of PMACCT tools, to capture the
Flexible NetFlow records sent by the router to the computer. The records, which
contain the flow identifier (encoded as source MAC address) and the name of the
application recognized by NBAR, were saved into text log files. This process is
broadly elaborated in our technical report [28].
000To the best of our knowledge, our Paper VII is the first work to present a
scientific performance evaluation of NBAR.

4.5 DPI Tools in Direct Traffic Classification and Accounting
As we showed in the previous paragraphs, using MLAs in traffic classification and ac-
counting has many advantages, including high speed, low resource usage, and no privacy
concerns. However, many traffic classification and accounting system rely on DPI, so
we also tried to evaluate this approach. That raised several new questions, which were
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not covered by the general assessment of traffic classification tools in the beginning of
this section:

Q: Which DPI tool is most frequently evaluated in the scientific literature?

A: OpenDPI amounts for most of the publications [18, 25, 29–32].

Q: What is the accuracy of OpenDPI according to the scientific literature?

A: According to [29], the test performed by the European Networking Tester Center
(EANTC) in 2009 resulted in 99% of detection and accuracy for popular P2P
protocols by OpenDPI. The big amount of flows marked as unknown by OpenDPI
was confirmed in [30], where the authors made an effort to calculate various pa-
rameters for traffic originated from different applications: number of flows, data
volume, flow sizes, number of concurrent flows, and inter-arrival times. The study
was based on 3.297TB of packets collected during 14 days from an access network
for around 600 households. 80.1% of the flows, amounting for 64% of the traffic
volume, were marked as unknown by OpenDPI.
000In [29], the authors study the impact of per-packet payload sampling (i.e.,
packet truncation) and per-flow packet sampling (i.e., collect only the first pack-
ets of a flow) on the performance of OpenDPI. The results show that OpenDPI
is able to keep the accuracy higher than 90-99% with only the first 4-10 packets
of a flow. The impact by the per-packet payload sampling is considerably higher.
Their results use as ground-truth the dataset labeled by OpenDPI with no sam-
pling. Thus, the actual classification of the dataset is unknown and no possible
comparison with our work can be done.
000Similar work, performed by the same authors, is described in [31]. The goal was
to find out what is the suggested number of packets from each flow, which needs
to be inspected by OpenDPI in order to achieve good accuracy, while maintaining
a low computational cost. The focus was on Peer-to-Peer (P2P) protocols. The
test was performed on a 3GB randomly selected subset of flows from the data
collected at an access link of an institution over 3 days. The authors found that
inspecting only 10 packets from each flow lowered the classification abilities of
P2P flows by OpenDPI by just 0.85% comparing to the classification of full flows,
while saving more than 9% of time.

Q: Are there any studies regarding the accuracy of L7-filter?

A: In [25], the authors tested the accuracy of L7-filter and OpenDPI, and they also
built their own version of L7-filter with enhanced abilities of classification of the
UDP traffic. The data used in the experiment were collected by Wireshark, while
the applications were running in the background. The data were split into 27
traces, each for one application, where all the applications were supported by
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both L7-filter and OpenDPI. Other flows were removed from the dataset. How-
ever, they do not explain how they validate the process of the isolation of the
different applications. The obtained precision was 100% in all the cases (none of
the classification tools gave a false positive), while the recall deviated from 67%
for the standard L7-filter, through 74% for their own implementation of L7-filter,
and 87% for OpenDPI.

Q: What is the accuracy of Libprotoident according to the scientific literature?

A: In [20], the developers of Libprotoident evaluated the accuracy of the classification
of this tool and compared the results with OpenDPI, Nmap, and L7-filter. The
ground-truth was established by PACE, so only the flows recognized by PACE
were taken into account during the experiment. The accuracy was tested on
two datasets: one taken from the Auckland university network, and one from an
Internet Service Provider (ISP). On the first dataset, Libprotoident had the lowest
error rate of less than 1% (OpenDPI: 1.5%, L7-filter: 12.3%, Nmap: 48%.). On
the second dataset, Libprotoident achieved the error rate of 13.7%, while OpenDPI
23.3%, L7-filter 22%, and Nmap 68.9%. The authors claim that Libprotoident
identified 65% of BitTorrent traffic and nearly 100% of HTTP, SMTP, and SSL.

Q: What is the accuracy of NBAR according to the scientific literature?

A: To the best of our knowledge there are no accessible research studies or reports
about the accuracy of NBAR. However, an experiment was made to assess how
big amount of network traffic is classified by NBAR and L7-filter, and how big
amount of traffic is left as unknown [33]. The authors captured by Wireshark
all the packets flowing in a local network of an IT company during 1 hour. From
27 502 observed packets, 12.56% were reported as unknown by NBAR, and 30.44%
were reported as unknown by L7-filter.

Q: Where can I find even a broader evaluation of different DPI tools?

A: A very comprehensive review of different methods for traffic classification was
made in 2013 by Silvio Valenti et al. [16]. The authors refer to 68 different positions
in the literature and cover the topic from the basis to more advanced topics, mostly
dealing with Machine Learning Algorithms (MLAs).

Q: Can we use DPI tools for traffic accounting purposes?

A: As we mentioned before, the evaluated by us DPI tools either give consistent re-
sults on the application level of poor accuracy (L7-filter and NBAR) or provide
much better results in terms of accuracy, but not consistent on any level (PACE,
OpenDPI, nDPI, and Libprotoident). Traffic accounting relying on the classifica-
tion by tools characterized by poor accuracy is obviously highly discouraged. The



4. State of the Art and Research Questions 23

inconsistent results obtained from the remaining tools can be in some situations
acceptable, namely, when only a general view of the network usage is required.
However, the already discussed DPI classifiers are not able to deliver results, which
make us able to see what is the network usage by particular transport-layer proto-
cols (TCP, UDP), application-layer protocols (as SMTP, HTTP, or BitTorrent),
content (as audio or video), or web services (as Facebook or YouTube), as the mix
of results on different levels is returned. Therefore, the usefulness of the DPI tools
for traffic accounting purposes is limited to simple overview scenarios. However,
in Paper X, we proposed future enhancements, which make the nDPI classifier
consistent. Most of them were already implemented, which resulted in creating
nDPIng. More about this new project can be read in Section 7.1.

Q: Can we use DPI tools to recognize encrypted traffic from various applications?

A: Generally yes. In Paper IX, we performed an evaluation of the DPI tools (PACE,
OpenDPI, L7-filter, nDPI, Libprotoident, and NBAR) in recognizing several differ-
ent encrypted application protocols (as, IMAP-STARTTLS, IMAP-TLS, POP3-
TLS, SMTP-TLS, Webdav, and BitTorrent) and web services, which use SSL
connections (as Facebook or Google). Flows representing IMAP-STARTTLS were
detected 100% correctly, while IMAP-TLS was detected only by Libprotoident
and NBAR (the rest of the tools recognized these flows as regular SSL flows).
POP3-TLS and SMTP-TLS were detected by Libprotoident on 100% of flows,
while the other tools recognized these flows as regular SSL flows. Some flows
representing Webdav (3.51%) were detected only by PACE.
000Encrypted BitTorrent flows were identified most accurately by PACE, which
was able to recognize 78.68% of them. Libprotoident was able to identify 60.31%
of flows, nDPI 54.41%, L7-filter around 40.50% depending on the version, NBAR
1.29%, while OpenDPI only 0.27%. The unencrypted BitTorrent flows were very
well classified by all the tools. The best detection rate had PACE (99.87%), nDPI
(99.41%), Libprotoident (99.30%), while the worst had NBAR (77.84%).

Q: Are DPI tools capable of detecting protocols, which use obfuscation?

A: In Paper IX, we studied the ability of various DPI classifiers to identify the ob-
fuscated eDonkey protocol and we compared the results with the results from
evaluation of the plain eDonkey protocol. The best detection rate of the obfus-
cated flows had PACE (36.06%). Libprotoident, nDPI, and L7-filter could detect
around 11% of these flows. Other classifiers did not detect this protocol at all.
The highest rate of misclassifications we obtained from L7-filter (16.59%) as Fin-
ger, RTP, and Skype. However, the plain eDonkey protocol also was difficult to
identify. PACE achieved the detection rate of 16.50%, which was over 2 times
lower than regarding the obfuscated version of this protocol. Libprotoident and
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L7-filter also detected around 18% of flows, nDPI around 15.50%, while the other
classifiers did not maintain this ability (the number of correctly classified flows did
not exceed 3%). The biggest number of wrong classifications we obtained from
L7-filter (16.32%) as Finger, RTP, and Skype.

Q: How the DPI tools perform in recognizing applications, which are intentionally
difficult to identify?

A: There are several applications (as Freenet or TOR), which were created in order
to provide anonymity to their users and to allow the users to access the network
resources, which are not available in the particular place. That concerns, for
example, several applications and web services banned in China. Therefore, the
traffic generated by these applications is suspected to be difficult to identify as
belonging to these applications. In Paper IX, we assessed the ability of various
DPI tools to classify the traffic generated by these two applications. Freenet was
recognized only by PACE (79.26% of flows). The rest of the classifiers did not
identify this traffic and we observed a number of misclassifications: 20.00% as
Finger, Skype, and NTP by L7-filter, and 15.56% as RTP by NBAR. Regarding
TOR traffic, it was recognized accurately by PACE (85.95% of flows). nDPI and
Libprotoident detected 33.51% of flows, while the other tools were not able to
identify the traffic generated by TOR. The unclassified flows were usually marked
as SSL or HTTPS.

Q: Which DPI tools are the best in recognizing the web services?

A: In Paper IX, we performed the evaluation of various DPI tools regarding their
ability to discover flows belonging to 34 different web services. Specifically:

• PACE recognized 4Shared (84.69%), Amazon (58.97%), Apple (0.84%),
Blogspot (3.83%), eBay (67.97%), Facebook (80.79%), Google (10.79%), In-
stagram (88.89%), Linkedin (77.42%), Mediafire (30.30%), Myspace (100%),
QQ.com (32.14%), Twitter (71.18%), Windows Live (96.15%), Yahoo (54.70%),
and YouTube (81.97%). PACE did not have problems with recognizing SSL
flows belonging to these services, which means that PACE must use other
techniques than just looking directly into the packets to associate the flows
with the particular services. PACE was the classifier, which was able to
identify the highest number of various web services.

• OpenDPI recognized only Direct Download websites: 4Shared (83.67%) and
MediaFire (30.30%).

• L7-filter recognized only Apple (0.42%). L7-filter (especially L7-filter-all) is
characterized by a very high number of misclassified flows belonging to web
services (usually 80–99%). The flows were recognized in a vast majority as
Finger and Skype.



4. State of the Art and Research Questions 25

• nDPI recognized Amazon (83.89%), Apple (74.63%), Blogspot (4.68%),
Doubleclick (85.92%), eBay (72.24%), Facebook (80.14%), Google (82.39%),
Yahoo (83.16%), Wikipedia (68.96%), and YouTube (82.16%) being the sec-
ond best technique on this level.
• Libprotoident recognized only Yahoo (2.36%). This result is understandable
given that Libprotoident only uses the first 4 bytes of packet payload to
classify a flow, making considerably more difficult a specific classification as
web service.
• NBAR did not recognize any web services.

Q: What is the impact of packet or flow truncation on the traffic classification?

A: We showed in Paper IX that the impact or flow or packet truncation is highly
dependent on the classifier. We tested the classifiers on 3 sets of data: containing
full flows with entire packets, with truncated packets (the Ethernet frames were
overwritten by 0s after the 70th byte), and with truncated flows (we took only 10
first packets for each flow).
000Truncation of packets has a considerable impact on the classification of most
application protocols by all tools except Libprotoident and NBAR, which tend
to maintain their normal accuracy. This suggests that NBAR can be somehow
implemented as Libprotoident to classify application protocols while the rest of
techniques base their classification on the complete flow. L7-filter is not able to
detect DNS traffic on this set, while all the other classifiers present the accuracy
of over 99%. Unexpectedly, NBAR cannot detect NTP on the normal set, while it
detects it 100% correctly on the set with truncated packets. We can not present
a verifiable reason of this result given that NBAR is not an open-source tool.
On the application level, only Libprotoident is able to keep its normal accuracy
whereas the rest of techniques considerably decreases their accuracies. Regarding
the web services level, only nDPI is able to recognize some web services in this set.
Exceptionally, the detection rate is almost the same as for the normal set. Other
classifiers tend to leave such traffic as unknown. Furthermore, the only tool, which
was able to detect web services on the set with truncated packets was nDPI, so
we believe that it must use another method for matching the flows to the services
than looking for the domain name in the payload.
000Truncation of flows does not have any noticeable impact on the classification
of application protocols. This result suggests that the classification of application
protocols relies on patterns or signatures extracted from the first packets of the
flows. Similar behavior is obtained on the application level. However, in this
case the impact on the classification of applications is noticeable – the detection
rate decreases. The only exception is Libprotoident, which provides the same re-
sults as for the normal dataset. Therefore, this insinuate that the classification of
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some applications probably rely on techniques based on statistics (e.g., Machine
Learning). FTP in the active mode is a very interesting case, as Libprotoident
maintains its 100% accuracy, while the accuracy of the other classifiers drops to
5.56%. An strange case is presented with Plain eDonkey traffic, as the best classi-
fication accuracy (45.28%) we obtained by using PACE on the set with truncated
flows, while the accuracy on the normal set was only 16.50%. The percentage of
correctly classified web services is usually the same or nearly the same as for the
normal set.

4.6 QoS Assessment
Finally, we needed to consider some questions regarding the QoS assessment:

Q: How to monitor high-speed networks in order to assess the present QoS?

A: During the last 20 years, we have been witnesses to the subsequent and increasing
growth of the global Internet and the network technology in general. The broad-
band and mobile broadband performance today is mainly measured and monitored
by speed. However, there are several other parameters, which are important for
critical business and real-time applications, such as voice and video applications
or first-person shooter games. These parameters include round trip time, jitter,
packet loss, and availability [34, 35].
000The lack of the centralized administration makes it difficult to impose a com-
mon measurement infrastructure or protocol. For example, the deployment of
active testing devices throughout the Internet would require a separate arrange-
ment with each service provider [34]. This state of affairs led to some attempts
to make simulation systems representing real characteristics of the traffic in the
network. Routers and traffic analyzers provide passive single-point measurements.
They do not measure performance directly, but traffic characteristics are strongly
correlated with performance. Routers and switches usually feature a capability to
mirror incoming traffic to a specific port, where a traffic meter can be attached.
The main difficulty in passive traffic monitoring is the steadily increasing rate of
transmission links (10 or 100 GB/s), which can simply overwhelm routers or traffic
analyzers, which try to process packets. It forces the introduction of packet sam-
pling techniques and, therefore, it also introduces the possibility of inaccuracies.
Even at 1 Gbit/s, the measurement can result in enormous amount of data to
process and store within the monitoring period [34].
000To overcome the heavy load in the backbone and to not introduce inaccuracies,
a smart monitoring algorithm was needed. There are several approaches to esti-
mate which traffic flows need to be sampled. Path anomaly detection algorithm
was proposed in [36]. The objective was to identify the paths, whose delay exceeds
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their threshold, without calculating delays for all paths. Path anomalies are typ-
ically rare events, and for the most part, the system operates normally, so there
is no need to continuously compute delays for all the paths, wasting processor,
memory, and storage resources [36]. Authors propose a sampling-based heuris-
tic to compute a small set of paths to monitor, reducing monitoring overhead by
nearly 50% comparing to monitoring all the existing paths. The next proposals
on how to sample network traffic in an efficient way were made on the basis of
adaptive statistical sampling techniques, and they are presented in [37] and [38].
000Each network carries data for numerous different kinds of applications. QoS
requirements are dependent on the service. The main service-specific parameters
are bandwidth, delay, jitter, and packet loss. Regarding delay, we can distinguish
strict real time constraints for voice and video conferences, and interactive services
from delivery in relaxed time frame. In a conversation, a delay of about 100ms is
hardly noticeable, but 250ms delay means an essential degradation of the trans-
mission quality, and more than 400ms is considered as severely disturbing [39].
Therefore, in order to provide detailed information about the quality level for the
given service in the network, we need to know, what kind of data is flowing in the
network at the present time. Processing all the packets flowing in a high-speed
network and examining their payload to get the application name is a very hard
task, involving large amounts of processing power and storage capacity. Further-
more, numerous privacy and confidentiality issues can arise. A solution for this
problem can be the use of Machine Learning Algorithms (MLAs), which rely on
previously generated decision rules based on some statistical information about
the traffic. In our research, we used one of the newest MLAs - C5.0. MLAs need
very precise training sets to learn how to accurately classify the data, so the first
issue to be solved was to find a way to collect high-quality training statistics. The
QoS assessment method was described in Paper III.

Q: How can we detect the location of the problem in the network?

A: Detecting the location of a congestion is a challenging problem due to several
reasons. First of all, we cannot send many probing packets, because it causes
too much overhead, and it even expands the congestion. Secondly, without router
support, the only related signals to the end applications are packet losses and
delays. If packet losses were completely synchronized (packets were dropped from
all the flows), the problem would be trivial. In the reality, the packet loss pattern is
only partially synchronized [40]. Authors of [40] attempted to solve the problem
of detecting the location of the congestion by using the synchronization of the
behavior of loss and delay across multiple TCP sessions in the area controlled by
the same local gateway. If many flows see synchronized congestion, the local link
is the congested link. If the congested link is remote, it is less likely that many
flows from the same host pass the same congested link at the same time. If there
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is only a small number of flows which see the congestion, the authors performed
an algorithm based on queuing delay patterns. If the local link is congested, most
flows typically experience high delays at a similar level. Otherwise, the congestion
is remote [40].

Q: What are the strengths and weaknesses of using active or passive methods for QoS
monitoring?

A: Passive QoS measurements methods can rely on the protocol composition. Usually,
predominance of the TCP traffic is observed (around 95% of the traffic mix) [34].
When congestion occurs, TCP sources respond by reducing their offered load,
whereas UDP sources do not. It results in the higher ratio of UDP to TCP traffic.
If the proportion becomes high and the bandwidth available to TCP connections
becomes too low to maintain a reasonable transmission window, the packet loss
increases dramatically (and TCP flows become dominated by retransmission time-
outs) [34]. Packet sizes provide insight into the type of packet, e.g. short 40–44
bytes packets are usually TCP acknowledgment or TCP control segments (SYN,
FIN, or RST) [34].
000Active methods for QoS monitoring raise three major concerns. First, the in-
troduction of the test traffic will increase the network load, which can be viewed
as an overhead cost for active methods. Second, the test traffic can affect measure-
ments. Third, the traffic entering ISP can be considered as invasive and discarded
or assigned to a low-priority class [34]. Within an administrative domain (but not
across the entire Internet), performance can be actively monitored using the data-
link layer protocol below IP, as the Operations, Administration and Maintenance
(OAM) procedure in ATM and MPLS networks. As a result, at the IP layer it is
often desirable to measure performance using the IP/ICMP protocol. So far, most
tools or methods are based on ping (ICMP echo request and echo reply messages)
or traceroute (which exploits the TTL field in the header of the IP packet) [34].
000Although the round-trip times measured by ping are important, ping is unable
to measure the one-way delay without additional means like GPS to synchronize
clocks at the source and destination hosts. Another difficulty is that pings are
often discarded or low-prioritized in many ISP networks. Traceroute will not en-
counter this problem because UDP packets are used. However, traceroute has
known limitations. For example, successive UDP packets sent by traceroute are
not guaranteed to follow the same path. Also, a returned ICMP message may not
follow the same path as the UDP packet that triggered it [34]. The end-to-end
performance measurements can be carried out at the IP layer or the transport/ap-
plication layer, but the latest is capable of measurements closer to user’s perspec-
tive. The basic idea is to run a program emulating a particular application that
will send traffic through the Internet. All the parameters (delay, loss, throughput,
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etc) are measured on the test traffic. This approach has one major drawback - a
custom software needs to be installed at the measurement hosts [34].
000On the basis of the mentioned work, we found out that the existing solutions
are not sufficient for precise QoS measurements. This state of affairs motivated
us to create a new system shown in Paper III, which combines both passive and
active measurement technologies. The passive mode relies mostly on time-based
statistics, which are obtained directly from the flow passing the measurement
point. This way, we can assess the jitter, the burstiness and the transmission
speed (both download and upload). Unfortunately, it is not possible to receive
information about the packet loss or the delay for other than TCP streams while
using this method. For that reason, additional tools performing active measure-
ments must be involved in the process of estimating the QoS. One option is to use
the ping-based approach, as it can measure both delay and packet loss. Unfortu-
nately, other issues can arise. Ping requests and responses are often blocked by
network administrator, or their priority is modified (decreased to save the band-
width or increased to cheat the users about the quality of the connection). Other
options include sending IP packets with various TTL and awaiting Time Exceeded
ICMP messages, which are usually allowed to be transmitted in all the networks
and their priority is not changed. Active measurements must be done in both
directions (from the user and from the remote side). The total packet loss and the
delay can be calculated as the sum of the delays and the packet losses from both
directions of the flow. Furthermore, the knowledge of the direction that causes
problems can be used to assess if the problems are located in the local network or
somewhere outside.

Q: Can we use the MLA trained in one network to classify the traffic in another one?

A: It was found in [4] that the results of the classification are most accurate when
the classifier was trained in the same network as the classification process was
performed. This may be due to different parameters, which are constant in the
particular network, but which differ among various networks. A good example is
the Maximum Transmission Unit, which can easily influence statistics based on
sizes. Therefore, in our design, we decided to train the C5.0-based classifier by
volunteers in the same network as the classifier will be installed. This allows us to
make a self-learning system, where a group of volunteers in the network delivers
data used for training the classifier constantly improving its accuracy, while all
the users can be monitored in the core using the generated decision rules. The
next advantage of the design is that even if some network users cannot participate
in the data collecting process because of using other operating systems or devices
than supported (like MacOS, Apple or Android smartphones), they will still be
able to be monitored in the core of the network because of the rules created on
the basis of data collected from the other users.
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5 Summary of Papers
This section summarizes the eleven papers of the thesis. Each paper is briefly described,
addressing its position in the thesis as well as its contributions and limitations.

Paper I – Volunteer-Based System for Research on the Internet
Traffic
This paper presents a new system for host-based traffic monitoring. The system was
created in order to perform the traffic analysis on a per-application basis. The current
means of traffic classification on the application layer were shown to not be sufficient to
deliver accurate data for constructing statistical classifiers based on Machine Learning
Algorithms. Our system relies on volunteers who install the client software, which in-
spects all the traffic passing through the network interface card. Therefore, our software
was called Volunteer-Based System (VBS). VBS groups the packets in flows based on
5-tuple: local and remote IP addresses, local and remote ports, and the transport-layer
protocol. For each flow the following attributes are logged: the identifier of the client,
start time, end time, local IP, remote IP, local port, remote port, transport protocol
name, and the application name taken from system sockets. Additionally, some informa-
tion are logged about each packet in the flow: the flow identifier, packet size, state of all
TCP flags, and relative timestamp to the previous packet in the flow. The system was
equipped with the ability to process HTTP flows and split them into parts, which carry
different files. One HTTP flow can transfer lots of files: HTML, JavaScript, CSS files,
various images, audio, video, and other binary files. Because the network characteristics
of each of the part can be different, it is crucial to be able to separate them. This makes
able to create transfer profiles of different types of contents by HTTP. Additionally, a
lot of statistical information can be obtained: which types of files are most commonly
transported by HTTP, what is their size, packet size distribution, transfer time. All
the statistical information are transmitted to the server located at Aalborg University,
where they are stored in a MySQL database. The collected data can be used to create
realistic models of traffic originated by different applications, perform various kinds of
simulations, and to obtain accurate statistics for training Machine Learning based traffic
classifiers.

The paper shows the detailed design and implementation of VBS in Java, so the
reader is able to re-construct the system. The final version of VBS was published on
SourceForge as an open-source project. A fully automatic update system was imple-
mented in order to facilitate zero-touch updates, transparent to the users. The perfor-
mance of VBS clients was assessed on 27 computers located in private houses as well
as educational institutions in Denmark and Poland. The results showed that the CPU
usage observed during 3 months was around 5% in average, while the temporary con-
sumption of over 10% is extremely rare. The average RAM usage was around 5%. It
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was shown that around 12% of the flows were collected without the associated appli-
cation name. Our system relies on external tools checking the system sockets every 1
second, so the socket for some short flows may not be noticed. In our testing case, the
flows without an associated application name contained 5 packets in average, while the
flows with the associated application name contained 49 packets in average. The system
was shown to have other limitations as well. VBS cannot distinguish different types of
flows generated by the same application, for example, different kinds of web browser
flows. The same considers tunneled traffic (SSH, CIFS, SAMBA, etc.). Also, for now
only IPv4 is supported.

Finally, a thorough threat assessment of the system was performed. It was shown
that only the SQL injection attack should be taken into account while designing the
future security policies, while the other threats can be left out.

Paper II – A Method for Classification of Network Traffic Based
on C5.0 Machine Learning Algorithm
This paper is the first step to the real-time Quality of Service assessment described in
Paper III. VBS was used to label flows originated from 7 different groups: Skype, FTP,
BitTorrent, web except web radio, web radio, games, and SSH. The labeled flows were
split into two disjoint sets: one of them was used to generate the statistics for training
C5.0 classifier, and the second one was used to assess the accuracy of the classification.
We tried to determine how many packets from a flow are needed to construct accurate
statistics and if it matters if we have captured the whole flow. The flows were split
into chunks of 5–90 packets, from which we generated the statistics. It was shown that
the highest accuracy (oscillating around 99.8%) we obtained if we took the statistics
obtained from the chunks created from at least 35 consecutive packets from a random
point of the flow, except the first 10 packets from a flow, which can have different
characteristic than the rest. Several different modes of C5.0 tools were tested: normal
decision-tree based classification, classification based on rules, boosting, and softening
thresholds. Boosting was shown to improve the classification accuracy in a small, but
still measurable manner by around 0.1–0.5%, while other modes were characterized by
a comparable accuracy. Boosting, however, slower down the process of creating the
classifier around 8 times. The relevance of various classification attributes was tested
as well. We tested the classifier by using at first 32 general attributes based on packet
sizes, then on a full dataset of 42 attributes, where the additional 10 attributes were
protocol-dependent (as transport protocol, number of TCP flags). It was shown that
by using the full dataset, we lowered the error rate by approximately 15 times. While
the final average accuracy of classification of the traffic belonging to the 7 applications
was above 99%, we had a significant number of misclassifications between the FTP and
BitTorrent groups. That was a consequence of using mainly size-based classification
attributes, which are similar for both types of file transfer.
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Paper III – A Method for Evaluation of Quality of Service in
Computer Networks
The quality of the network connection experienced by the user is shown to be service-
dependent. The generally used network parameters (as bandwidth, delay, jitter, packet
loss) are expected to have different values for different kinds of network activity. For
example, a voice conversation expects a low delay and jitter, while the available band-
width is not an issue. However, file transfers expect the highest possible bandwidth,
while the delay and jitter are not a concern. Therefore, assessing the network QoS
requires the information what kind of traffic is flowing in the network at the particular
time. Classification of traffic in high-speed networks is shown to be a demanding task.
While port-based classifiers are nowadays ineffective, Deep Packet Inspection requires
a lot of processing resources, involves a lot of privacy and law concerns, and is not
feasible for encrypted or tunneled protocols. Therefore, the solution is to use statistical
classifiers based on Machine Learning Algorithms (MLAs), which require good quality
training data.

The paper contains a thorough description of the current methods for obtaining
pre-classified traffic, which can be used for generating the training data for Machine
Learning Algorithms: capturing raw data from the network interfaces, classification by
port numbers, Deep Packet Inspection, and statistical classification. It was shown that
the current methods are not able to provide high-quality training data. Capturing raw
data from network interfaces is not scalable, since it requires installing and testing one
application at a time; the background traffic (as DNS requests, system upgrades) also is
a concern, as the resulting dataset is highly polluted. Classification by ports is not able
to identify applications, which use dynamic port numbers. It also cannot distinguish
between different applications using the same port number and it is easy to cheat by
moving an application to another port. Deep Packet Inspection is slow and it requires
a lot of processing power, unable to inspect encrypted or tunneled traffic, and it causes
a lot of privacy and legal concerns. Therefore, for the collection of the training data,
we used our Volunteer-Based System (VBS).

The real-time classification approach is as follows. At first, we recruit some volun-
teers from the users of the particular network. We assume that the users within the same
network use the network in a similar way, for example, they use similar applications.
The volunteers install VBS clients on their computers. The per-application statistics
are used as training data for C5.0 MLA, which is able to distinguish these applications
in the core of the network, while inspecting the traffic from all the network users. Then,
knowing the application associated with a particular flow, we can assess the quality of
the application connection. The paper presents the design of the centralized monitoring
solution in the network core, which makes use of both passive and active measurements
techniques to assess various QoS parameters.
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Paper IV – Classification of HTTP Traffic Based on C5.0 Machine
Learning Algorithm
As mentioned in Paper I, VBS was extended of the possibility to split the HTTP flows
into logical parts, which transport different files or carry different streams. Each file or
stream transported by HTTP is associated with its content type using the information
from the content-type field contained by the HTTP header. In Paper II, we performed
experiments with C5.0 classification of 7 groups of traffic. One of the groups was a
browser traffic in general, selected based on the application name (as chrome, firefox,
or iexplore). However, it was emphasized that the browser traffic is diverse: it can
contain data resulted from interactive web browsing, file downloads, radio or video
streaming, embedded FTP or BitTorrent clients, etc. Therefore, in this paper, we tried
to concentrate on approaches to distinguish the different kinds of the browser traffic in
an automatic way based on the information extracted from HTTP headers by VBS.

The identification of the browser traffic was intended to be done based on the type
of the transferred content and the character of the traffic. Therefore, based on the
content-type field contained by the HTTP header and the character of the traffic, we
specified 5 groups of browser traffic: audio, file download, multimedia, video, and web.
We need to emphasize that one element could fall into two groups, as for example, a
downloaded video file. In this case, we assigned the element to the group based on the
type of the content, as we were not able to see if an element marked as audio/mpeg is
in fact an audio stream from a web radio, or a downloaded MP3 file. Apart from that,
we extended the traffic groups by including traffic originated by other applications than
web browsers: the video class was enriched by adding the traffic from Flash streaming
browser plugins, the audio class was enriched by adding Skype, and the file download
class was enriched by adding several applications, which are used to transfer files. We
also added 2 new groups: ssh and p2p. The second group also contained some elements,
which could be identified as file download, but we were not able to pre-select them from
the p2p traffic. The classification experiment was made in almost the same manner and
using the same classification attributes as in Paper II. The only difference concerns the
way of obtaining the chunks of 35 packets, which are used to create the training and
test cases for the classifier. Non-HTTP flows are treated exactly in the same way as
in Paper II. However, HTTP flows are split into parts corresponding to the individual
files or streams, and each of the elements is treated separately according to its content.
Therefore, we were able to take samples of the video files, audio files, other binary files,
etc. However, it does not make sense to split the web browsing activity into particular
HTML, JPG, CSS, and other files, as all of them are rather short and they are a part
of the same traffic patterns. Therefore, the web browsing flows were not separated, but
treated as a whole (web class) in the same manner as non-HTTP flows.

The classification results are as follows. Taking into account only the browser traffic,
we obtained 17% of errors, while taking into account all the traffic, the error rate was
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6%. Almost all the cases from the audio, web, p2p, and ssh groups were classified
properly. However, we obtained a big number of misclassifications between the file
download and video groups for the browser traffic. This can be explained logically:
most of the video traffic transmitted by HTTP are just regular transfers of video files,
as YouTube does – in this case the video file is at first downloaded (entirely or in
part) to the users’ computers and then replayed by the web browsers or their plugins.
Therefore, the behavior of such video transfers (as from YouTube) is identical to the
transfers of other files, for example, executables or compressed ZIP archives. However,
video streamed by RTMP protocol by external browser plugins can be easily separated
from the file download traffic, as its behavior is totally different.

We also showed statistical profiles of flows transmitting different types of HTTP
contents. We showed that the profiles do not depend on the type of the transmitted
content, but on the particular application or web service. We demonstrated that there
is no difference between the profiles of transfers of video files (f.x. from YouTube) and
transfer of other big binary files (as ZIPs) by HTTP and, therefore, different content
types cannot be distinguished based on the statistical attributes. However, the paper
shows that we can identify the content if it is associated with a particular protocol or
behavior, as for example we can recognize video streaming (by RTMP protocol) or audio
streaming (by both RTMP and HTTP).

Paper V – Obtaining Internet Flow Statistics by Volunteer-Based
System
This paper focuses on generating various statistics of the network traffic on the flow level.
Such statistics can be used for modeling of the traffic or the particular applications,
creating realistic scenarios of future Internet usage, or analysis of the impact of the
particular traffic type on the performance of the network. To obtain the statistical
data, 4 users (2 in Denmark and 2 in Poland) were monitored during 5 months by VBS.
At first, for each user (and for all users altogether), we calculated the distribution of
the flows among TCP and UDP, and the average lengths and durations of TCP and
UDP flows. Afterwards, we selected the top 5 most popular applications for each user
separately and for all users altogether, and we presented the number of flows generated
by these applications as the number and the percentage of the total amount of flows from
the particular user. The most popular application was uTorrent, which amounted for
74.12% of all flows from all user altogether. It was also the most popular application for
3 out of 4 examined users, where its share among of the generated flows was respectively
89.43%, 91.36%, and 62.78%. At the end, the cumulative distribution of flows for all
users over time was presented.
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Paper VI – Obtaining Application-Based and Content-Based In-
ternet Traffic Statistics
This paper is a continuation of the work presented in Paper V. However, instead of
dealing with the statistics on the flow level, we emphasize the possibility of obtaining
statistics of various applications and types of files transferred by HTTP regarding both
the number of flows and the volume of traffic. For our experiments, we used the same
traffic from the same users as in Paper V. At first, we compared the number of flows
versus the traffic volume from the particular users over time. Generally, when the
number of flows increases, the data volume increases as well. However, some users are
characterized by bigger number of light flows, while some users are characterized by a
smaller number, but longer and heavier flows.

Then, we presented 10 top applications for all users altogether and for each user sep-
arately. For each application, we calculated the number of flows and the data volume as
well as the percent values of the total number of flows / data volume from the particular
user. We also calculated the average number of packets in a flow created by the appli-
cations. There are several interesting observations regarding the most used applications
and the data collected by VBS. The average number of packets in flows without assigned
application name is 11, comparing to 63–139 567 in flows, where the application name is
assigned – the data in flows without the assigned application name amounts for 11% of
flows, but only 1% of the traffic volume. Moreover, applications responsible for stream-
ing video are shown to generate small number of flows, but containing a big number of
packets. In our case, the proportion of the number of flows generated by video streaming
applications to the group without the associated application name was 1:12 898, while
the proportion of the data volume was 2.75:1. We looked carefully at the behavior of
uTorrent application, which was responsible for generating the biggest number of flows
(72% of total) and the biggest data volume (61% of total). The amount of downloaded
data was around 7 times bigger than the amount of uploaded data, while the upload
and download was conducted at the same time. By looking at the download to upload
rate, we can deduce if the user uses symmetric or asymmetric Internet connection.

The same experiments were repeated for the most popular content-types of files
transported by HTTP. The results showed that the majority of HTTP traffic was gen-
erated by video files and binary files downloaded by the users. The web browsing traffic
(image/jpeg, text/html, and text/plain) accounted for 52% of the number of files trans-
ported by HTTP, but only for 9% of the data volume, primarily because they contain
a low number of packets (4–9 in average). Finally, the volume of the traffic generated
by video/x-flv files was around 2.5 times bigger than the volume of the traffic generated
by the second biggest contributor.

We also made a summary of some statistical parameters for different kinds of ap-
plications. We calculated average packet sizes (inbound, outbound, total), distribution
of inbound and outbound packets, and distribution of inbound and outbound packets
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carrying data.

Paper VII – Is our Ground-Truth for Traffic Classification Reli-
able?
Classification of computer network traffic rapidly increased its significance during the
last years, becoming a key aspect of many network related tasks. Therefore, many differ-
ent classification methods and tools were developed or are under development. Testing
of the accuracy of the classifiers become a challenging issue, as it requires possession
of clean data samples from various applications. The paper begins by describing the
current methods for obtaining the ground-truth and it assesses their advantages and
drawbacks. It is said that the most common technique is to create a proprietary dataset
by labeling the traffic by Deep Packet Inspection tools, or to use an already available
dataset, which is usually pre-classified by DPI as well. This approach, however, creates
a kind of a loop: DPI tools are used to create a dataset, which is used to test traffic
classifiers, including the DPI tools themselves.

This paper has two major contributions. At first, by using VBS, we created a dataset
of 10 different applications (eDonkey, BitTorrent, FTP, DNS, NTP, RDP, NETBIOS,
SSH, HTTP, RTMP), which is available to the research community. It contains 1 262 022
flows captured during 66 days. The HTTP flows are captured from several different
web services. The dataset is available as a bunch of PCAP files containing full flows
including the packet payload, together with corresponding text files, which describe the
flows in the order as they were originally captured and stored in the PCAP files. The
description files contain the start and end timestamps of flows based on the opening
and closing of the system sockets, which is useful to reproduce the original behavior,
when many short flows are generated between the same hosts during a short period of
time. Furthermore, the application name taken from the system sockets is appended,
which sets the ground-truth label of the flows. This dataset can be directly used to test
various traffic classifiers: port-based, DPI, statistical, etc.

At second, we examined the ability of selected Deep Packet Inspection tools to accu-
rately label network flows in order to create a dataset composed of selected applications,
which can be used as a ground truth for testing various traffic classifiers. The tested DPI
tools are: PACE, OpenDPI, L7-filter, nDPI, Libprotoident, and NBAR. The test was
performed on our dataset labeled by VBS, which eliminated the possibility of having
mistakes in the reference data. As the test was made only to assess the ability of the
DPIs to perform an accurate classification to create a ground-truth dataset, we did not
test other properties, as the resource usage, or time used to classify the dataset. All the
classifiers except NBAR were tested by a special benchmark tool, which read the PCAP
files together with their descriptions, composed the packets in the original flows, and
provided the flows to the DPIs organized as libraries. To test the accuracy of NBAR,
we needed to emulate a Cisco router by using Dynamips together with an original Cisco
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Internetwork Operating System image. The packets needed to be replayed back to the
virtual interface where the Cisco router resided in order to be classified by NBAR. That
imposed a few new requirements. At first, the destination MAC address of each packet
needed to be changed to the MAC address of the virtual Cisco router interface, as Cisco
routers do not accept packets, which are not directed to their interfaces. At second, the
source MAC addresses were changed to contain the identifiers of the original flows, so
the router could re-construct and assess the flows as they were originated. Then, the
Flexible NetFlow feature of Cisco routers was used to apply per-flow application label
by NBAR. The NetFlow records were captured on the host machine, where they were
analyzed.

The obtained results present PACE, a commercial tool, as the most accurate solution
for ground-truth generation (91.07% of average accuracy on our dataset). However,
among the open-source tools available, Libprotoident (84.16%), and nDPI (82.48%)
also achieve very high accuracy. On the other hand, L7-filter (38.13%) and NBAR
(46.72%) should not be used to obtain the ground-truth.

Paper VIII – Multilevel Classification and Accounting of Traffic
in Computer Networks
Classification and accounting of computer network traffic is an important task of Inter-
net Service Providers, as it allows for adjusting the bandwidth, the network policies,
and providing better experience to their customers. However, existing tools for traffic
classification are incapable of identifying the traffic in a consistent manner. The results
are usually given on various levels for different flows. For some of them only the ap-
plication is identified (as HTTP, BitTorrent, or Skype), for others only the content (as
audio, video) or content container (as Flash), for yet others only the service provider
(as Facebook, YouTube, or Google). Furthermore, Deep Packet Inspection (DPI), which
seems to be the most accurate technique, in addition to the extensive needs for resources,
often cannot be used by ISPs in their networks due to privacy or legal reasons. Tech-
niques based on Machine Learning Algorithms (MLAs) require good quality training
data, which are difficult to obtain. MLAs usually cannot properly deal with other types
of traffic, than they are trained to work with – such traffic is identified as the most
probable class, instead of being left unclassified. Another drawback of MLAs is their
inability to detect the content carried by the flow, or the service provider.

To overcome the drawbacks of already existing methods, we developed a novel hy-
brid method to provide accurate identification of computer network traffic on six levels:
Ethernet, IP protocol, application, behavior, content, and service provider. The Ethernet
and IP protocol levels are identified directly based on the corresponding fields from the
headers (EtherType in Ethernet frames and Type in IP packet). The application and
behavior levels are assessed by a statistical classifier based on C5.0 Machine Learning
Algorithm. Finally, content and service provider levels are identified based on IP ad-
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dresses. The training data for the statistical classifier and the mappings between the
different types of content and the IP addresses are created based on the data collected
by Volunteer-Based System, while the mappings between the different service providers
and the IP addresses are created based on the captured DNS replies. Support for the
following applications is built into the system: America’s Army, BitTorrent, DHCP,
DNS, various file downloaders, eDonkey, FTP, HTTP, HTTPS, NETBIOS, NTP, RDP,
RTMP, Skype, SSH, and Telnet. Within each application group we identify a number
of behaviors – for example, for HTTP, we selected file transfer, web browsing, web radio,
and unknown. Our system built based on the method provides also traffic accounting
and it was tested on 2 datasets.

The classification results are as follows. On the Ethernet and IP protocol levels we
achieved 0.00% errors. The classification on the application and behavior levels were
assessed together. Using the first dataset, we achieved 0.08% of errors, while 0.54%
of flows remained as unknown. Using the second dataset, we achieved 0.09% of errors,
while 0.75% of flows remained as unknown. Taking into account the content level, the
classification using the first dataset gave us 0.22% errors and 0.47% of unclassified flows,
while using the second dataset it gave us 0.96% of errors and 1.42% of unclassified flows.
The classification on the service provider level was performed only using the first dataset
(we needed the application-layer payloads) and it gave us 1.34% of errors and 1.71% of
unknown flows. Therefore, we have shown that our system gives a consistent, accurate
output on all the levels. We also showed that the results provided by our system on
the application level outperformed the results obtained from the most commonly used
DPI tools. Finally, our system was implemented in Java and released as an open-source
project.

Paper IX – Independent Comparison of Popular DPI Tools for
Traffic Classification
Network traffic classification has become an essential input for many network-related
tasks. However, the continuous evolution of the Internet applications and their tech-
niques to avoid being detected (as dynamic port numbers, encryption, or protocol ob-
fuscation) have considerably complicate their classification. We start the paper by
introducing and shortly describing several well-known DPI tools, which later will be
evaluated: PACE, OpenDPI, L7-filter, nDPI, Libprotoident, and NBAR. We tried to
use the most recent versions of the classifiers. However, OpenDPI project was closed in
June 2011 and since that time no new version of this software was released. L7-filter,
which is broadly described in the scientific literature, also seems to be not developed
any longer – the most recent version of the classification engine is from January 2011
and the classification rules from 2009.

This paper has several major contributions. At first, by using VBS, we created 3
datasets of 17 application protocols, 19 applications (also various configurations of the
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same application), and 34 web services, which are available to the research community.
The first dataset contains full flows with entire packets, the second dataset contains
truncated packets (the Ethernet frames were overwritten by 0s after the 70th byte),
and the third dataset contains truncated flows (we took only 10 first packets for each
flow). The datasets contain 767 690 flows labeled on a multidimensional level. The
included application protocols are: DNS, HTTP, ICMP, IMAP (STARTTLS and TLS),
NETBIOS (name service and session service), SAMBA, NTP, POP3 (plain and TLS),
RTMP, SMTP (plain and TLS), SOCKSv5, SSH, and Webdav. The included appli-
cations (and their configurations) are: 4Shared, America’s Army, BitTorrent clients
(using plain and encrypted BitTorrent protocol), Dropbox, eDonkey clients (using plain
and obfuscated eDonkey protocol), Freenet, FTP clients (in active and passive modes),
iTunes, League of Legends, Pando Media Booster, PPLive, PPStream, RDP clients,
Skype (including audio conversations, file transfers, video conversations), Sopcast, Spo-
tify, Steam, TOR, and World of Warcraft. The included web services are: 4Shared,
Amazon, Apple, Ask, Bing, Blogspot, CNN, Craigslist, Cyworld, Doubleclick, eBay,
Facebook, Go.com, Google, Instagram, Justin.tv, LinkedIn, Mediafire, MSN, Myspace,
Pinterest, Putlocker, QQ.com, Taobao, The Huffington Post, Tumblr, Twitter, Vimeo,
VK.com, Wikipedia, Windows Live, Wordpress, Yahoo, and YouTube.

These datasets are available as a bunch of PCAP files containing full flows including
the packet payload, together with corresponding text files, which describe the flows in
the order as they were originally captured and stored in the PCAP files. The description
files contain the start and end timestamps of flows based on the opening and closing
of the system sockets, which is useful to reproduce the original behavior, when many
short flows are generated between the same hosts during a short period of time. The
application name taken from the system sockets is appended as well. Furthermore, each
flow is described by one or more labels defining the application protocol, application
itself, or the web service. These datasets can be directly used to test various traffic
classifiers: port-based, DPI, statistical, etc.

At second, we developed a method for labeling non-HTTP flows, which belong to
web services (as YouTube). In our previous approach shown in Paper VII, the labeling
was done based on the corresponding domain names taken from the HTTP header.
However, that could allow to identify only the HTTP flows. Other flows (as encrypted
SSL / HTTPS flows, RTMP flows) were left unlabeled. Therefore, we implemented a
heuristic method for detection of non-HTTP flows, which belong to the specific services.
To be recognized as a non-HTTP web flow, the application name associated with the
flow should be the name of the web browser (as chrome), a name of a web browser plugin
(as plugin-container, flashgcplay), or the name should be missing. Then, we looked at
the HTTP flows, which were originated from 2 minutes before to 2 minutes after the
non-HTTP web flow. If all the corresponding (originated from the same local machine
and reaching the same remote host) HTTP flows had a web service label assigned, and
the service label was the same for all of the flows, the non-HTTP flow obtained the
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same web service label. That allows us to test how the classifiers identify encrypted and
other non-HTTP traffic belonging to various web services.

Then, we examined the ability of the DPI tools to accurately label the flows included
in our datasets. All the classifiers except NBAR were tested by a special benchmark
tool, which read the PCAP files together with their descriptions, composed the packets
in the original flows, and provided the flows to the DPIs organized as libraries. To test
the accuracy of NBAR, we needed to emulate a Cisco router by using Dynamips together
with an original Cisco Internetwork Operating System image. The packets needed to
be replayed back to the virtual interface where the Cisco router resided in order to be
classified by NBAR. That imposed a few new requirements. At first, the destination
MAC address of each packet needed to be changed to the MAC address of the virtual
Cisco router interface, as Cisco routers do not accept packets, which are not directed
to their interfaces. At second, the source MAC addresses were changed to contain the
identifiers of the original flows, so the router could re-construct and assess the flows as
they were originated. Then, the Flexible NetFlow feature of Cisco routers was used to
apply per-flow application label by NBAR. The NetFlow records were captured on the
host machine, where they were analyzed.

It was shown that the detection rate is almost identical on the set containing full
flows with entire packets and the set with truncated flows, while it highly decreases on
the set with truncated packets. However, Libprotoident is an exception, as it provides
the same results independent of the set, as it uses only 4B of packet payload. We
showed that, in most cases NBAR (apart of Libprotoident) was the most resistant tool
regarding the impact of packet truncation on the detection rate.

We showed that PACE is able to identify the highest number of various web services
among all the studied classifiers. PACE detected 16 web services, nDPI 10, OpenDPI
2, L7-filter in its default version only 1, Libprotoident 1, and NBAR none. We have
also shown that L7-filter is characterized by a very high number of misclassified flows
belonging to web services (usually 80–99%) – the flows were recognized in a vast majority
as Finger and Skype.

We evaluated the impact of protocol encryption or obfuscation on the detection rate
by the particular classifiers. Protocol encryption made the detection rate lower in all the
cases, while we did not see such dependency while using obfuscated eDonkey protocol –
in this case, PACE demonstrated even increased detection rate from 16.50% (for plain
traffic) to 36%. We have shown that only PACE is able to identify accurately some
applications, which are supposed to be hard to detect, as Freenet or TOR.

Paper X – nDPI: Open-Source High-Speed Deep Packet Inspec-
tion
This paper begins by introducing various methods for passive traffic identification.
Apart from the obvious drawbacks of port-based classification methods, the paper em-
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phasizes two major drawbacks of Machine Learning based tools. At first, they are able
to classify only a few traffic categories, being less suitable for fine protocol granularity
detection applications. At second, their inaccuracy makes them less useful in mission
critical applications, as traffic blocking or precise accounting. For those reasons, there
is a need for a lightweight, fast, and accurate Deep Packet Inspection tool.

This paper introduces nDPI – an open source library written in C, built based
on the OpenDPI GPL-licensed code. The differences between OpenDPI and nDPI
are described, focusing on the improvements and new features added to nDPI. The
current design and implementation of the classifier is described in detail, including the
way how the encrypted traffic is handled. Namely, the certificates associated with SSL
connections are decoded in order to extract the host name. Additionally, some encrypted
connections are detected based on the IP addresses.

In the last versions of nDPI (svn revision 7249 or newer), we decided to remove the
use of Skype and BitTorrent heuristics, so that we eliminated false positives at the cost
of slightly increasing the number of undetected flows when using these two protocols. We
also re-implemented support for several other protocols, as FTP, SOCKSv4, SOCKSv5,
eDonkey, PPLive, Steam, RTMP, and Pando. Furthermore, we added the ability to
discover new web services, e.g., Wikipedia and Amazon. Finally, the classifier was
validated against 31 popular protocols and applications, and 7 commonly used web
services. We showed that the classifier in the current version is characterized by high
accuracy (in half of the cases approaching 100%) and a very low rate of misclassified
flows (for most classes less than 1%). We demonstrated that the test application using
nDPI processes packets at an average speed of 3.5Mpps / 8.85Gbps using a single core
CPU and a PCAP file as the packet source. In terms of memory usage, nDPI needs some
memory to load the configuration and automatas used for string-based matching. This
memory used by nDPI is ~210KB with no custom configuration loaded that increases of
~25KB when a custom configuration is loaded. In addition to that, nDPI keeps per-flow
information that is independent from the application protocols and which takes ~1KB
per flow.

As other DPI tools, nDPI also has some drawbacks. Habitually, the classifiers provide
only result per flow, which is supposed to characterize the flow in the most detailed
manner. Therefore, the output is a mix of results on various levels: IP protocols (i.e.,
TCP or UDP), application protocols (e.g., DNS, HTTP, SSL, BitTorrent, or SMTPS),
types of the content (e.g., MPEG, or Flash), and finally, the service providers (e.g.,
Facebook, or YouTube). The usefulness of such result is very limited. At first, one
flow can use several application protocols (as HTTP and Dropbox). At second, one
application protocol (as DNS) can use several IP protocols (TCP and UDP). At third,
it is impossible to judge if the most detailed level is the content (as Flash) or the service
(as YouTube). Finally, this scheme does not allow to provide precise accounting of the
traffic (for example, it is not possible to account the HTTP traffic, if the results are
given on multiple levels, so in majority of cases HTTP is even not mentioned). At the
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end of the paper, we proposed to make the nDPI classifier consistent. Many consistency
fixes were already applied, which resulted in creating nDPIng. More about this project
can be read in Section 7.1.

6 Conclusion
This thesis covers several broad areas in traffic monitoring and analysis both on the user
side and in the network. We designed, developed, and evaluated a host-based traffic
monitoring tool, called Volunteer-Based System (VBS), which provides detailed statis-
tics about the traffic passing through the network connections. That gives an overview
how the network is utilized, allows to better allocate the available bandwidth, tune the
network parameters on routers and switches, or to create special facilities for particular
application or services (as proxy or cache servers, local DNS servers). The data col-
lected by VBS can be used to create realistic traffic profiles of the selected applications.
They can be used to build application traffic generators, where the characteristics of
the generated traffic match the real characteristics of the simulated applications. They
also can be the ground-truth for testing and building new network traffic classifiers. A
special version of VBS, which collects full Ethernet frames, can be also used to evaluate
the accuracy of Deep Packet Inspection classification tools.

We assessed the usefulness of C5.0 Machine Learning Algorithm (MLA) in the clas-
sification of computer network traffic. MLAs require good quality training data in order
to be able to create accurate classification rules. Therefore, as the source of the training
data, we used the information collected by VBS. We showed that the application-layer
payload is not needed to train the C5.0 classifier to be able to distinguish different
applications in an accurate way. Statistics based on the information accessible in the
headers and the packet sizes are fully sufficient to obtain high accuracy. Our method was
shown to reach 99.90% accuracy while recognizing the traffic belonging to 7 different
groups. We tested various classification modes (decision trees, rulesets, boosting, soft-
ening thresholds) regarding the classification accuracy and the time required to create
the classifier. We also assessed the dependency between the number of training cases
(and the number of packets in the case) and the classification accuracy by C5.0. We
showed how the information from the content-type field in HTTP headers can be used
to split the transport-layer flows into parts transporting different files.

We demonstrated how to obtain per-flow, per-application, and per-content statistics
of traffic in computer networks. Our VBS was used to obtain overall and per-user
statistics based on flows. We showed the distribution, average lengths, and durations
of TCP and UDP flows, and the distribution of flows belonging to top 5 applications.
Finally, the cumulative number of flows for each user over the time was shown on the
graph to provide the overview of the users’ network activity during several months.
We also included statistics regarding the traffic volume. It enabled us to compare
the number of flows and their distribution with the corresponding amount of data for
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all monitored users altogether and for each user separately. We also included in the
evaluation the statistics regarding transferred files by HTTP. Therefore, we identified
the most common types of files transferred by HTTP and presented which share of the
overall HTTP traffic they represent.

We created two datasets composed of different applications, which can be used to
assess the accuracy of different traffic classification tools. The datasets contain full
packet payloads and they are available to the research community as a set of PCAP files
and their per-flow description in the corresponding text files. The included flows were
labeled by VBS. We developed a method for labeling non-HTTP flows, which belong to
web services (as YouTube). Classically, labeling was done based on the corresponding
domain names taken from the HTTP header. However, that could allow to identify only
the HTTP flows. Other flows (as encrypted SSL / HTTPS flows, RTMP flows) were
left unlabeled. Labeling of these flows allowed us to test how different classifiers identify
encrypted and other non-HTTP traffic belonging to various web services.

We evaluated the ability of several Deep Packet Inspection tools (PACE, OpenDPI,
L7-filter, nDPI, Libprotoident, and NBAR) to label flows in order to create datasets
serving as a ground-truth for the subsequent evaluation of various traffic classification
tools. We showed that PACE achieves the best classification accuracy from all the tested
tools, while the best performing open-source classifiers are nDPI and Libprotoident. L7-
filter and NBAR, however, should not be considered as reliable tools. We also described
the methodology of testing Cisco NBAR, which is difficult to evaluate, because it works
only on Cisco devices. Therefore, we presented how to re-play the collected packets from
PCAP files back to the network in a way that the router is able to inspect them. We
also described how to configure the Cisco router to inspect the traffic by NBAR with
Flexible NetFlow, which is able to generate per-flow records. Finally, we showed how
to capture NetFlow records from the router, configure the software for inspecting the
NetFlow records, and generate a readable output.

We designed, developed, and evaluated a multilevel traffic classifier. The classifica-
tion is performed on six levels: Ethernet, IP protocol, application, behavior, content, and
service provider. The Ethernet and IP protocol levels are identified directly based on
the corresponding fields from the headers (EtherType in Ethernet frames and Type in
IP packet). The application and behavior levels are assessed by a statistical classifier
based on C5.0 Machine Learning Algorithm. Finally, the content and service provider
levels are identified based on IP addresses. The system is able to deal with unknown
traffic, leaving it unclassified on all the levels, instead of assigning the traffic to the most
fitting class. The training data for the statistical classifier and the mappings between
the different types of content and the IP addresses are created based on the data col-
lected by VBS, while the mappings between the different service providers and the IP
addresses are created based on the captured DNS replies. Our system was implemented
in Java and released as an open-source project. The accuracy of the classification on
the application level by our system was compared with the accuracy given by several
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DPI tools on 2 datasets and we demonstrated that our classifier outperforms the DPI
tools regarding the applications, which it supports.

We directly compared the ability of several DPI tools (PACE, OpenDPI, two con-
figurations of L7-filter, nDPI, Libprotoident, and NBAR) to classify 17 application
protocols, 19 applications (also various configurations of the same application), and 34
web services on a dataset of 767 690 labeled flows. We evaluated the impact of flow
or packet truncation on the detection rate by the particular classifiers. We tested the
classifiers on 3 sets of data: containing full flows with entire packets, with truncated
packets (the Ethernet frames were overwritten by 0s after the 70th byte), and with
truncated flows (we took only 10 first packets for each flow). We evaluated the impact
of protocol encryption or obfuscation on the detection rate by the particular classifiers.
We have also shown that only PACE is able to identify accurately some applications,
which are supposed to be hard to detect, as Freenet or TOR.

We also introduced an alternative strategy of traffic identification. nDPI, a high-
performance traffic classification tool based on Deep Packet Inspection (DPI), was
demonstrated to be able to process packets at an average speed of 3.5Mpps / 8.85Gbps
using a single core CPU and a PCAP file as the packet source. After implementing
support for new applications, the classifier was validated against 31 popular protocols
and applications, and 7 commonly used web services. We showed that the classifier in
the current version is characterized by high accuracy (in half of the cases approaching
100%) and a very low rate of misclassified flows (for most classes less than 1%). We
also proposed future enhancements, which make the nDPI classifier consistent regarding
the generated results.

Our last focus was on designing a method for assessing the Quality of Service in
computer networks. Our method relies on VBS clients installed on a representative
group of users from the particular network. The per-application traffic profiles obtained
from the machines belonging to the volunteers are used to train the C5.0 Machine
Learning based tool to recognize the selected applications in any point of the network.
After the application is being identified, the quality of the application session can be
assessed. For that purpose, we proposed a hybrid method based on both passive and
active approaches.

Bredbånd Nord, a regional fiber networks provider, was our collaboration partner
throughout the PhD study. For us, the collaboration benefits included the access to real
network data and real production environment, which resulted in the development of
an accurate traffic monitoring solution. The first part of our collaboration was focused
on the development of VBS. The network users provided by the company participated
in testing the software and volunteered by giving us access to their network data. The
second part of our collaboration was focused on the development of a traffic accounting
solution, which would be able to provide an overview how the network is utilized. We
contributed by designing and development of the multilevel traffic classifier. Bredbånd
Nord contributed by giving us access to anonymized one-week traces of the DNS traffic
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in their network. Thanks to that, we were able to obtain the mappings between the
queried domain names and the IP addresses as well as the number of queries for the
particular domain.

7 Future Work
Our methods and the developed by us solutions are a field for constant improvements.

The first possibility could be to enhance our Volunteer-Based System (VBS). Suffi-
cient security mechanisms should be implemented, so that the system would stop being
prone to SQL injection. Mutual authentication mechanisms between the clients and the
server should be designed in order to minimize the chances of pushing an unauthorized
upgrade to the clients or sending a poisoned data file to the server. If it is possible,
we should avoid using external tools (Netstat, TCPView), but obtain the information
about the open sockets directly from the system API. That would remove the limitation
of the minimum flow duration of 1 second in order to allow the flow being noticed by
VBS. We need to consider developing an intelligent transfer protocol, which will take
care of negotiating link parameters and of scheduling transfers in order to effectively use
the capacity of the link. An automatic Linux installer will be the next step to make the
system more friendly to non-qualified users. For now, VBS requires a valid IPv4 address
to listen on a network interface, but IPv6 is also planned to be supported. Another is-
sue arises when an encapsulation, data tunneling or network file systems (like SAMBA,
NFS) are used. Then, only the most outer IP and TCP/UDP headers are inspected.

Another important part is the recruitment of more volunteers, in order to collect
larger amounts of data. Also, having appropriate background information about the
users could be useful. This includes both the data about the users themselves, such as
age, occupation, if the computer is shared, but also information about the connection,
as speeds and technologies.

The data collected by VBS was used to generate a number of statistics on the flow
and data volume level. These statistics were calculated per-flow, per-application, and
per-content. Future research will focus on developing efficient methods for extracting
relevant information from the packet statistics. This can provide even more valuable
information about the flows, for example, on average packet sizes of different flows (and
the distribution of packet sizes), inter-arrival times between packets, and the number of
successful vs. unsuccessful connections for different kinds of traffic. Moreover, particu-
larly interesting statistics can be derived from the combined flow and packet statistics,
such as the average size of flows of different kinds of traffic, and eventually how much
traffic is created by different applications for individual users. The applications and the
files of various content-types transmitted by HTTP can also be grouped into several sets,
like voice, video, file transfer, interactive browsing, etc. This is not a trivial task, since
grouping manually such large number of applications and content-types is not doable.
The challenge is that it is large amounts of data, so efficient ways of handling these has
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to be developed.
A significant part of our research was focused on the comparison of various Deep

Packet Inspection (DPI) tools. Although this study is complete, the continuous evo-
lution of the network applications and the DPI-based techniques allows a periodical
updated of the evaluation. For instance, this evaluation can be updated by adding new
applications and web services to the dataset (as Netflix) and by introducing new clas-
sification tools to the study (as NBAR2 or Tstat). In this thesis, we focused on the
reliability of the DPI tools, however, a possible line of future work can be related to
their deployment for real-time classification (as scalability and computational cost).

Our hybrid network classifier was shown to be able to identify the traffic on multi-
ple levels with high accuracy. However, the number of supported applications is very
limited. Therefore, the next step would be to collect the traffic from other applications
and include them in our system. An automatic retraining mechanism can be developed
to update the mappings between the domain names and the web services.

The next big potential field for further research and development is our method
for QoS assessment. For now, only the traffic classification part is fully implemented.
However, we did not perform any studies regarding the impact of estimators (as delay,
jitter, burstiness, or packet loss) on the performance of any particular application. Fur-
thermore, as some of the estimators (as delay and packet loss) can only be measured
actively for non-TCP traffic, the future research can be directed into that area.

7.1 nDPIng
nDPIng project was started as a separate branch of nDPI to address these weaknesses
that require major changes in the code. As the original nDPI, nDPIng is GPLv3-licensed
and accessible at https://svn.ntop.org/svn/ntop/trunk/nDPIng/. The project is
now in an early development alpha stage, so not all the protocols and applications
detected by nDPI are supported. As the current nDPIng API is different than the one
of nDPI (and still provisional), the existing applications designed to work with nDPI
will not work with nDPIng without changing the way how the library is used.

The aim of this unique project is to bring new quality to the field of traffic classi-
fication by providing consistent results on many levels. The clear, unambiguous iden-
tification of network flows is meant to be ensured by various classification techniques
combined into a single tool. The following information is intended to be given for each
flow inspected by the classifier:

1. Transport layer protocol

2. All the application-layer protocols

3. Type of the content

4. Service provider

https://svn.ntop.org/svn/ntop/trunk/nDPIng/
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5. Content provider

To demonstrate the abilities of the software, we show a few examples of the currently
obtained results. The current format of the results is not the final one, however, it
demonstrates various new techniques used by nDPIng:

• proto:TCP→SSL_with_certificate→POP3S, service:Google
An encrypted POP3 session with a Google mail server.

• proto:TCP→SSL_with_certificate, service:Twitter
An encrypted connection to a Twitter server.

• proto:TCP→FTP_Data, content:JPG
An FTP data session, which carries a JPG image.

• proto:TCP→SSL_with_certificate→Dropbox, service:Dropbox
An encrypted Dropbox session (the application is Dropbox) with a Dropbox server.

• proto:TCP→SSL_with_certificate, service:Dropbox
An encrypted session with a Dropbox server, while the application is unknown (it
can be Dropbox as well as a web browser).

• proto:TCP→HTTP, content:WebM, service:YouTube
A flow from YouTube, which transports a WebM movie.

7.2 Quality of Service in Wireless Local Area Networks
Another important application of traffic classification are Wireless Local Are Networks
(WLANs). The 802.11e standard defines four traffic access classes: voice, video, best-
effort, and background [41]. The QoS is accomplished by creating inside a wireless node
separate queues for each of these classes. The queues behave like individual wireless
nodes, competing for the access to the medium according to the Enhanced Distributed
Channel Access (EDCA) algorithm. It ensures that the high-priority traffic is more
likely to be sent than the low-priority traffic by applying different values of parameters
(as contention window, arbitration inter-frame spacing, or transmission opportunity) to
the particular queues [42]. The flows are mapped to the access classes directly based on
the Class of Service (CoS) field from the Ethernet frame [43] or Type of Service (ToS)
field from the IP packet [44], depending on the device.

Based on that, we can enumerate several issues, which are subject to further in-
vestigation. As the appropriate access class is chosen based on the values from the
Ethernet or IP headers, the accuracy of the association highly depends on the quality
of pre-classification and policies inside the network. Wireless nodes directly connected
to the users’ devices are required to rely on the QoS tagging done by the users’ appli-
cations or the operating system. We observed a significant amount of BitTorrent traffic
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coming from the users tagged as Expedited Forwarding (EF), and thus, falling into the
voice access class. As shown in Paper IV, the QoS rules should be applied based on the
character of the flow and the content, not on the content alone. While it is worth to
prioritize live video RTMP streams, there is no need to do that with video files down-
loaded or uploaded using HTTP, FTP, or BitTorrent. Therefore, we can question the
validity of the content-based mappings.
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Abstract

To overcome the drawbacks of the existing methods for traffic classification (by
ports, Deep Packet Inspection, statistical classification), a new system was devel-
oped, in which the data are collected and classified directly by clients installed
on machines belonging to volunteers. Our approach combines the information
obtained from the system sockets, the HTTP content types, and the data trans-
mitted through network interfaces. It allows to group packets into flows and
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associate them with particular applications or the types of service. This paper
presents the design and implementation of our system, the testing phase and the
obtained results. The performed threat assessment highlights potential security
issues and proposes solutions in order to mitigate the risks. Furthermore, it proves
that the system is feasible in terms of uptime and resource usage, assesses its per-
formance and proposes future enhancements. We released the system under The
GNU General Public License v3.0 and published it as a SourceForge project called
Volunteer-Based System for Research on the Internet.

Keywords

computer networks, data collecting, performance monitoring, volunteer-based sys-
tem

1 Introduction
This journal paper is an extended and revised version of [1], which was presented at the
19th Telecommunications Forum TELFOR 2011.

Monitoring of the data flowing in the inter-network is usually done to investigate
the usage of network resources, and to comply with the law, as in many countries the
Internet Service Providers (ISPs) are obligated to register users’ activity. Monitoring
can be also made for scientific purposes, like creating realistic models of traffic and
applications for simulations, and to obtain accurate training data for statistical traffic
classifiers.

This paper focuses on the last approach. There are many existing methods to assign
the packets in the network to a particular application, but none of them were capable of
providing high-quality per-application statistics when working in high-speed networks.
Classification by ports or Deep Packet Inspection (DPI) can provide sufficient results
only for a limited number of applications, which use fixed port numbers or contain
characteristic patterns in the payload. Therefore, we designed, built, and tested a
system, which collects the data directly from the machines belonging to volunteers who
contribute with the traffic data. For the particular parts of the system, we described the
available and chosen solutions. Our objective was to show that the system is feasible
in terms of resource usage, uptime, and providing valid results. The remainder of this
paper describes the previous work related to this research and then focuses on the design
and the new implementation of the volunteer-based system. Finally, it shows the results
of 3-months system tests and proposes further enhancements.
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2 Related Work
Most methods for traffic classification use the concept of a flow defined as a group of
packets, which have the same end IP addresses, ports, and use the same transport layer
protocol. Flows are bidirectional, so packets going from the local machine to the remote
server and from the remote server to the local machine belong to the same flow. In [2],
the authors proposed to collect the data by Wireshark while running one application per
host at a time so that all the captured packets will correspond to that application. But
this method requires each application, whose traffic characteristics have to be captured,
to be installed on the host, which is run once for each application. This solution is slow
and not scalable. Secondly, all operating systems usually have background processes
such as DNS requests and responses, system or program upgrades. They can damage
statistics of the application traffic.

A DPI solution using L7-filter and a statistical classification solution are proposed
in [3]. Using DPI is much more convenient than the previous method, as it can examine
the data in any point in the network. Unfortunately, existing DPI tools are not able
to accurately classify traffic belonging to some applications like Skype (in this case L7-
filter relies on statistical information instead of the real traffic patterns, giving some false
positives and false negatives [4]). Obtaining the training data for statistical classification
based on statistical classifiers will not give us high accuracy of the new classifier. The
idea of using DPI for classification of the training data for Machine Learning Algorithms
was used in [5]. Moreover, the DPI classification is quite slow and requires a lot of
processing power [2, 6]. It relies on inspecting the user data and, therefore, privacy
and confidentiality issues can appear [2]. Application signatures for every application
must be created outside the system and kept up to date [2], which can be problematic.
Encryption techniques in many cases make DPI impossible.

Using application ports [7, 8] is a very simple idea, widely used by network admin-
istrators to limit the traffic generated by worms and other unwanted applications. This
method is very fast and it can be applied to almost all routers and layer-3 switches exist-
ing on the market. Besides its universality, it is very efficient to classify some protocols
operating on fixed port numbers. Using it, however, gives very bad results in detection
of protocols using dynamic port numbers, like P2P or Skype [2, 6, 9]. The second draw-
back is not less severe: many applications try to use well-known port numbers to be
treated in the network with a priority.

3 Volunteer-Based System
We developed a system, which collects flows of Internet data traffic together with the
information about the application associated with each flow. The prototype version was
called Volunteer-based Distributed Traffic Data Collection System and its architecture
was described and analyzed in [10] and [11]. The design and the implementation of the
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prototype had numerous weaknesses and stability issues. Therefore, a new implemen-
tation of the system has been made, called Volunteer-Based System (VBS). The new,
reimplemented version of VBS was released under The GNU General Public License v3.0
and published as a SourceForge project. The website [12] contains a broad description
of the project illustrated with screenshots, a roadmap, binary packages, source code in
the Git repository, comprehensive documentation of the source code, and a system for
bug tracking and feature requests.

Both the prototype and VBS were developed in Java, using Eclipse environment,
and that resulted in a cross-platform solution. Currently, only Microsoft Windows (XP
and newer) and Linux are supported because of third-party libraries and helper appli-
cations used in the development. The system consists of clients installed on volunteers’
computers and of a server responsible for storing the collected data.

The task of the client is to register the information about each data packet passing
the Network Interface Card (NIC). Captured packets are categorized into flows, with the
exception of traffic to and from the local network (file transfers between local peers are
filtered out). The following attributes of the flow are captured: start and end times of
the flow, number of packets contained by the flow, local and remote IP addresses, local
and remote ports, transport layer protocol, name of the application, and name of the
client associated with the flow. The client also collects information about all the packets
associated with each flow: direction, size, TCP flags, and relative timestamp to the
previous packet in the flow. One transport-layer flow can contain multiple application-
layer streams of HTTP data, and each of them can carry different kinds of content,
such as audio or video. For that reason, packets belonging to flows which contain
HTTP content require additional information to be collected. Therefore, in this case,
we additionally store the information about the content type for each packet of the
flow. In fact, the information about the content type is present only in the first packet
of the response made to an HTTP request. It means that for each HTTP request
we have one packet containing the information about the content type, which allows
us to logically split all the application-layer HTTP streams. The collected data are
periodically transmitted to the server, which stores all the data for further analysis.
The client consists of 4 modules running as separate threads: packet capturer, socket
monitor, flow generator, and data transmitter.

Both the VBS client and the VBS server are designed to run in the background
and to start automatically together with the operating system (as a Windows service
or a Linux daemon). The prototype uses the free community version of Tanuki Java
Service Wrapper [13], which provides support only for 32-bit JVMs, and which requires
special packaging of the Java application and placement of the libraries. To avoid these
limitations, it has been replaced with YAJSW [14], an open-source project that provides
support for both 32-bit and 64-bit versions of Windows and Linux.

We implemented a fully automatic update system for VBS clients. To simplify the
update process, we introduced three different version numbers in our software; the first
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one is associated with the client, the second one with the server, and the third one with
the structure of the SQLite database used for exchanging the information between the
client and the server. The update is stored on the server. While registering on the server,
the client asks if any update is available, and downloads it if possible. The update is
automatically installed by a script executed by YAJSW during the next restart of the
VBS client.

3.1 Packet Capturer
External Java libraries for collecting packets from the network rely on the already in-
stalled Winpcap (on Windows) or libpcap (on Linux), which makes the operating system
dependency issue transparent to the application. The Jpcap [15] library used in the pro-
totype is not suitable for processing packets from high-speed links, because transfers with
rates higher than 3MB/s cause Java Virtual Machine (JVM) to crash. Moreover, the
loopPacket and the processPacket functions are broken causing random JVM crashes,
so the only possibility is to process the packets one by one using getPacket (this bug
is fixed in a new project called Jpcapng [16] evolved from Jpcap). Jpcap has not been
developed since 2007 and Jpcapng since 2010, so there is no chance to get the bugs
corrected. Therefore, we chose jNetPcap [17] as it contains even more useful features
than Jpcap offered, such as detecting and stripping different kinds of headers (data-link,
IP, TCP, UDP, HTTP) in the processed packets. It allows the client to capture packets
on all the interfaces, not only on the Ethernet ones like the prototype, where the client
needed to know the number of stripped bytes. jNetPcap is also able to filter out the
local subnet traffic on the Pcap level by compiling dynamically Pcap filters, which saves
system memory and CPU power. Contrary to processing each packet separately by the
prototype of VBS, we decided to use the native function of Winpcap or libpcap called
loopPacket. It allowed to lower the usage of the resources consumed by the VBS client.
It is worth mentioning that the Winpcap library tends to crash when the computer is
placed into the standby mode, sleep mode, or hibernation. Therefore, the packet cap-
turer needs to be continuously monitored and restarted in the case of a crash. A need
to restart the capturer also appears when new interfaces are detected in the system, for
example, when a network cable is connected, or the switch of a wireless card is enabled.
If an IP address on an interface is changed, the packet capturer needs to be restarted
as well to prevent the confusion with recognizing the local and remote IP addresses.

3.2 Socket Monitor
The socket monitor calls the external socket monitoring tool every second to ensure that
even very short flows are registered. In the prototype, the built-in Windows or Linux
Netstat was used, but it takes up to 20 seconds for Windows Netstat to display the
output on some machines. We tried to solve this issue by using CurrPorts [18] instead of
Netstat on Windows. Unfortunately, the only way to export the socket information was
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to write it to a file on the hard disk. It resulted in poor performance due to excessive disk
reads and writes when executing CurrPorts each second. Finally, we chose Tcpviewcon,
a console version of TCPView [19]. Tcpviewcon displays the information about the
sockets in the console in a Netstat-like view, which allows us to process this information
in the same manner as using Netstat. Using the external tools brings some licensing
issues. These third-party applications must not be redistributed along with the VBS,
but they need to be downloaded by the installer on the users’ computers after accepting
their license agreements.

VBS monitors both TCP and UDP sockets, contrary to the prototype, which was
able to handle only TCP sockets. TCP sockets include the information about both end-
points (local and remote) because a connection is established, while UDP sockets only
provide the information about the local host. Since only one application can listen on a
given UDP port at a time, the information about the local IP address and the local port
are fully sufficient to obtain the application name for the given flow. Nevertheless, it is
not possible to use the information about the UDP socket to terminate the flow, because
many flows to different remote points can coexist using one UDP socket. Therefore,
UDP flows are always closed based on timeout. TCP sockets are created on a one-per-
connection basis, so it is possible to precisely assign a socket to a flow and close the flow
when the matching socket is closed.

3.3 Flow Generator
Collected packets are grouped into flows. If the application name can be received from
the matching socket, it is assigned to the flow. When the flow is closed (the matching
socket is closed or the flow is timed out in case the flow is not mapped to any socket), it
is stored in the memory buffer. The prototype treated the flow and the packet data as
raw byte arrays and stored them as binary files. However, it was impossible to detect
the corruption of files or to look into the file to see what went wrong without binary
file parsers. Therefore, we decided to use SQLite [20], which uses the proper data types
(like integer, double, string) for all the captured information.

3.4 Data Transmitter
Before transmitting the data, the client authenticates itself to the server using a hard-
coded plain-text password and obtains an identifier. The communication between the
clients and the server uses raw sockets. The node authentication and the data transmis-
sion require separate connections between the clients and the server. When a sufficient
number of flows are stored in the local database (the database exceeds 700 kB), the
SQLite database file is transmitted and stored on the VBS server. The transmitted
database file also includes the client identifier and the information about the operating
system installed on the client machine.
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3.5 Implementation of the Server
The prototype server was based on threads. It received binary files from the clients and
stored them in a separate directory for each client. The VBS server is also based on
threads, however, it stores the collected data differently. The first thread authenticates
the clients and assigns identifiers to them. The second thread receives files from clients
and stores them in a common folder, which is periodically checked by the third thread.
The files are checked for corruption and the proper SQLite database format, then they
are extracted into the database. A synchronization method is used to avoid a situation
where the third thread tries to process a file, which was not transferred completely –
the extension of the file is changed after the file transfer is successful. The server uses
the community edition of MySQL as the database, as it is quite fast and reliable for
storing significant amounts of data.

4 Testing Phase
The system was implemented and tested over a period of 3 months, to test its feasibility
and usefulness in collecting valid data. The server was installed at Aalborg Univer-
sity on a PC equipped with an Intel Core i3 550 / 3.2GHz processor, 4GB of DDR3
SDRAM memory, and 70GB hard disk and using Ubuntu 11.04 as OS. The clients were
installed on 4 computers placed in private houses in Denmark and in Poland as well
as on 23 machines installed in computer classrooms in Gimnazjum nr 3 z Oddziałami
Integracyjnymi i Dwujęzycznymi imienia Karola Wojtyły w Mysłowicach, a high school
in Poland. The computers used for the test were equipped with various hardware and
operating systems. The objective was to prove that the system has high uptime, col-
lects data from remotely located clients, and does not consume too much resources.
The CPU usage by the VBS fluctuates with the average of around 1.7% depending
on the current rate of the traffic in the network. The CPU usage on the computers
participating in our tests is shown in Figure 1. To avoid the complexity of illustrating
the CPU usage over the long time of the experiment, we illustrated the occurrence rate
of the CPU consumption by each client. As it is shown, the CPU consumption in most
cases amounts to 5% or less, while the consumption of 10% or more is extremely rare.
During the experiment, no JVM errors about exceeding the default allocated memory
size occurred, so we assume that VBS is free of memory leaks. The average memory
usage on all the tested machines was below 5% of the installed system memory. The
minimum required amount of system memory is 64MB because of the requirements of
the Java service wrapper YAJSW. Disk space usage varied depending on the scheduling.

The test results were obtained during around 3 months and in this time the clients
analyzed 325.88GB of Internet traffic data (accumulated data from all clients). On the
server side, 22.8GB of statistical data were collected, consisting of 0.9GB of flows data
(5,799,207 records), and 21.9GB of packets data (446,987,507 records). The communi-
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Figure 1: The CPU Usage by VBS Clients on Test Computers

cation between the VBS client and the server passes the network adapter as an ordinary
remote connection, so it also appears in the database and is a subject to be included in
the classification. During the test period, 4.21% of the collected data correspond to the
communication between the VBS client and the VBS server. Short flows, which contain
less than 20 packets, represent 87% of total number of flows. Around 12% of flows were
collected without the associated application name. TCP flows without the application
name contain 13 packets in average comparing to the flows with the application name
containing 74 packets in average. It means that the matching sockets for short flows
were not registered by the socket monitor due to very short opening time. This rule
does not apply to UDP flows because all the flows created by one application use the
same UDP socket in the system. It means that either all or none flows associated with
the socket have assigned an application name, regardless of the length of the particular
flow. Detailed statistics on per-client basis are shown in Table 1.

An example of the stored flows data is shown in Table 2. The IP addresses were
hidden for privacy reasons, the start and the end times of the flow (stored as Unix
timestamps) were cut due to their length. This table also depicts a very interesting
behavior of Skype – while the main voice stream is transmitted directly between the
peers using UDP, there are plenty of TCP and UDP conversations with many different
points (originally it was found to be around 50). The reason for this could be that the
Skype user directory is decentralized and distributed among the clients.

Together with each flow, the information about every packet belonging to this flow
is registered. One TCP conversation is presented in Table 3, some non-relevant packets
are omitted to save space. This example shows that all the parameters are correctly
collected. Thanks to such a detailed flow description, it can be used as a base for creating
numerous different statistics. These precise statistics can be used as an input to Machine
Learning Algorithms (MLAs). We tried this approach in [21] and we classified traffic
belonging to 7 different applications with accuracy of over 99%. In [22], we used VBS
to distinguish different kinds of browser traffic, such as file download, web browsing,



4. Testing Phase 63

Table 1: Statistics of the Operations of the VBS Clients

Client
Id

Average
CPU
Usage
[%]

Captured
Traffic
[GB]

Traffic
Belonging
to VBS
[%]

Number
of

Captured
Flows

UDP
Flows
[%]

Flows of
Below 20
Packets
[%]

Flows
Without

Application
Names [%]

1 2.4 43.64 4.46 843552 32.00 85.57 61.28
2 1.1 0.04 2.04 149 0.00 65.77 23.49
4 0.5 248.95 4.10 3587227 51.42 86.12 3.05
5 1.0 29.09 4.75 1184464 46.82 92.56 1.58
6 0.8 0.08 4.90 1009 0.00 69.67 9.91
7 0.9 0.17 6.36 6943 8.44 76.51 13.38
8 0.9 0.34 10.39 16671 1.83 80.64 40.35
9 0.7 0.14 5.30 3084 0.29 71.07 18.00
10 2.2 0.02 5.31 774 0.52 73.00 19.12
11 0.7 0.19 6.82 4552 1.38 65.66 8.37
12 0.8 0.43 9.07 12000 0.77 80.19 27.79
13 0.8 0.11 6.81 4324 0.48 75.13 7.61
14 0.9 0.24 5.31 6186 1.00 69.95 9.80
15 2.6 0.04 11.51 5724 0.05 84.03 37.61
16 2.6 0.03 9.08 2227 0.27 75.12 23.53
17 2.3 0.08 9.39 5736 0.14 72.70 27.63
18 0.6 0.50 6.24 16158 0.03 67.81 13.67
19 2.6 0.44 9.04 28575 0.08 74.80 29.18
20 0.8 0.16 6.51 4905 0.20 75.37 14.82
21 3.2 0.39 8.01 22572 0.00 69.76 27.16
22 2.8 0.39 7.41 24389 0.00 72.58 31.77
23 0.4 0.19 4.95 5664 0.04 67.07 8.33
24 3.7 0.10 5.05 2692 0.00 73.59 33.51
25 3.5 0.06 3.20 1352 0.00 71.52 38.76
26 2.3 0.02 3.23 1056 0.00 69.22 12.69
27 2.7 0.04 5.74 1414 0.00 66.62 19.87
28 2.7 0.02 6.94 419 0.00 74.41 63.96

audio and video. The statistics obtained from the particular groups of the traffic were
provided as an input to MLAs. Moreover, the presence of the packet size and the relative
timestamp enables us to re-create characteristics of this traffic and, therefore, also the
behavior of the application associated with the flow. The relative timestamp shows how
much time passed from the previous packet in the flow.
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Figure 2: The Impact Matrix [23]

5 Threat Assessment
The Volunteer-Based System, as other distributed systems, is prone to various types
of security attacks. For that reason, we made deep analysis of potential risks, and we
suggested the solutions for mitigating or avoiding them. We started the assessment from
finding all interfaces which can be used to interact with the system. These interfaces
result from both the architecture of VBS and the use cases. Then, we composed the list
of possible threats for each interface. For each threat, we assessed its probability and
severity using the scale from 1 to 5, where 1 means the lowest probability or severity,
and 5 means the highest. Table 4 shows the disclosed threats and the assigned values.

The decision about which threats need to be handled is based on the impact matrix
shown in Figure 2 [23]. If the intersection of the probability and the severity of the threat
lies in the cells marked with the yellow color, the threat should be handled. However,
if it lies in the cells marked with the blue color, the threat does not need be handled.
Threats belonging to the cells marked with the white color can be handled, but it is not
required. We can see that only one threat requires handling in our system – the server
needs to be protected from an SQL injection attack. There are several other issues
which we can mitigate or avoid. The physical access is protected by placing the server
in a safe room with attested locks, and a firewall can be used to protect the system
from malicious connections. The threats to the system can also be further reduced by
stripping the data of IP addresses or by using encryption.
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Table 4: The Security Leaks in VBS with Assigned Probability and Severity

Interface / Threat Probability
(1–5)

Severity
(1–5) Handle

The user interface
A user can delete the local data storage 3 1 No
A user can pollute data in his local data storage 1 2 No
A user can destroy the VBS system 3 1 No
A user can modify the local data storage by adding SQL
commands (SQL injection)

1 5 Maybe

An attacker can hijack user’s computer and redirect the
data to another machine

1 1 No

The server interface
An attacker can get physical access to the server 1 5 Maybe

The network interface
An attacker can inject polluted data to the server 3 4 Maybe
An attacker can inject data containing SQL commands to
the server (SQL injection)

4 5 Yes

An attacker can perform a Denial of Service attack on the
server

3 2 Maybe

An attacker can hack the server and modify or delete the
database

2 5 Maybe

An attacker can hack the server and change the file used to
upgrade clients, which can result in loosing all VBS clients
and transferring them into bots in attacker’s botnet

1 5 Maybe

The communication between the clients and the
server
An attacker can sniff the communication between the
client and the server

1 3 No

An attacker can pollute the data being sent by the client
to the server

1 2 No

An attacker can modify the data being sent from the client
to the server by adding SQL commands (SQL injection)

1 5 Maybe

6 Conclusion
The paper presents a novel volunteer-based system for collecting network traffic data,
which was implemented and tested on 27 volunteers during around 3 months. With
relatively long testing, the system has shown to be feasible in terms of resource usage
and uptime. The obtained results proved that the system is capable of providing valid
detailed information about the characteristics of the network traffic. Therefore, we can
use the system to create the profiles of traffic generated by different applications. VBS
is a field for constant improvements. As we assessed in the previous section, sufficient
security needs to be implemented in the system. If it is possible, we should avoid using
external tools (Netstat, TCPView), but extract the information about open sockets
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directly from the system API. We need to consider developing an intelligent transfer
protocol, which will allow to negotiate link parameters and to schedule transfers in order
to effectively use the capacity of the link. A user-friendly installer will be the next step
to make the system easier to use by non-qualified users.

VBS requires a valid IPv4 address to listen on a network interface, but IPv6 is also
planned to be supported. Another issue arises when an encapsulation, data tunneling
or network file systems (like SAMBA, NFS) are used. Then, only the most outer IP and
TCP/UDP headers are inspected. The next issue is the lack of the application name for
short flows. Volunteers’ privacy also must be protected in a better way, for example by
avoiding to store IP addresses in a clear text. Another concern, due to privacy issues,
is how to find a large enough group of participating volunteers to be able to receive
data for all the relevant applications. This issue is not resolved so far, but we believe
that it will be easier to convince the users to install the software if it can provide some
useful information to the user, like statistics about the amount of traffic belonging to
the particular groups of applications.

Finally, the collected data can be used to create an emulator of different applica-
tions, different groups of applications, the Internet traffic under certain conditions, or
at selected points of the time.
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Abstract

Monitoring of the network performance in a high-speed Internet infrastructure
is a challenging task, as the requirements for the given quality level are service-
dependent. Therefore, the backbone QoS monitoring and analysis in Multi-hop
Networks requires the knowledge about the types of applications forming the cur-
rent network traffic. To overcome the drawbacks of existing methods for traffic
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classification, usage of C5.0 Machine Learning Algorithm (MLA) was proposed.
On the basis of the statistical traffic information received from volunteers and C5.0
algorithm, we constructed a boosted classifier, which was shown to have the ability
to distinguish between 7 different applications in the test set of 76,632–1,622,710
unknown cases with average accuracy of 99.3–99.9%. This high accuracy was
achieved by using high quality training data collected by our system, a unique set
of parameters used for both training and classification, an algorithm for recogniz-
ing flow direction and the C5.0 itself. The classified applications include Skype,
FTP, torrent, web browser traffic, web radio, interactive gaming and SSH. We
performed subsequent tries using different sets of parameters and both training
and classification options. This paper shows how we collected accurate traffic data,
presents arguments used in classification process, introduces the C5.0 classifier and
its options, and finally, evaluates and compares the obtained results.

Keywords

traffic classification, computer networks, C5.0, Machine Learning Algorithms (MLAs),
performance monitoring

1 Introduction
One of the most important challenges in the network monitoring is how to measure
the performance of high-speed Multi-hop Networks in a centralized manner. Each net-
work carries data for numerous different kinds of applications, which have different
performance requirements. Therefore, providing the information about the quality level
requires the knowledge about what kinds of data are flowing in the network at the
present time. Most of the current methods for traffic classification use the concept of
a flow defined as a group of packets having the same end IP addresses, using the same
transport protocol, and its port numbers. Flows are considered as bidirectional – pack-
ets going from the local machine to the remote server and from the remote server to the
local machine are a part of the same flow.

Using application ports for traffic classification is a very simple idea widely used by
network administrators to limit the traffic generated by worms and unwanted services.
This method is very fast and can be applied to almost all the routers and layer-3
switches existing on the market. Apart from its universality, this method is very efficient
to classify some protocols operating on fixed port numbers. Using it, however, gives
very bad results in detection of protocols using dynamic port numbers, like P2P and
Skype [1–3]. The second drawback is not less severe: many scam applications use well-
known port numbers to be treated in the network with a priority. Deep Packet Inspection
(DPI) solutions are quite slow and require a lot of processing power [1, 3]. Furthermore,
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they rely on inspecting the user data and, therefore, privacy and confidentiality issues
can appear [1]. Application signatures for every application must be created outside the
system and kept up to date [1], which can be problematic. Worse, encryption techniques
make DPI in many cases impossible.

Machine Learning Algorithms like K-Means, Naive Bayes Filter, C4.5, J48, Random
Forests have much wider coverage. They can be used in any point of the network,
providing very fast statistical detection of the application, to which the traffic belongs.
Achievable detection rate correctness is over 95% [1, 2, 4–9]. All the MLAs require
significant amounts of training data for initial learning. The precision of the future
classification by MLAs depends heavily on the quality of the training data. This paper
introduces the usage of C5.0 in traffic classification and shows that this C4.5 successor
is able to offer the classification accuracy of above 99%.

The remainder of this document describes related previous work, gives an overview of
our system, our method for collecting precise training data and isolating set of arguments
used for classification, and then focuses on C5.0. The accuracy of the classification by
C5.0 and the speed of generating the classifier was assessed when using various set of
classification arguments and program options. Subsequently, the obtained results were
presented and discussed.

2 Related Work
It was demonstrated in [1] that all the P2P applications behave similarly, so it is possible
to use statistical analysis to detect even unknown applications. Several tries were made
to classify accurately P2P and Skype traffic using older implementations of MLAs, like
REPTree, C4.5, or J48. In [1], the authors proposed a few simple algorithms based on
REPTree and C4.5, which are being able to classify P2P traffic using the first 5 packets
of a flow. Their method based on C4.5 performed highly accurately (97% of P2P traffic
was classified properly), but the accuracy was not tested when starting packets from the
flow were lost. Furthermore, the attribute set used for classification contained source
and destination port numbers, what could make the classifier closely related to the
current assignment of port numbers to particular applications in the training data.

Another approach to classify P2P applications was taken in [3] using a Java im-
plementation of C4.5 called J48 to distinguish between 5 different applications. The
authors tried to skip a number of packets in the beginning of the flow ranging from 10
to 1000 and they obtained only a little fluctuation in performance, with classification
accuracy over 96%. It was shown in [10] that the original C4.5 and J48 perform much
different on relatively small or noisy data sets (the accuracy of J48 and C5.0 was in
tested cases similar, and worse than C4.5). J48 processing using statistics based on
sizes was implemented in [11] for detection of BitTorrent and FTP traffic, reaching the
accuracy of around 98%. This publication showed that behavior of data parameters
contained in encrypted and unencrypted traffic generated by the same application looks
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almost the same. Moreover, it was shown that zero-payload packets (ACK) can distort
statistics based on sizes.

In [12], many different mechanisms of classification of the network traffic were eval-
uated, including C5.0. The achieved accuracy was around 88–97% on traffic belonging
to 14 different application classes. This not very high classification accuracy was prob-
ably partly due to preparing both training and test cases, where the decision attribute
(application name) was obtained by DPIs (PACE, OpenDPI and L7-filter). These DPI
solutions use multiple algorithms (including statistical analysis) to obtain the applica-
tion name. Therefore, both training and test data were in some degrees inaccurate,
which caused also more errors from the side of C5.0.

3 Overview of the Methods
In our research, the C5.0 classifier was intended to be a part of a system for Quality of
Service (QoS) measurements in the core of the network [13]. The first task is to recruit
volunteers from the users in the network, in which the system will be installed. The
volunteers install on their computers a client program, which captures the relevant traffic
information and submits the data to the server. On the server, these data are used to
generate per-application traffic statistics. C5.0 Machine Learning Algorithm uses these
statistics to learn how to distinguish between different types of applications and generate
classification rules (decision trees). In our research, we focused on 7 different groups
of applications instead of individual applications, because the QoS requirements within
each group are similar (like for Firefox, Opera or Google Chrome web browsers).

The challenging task is to inspect nearly in real-time significant amount of traffic
in the core of high-speed networks. Such systems deal with huge amounts of data
and, therefore, only selected flows can be inspected due to memory and processing
power limitations for quality assessment. Inspecting one or few flows per user at a
time is enough, since when a user experiences problems, they usually concern all user’s
network activity. For better adjustment to applications used in different networks, the
classifier was designed to be network-dependent, so it should be trained in each network
independently. When the relevant flows are captured, per-flow statistics need to be
generated. There are two kind of statistics generated at this step: used to determine the
kind of application associated to that flow, and used to assess the QoS level in a passive
way. The system uses the classification rules previously generated by C5.0 together
with the first type of statistics to find out to which application the flow belongs. Then,
on the basis of the kind of the application, the system determines acceptable ranges of
values of the relevant QoS parameters. The last step is to check if the current values
(obtained from flow statistics or in an active way) match the expected ones. If not, the
quality of the given service is considered as degraded.

The subsequent paragraphs contain detailed description of our methods regarding:
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• Collecting accurate training and test data by our Volunteer-Based System

• Criteria for the data flows used in our experiment

• Processing the flows and extracting the statistics

• Defining sets of classification arguments

• Assessing the accuracy of C5.0 while using various classification options

4 Obtaining the Data
A good solution for obtaining accurate training data can rely on collecting the flows at
the user side along with the name of the associated application. We did this using our
Volunteer-Based System. The basic idea and the design of the system were described
in [14] and our current implementation in [15]. The system consists of clients installed on
users’ computers, and a server responsible for storing the collected data. The task of the
client is to register the information about each flow passing the Network Interface Card
(NIC), with the exception of traffic to and from the local subnet, to prevent capturing
transfers between local peers. The following flow attributes were captured: start and
end time of the flow, number of packets, local and remote IP addresses, local and remote
ports, transport protocol, name of the application and client, which the flow belongs to.
Apart from the information on the flow itself, the client also collected information about
all the packets associated with each flow. These packet parameters were: direction, size,
TCP flags, and relative timestamp to the previous packet in the flow. Information was
then transmitted to the server, which stored all the data for further analysis in a MySQL
database.

Another small software was developed for generating training and test files for the
C5.0 classifier from the collected data. The following application groups were isolated:
Skype main voice flow, FTP transfers (both uploads and downloads), torrent transfers,
web browser traffic (except web radio), web radio traffic, the interactive game America’s
Army and SSH traffic. The requirements needed to be fulfilled by the traffic flows
associated with each group are specified in Table 1.

Because of dynamic switching between the flows, the method had to be able to in-
spect a flow starting from any time point. For performance reasons, it is not possible
to store all the flows in the database and to start inspection of the chosen one from its
beginning. So, it had to be possible to assess the flow on the basis of the given number
of packets or seconds from the middle of that flow. We assumed that the flow charac-
teristics based on packet sizes within a network are independent of current conditions,
contrary to the flow characteristics based on time parameters (which change quickly
during e.g. congestion). Therefore, our method used the concept of a probe equals to
a particular number of captured packets instead of particular number of seconds. The
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Table 1: Requirements for Different Flows

Group Requirement
Skype protocol name = ’UDP’ AND application name = ’Skype’ AND no. of packets ≥

200
FTP application name = ’Filezilla’
Torrent application name = ’uTorrent’
Web (application name = ’firefox’ OR application name = ’chrome’ OR application

name = ’opera’) AND remote IP 6= ’195.184.101.203’
Web radio client id = 3 AND application name = ’chrome’ AND remote IP = ’195.184.101.203’
Game application name = ’AA3Game’ AND protocol name = ’UDP’
SSH application name = ’Putty’

probability of catching initial packets of each flow is very low due to dynamic switching
between the flows. Moreover, count and size characteristics are different for the initial
and for the remaining packets in the flow. To not disturb the accuracy of the classi-
fier by statistics obtained from initial packets, we decided to ignore in the experiment
ten initial packets of each flow, even if they were captured and stored. This feature
excluded from the experiment flows possessing less than 15 packets, but this limitation
was reasonable, because the QoS performance measurements rely in our case on long
flows.

The direction of the flow was recognized on the basis of proportions of inbound to
outbound payload bytes of the classified flow – the higher value was always considered as
belonging to the inbound traffic. This way, streams with asymmetric load were always
classified in the same way and we avoided noise affecting the accuracy.

We needed to find out what number of packets from the flow is needed to perform
accurate classification. Each flow was divided into X groups of Y packets, where Y
depends on the current iteration (we tested our algorithm on groups of 5, 10, 15,. . . ,
90 packets), and X is a count of obtained groups. The dependency between X and Y is
evident: more packets in a group means less groups in total (and, therefore, less training
cases), but higher accuracy of statistics creating each particular case. Obtained groups
were divided into 2 disjoint sets used later to generate statistics.

5 Classification Attributes
Each group from these 2 disjoint sets was used to generate one (respectively training and
testing) case for the classifier. This way we never used the same cases for both training
and classification. The attributes were divided into 2 sets. Set A contained 32 general
continuous attributes based only on packet count and sizes, plus the target attribute.
All the size parameters were based on the real payload length, not the packet length.
To improve the ability to classify the encrypted traffic, the outer TCP/IP (40B) or
UDP/IP (28B) header was removed, leaving only the data part. This set of parameters
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consists of:

• Number of inbound / outbound / total payload bytes in the sample

• Proportion of inbound to outbound data packets / payload bytes

• Mean, minimum, maximum first quartile, median, third quartile, standard devia-
tion of inbound / outbound / total payload size in the probe

• Ratio of small inbound data packets containing 50B payload or less to all inbound
data packets

• Ratio of small outbound data packets containing 50B payload or less to all out-
bound data packets

• Ratio of all small data packets containing 50B payload or less to all data packets

• Ratio of large inbound data packets containing 1300B payload or more to all
inbound data packets

• Ratio of large outbound data packets containing 1300B payload or more to all
outbound data packets

• Ratio of all large data packets containing 1300B payload or more to all data
packets

• Application: skype, ftp, torrent, web, web_radio, game, ssh

Set B contained 10 protocol-dependent attributes:

• Transport protocol: TCP, UDP

• Local port: well-known, dynamic

• Remote port: well-known, dynamic

• Number of ACK / PSH flags for the inbound / outbound direction: continuous

• Proportion of inbound packets without payload to inbound packets: continuous

• Proportion of outbound packets without payload to outbound packets: continuous

• Proportion of packets without payload to all the packets: continuous
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By dividing the classification attributes, the research demonstrated how much the
accuracy of the classifier depends on including set B into the classification. It is worth
mentioning that the attributes contained in set B are very general: no real port numbers
were stored, but only the information if the number is below 1024 (well-known) or
above (dynamic). This way, at first, we did not influence the speed of the classifier
by dividing the cases for each local and remote port number (resulting in generating
port-based classifier), but still we were able to provide general information about the
application model: client-server or peer-to-peer. Secondly, services can use different port
numbers, but still they should be classified correctly, as the servers in the client-server
model usually use only well-known port numbers, and the clients use dynamic ones.
By avoiding using the port numbers, our solution should be able to identify accurately
also encrypted traffic. Zero-payload packets (ACK) were treated in a special way by
assignment to their own classification argument.

6 C5.0-Based Classifier
The C5.0 algorithm is a new generation of Machine Learning Algorithms (MLAs) based
on decision trees [16]. It means that the decision trees are built from the list of possible
attributes and the set of training cases, and then the trees can be used to classify the
subsequent sets of test cases. C5.0 was developed as an improved version of a well-
known and widely used C4.5 classifier and it has several important advantages over its
ancestor [17]. The generated rules are more accurate and the time used to generate them
is lower (even around 360 times on some data sets). In C5.0, several new techniques
were introduced:

• Boosting: several decision trees are generated and combined to improve the pre-
dictions

• Variable misclassification costs: that makes possible to avoid errors, which can
result in a harm

• New attributes: dates, times, timestamps, ordered discrete attributes

• Values can be marked as missing or not applicable for particular cases

• Supports sampling and cross-validation

The C5.0 classifier contains a simple command-line interface, which was used by
us to generate the decision trees, rules and finally test the classifier. In addition, free
C source code for including C5.0 classifier in external applications is available on the
website of C5.0. Detailed description of C5.0 and all its options and abilities is published
in the tutorial [18].
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Figure 1: Time Spent for Generating the Classifier

7 Results
The training cases were provided to the C5.0 classifier to generate decision trees or
classification rules. Then, the decision trees or the rules were used to classify the test
cases. The experiment was repeated multiple times, each time using different sets of
training and test cases (dependent on the number of packets used to create the case),
different set of attributes used for classification (set A, or set A plus B), and different
classification options (normal, rules generating, boosting, softening thresholds). We
tested both the error rates of the provided classifiers (Table 2) and the time needed
to construct them (Figure 1). The average error rates of the classifiers are shown
in Figure 2 and the misclassification table for the classifier with the lower error rate
(boosted classifier using both A and B sets of classification attributes, 75 packets used
to construct each case) is presented in Figure 3. The experiment resulted in several
important conclusions. First of all, using extended set of classification attributes (A
+ B) containing protocol-dependent attributes, we achieved lower bottom error rate
(0.1%) than using only size-based attributes from set A (2.7%).
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Figure 2: Average Error Rates of the Classifiers

The time used to construct classifiers from the extended set of attributes was also
lower than when using only set A. Both these observations were completely independent
of classification options. The lowest error rate of 0.1% was achieved by using the boosted
classifier, comparing to 0.3% error rate when using the standard classification without
any options. However, creating the boosted classifier took around 10 times more time
than creating the standard classifier. Furthermore, our research demonstrated that
creating the rules instead of decision trees, or using softened thresholds had no or only a
little impact on the error rate, while it extended dramatically the time used to construct
the classifier.

We also measured which way of training the classifier is the most optimal. The
research showed that the classification error rate was the highest when using numerous
cases, each created using statistics derived from 5 subsequent packets. The low precise
statistics constructed from small number of packets were not sufficient to make the
classifier accurate, even, if the count of them was significant. The classification error
was decreasing while we were increasing the number of packets from which the statistics
were generated, and it stabilized when we used 35 or more packets. Further increasing of
the number of packets used to construct the case further did not improve the accuracy
significantly, probably because it was compensated by a smaller number of provided
training cases.
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(a) (b) (c) (d) (e) (f) (g) <-classified as
---- ---- ---- ---- ---- ---- ----

650 3 (a): class skype
196 68 (b): class ftp

19 83929 3 (c): class torrent
6799 (d): class web

8 388 (e): class web_radio
16 9 1419 (f): class game

7 58 (g): class ssh

Figure 3: Misclassification Table, the Best Case

8 Conclusion
This paper presents a novel method based on C5.0 MLA for distinguishing different
kinds of traffic in computer networks. It was demonstrated that our method is feasible
to classify the traffic belonging to 7 different applications with average accuracy of
99.3–99.9%, when using accurate data sets for both training and testing the boosted
classifier. Our results proved that the classifier is able to distinguish traffic which appears
to be similar, like web browser traffic and a radio streamed via a web page. The
classifier did not have problems with distinguishing interactive traffic: Skype, game and
SSH. We observed, however, that FTP and Torrent file transfers have very similar flow
characteristics and, therefore, a significant number of packets were misclassified between
these two classes. Our method is a field for more experiments and further improvements.
In this research both the training and test data sets were disjoint, but collected from
the same users. As the next step, we consider to involve numerous users to assess the
accuracy using data sets obtained from different networks.
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Abstract

Monitoring of the Quality of Service (QoS) in high-speed Internet infrastructures
is a challenging task. However, precise assessments must take into account the
fact that the requirements for the given quality level are service-dependent. The
backbone QoS monitoring and analysis requires processing of large amounts of
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data and the knowledge about the kinds of applications, which generate the traf-
fic. To overcome the drawbacks of existing methods for traffic classification, we
proposed and evaluated a centralized solution based on the C5.0 Machine Learn-
ing Algorithm (MLA) and decision rules. The first task was to collect and to
provide to C5.0 high-quality training data divided into groups, which correspond
to different types of applications. It was found that the currently existing means
of collecting data (classification by ports, Deep Packet Inspection, statistical clas-
sification, public data sources) are not sufficient and they do not comply with the
required standards. We developed a new system to collect the training data, in
which the major role is performed by volunteers. Client applications installed on
volunteers’ computers collect the detailed data about each flow passing through
the network interface, together with the application name taken from the descrip-
tion of system sockets. This paper proposes a new method for measuring the level
of Quality of Service in broadband networks. It is based on our Volunteer-Based
System to collect the training data, Machine Learning Algorithms to generate the
classification rules and the application-specific rules for assessing the QoS level.
We combine both passive and active monitoring technologies. The paper evaluates
different possibilities of the implementation, presents the current implementation
of the particular parts of the system, their initial runs and the obtained results,
highlighting parts relevant from the QoS point of view.

Keywords

broadband networks, data collecting, Machine Learning Algorithms, performance
monitoring, Quality of Service, traffic classification, volunteer-based system

1 Introduction
This journal paper is an extended and revised version of [1], which was presented at
the 14th International Conference on Advanced Communication Technology (ICACT
2012).

One of the most interesting challenges in today’s world is how to measure the perfor-
mance of computer network infrastructures, when different types of networks are merged
together. In the last few years, the data-oriented networks evolved into converged struc-
tures, in which the real-time traffic, like voice calls or video conferences, is more and
more important. The structure is composed of traditional data cable or more modern
fiber links, existing Plain Old Telephone Service (POTS) lines used to provide analog
services (voice telephony), or digital services (ADSL, PBX, ISDN), and nowadays also
of mobile and wireless networks. There are numerous methods for the measurement of
Quality of Service (QoS) in the current use, which provide the measurements both on
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the user side and in the core of the network. Internet Service Providers are interested in
centralized measurements and detecting problems with particular customers before the
customers start complaining about the problems, and if possible, before the problems
are even noticed by the customers.

Each network carries data for numerous different kinds of applications. QoS re-
quirements are dependent on the service. The main service-specific parameters are
bandwidth, delay, jitter, and packet loss. Regarding delay, we can distinguish strict real
time constraints for voice and video conferences, and interactive services from delivery
in relaxed time frame. In a conversation, delay of about 100ms is hardly noticeable, but
250ms of delay means an essential degradation of the transmission quality, and more
than 400ms is considered as severely disturbing [2].

Therefore, in order to provide detailed information about the quality level for the
given service in the core of the network, we need to know, what kinds of data are
flowing in the network at the present time. Processing all the packets flowing in a high-
speed network and examining their payload to get the application name is a very hard
task, involving large amounts of processing power and storage capacity. Furthermore,
numerous privacy and confidentiality issues can arise. A solution for this problem can
be the use of Machine Learning Algorithms (MLAs), which use previously generated
decision rules, which are based on some statistical information about the traffic. In our
research, we used one of the newest MLAs – C5.0. MLAs need very precise training sets
to learn how to accurately classify the data, so the first issue to be solved was to find a
way to collect high-quality training statistics.

In order to collect the necessary statistics and generate the training sets for C5.0, a
new system was developed, in which the major role is performed by volunteers. Client
applications installed on their computers collect the detailed information about each flow
passing through the network interface, together with the application name taken from
the description of the system sockets. The information about each packet belonging to
the flow is also collected. Our volunteer-based system guarantees precise and detailed
data sets about the network traffic. These data sets can be successfully used to generate
statistics used as the input to train MLAs and to generate accurate decision rules.

The knowledge about the kind of application to which the traffic belongs obtained
from MLAs can be used together with traffic requirements for the given application to
assess the QoS level in the core of the real network. The real traffic needs to be sampled
to obtain the necessary raw statistics. Parameters like jitter, burstiness, download and
upload speed (and delay and packet loss for TCP traffic) can be assessed directly on
the basis of the information obtained from the captured traffic. To assess the delay and
packet loss for UDP traffic, active measurement techniques must be involved (like ping
measurements in both directions).

The remainder of this document is split into several sections, which describe in detail
the system architecture and some parts of the implementation. Section 2 contains the
overview of the current methods for assessing the network QoS level. Both passive and
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active methods are described along with their advantages and weaknesses. Section 3
gives the overview of our methods, so the reader is able to understand how the particular
components are built and connected with each other. Section 4 describes the current
methods used for traffic classification in computer networks and it explains why they
are not sufficient for our needs. Section 5 presents our new tool used for collecting
and classification of the network traffic – the Volunteer-Based System (VBS). Section
6 shows how the statistical parameters are obtained from the data collected by VBS.
Section 7 evaluates different Machine Learning Algorithms and shows why we chose C5.0
to be included in our system. Section 8 demonstrates the design and implementation of
the system, while Section 9 summarizes the most important points.

2 Related Work
During the last 20 years we have been witnesses to the subsequent and increasing growth
of the global Internet and the network technology in general. The broadband and mobile
broadband performance today is mainly measured and monitored by speed. However,
there are several other parameters, which are important for critical business and real-
time applications, such as voice and video applications or first-person shooter games.
These parameters include round trip time, jitter, packet loss, and availability [3, 4].

The lack of the centralized administration makes it difficult to impose a common
measurement infrastructure or protocol. For example, the deployment of active testing
devices throughout the Internet would require a separate arrangement with each ser-
vice provider [3]. This state of affairs led to some attempts to make simulation systems
representing real characteristics of the traffic in the network. Routers and traffic analyz-
ers provide passive single-point measurements. They do not measure the performance
directly, but the traffic characteristics are strongly correlated with the performance.
Routers and switches usually feature a capability to mirror incoming traffic to a specific
port, where a traffic meter can be attached. The main difficulty in passive traffic mon-
itoring is the steadily increasing rate of transmission links (10 or 100 GB/s), which can
simply overwhelm routers or traffic analyzers, which try to process packets. It forces
the introduction of packet sampling techniques and, therefore, it also introduces the
possibility of inaccuracies. Even at 1 Gbit/s, the measurements can result in enormous
amounts of data to process and store within the monitoring period [3].

To overcome the heavy load in the backbone and to not introduce inaccuracies, a
smart monitoring algorithm was needed. There are several approaches to estimate which
traffic flows need to be sampled. A path anomaly detection algorithm was proposed
in [5]. The objective was to identify the paths, whose delay exceeds their threshold,
without calculating delays for all paths. Path anomalies are typically rare events, and
for the most part, the system operates normally, so there is no need to continuously
compute delays for all the paths, wasting processor, memory, and storage resources [5].
Authors propose a sampling-based heuristic to compute a small set of paths to monitor,
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reducing monitoring overhead by nearly 50% comparing to monitoring all the existing
paths.

The next proposals on how to sample network traffic in an efficient way were made
on the basis of adaptive statistical sampling techniques, and they are presented in [6]
and [7].

If a congestion is detected, from user’s perspective it is very important to know, if
the congestion is located on the local or on the remote side. If the link experiences a
local congestion, the user may be able to perform certain actions, e.g. shut down an
application, which consumes a lot of bandwidth, to ease the congestion. On the other
hand, if the congested link is a remote link, either in the Internet core or at the server
side, the back-off of the low-priority applications on the user’s side is unnecessary. It
only benefits the high-priority flows from other users, which compete for that link. Since
this altruistic behavior is not desirable, the low priority TCP only needs to back off,
when the congested link is local [8].

Detecting the location of the congestion is a challenging problem due to several
reasons. First of all, we cannot send many probing packets, because it causes too much
overhead, and it even expands the congestion. Secondly, without a router support,
the only related signals to the end applications are packet losses and delays. If the
packet losses were completely synchronized (packets were dropped from all the flows),
the problem would be trivial. In the reality, the packet loss pattern is only partially
synchronized [8]. Authors of [8] attempted to solve the problem of detecting the location
of the congestion by using the synchronization of the behavior of loss and delay across
multiple TCP sessions in the area controlled by the same local gateway. If many flows
see a synchronized congestion, the local link is the congested link. If the congested link
is remote, it is less likely that many flows from the same host pass the same congested
link at the same time. If there is only a small number of flows which see the congestion,
the authors performed an algorithm based on queuing delay patterns. If the local link
is congested, most flows typically experience high delays at a similar level. Otherwise,
the congestion is remote [8].

The traffic can be profiled according to the protocol composition. Usually, the pre-
dominance of the TCP traffic is observed (around 95% of the traffic mix). When a
congestion occurs, TCP sources respond by reducing their offered load, whereas UDP
sources do not. It results in the higher ratio of UDP to TCP traffic. If the propor-
tion becomes high and the bandwidth available to TCP connections becomes too low
to maintain a reasonable transmission window, the packet loss increases dramatically
(and TCP flows become dominated by retransmission timeouts) [3]. Packet sizes pro-
vide insight into the types of packets, e.g. short 40-44 bytes packets are usually TCP
acknowledgments or TCP control segments (SYN, FIN or RST) [3].

Active methods for QoS monitoring raise three major concerns. First, the introduc-
tion of the test traffic will increase the network load, which can be viewed as an overhead
cost for active methods. Second, the test traffic can affect measurements. Third, the
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traffic entering an ISP can be considered as invasive and discarded or assigned to a
low-priority class [3].

Within an administrative domain (but not across the entire Internet), the perfor-
mance can be actively monitored using the data-link layer protocol below IP, as the
Operations, Administration and Maintenance (OAM) procedure in ATM and MPLS
networks. As a result, at the IP layer it is often desirable to measure performance using
the IP/ICMP protocol. So far, most tools or methods are based on ping (ICMP echo
request and echo reply messages) or traceroute (which exploits the TTL field in the
header of the IP packet) [3].

Although the round-trip times measured by ping are important, ping is unable to
measure the one-way delay without additional means like GPS to synchronize clocks at
the source and destination hosts. Another difficulty is that pings are often discarded
or low-prioritized by many ISP in their networks. Traceroute will not encounter this
problem because UDP packets are used. However, traceroute has known limitations.
For example, successive UDP packets sent by traceroute are not guaranteed to follow
the same path. Also, the returned ICMP message may not follow the same path as the
UDP packet that triggered it [3].

Although the end-to-end performance measurements can be carried out at the IP
layer or the transport/application layer, the latest is capable of measurements closer to
user’s perspective. The basic idea is to run a program emulating a particular application
that will send traffic through the Internet. All the parameters (delay, packet loss,
throughput, etc) are measured on the test traffic. This approach has one major drawback
- a custom software needs to be installed on the measurement hosts [3].

On the basis of the mentioned work, we found out that the existing solutions are not
sufficient for precise QoS measurements. This state of affairs motivated us to create a
new system which combines both passive and active measurement technologies.

3 Overview of the Methods
The flow chart of our system is shown in Figure 1. The following paragraphs contain
the detailed description of our methods. At first, the volunteers must be recruited from
the network users. The volunteers install on their computer a client program, which
captures the relevant information about the traffic and submits the data to the server.
On the server, these data are used to generate per-application traffic statistics. The C5.0
Machine Learning Algorithm uses these statistics to learn how to distinguish between
different types of applications and, later, it generates the classification rules (decision
trees).

In order to assess the network QoS level in the core of the network for particular
users, we needed to find a method to capture the relevant traffic. The challenging task is
to process significant amounts of traffic in high-speed networks. When the relevant flows
are captured, per-flow statistics need to be generated. There are two kinds of statistics
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Figure 1: The Flow Chart of the System
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generated at this step: one used for determining the kind of application associated with
that flow, and one used for assessing the QoS level in the passive way. The system
uses previously generated classification rules together with the first type of statistics to
find out which application the flow belongs to. Then, on the basis of the kind of the
application, the system determines the ranges of values of the relevant QoS parameters.
The last step is to check if the current values (obtained from the flow statistics or in
the active way) match the expected ones. If not, the quality of the given service is
considered as degraded.

4 Current Methods for Obtaining Pre-Classified Data
There are many existing methods for obtaining pre-classified data, but none of them were
feasible to deliver the data required by us to obtain accurate statistics, which could be
used to train Machine Learning Algorithms (MLAs). The traffic classification requires
the packets to be logically grouped into some structures, which could be assigned to
the particular application. The most common used structure among the classification
methods is the flow defined as a group of packets, which have the same end IP addresses,
ports, and use the same transport layer protocol. In this section, we describe the
methods and evaluate their usefulness in providing the data to our system.

4.1 Capturing Raw Data from the Network Interfaces
The first possibility is to install one application at a time on a host, and to capture its
traffic by an external tool, such as Wireshark [9]. Unfortunately, this approach is very
slow and it is not scalable. At first, it requires us to install on a host each application
that generates the traffic we want to capture. Before installing the application, we
must uninstall all other applications that can generate any network traffic. The next
drawback is that every operating system has some background processes and many of
them transmit some data through the network. An example of such a process is the
system updater, which can run in background. There is no simple way to recognize
packets belonging to the traffic generated by the application intentionally run by us, so
the captured sample contains variable percentage of noise. Finally, some applications,
for example, web browsers, can generate various types of traffic. Raw traffic capturers
cannot distinguish interactive web traffic, web radio podcasts, video transmissions, or
downloads of big files, performed by the same browser.

4.2 Classification by Ports
The port-based classification [10, 11] is very fast, and it is supported on almost all
the layer-3 devices in computer networks. Unfortunately, this method is limited to
services, protocols, and applications, which use fixed port numbers. It means that with
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big probability we can correctly classify, for example, traffic generated by e-mail clients
and file transfer clients using File Transfer Protocol (FTP), when they use the default
ports to connect to servers. However, even in this case we have false positives and
false negatives. False negatives result from non-standard ports used in this example by
SMTP, POP3, or FTP servers. When a network administrator changes the port used
by the given service (due to security reasons), the traffic is not classified correctly. False
positives result from malicious applications, which intentionally use some well-known
port numbers to be treated in the network with a priority, or to be able to transmit
data at all. Such situation exists when a Torrent user runs his client on port 80, which
causes the traffic to be treated as if it originated from a web server. Another big concern
of port-based classification is the inability of recognizing different types of traffic using
the same transport-layer protocol and the same transport-layer port. This drawback
is strongly visible in the example of HTTP traffic, which can consist of data generated
by interactive web browsing, audio and video streaming, file downloads, and HTTP
tunneling for other protocols. Finally, the classification made by ports is unable to deal
with protocols using dynamic port numbers, like BitTorrent or Skype [9, 12, 13].

4.3 Deep Packet Inspection (DPI)
The big advantage of the Deep Packet Inspection (DPI) [14] is the possibility to in-
spect the content of the traffic. It includes both inspecting particular packets, and
inspecting flows in the network as the whole. For that reason, that makes possible to
distinguish different kinds of content generated by the same application, or using the
same application-layer protocol, such as HTTP. However, DPI is slow and requires a lot
of processing power [9, 12]. Therefore, due to high load in today’s network infrastruc-
tures, it is not feasible to run DPI in the core of the network. The speed of the Internet
connections provided to private users tends to increase much faster than the processing
power of their machines, so performing DPI on user’s machines became impossible in
our case. Feasibility to perform DPI on the user side does not depend only on pos-
sessing the necessary processing power, but also on the user’s impression. High CPU
usage tends to slow down the machine and it causes additional side-effects, for example,
a howling CPU fan. For that reason, full DPI can be done only in a limited number
of cases, namely on fast machines using a slow Internet connection. DPI also brings
privacy and confidentiality issues, as it can reveal some highly sensitive personal data,
such as information about used credit cards, logins and passwords, websites visited by
the user, etc [9]. Moreover, DPI is unable to inspect encrypted traffic. Finally, DPI
depends on signatures of various protocols, services, and applications, which need to be
kept up to date.
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4.4 Statistical Classification
Solutions using statistical classification became quite popular during the last few years
[14]. To its characteristics we can include fast processing and low resource usage. Sta-
tistical classifiers are usually based on rules, which are automatically generated from
samples of data. Therefore, such kinds of classifiers often make use of Machine Learning
Algorithms (MLAs). Apart from all these advantages, statistical classifiers have one big
drawback – they need to be trained on the samples of data. So the technique assumes
that we have already correctly classified data, which we can provide as the input to
train the statistical classifier. For that reason, we cannot use this method to collect and
classify the initial portion of data.

5 Volunteer-Based System
The drawbacks of the existing methods for the classification of traffic in computer net-
works led us to the conclusion that we need to design and build another solution.
Therefore, we decided to develop a system based on volunteers, which captures the traf-
fic from their network interfaces, and groups the traffic into flows associated with the
application name taken from Windows or Linux sockets. The architecture and the pro-
totype were described and analyzed in [15] and [16], and the first version of our current
implementation was presented in [17]. Afterwards, the system was extended to support
recognizing different kinds of HTTP traffic, and it was named Volunteer-Based System
(VBS). The detailed description and evaluation of the extended version of VBS can be
found in [18]. We released the system under The GNU General Public License v3.0,
and we published it as a SourceForge project. The project website [19] contains all the
information needed to use the system (binary packages, screenshots, documentation and
bug tracking system) as well as to perform further development (source code, roadmap,
comprehensive documentation of the source code).

The architecture of the system is shown in Figure 2. This cross-platform solution
consists of clients installed on users’ computers (Microsoft Windows XP and newer
and Linux are supported), and of a server responsible for storing the collected data.
The client registers information about each flow passing the Network Interface Card
(NIC), with the exception of the traffic to and from the local network. The captured
information are: start time of the flow, anonymized identifiers of the local and the remote
IP addresses, local and remote ports, transport layer protocol, anonymized identifier of
the global IP address of the client, name of the application, and identifier of the client
associated with the flow. The system also collects information about all the packets
associated with each flow: identifier of the flow to which the packet belongs, direction,
size, TCP flags, relative timestamp to the previous packet in the flow, and information
about the HTTP content carried by the packet. It is worth mentioning that one flow
can contain many higher-layer streams, for example, one TCP flow can contain multiple
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Figure 2: Overview of the VBS System [16]

HTTP conversations. Each of these conversations can transfer different kinds of content,
like web pages, audio and video streams, or downloads of big files. For that reason, we
extract from HTTP headers the information necessary to precisely separate the HTTP
streams, and we append the information about the type of the stream to the first packet
of the stream.

The collected information is then transmitted to the server, which stores all the
data in a MySQL database for further analysis. The system was shown in [18] to be
feasible and capable of providing detailed per-application information about the network
traffic. An example of the stored flows on the server side is shown in Table 1. The
IP addresses for privacy reasons are translated by a one-way hash function and they
are stored as anonymized identifiers. The information about the packets belonging to
one complete TCP conversation is presented in Table 2. As shown, this is an HTTP
communication, during which there were transferred two files of the same type with
identifier 22 (text/html).

The data collected during our experiments by the Volunteer-Based System were
used for training the C5.0 Machine Learning Algorithm to be able to recognize the
traffic generated by different types of applications and different types of traffic. The
first approach, focusing on distinguishing 7 different applications (Skype, FTP, torrent,
web browser, web radio, America’s Army and SSH) and achieving accuracy of over 99%
was described and evaluated in [20]. The second approach, focusing on recognizing
different kinds of HTTP content (audio, video, file downloads, interactive websites) was
presented in [21].
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6 Obtaining Per-Application Statistics
The next step was to obtain the statistical profiles of flows for different applications.
Therefore, we developed a tool for calculating statistics of several traffic attributes for
each flow in the database, which fulfills our requirements. The statistics include 32
attributes based on sizes and 10 protocol-dependent attributes [20]. We suspect that
the attributes based on sizes are independent of the current conditions in the network
(like for example congestion). All the protocol-dependent attributes are very general.
Precise port numbers are not used, but only the information about whether the port is
well-known or dynamic. This way we avoid constructing a port-based classifier, but we
can retain the information if the application model is more like client-server or peer-to-
peer.

The general calculated statistics are [20]:

• Number of inbound / outbound / total payload bytes in the sample

• Proportion of inbound to outbound data packets / payload bytes

• Mean, minimum, maximum first quartile, median, third quartile, standard devia-
tion of inbound / outbound / total payload size in the probe

• Ratio of small inbound data packets containing 50B payload or less to all inbound
data packets

• Ratio of small outbound data packets containing 50B payload or less to all out-
bound data packets

• Ratio of all small data packets containing 50B payload or less to all data packets

• Ratio of large inbound data packets containing 1300B payload or more to all
inbound data packets

• Ratio of large outbound data packets containing 1300B payload or more to all
outbound data packets

• Ratio of all large data packets containing 1300B payload or more to all data
packets

• Application: skype, ftp, torrent, web, web_radio, game, ssh

The protocol-dependent attributes are [20]:

• Transport protocol: TCP, UDP

• Local port: well-known, dynamic



98 Paper III. A Method for Evaluation of Quality of Service in Computer Networks

• Remote port: well-known, dynamic

• Number of ACK / PSH flags for the inbound / outbound direction: continuous

• Proportion of inbound packets without payload to inbound packets: continuous

• Proportion of outbound packets without payload to outbound packets: continuous

• Proportion of packets without payload to all the packets: continuous

The precise process of obtaining these statistics was described in detail and evaluated
in [20]:

7 Machine Learning Algorithms
In the recent literature, we can find numerous approaches to use Machine Learning
Algorithms to classify the traffic in computer networks. The most widely used MLA
classifiers are C4.5 [9] and its modified Java implementation called J48 [12, 22]. Based
on statistical analysis, MLAs have the ability to assign a particular class (like P2P)
even to traffic generated by unknown applications [9]. It was also proved in [22] that
the statistical parameters for the encrypted and unencrypted traffic produced by the
same application are similar and, therefore, the encrypted payload does not influence
results of the training or the classification. The accuracy of the classification by MLAs
was claimed to be over 95% [9–11, 13, 14, 23–25]. The analysis of the related work can
be found in [20].

It was found in [11] that the results of the classification are most accurate when the
classifier was trained in the same network as the classification process was performed.
This may be due to different parameters, which are constant in the particular network,
but which differ among various networks. A good example is the Maximum Transmission
Unit, which can easily influence statistics based on sizes. Therefore, in our design, we
decided to train the classifier by volunteers in the same network as the classifier will be
installed. This allows us to make a self-learning system, where a group of volunteers
in the network delivers the data used for training the classifier constantly improving its
accuracy, while all the users can be monitored in the core using the generated decision
rules. The next advantage of the design is that even if some network users cannot
participate in the data collecting process because of using other operating systems or
devices than supported (like MacOS, Apple or Android smartphones), they will still be
able to be monitored in the core of the network because of rules created on the basis of
the data collected from the other users.

Our system uses the C5.0 MLA, which is a successor of C4.5. It is proven to have
many advantages over its predecessor, such as higher accuracy, possibilities to use boost-
ing, pruning, weighting and winnowing attributes. Furthermore, the time needed to
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Figure 3: Average Error Rates of the Classifiers [20]

generate the decision tree or rules drastically decreased [26]. In order to test the effi-
ciency of C5.0, we performed a set of tests during which we used various training and
classification options. The training statistics were obtained from the data provided by
our VBS. During our research, we found relevant the set of arguments and discovered
that the best results were obtained using the boosted classifier. The average accuracy
fluctuated between 99.3% and 99.9%, depending on the number of training and test
cases and the amount of data from each case. This behavior is illustrated in Figure 3.
It is worth mentioning that in our experiment we considered only 7 different groups
of applications and only flows longer than 15 packets. In our small-scale prototype
for tests, we decided to limit the number of applications and take into account Skype,
FTP, torrent, web traffic, web radio traffic, interactive game traffic, and SSH [20]. The
limitation of the flow length was done because we needed to have at least 5 packets to
generate the statistics (the first 10 packets of each flow were skipped as their behavior
is different than the behavior of the rest of the flow). The detailed description of our
methods and results can be found in [20]. The decision tree generated in this step can
be used to classify the traffic in the real network.

8 Centralized Monitoring Solution
This paragraph presents the proposed design of the centralized monitoring solution,
which can be placed in any point in the network to examine the network QoS.
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Because of the heavy load in the high-speed networks, it is not possible to monitor
all the flows passing the central point at the same time. Therefore, only the statistics
from selected flows can be captured and passed to C5.0. The selection of such flows can
be based on two methods: capturing one flow per user and intelligent switching between
the flows. From the QoS point of view, it is important to discover the problems with
a particular user or to inform the user that the problems experienced by him are the
result of problems in the remote network. If it is the user who has the problem, then
the problem usually influences all the user’s network activity.

Each application has some special requirements regarding the network parameters.
When a small congestion occurs, the service level can still be sufficient for P2P file
downloads, but Skype communication may be not possible because of big jitter and
delays. It is, therefore, not sufficient to monitor one random flow at a time, but we need
to monitor a flow which have high quality requirements. Our solution should be built
based on the following assumptions:

• Only one flow per user at a time is consistently monitored for QoS.

• Statistics for another random flow per user at a time are passed to C5.0 to discover
the application.

• If the application has higher QoS requirements than the currently monitored,
switch monitoring to the new flow; if not, stick to the current one.

• If the monitoring of the selected flow discovers problems, start monitoring a few
flows at a time to check if this problem lay on the user’s side or on the remote
side.

Because of the dynamic switching between the flows when determining the applica-
tion, it is most probable that the system will not be able to capture flows from their
beginning. The classifier designed by us, which uses C5.0, is able to determine the
application on the basis of the given number of packets from any point in the flow [20].

Monitoring of the QoS can be done in a passive or an active mode. The passive
mode relies mostly on time-based statistics, which are obtained directly from the flow
passing the measurement point. This way, we can assess the jitter, the burstiness and
the transmission speed (both download and upload). Unfortunately, it is not possible to
receive the information about the packet loss or the delay for other than TCP streams
while using this method. For that reason, additional tools performing active measure-
ments must be involved in the process of estimating the QoS. One option is to use the
ping-based approach, as it can measure both the delay and packet loss. Unfortunately,
other issues can arise. Ping requests and responses are often blocked by network ad-
ministrators, or their priority is modified (decreased to save the bandwidth or increased
to cheat the users about the quality of the connection). Other options include sending
IP packets with various TTL and awaiting Time Exceeded ICMP messages, which are
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usually allowed to be transmitted in all the networks and their priority is not changed.
Active measurements must be done in both directions (from the user and from the re-
mote side). The total packet loss and the delay can be calculated as the sum of the
delays and the packet losses from both directions of the flow. Furthermore, the knowl-
edge of the direction that causes the problems can be used to assess if the problems are
located in the local network or somewhere outside.

9 Conclusion
This paper shows a novel method for assessing the Quality of Service in computer
networks. Our approach involves a group of volunteers from the target network to
participate in the initial training of the system, and later in the self-learning process.
The accurate data obtained from the volunteers are used by the C5.0 MLA to create
the per-application profiles of the network traffic as classification decision trees. The
centralized measurement system uses the decision trees to determine the applications
associated with the flows passing through the measurement point. This knowledge
allows us to precisely define the QoS requirements for each particular flow. To assess
the QoS level two methods are proposed: the passive and the active one.
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Abstract

Our previous work demonstrated the possibility of distinguishing several groups
of traffic with accuracy of over 99%. Today, most of the traffic is generated
by web browsers, which provide different kinds of services based on the HTTP
protocol: web browsing, file downloads, audio and voice streaming through third-
party plugins, etc. This paper suggests and evaluates two approaches to distinguish
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various types of HTTP traffic based on the content: distributed among volunteers’
machines and centralized running in the core of the network. We also assess
the accuracy of the centralized classifier for both the HTTP traffic and mixed
HTTP/non-HTTP traffic. In the latter case, we achieved the accuracy of 94%.
Finally, we provide graphical characteristics of different kinds of HTTP traffic.

Keywords

traffic classification, computer networks, HTTP traffic, browser traffic, C5.0, Ma-
chine Learning Algorithms (MLAs), performance monitoring

1 Introduction
The assessment of the Quality of Service (QoS) in computer networks is a challenging
task because different kinds of traffic flows (voice and video streaming, file download, web
browsing) have different requirements. Therefore, to estimate the performance, we need
to know what type of data flow is currently being assessed. There are many methods
for distinguishing computer network traffic, including the classification by ports, Deep
Packet Inspection (DPI), or statistical classification [1]. We compared them in [2] and we
assessed that these methods are not sufficient for the real-time identification of HTTP
traffic.

We had two possible approaches to classify the flows in a high-speed computer net-
work infrastructure: centralized and distributed. We implemented the distributed ap-
proach as the Volunteer-Based System (VBS) and presented in [2]. VBS clients installed
on users’ computers collect the data together with the name of the corresponding ap-
plication. The necessary statistical parameters are calculated on the client side and
sent to the database server. We designed the centralized solution as a flow-examining-
application installed in any point of the network. All the flows passing through that
point are captured and assigned to a particular application class by the C5.0 Machine
Learning Algorithm (MLA) [3]. As training data, we used the data collected by VBS.
The proposed design of a solution for estimating QoS using both these approaches and
combining passive and active measurements was described in [4]. The accuracy of the
distributed QoS assessment solution is approaching 100%, as it uses the process names
taken directly from the system sockets during the classification. The accuracy of our
centralized QoS assessment was assessed to be 99.3–99.9%, due to the C5.0 classification
error estimated based on our previous approach to classify 7 different applications [3].

In previous papers, we assumed that one application carries only one type of traffic
and, for this reason, we took into account only applications fulfilling this criterion. How-
ever, the data collected by VBS showed that nowadays majority of traffic is generated
by HTTP-based applications as web browsers. Until now, we were treating this kind of
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traffic as a general web traffic class, which in effect consisted of interactive traffic (web
pages), audio and video streams, and big file downloads (including big video files down-
loaded directly from a website by the user or downloaded indirectly by a web player, as
YouTube). Flows carrying different kinds of content can have different characteristics
and QoS requirements [5] and, therefore, they need to be distinguished and processed
in different ways. The measured characteristics of different content types found within
HTTP flows are shown at the end of this paper. All these factors lead to the conclusion
that during QoS assessment, we are interested in the type of the traffic (taking into
account both the type of the content and the type of the content delivery, as streaming
or casual download), not in the application which it generates. In this paper, we present
and evaluate a method for recognizing different kinds of HTTP traffic.

Other methods for the classification of HTTP traffic are shown in [6] and [7]. In [6],
the authors propose to use the size of the flow and the number of flows associated with
the same IP address to determine the character of the traffic by 3 different MLAs.
Unfortunately, this approach requires to have the traffic collected in advance, and in
consequence, it is not suitable for the real-time classification needed for QoS assessment
purposes. The method described in [7] is based on keyword matching, flow statistics
and a self-developed algorithm. This approach also does not fulfill our needs because it
requires processing entire flows: first to match the signature, then to extract statistics,
such as the number of packets contained by the flow. As opposite, our centralized
solution is able to classify the data based on 35 consecutive packets from a random
point of a flow. As a consequence, we can monitor flows very quickly.

The remainder of this paper gives the overview of our solutions for the distributed
and centralized classification of network traffic and our methods for providing precise
input data, describes the results, and shows various traffic profiles. We assessed the
accuracy of the classification while changing parameters in the algorithm. The data
used in our experiments originate from 5 private machines running in Denmark and in
Poland as well as 18 machines installed in computer classrooms in Gimnazjum nr 3 z
Oddziałami Integracyjnymi i Dwujęzycznymi imienia Karola Wojtyły w Mysłowicach, a
high school in Poland.

2 Centralized Classification Method
We designed the centralized method to be used in the core of the network. 35-packet
long snippets from the selected flows are inspected by the statistics generator, which
calculates the values of the relevant parameters. Based on the calculated statistics, the
C5.0 MLA is able to predict the traffic class of the flow. The first and the most important
issue in our solution was how to train the classifier properly. As a consequence, we
designed and implemented an algorithm, which uses pre-classified browser traffic to
generate training cases for different classes of traffic. The description of the algorithm
is shown in Figure 1.
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Figure 1: Overview of the Method for Obtaining the Training Data
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Browser traffic can be classified based on two different approaches: by using HTTP
headers, or application names and additional flow conditions like ports. Table 1 contains
examples of different services accessible by Firefox web browser, together with the in-
formation about the chosen method of classification. As shown, the type of the content
delivered by most services can be classified accurately by the content-type field in the
HTTP header. Unfortunately, in some cases, we are not able to distinguish HTTP audio
from HTTP video streams (as shown in the case of application/x-mms-framed content
type, used both for streamed audio and video content). However, streamed multimedia
content is often played by plugins which use the Real-Time Messaging Protocol (RTMP)
instead of HTTP, so the content can be separated using plugin names (such as plugin-
container) and RTMP remote port (1935). From the QoS point of view, the problem is
that based on the content-type field, we cannot distinguish streamed multimedia content
from multimedia files embedded on websites (such as YouTube) and just downloaded
in the background to the user’s computer, because they can use identical values of the
content-type field, for example, audio/mpeg. The same situation happens when a user
downloads a video or audio file explicitly by using a download link. Therefore, for the
purpose of this experiment, we placed all the flows delivering the video content to the
same class, regardless, if the content was streamed or downloaded.

As the first step, we need to decide if we are dealing with an HTTP-based flow or
another kind of transport-layer flow. For this purpose, we examine each packet in the
flow and check if the HTTP header exists. If yes, we look for the content-type field. If
we can obtain the information, the preferred way of processing is always to handle the
flow as an HTTP-based flow, as it allows to recognize different kinds of flows generated
by one application. Short flows (below 200 packets in the case of regular flows, and
below 35 packets in the case of HTTP-based flows) are discarded because they seem to
be less useful from the QoS measurement point of view.
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2.1 Regular Transport-Layer Flows
Regular flows are processed based on the assignments between the application names and
traffic classes. Most applications are specialized to handle specific types of traffic (voice
conversations for Skype, file transfer for FTP clients, or interactive traffic for games),
but they also generate background traffic. For example, Skype shares a distributed
users’ directory, free file transfer clients tend to download advertisements to display
them on the screen when doing their job, and games have control connections to the
main server. These flows, acting as noise, are usually quite short. To eliminate their
impact, we decided to discard all flows shorter than 200 packets. If there is no application
name assigned to the flow, the flow is discarded. Flows associated with HTTP-based
applications (like web browsers) are discarded as well, because they are not recognized
as HTTP flows and their type is unknown. Then the flows are checked against the
assignments between the application names and traffic classes. If we cannot find any
match, the flow is discarded as well. As it is written in [2], around the first 10 and
the last 5 packets of each flow have different characteristics of size parameters than
the other packets. As a result, these packets are cut out of the flow. Next, the flow
is split into 35-packet subflows, which are provided to the statistics generator. The
generated statistics are given as the input to the C5.0 classifier as training or test data.
It was shown in [2] that further increasing of the number of packets in the subflow does
not improve significantly the accuracy of the classifier. Using the reasonably smallest
number of flows allows to perform faster traffic classification and saves system resources,
what allows to process more flows at a time.

2.2 HTTP-Based Transport-Layer Flows
Dealing with HTTP-based flows is more complex, as one transport-layer flow by HTTP
can carry multiple different files as text, images, audio, and video. For this reason, we
split the transport-layer flow into entities carrying different files or streamed content
(called later separate HTTP flows, as they have separate HTTP headers), which are
mapped to a traffic class based on the content-type field in the HTTP header. We found
that the content-type field in the HTTP header is present in and only in the first inbound
packet of a new logical HTTP flow. If the mapping does not exist, the HTTP flow is
discarded.

We decided to specify the following traffic classes: audio, file download, multimedia,
video, and web. The multimedia class was assigned to traffic with content-types, which
could carry audio as well as video (regardless if the content was streamed or downloaded,
as based on the content it is impossible to detect). The file download class was assigned
to big file downloads (however, except the multimedia files, which were assigned to one
of the multimedia classes), and the web class to the traffic produced by interactive web
browsing. It was very hard to define what the interactive web browsing is, but we
decided to create this class as characteristics of transport-layer flows carrying multiple
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small files like HTML documents, web images and stylesheets are different than the
characteristics of downloads of big files. It can be even more complicated because small
few-second videos and animations on websites behave more like the interactive traffic
than the real video traffic. On the other hand, big images embedded on websites behave
like file downloads. Therefore, we decided to consider all the small (below M Bytes)
HTTP flows as web interactive traffic, and all the big web flows (above N Bytes) as file
download traffic. Values for M and N are intended to be chosen experimentally. All the
interactive HTTP web flows within the transport-layer flow were merged together into
one big web flow. It makes no sense to calculate statistics for each small web element
(HTML file, images, etc) separately, because they are visible across the network as one
interactive flow, so they must be processed holistically to assure the proper assessment
of the QoS level.

The entities carrying the multimedia content must be re-classified as either audio
or video, because they have different characteristics and requirements. We use the
assignments between the application names and traffic classes to see if the application
assigned to that flow is purely audio or video oriented. If not, the flow is discarded.
Flows shorter than 35 packets are dropped to ensure compatibility with processing
regular transport-layer flows. Finally, the flow is split into 35-packets subflows, which
are provided to the statistics generator. The generated statistics are the input given to
the C5.0 classifier as the training or the test data.

3 Data Sources
The algorithm of obtaining the training data uses three external sources: a set of
transport-layer flows, the assignments between the application name and traffic classes,
and the assignments between the content types and traffic classes. The origin of the
mentioned data sources is described below.

3.1 Transport-Layer Flows
The transport-layer flows are obtained by our Volunteer-Based System (VBS), whose
architecture and implementation was described in [2]. We implemented several major
changes to the system since it was published in order to make it capable to process the
information about HTTP content types.

First, we used the JNetPcap library to detect the HTTP header in each packet of the
flow and, in case of presence, to extract the values of the content-type field. The field is
always present in the first incoming packet of the logical HTTP flow inside the transport-
layer flow. Obtaining this information allows us not only to detect the class of the traffic
but also to separate logical HTTP flows within one transport-layer flow. The extracted
values of the content-type field are associated with particular packets and sent to the
server where they are stored in a separate table and associated with the corresponding
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Table 2: Mapping Application Names to Traffic Classes

Name Requirement Class
amule p2p
dropbox file download
filezilla file download
http file download
java file download
libgcflashplay remote_port = 1935 video
plugin-container remote_port = 1935 video
skype protocol_name = ’UDP’ audio
ssh ssh
steam file download
utorrent p2p
wget file download

packets. This way, we are able to keep track of the content types in one place and save
space. Due to obtaining all the relevant information directly from the client machines,
VBS fulfills two roles. First, it is an independent distributed solution able to classify
network traffic in real-time from the machine where it is installed. Second, it delivers
the data for training the C5.0, which is used in the centralized classification approach.
We must admit that turning on the HTTP header inspection did not increase the CPU
usage in a measurable way, so there was no need to implement any optimization methods
(like processing only a part of the flows, inspecting only a a part of the packets in a
flow, and so on).

3.2 Assignments between the Application Names and Traffic
Classes

Obtaining the mappings between application names and traffic classes is quite straight-
forward and it was done in the way described below. The results for our case are
shown in Table 2. It is worth mentioning that one element can possibly match multiple
classes. For example, a p2p flow can carry a file (so it can be in fact a good match for
the file download class). The audio and video classes carry in this case only the streamed
content. The http process in a standard Ubuntu application, which is responsible for
downloading files for system purposes, as system upgrades.

• Extract all the application names from the flows, which contain at least 5000
packets in total. This limitation was made to prevent including in the listing
applications which generated only small amounts of data, because they are not
sufficiently representative.

• Change all the names to lowercase and trim the whitespace from both ends. Then
write the list to a Comma Separated Values (CSV) file.
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Table 3: Mapping Content Types to Traffic Classes

Class Content Type
audio audio/aac, audio/aacp, audio/mpeg, audio/x-mpegurl, audio/x-pn-realaudio-plugin,

audio/x-scpls
file download application/binary, application/force-download, application/octet-stream, ap-

plication/octetstream, application/pdf, application/rar, application/x-bzip2,
application/x-compress, application/x-debian-package, application/x-gzip,
application/x-msdos-program, application/x-msdownload, application/x-redhat-
package-manager, application/x-tar, application/x-xpinstall, application/x-zip-
compressed, application/zip, binary/octet-stream

multimedia application/x-mms-framed, application/ogg
video application/x-fcs, flv-application/octet-stream, video/mp4, video/ogg, video/webm,

video/x-flv, video/x-m4v, video/x-ms-asf, video/x-msvideo
web application/atom+xml, application/gif, application/java-archive, ap-

plication/javascript, application/js, application/json, application/ocsp-
request, application/ocsp-response, application/opensearchdescription+xml,
application/pkix-crl, application/rdf+xml, application/rss+xml, applica-
tion/smil, application/soap+xml, application/x-amf, application/x-director,
application/x-font, application/x-httpd-cgi, application/x-java, application/x-
java-archive, application/x-javasc, application/x-javascri, application/x-javascrip,
application/x-javascript, application/x-ns-proxy-autoconfig, application/x-pkcs7-crl,
application/x-sdch-dictionary, application/x-shockwave-flash, application/x-
silverlight-app, application/x-woff, application/x-ww, application/x-www,
application/x-x509-ca-cert, application/xaml+xml, application/xhtml+xml, appli-
cation/xml, banner/jpg, font/woff, httpd/unix-directory, image/bmp, image/gif,
image/ico, image/jpeg, image/jpg, image/pjpeg, image/png, image/svg+xml, im-
age/vnd.microsoft.icon, image/x-ico, image/x-icon, image/x-ms-bmp, image/x-png,
multipart/byteranges, multipart/form-data, text/css, text/html, text/javascript,
text/json, text/plain, text/vdf, text/x-c, text/x-cross-domain-policy, text/x-gwt-
rpc, text/x-javascript, text/x-js, text/x-json, text/x-perl, text/xml

• Manually assign a traffic class to all the rows in the file. Add a condition as a
part of an SQL statement, if needed (for example by restricting the transport
layer protocol to UDP or including only flows matching particular port numbers).
Some of the applications also can generate background traffic, which must be cut
off (like Skype, which beside the main voice UDP flow generates numerous TCP
connections to other clients to exchange the distributed users’ directory). If the
application is unknown or it can handle different kinds of traffic which cannot be
separated by a SQL statement, it should be deleted from the list.

3.3 Assignments between the Content Types and Traffic Classes
To be able to map the logical HTTP flows to a traffic class, we needed to create a
mapping table based on the information contained in the database. This resulted in the
assignments shown in Table 3. The process of obtaining these mappings is described
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N=0 N=100 N=200 N=300 N=500 N=1000
M=0 17.9
M=30 17.3 17.2 17.2 17.2 17.2
M=60 17.1 17.2 17.2 17.2 17.2
M=100 17.1 17.3 17.2 17.2 17.3
M=150 17.3 17.3 17.3 17.3
M=300 17.2 17.2 17.2
M=500 17.3 17.2

Figure 2: Classification Error Rate [%] for Different Values of M and N

below. It is worth mentioning that one element can possibly match multiple classes, as
the classes present various levels: content (as audio) or behavior (as file download). For
example, an audio flow can carry a streamed content from a web radio or an audio file
(so it can be in fact a good match for the file download class).

• Extract all the values of the content types from the packets, changing their names
to lowercase and trimming the whitespace from both ends.

• Remove from the content type everything beyond the type itself, for example, the
information about the used encoding. Then, write the list to a CSV file.

• Manually assign a traffic class to all the rows in the file. If the content type cannot
be verified, delete the row. If the content-type can correspond both to the audio
and to the video traffic, assign the multimedia class.

Unfortunately, relying on mappings between the traffic classes and the content types
is not always accurate and consistent regarding the QoS assessment. For example, a
movie downloaded (directly by the user from a website or indirectly in the background
by the browser from YouTube) is marked as the video flow, as it carries video content.
However, regarding the QoS requirements, the video class should contain only streamed
video content, and the most appropriate action in this case is to mark the flow as the
file download, but there is no simple way to obtain knowledge about the purpose of the
traffic beside asking the user what he is currently doing.

4 Classification by C5.0
During the experiment, we used the same sets of classification attributes (A plus B)
as used in [3]. We performed a normal decision-tree based classification for two cases:
only for HTTP traffic, and for the mixed HTTP/non-HTTP traffic. In the first case,
we tried to estimate the optimal values for the parameters M and N in the algorithm, so
we made several tries with various values of M and N while observing how it affects the
classification error. Both parameters equal to 0 mean that the mechanism of switching
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Table 4: Misclassification Matrix [%] for the HTTP Traffic

Class / Classified as audio as file download as video as web
audio 98.04 0.40 1.03 0.53
file download 0.00 78.08 20.96 0.95
video 0.02 12.67 85.95 1.37
web 0.26 10.67 9.52 79.56

Table 5: Misclassification Matrix [%] for the Mixed HTTP/Non-HTTP Traffic

Class / Classified as audio as file download as p2p as ssh as video as web
audio 95.89 0.64 1.37 0.00 1.72 0.38
file download 0.01 86.03 0.72 0.00 12.51 0.73
p2p 0.00 0.13 99.85 0.00 0.01 0.00
ssh 0.00 0.75 0.00 96.79 0.35 2.10
video 0.02 12.85 0.06 0.00 86.12 0.95
web 0.13 11.88 0.16 0.02 9.40 78.42

flows between the web and the file download classes is turned off. The matrix of the
classification error for HTTP flows while using different values of M and N is shown in
Figure 2.

As shown, the accuracy of the classifier is independent of the lower and upper limits
(M and N) for the interactive web traffic. Moreover, we can turn off the changing-
class mechanism without significant decrease of the accuracy. We observe this behavior,
because in order to test the classification accuracy, we use a disjoint set of data obtained
in the same way as the set used for the training purposes, so it uses the same values of
M and N. It means that the proper values for M and N should be estimated through
observations of the traffic. It ensures that the web class contains as much of the real
interactive browser traffic as possible, but as the least of the multimedia and the file
transfer traffic.

For the HTTP traffic (the misclassification matrix is shown in Table 4 (M=100,
N=300)), we have two major observations. First, we are able to distinguish the audio
and the interactive web traffic among different kinds of HTTP traffic. In our case, the
audio group contained mostly web radios, which are of the streaming characteristic.
Contrary to that, the video traffic and the regular file download transfers are often
confused between themselves, as in fact, our video group contained in significant majority
video files downloaded by a web browser, so their packet-level characteristic is the same
as other file downloads. The average error rate was in this case 17.0%.

During the second part of the experiment, we used full data sets containing both
the HTTP and the non-HTTP traffic (the misclassification matrix is shown in Table 5).
For the non-HTTP traffic, we specified the following traffic classes: audio, file download,
p2p, ssh and video. The non-HTTP video transfers were mostly streams played mostly
through third-party plugins in the browser, such as Adobe Flash. The average error rate
was in this case 6.0%. The number of the misclassifications between the file download
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Figure 3: Distribution of Number of PSH Flags for the Inbound Direction

and the video classes decreased, as this time the video class contained more elements of
the streaming characteristic than in the previous case.

5 Traffic Profiles
Based on the output from C5.0, we found the most used classification attributes to
distinguish different types of the HTTP traffic. We chose two of them (the number of
PSH flags for the inbound direction and the total payload size) to perform the graphical
analysis. The distributions of these attributes shown in Figure 3 and in Figure 4 confirm
that the audio and the web traffic differ significantly between each other, and from the
video traffic and the big file download transfers. The number of the PSH flags increases
when the content needs to be delivered to the client without delays. It proves that
we can easily catch HTTP-based audio traffic, which is the most fragile for network
performance issues. It justifies a need for the separate group of interactive web traffic as
well. During this experiment, we used M=100 and N=300 in the algorithm generating
the cases.

6 Conclusion
This paper presents two novel methods for content-based recognizing different kinds
of HTTP traffic in computer networks. The distributed method implemented among
VBS clients uses the content-type fields in the HTTP headers to extract logical HTTP
flows from the transport-layer flows. Later, the traffic classes are assigned based on the
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Figure 4: Distribution of Total Payload Size in the Sample

particular types of the content. The centralized method is able to distinguish different
content types transported by HTTP in the central point of the network based on the
C5.0 MLA. We have shown that the MLA-based classifiers are not able to distinguish
different types of the content transported by HTTP when the other flow characteristics
(beside the content itself) are the same. The inability to distinguish between the video
files and other binary files transported by HTTP caused the high average classification
error rate (17.0%). However, we demonstrated that the classifier did not have problems
with recognizing interactive voice traffic, as it was originated mostly by streamed web
radios. The last step of our experiment was to classify the mixed HTTP/non-HTTP
traffic. In this case, we achieved much lower error rate of 6.0%, as we included non-
HTTP video streams from online TVs.
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Abstract

In this paper we demonstrate how the Volunteer Based System for Research on
the Internet, developed at Aalborg University, can be used for creating statistics of
Internet usage. Since the data are collected on individual machines, the statistics
can be made on the basis of both individual users and groups of users, and as such
be useful also for segmentation of the users into groups. We present results with
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data collected from real users over several months; in particular we demonstrate
how the system can be used for studying flow characteristics - the number of TCP
and UDP flows, average flow lengths, and average flow durations. The paper is
concluded with a discussion on what further statistics can be made, and the further
development of the system.

1 Introduction
Understanding the behavior of Internet traffic is crucial in order to model traffic cor-
rectly, and to create realistic scenarios of future Internet usage. In particular, under-
standing the behavior of different kinds of traffic makes it possible to create scenarios
of increasing/decreasing particular amounts of traffic. The models can then be used for
the analysis and/or simulations of distribution and backbone networks under different
scenarios. The application of different provisioning and traffic engineering techniques
can be tested as well.

Traffic statistics are today often made by Internet Service Providers (ISPs), who
monitor the activity in their networks. However, often ISPs consider these data to be
private and are not keen on sharing with researchers. Some traces are publicly available,
such as the Caida data sets [1]. Even with access to traces from ISPs or other, traffic
monitored in the network cores suffers from missing important statistics that can only
be known accurately at the sources - such as inter-arrival times between packets and
flow durations. It should be noted that the literature covers a number of interesting
studies, where researchers have gained access to real data [2, 3]. In the latter, the data
are collected at the broadband access router, which is quite close to the generating
source.

There are also a large number of commercial tools for monitoring traffic in Local
Area Networks (e.g. on Internet gateways), such as Cisco Netflow [4]. These can provide
useful insights to traffic, but without collecting traffic from many different networks it
does not give a good overview of how the Internet traffic looks like.

The open-source Volunteer Based System (VBS) for Research on the Internet, de-
veloped at Aalborg University, seeks to avoid these problems by collecting the traffic
from a large number of volunteers, which are agreeing to have their Internet usage mon-
itored and statistics collected for research purposes. This provides statistics from the
point where the traffic is generated, meaning that quite precise statistical data can be
obtained. Moreover, it is also possible to monitor which applications are opening the
sockets, and thus get the precise picture of the behavior of different applications. The
general idea was first described in [5] and a preliminary limited prototype was imple-
mented in [6]. The current system design was announced in [7], while more technical
details on later refinements can be found in [8]. Other papers ( [9–11]) demonstrate
various applications of our system.

In this paper, we show how the system can be used for generating statistics at the
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flow level. The paper is organized as follows: First, in Section 2, we describe how the
data collection is made and how the statistics are extracted. In Section 3, we present
the results, and in Section 4, we conclude the paper and discuss the further work.

The authors would like to stress that the system is based on open source software,
published on SourceForge [12]. We would like to take the opportunity to encourage
other researchers to use the system for collecting Internet traffic information, and to the
widest possible extend share the data traces with the research community.

2 Data Collection and Extracting Statistics
In this section, we briefly describe the fundamentals of VBS, with a particular focus on
the parts that influence the monitoring, data collection, and extraction of statistics. For
more details, please refer to our previous paper [8].

For each volunteer, the system monitors both ingoing and outgoing traffic on his/her
computer. Storing all these data, and transferring them back to the server, would be a
huge task, if not impossible given the limited upload capacity available on many standard
Internet connections. Therefore, the data are saved as follows, and transmitted to our
central server as:

• For each flow, information is stored about e.g. source and destination IP addresses
and port numbers, flow start time, flow end time, number of packets, protocol
(TCP or UDP) as well as the flow ID. Moreover, the information about the process
name, which has opened the socket is collected. This feature provides valuable
information allowing us to characterize the traffic created by different applications.

• For each packet, the main information is the packet size and the relative time
stamp. Moreover flags from the header are stored, as well as the information
about the packet direction and flow ID.

In this way, all relevant information is stored, while the requirements in the terms
of memory and network usage are kept at a minimum. Also, no payload is stored at
any time, which is an advantage with respect to privacy and security. One privacy
concern has been the transfer of source and destination IP addresses. In the current
implementation, the IP addresses are hashed before being transferred to the server.
However, since the hash function is known (open source), and since the number of IP
addresses in IPv4 is limited, it is not difficult to determine the original IP address.

The purpose of this particular study was to demonstrate the usage, so focus was
on obtaining and presenting data from a limited number of users prior to run more
large-scale experiments. The statistics were obtained from 4 users during the period
from January to May 2012. One of the four users (User 4) did not join the system until
late April, and thus only participated for the last 2-3 weeks of the study. Due to being
a heavy user, the amount of data collected from this machine is higher than from any



126 Paper V. Obtaining Internet Flow Statistics by Volunteer-Based System

Table 1: The Numbers of TCP and UDP Flows for All Users as Well as for the Individual Users. The
Number in Parenthesis Shows the Distribution

User Number of UDP Flows Number of TCP Flows
All 4770315 (55%) 386530 (45%)
1 446692 (35%) 820927 (65%)
2 3142581 (60%) 2084590 (40%)
3 693389 (52%) 642740 (48%)
4 487653 (60%) 315273 (40%)

of the other participants, despite the shorter participation. During the time of study,
all the traffic from the users were collected by the system as described above, and the
data stored into our central database.

The four users can be described as follows:

• User 1 - Private user in Denmark

• User 2 - Private user in Poland

• User 3 - Private user in Poland

• User 4 - Private user in Denmark

With the data collected, a wide variety of studies can be conducted. For this paper,
we chose to analyze only the flow data (not the packet data), since the amount of data
makes it more manageable. As the main purpose is to demonstrate the usefulness of
the system, we chose to derive the following statistics:

• Amount of TCP and UDP flows

• Average flow lengths for TCP and UDP flows

• Average flow durations for TCP and UDP flows

• Top 5 applications (measured on the number of flows)

The statistics are done for the individual users as well as for the users altogether.

3 Results
3.1 TCP and UDP Flows
The distributions of TCP and UDP flows are shown in Table 1. It can be seen that
both the number of flows and the distribution between TCP and UDP vary quite a bit
between the different users.
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Table 2: Average Flow Lengths for TCP and UDP Flows

User Average Length of UDP Flows
[packets]

Average Length of TCP Flows
[packets]

All 72 81
1 5 110
2 90 80
3 34 29
4 72 114

Table 3: Average Flow Durations for TCP and UDP Flows

User Average Duration of UDP Flows
[seconds]

Average Duration of TCP Flows
[seconds]

All 33 26
1 1 32
2 41 25
3 28 7
4 19 55

3.2 Flow Lengths and Durations
The distributions of flow lengths (the number of packets per flow) for TCP and UDP for
the different users are shown in Table 2. It is quite interesting to observe that the flow
lengths for both TCP and UDP are so different between the different users, indicating
a different Internet usage. It should be noted that with the data in the system, it is
possible to make a more detailed analysis of the distribution of flow lengths, not only
for the different users but also for each application used by each user.

The distribution of flow durations (in seconds) is shown in Table 3. It seems that
for users 1-3 the users who have longer average flows also have longer average flow
durations. However, user 4 seems to have quite short flow durations even though the
flows are quite long. Even though a more thorough analysis is required to explain this
in detail, we assume it is due to the user being on a fast Internet connection. However,
the type of traffic with generally longer flows probably also plays a role.

3.3 Top 5 Applications
Analyzing the applications is more challenging than deriving the other parameters.
First, we did not manage to collect the socket names for a substantial number of the
flows. This is mainly concerning very short flows, where the opening time of the socket
is so short that it is not captured by the socket monitor. Secondly, what we obtain in
order to identify an application is really the process name. For this study, 240 different
process names were identified. Further work is needed in order to group these into
applications, and for this study, we just list the top 5 process names. It should be noted
that it is not a trivial task to determine how e.g. browser plugins should be grouped and
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Figure 1: Cumulative Number of Flows for All Users

categorized. The top application names for the different users are shown in Tables 4–8.
Based on the information obtained by the system, it is possible to make additional

statistics, taking e.g. the flow lengths of different applications into account. Also packet
statistics (e.g. packet lengths) can be taken into account, providing a quite precise
picture of what applications are taking up most bandwidth for the different users.

Without going into a more detailed data analysis, we did an observation regarding
the unknown flows, which is worth highlighting. The unknown flows account for a large
number of the total flows. However, the flows have the average length of 2 seconds and
the average of 11 packets, indicating that it is not such a large share of the total traffic.
These unknown flows are almost equally shared between TCP(53%) and UDP(47%).

3.4 Cumulative Number of Flows
The distribution of the cumulative number of flows for the 4 users during the time of
our experiment is shown in Figure 1.

4 Conclusion and Discussion
In this paper, we have demonstrated how the Volunteer Based System for Research
on the Internet developed at Aalborg University can be used for creating statistics of
Internet traffic, specifically within the studies of flows and their properties.

Future research will focus on developing efficient methods for extracting relevant
information from the packet statistics. This can provide even more valuable informa-
tion about the flows, for example, on average packet sizes of different flows (and the
distribution of packet sizes), inter-arrival times between packets, and the number of suc-
cessful vs. unsuccessful connections for different kinds of traffic. Moreover, particularly
interesting statistics can be derived from the combined flow and packet statistics, such
as the average size of flows of different kinds of traffic, and eventually how much traffic



4. Conclusion and Discussion 129

Table 4: Top 5 Applications for All Users

Application Name Number of Flows % of All Flows
uTorrent 6399336 74.12
Unknown 948497 10.99
Chrome 441953 5.12
Firefox 361213 4.18
Svchost 103757 1.2

Table 5: Top 5 Applications for User 1

Application Name Number of Flows % of All Flows
Unknown 729868 57.56
Firefox 330498 26.07
Chrome 138105 10.89
Amule 18863 1.49
Ntpd 17929 1.41

Table 6: Top 5 Applications for User 2

Application Name Number of Flows % of All Flows
uTorrent 4674545 89.43
Chrome 227616 4.35
Unknown 136387 2.61
Svchost 101633 1.94
Java 38704 0.74

Table 7: Top 5 Applications for User 3

Application Name Number of Flows % of All Flows
uTorrent 1220728 91.36
Chrome 76062 5.69
Unknown 21764 1.63
SoftonicDownloader 15035 1.13
Java 2169 0.16

Table 8: Top 5 Applications for User 4

Application Name Number of Flows % of All Flows
uTorrent 504063 62.78
Moc 90358 11.25
Iexplore 64407 8.02
Unknown 60478 7.53
Firefox 26896 3.35
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is created by different applications for individual users. The challenge is that it is large
amounts of data, so efficient ways of handling these has to be developed.

Another important part is the recruitment of more volunteers, in order to collect
larger amounts of data. Also, having appropriate background information about the
users could be useful. This includes both the data about the users themselves, such as
age, occupation, if the computer is shared etc., but also information about the connec-
tion, e.g. speeds and technologies.

In order to obtain more data, other researchers are invited to join the project and
use it for the collection of data for scientific purposes. The code is available as open-
source, and can be found together with a comprehensive documentation on our project
homepage [12] located on SourceForge.
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Abstract

Understanding Internet traffic is crucial in order to facilitate the academic re-
search and practical network engineering, e.g. when doing traffic classification,
prioritization of traffic, creating realistic scenarios and models for Internet traffic
development etc. In this paper, we demonstrate how the Volunteer-Based System
for Research on the Internet, developed at Aalborg University, is capable of pro-
viding detailed statistics of Internet usage. Since an increasing amount of HTTP
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traffic has been observed during the last few years, the system also supports cre-
ating statistics of different kinds of HTTP traffic, like audio, video, file transfers,
etc. All statistics can be obtained for individual users of the system, for groups
of users, or for all users altogether. This paper presents results with real data
collected from a limited number of real users over six months. We demonstrate
that the system can be useful for studying the characteristics of computer network
traffic in application-oriented or content-type- oriented way, and is now ready for
a larger-scale implementation. The paper is concluded with a discussion about
various applications of the system and the possibilities of further enhancements.

Keywords

Internet traffic, traffic classification, computer networks, per-application statistics,
per-content-type statistics

1 Introduction
Monitoring traffic in computer networks and understanding the behavior of network
applications is a very important challenge for both Internet Service Providers (ISPs)
and scientists. ISPs focus on the business aspects of traffic monitoring, like improving
the Quality of Service (QoS) in their networks. In order to setup the QoS rules in
the network in a proper way, it is necessary to know what kind of traffic is flowing in
the network, and how large amounts of traffic different applications account for. The
knowledge of which applications are most frequently used in the network can be used
by the ISPs to enhance the user experience by tuning some network parameters or
setting up dedicated proxies or servers for particular applications or services. Users
located in the same subnet can be compared and grouped according to their profile (like
heavy user or interactive user), or distributed among the network to balance the load.
Many ISPs have multiple connections to the external world, including many content
deliverers. The knowledge of which connections is used most frequently can benefit in
more accurate decisions from which provider the bandwidth should be bought. Finally,
in many countries, the law obligates the ISPs to log all traffic, in order to be able to
track down cybercrime, investigate terroristic attacks, etc. The knowledge of what the
traffic is can benefit in saving storage space by logging only the important part of the
traffic.

On the other hand, scientists use traffic monitoring to model traffic correctly and to
create realistic scenarios of Internet usage. The models can be used for testing various
options in designing networks before implementing them, examining the influence of
a change in the current network design before applying it, or creating precise traffic
classifiers.
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There are many possibilities to obtain the relevant traffic statistics. Some data
traces are available to the public (as Caida sets [1]), but most of them lack the detailed
information about each packet (like payload, status of TCP flags), or about the structure
of the flow (like inter-arrival times of the packets). Without the access to the real
data, it would not be possible to conduct many interesting studies [2, 3]. There are,
however, many possibilities to obtain the traces directly from the network by researchers.
Unfortunately, this method has several drawbacks. First of all, these traces are obtained
only in a few selected points, to which the researcher has access, so the traces are
geographically limited. This concerns for example collecting data by Wireshark [4], or
Cisco Netflow [5], which can provide some good statistics in the selected points of the
network. Second, the obtained traces must be pre-classified according to the application-
layer protocol, type of content carried by particular flows, etc. This task is not trivial,
and it is a hard challenge to perform correct classification, especially when subject to
real-time or near real-time requirements.

The simplest idea, widely used to pre-classify the traffic is using the application
ports [6, 7]. Unfortunately, this fast method can be applied only to the applications
or protocols, which use fixed port numbers. Nowadays, most traffic is generated by
applications of Peer-to-Peer (P2P) nature, which operate on dynamic port numbers.
Therefore, through port-based classification it is not possible to detect Bittorrent, or
Skype [4, 8, 9].

The second commonly used solution to pre-classify data is Deep Packet Inspection
(DPI). However, the name of this method can be misleading, since many DPI tools rely in
fact on statistical parameters and they perform statistical classification to discover some
applications. It causes some overlap and produces false positives and false negatives
[10, 11]. Furthermore, DPI is quite slow and it require a lot of resources, especially
processing power [4, 8]. Processing payloads of the users’ data also raises privacy and
confidentiality concerns [4].

To avoid the issues described above, we developed at Aalborg University a tool
called Volunteer-Based System (VBS). The most articulate advantages of the system
is that by monitoring at the host machines, we are able to see the traffic exactly as
it is generated at the source, and we are able to see which applications are opening
the sockets, enabling creating accurate mappings between applications and traffic flows.
Even with a relatively low number of users, we can obtain good understanding of how
different applications behave with respect to traffic, but in order to obtain the data
which can be used to describe Internet usage a substantial amount of users would be
needed.

This open source tool is released under GNU General Public License v3.0 and pub-
lished as a SourceForge project [12]. Both Windows and Linux versions are available.
VBS is designed to collect the traffic from numerous volunteers spread around the world
and, therefore, with a sufficient number of volunteers the collected data can provide us
with a good statistical base. The task of the Volunteer-Based System is to collect flows
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of Internet traffic data together with detailed information about each packet. The infor-
mation about the application associated with each flow is taken from system sockets and
appended to the flow description. Additionally, we collect the general information about
the types of transferred HTTP contents, so we are able to distinguish various kinds of
browser traffic. The system ideas were first described and initially implemented in [13],
after which the design of our current Volunteer-Based System was described in [14].
Further improvements and refinements can be found in [15]. In parallel with our ef-
forts [16] describes a Windows-based system which partially uses the same ideas of host
based monitoring and accurate application informations. Our system was used to ob-
tain various statistics useful for Machine Learning, Quality of Service Assessment and
traffic analysis [17–19]. Our last paper [20] demonstrated how the system can be used
for generating statistics at the flow level.

In this paper, we present the possibilities of the system for creating application-
based or content-type-based statistics on the flow and on the packet level. It presents
the results of a 6 months test study of the system, based on data from 4 users who joined
at different times during this period. The main contribution is the demonstration of
how the system can determine which packets are generated by which applications, and
even further specify the kind of data (for example, if traffic generated by a web browser
is web, audio or video traffic). The paper is organized as follows: First, in Section 2, we
describe how the data is collected by the Volunteer-Based System and how the statistics
are extracted. In Section 3, we present the results, and in Section 4, we conclude the
paper and discuss the further work.

2 Collecting Data by Volunteer-Based System
This section presents the brief overview of VBS. We tried to highlight parts which are
relevant for collecting network data and associating it with particular applications and
HTTP content-types. For more details about the design and implementation of VBS,
please refer to our previous paper [15].

The Volunteer-Based system is built using the client-server architecture. Clients
are installed among machines belonging to volunteers, while the server is installed on
the computer located at Aalborg University. Each client registers information about the
data passing computer’s network interfaces. Captured packets are grouped into flows. A
flow is defined as a group of packets which have the same local and remote IP addresses,
local and remote ports, and using the same transport layer protocol. For every flow
the client registers: anonymized identifier of the client, start timestamp of the flow,
anonymized local and remote IP addresses, local and remote ports, transport protocol,
anonymized global IP address of the client, and name of the application associated with
that flow. The name of the application is taken from the system sockets. For every
packet, the client additionally registers: direction, size, state of all TCP flags (for TCP
connections only), time in microseconds elapsed from the previous packet in the flow,
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and type of transmitted HTTP content. We do not inspect the payload - the type of
the HTTP content is obtained from the HTTP header, which is present in the first
packet carrying this specific content. One HTTP flow (for example a connection to a
web server) can carry multiple files: HTML documents, JPEG images, CSS stylesheets,
etc. Thanks to that ability implemented in our VBS, we are able to split the flow and
separate particular HTTP contents. The data collected by VBS are stored in a local file
and periodically sent to the server. The task of the server is to receive the data from
clients and to store them into the MySQL database.

The purpose of this study was to demonstrate the usage, so we focused on obtaining
and presenting the data from a limited number of users. In future, we plan to make
more wide-scale experiments. The statistics used in this paper were obtained from 4
users during the period from January to May 2012. However, the clients join VBS at
different time points. The four users can be described as follows:

• User 1 - Private user in Denmark, joined the system on December 28, 2011

• User 2 - Private user in Poland, joined the system on December 28, 2011

• User 3 - Private user in Poland, joined the system on December 31, 2011

• User 4 - Private user in Denmark, joined the system on April 24, 2012

Our system was designed not only to store the complete knowledge of users’ traffic in
the Aalborg University database, but also to provide numerous useful statistics. These
statistics can be calculated altogether, or grouped on a per-user basis, per-application
basis, per-content-type basis, or on a mix of these. Most of them can be also calculated
on a per-flow basis, and, therefore, they can be a direct input to various classification
and clustering Machine Learning Algorithms. The calculated statistics include (but
they are not limited to):

• Number of flows

• Percent of all number of flows

• Average flow duration (in seconds)

• Average number of packets in flow

• Percent of inbound packets in flow

• Average inbound, outbound, and total packet size

• Minimum inbound, outbound, and total packet size

• Maximum inbound, outbound, and total packet size
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• Median of inbound, outbound, and total packet size

• First quartile of inbound, outbound, and total packet size

• Third quartile of inbound, outbound, and total packet size

• Standard deviation of inbound, outbound, and total packet size

• Percent of inbound, outbound, and total packets which carry data

• Percent of data packets which are inbound

• Percent of inbound, outbound, and total data packets which are small (below 70B)

• Percent of small data packets which are inbound

• Percent of inbound, outbound, and total data packets which are big (above 1320B)

• Percent of big data packets which are inbound

• Percent of inbound, outbound, and total packets which have ACK flag

• Percent of packets with ACK flag which are inbound

• Percent of inbound, outbound, and total packets which have PSH flag

• Percent of packets with PSH flag which are inbound

• Amount of traffic (in Megabytes)

• Percent of traffic which is inbound

• Percent of traffic from all flows

• Number of TCP, UDP, and HTTP flows

• Amount of traffic (in Megabytes) carried by TCP, UDP, and HTTP flows

Due to limited length of this paper, we are not able to present and describe all the
generated statistics. Instead, we decided to focus on a few per-application and per-
content-type measurements, which we obtained for all users separately and altogether.
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Figure 1: Cumulative Number of Flows Belonging to Different Users Over Time

3 Results
3.1 Number of Flows vs Number of Bytes
The amount of traffic passing a network connection can be characterized using various
metrics. The most common used are number of bytes and number of flows. They are
dependent on each other, because the increasing number of network flows always increase
the number of transferred bytes. However, flows can be short or long, and packets
belonging to that flows can have various lengths. Therefore, on different machines, the
increase of number of flows have different impact on the increase of number of Bytes.
The cumulative numbers of flows collected over the time from different machines are
shown in Figure 1. Similarly, the cumulative numbers of bytes collected from the same
clients over the same period of time are shown in Figure 2. The characteristics are quite
similar - the difference concerns the client number 3. This user produces higher number
of flows than users 1 and 4, but it generates the lowest traffic among all the users. It
means that the user number 3 must use more interactive applications (producing smaller
packets) than the other users, or use applications producing shorter flows. Based on
that we can assume that this user is not a heavy downloader – file downloads usually
use only a few flows, but each of them carries large amounts of data. Our suspicions will
be proved in the next points, when we show the distribution of different applications
among all the observed users.

3.2 Top 10 Applications
Analyzing the network traffic in the application-wise way is a very challenging task.
Our Volunteer-Based System (VBS) is able to associate each flow with the application
name, which is taken from the system sockets. This approach is quite straightforward,
but unfortunately it also has one big drawback - the socket must be open for a sufficiently
long time to allow VBS to notice it and to grab the application name. Consequently, a
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Figure 2: Cumulative Amount of Traffic Belonging to Different Users Over Time

Table 1: Top 10 Applications for All Users

Order
Number Application Amount

[MB]
% of All
Traffic

Number
of Flows

% of all
Flows

Packets
in a Flow
(Average)

1 uTorrent 348694 61 7151020 72 63
2 chrome 55675 9 599228 6 115
3 firefox 33657 5 381805 3 109
4 svchost 27994 4 118059 1 405
5 moc 20943 3 141557 1 179
6 java 18767 3 81379 0 280
7 libgcflashplay 12028 2 88 0 139567
8 libgcflashpla 8312 1 59 0 135731
9 Unknown 7395 1 1135040 11 11
10 SoftonicDownloader 7105 1 15035 0 509

substantial number of short flows lack the associated application. During our research,
260 different process names accounting for 556.7GB of data were identified, and for this
study we just list the top 10 of them. To emphasize the influence of the flow length on
the ability to obtain the application name, the average number of packets in flow is also
included in these statistics.

The top application names for all users altogether are shown in Table 1. We also
include the information about the number of flows belonging to each application. The
applications are ordered according to the amounts of transmitted data.

The obtained results show that:

• The average number of packets in flows without assigned application name is
11, comparing to 63–139567 in flows with the application name assigned. This
confirms that our VBS is not good in providing application names for short flows.
However, it is worth noticing that flows without assigned application name account
only for 1% of the whole traffic volume.
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• A big number of flows does not mean big amount of data. Flows without assigned
application name account for 11% of of total number of flows (second position),
but only for 1% of the whole traffic volume (9. position).

• Applications having large number of packets in a flow (like libgcflashplay and
libgcflashplaya, responsible for streaming video through web browser) can account
for more traffic than applications having small number of flows (like all applications
belonging to the Unknown group together). Normally, it would not be surprising,
but in this case the proportion of the number of flows belonging to libgcflashplay
to the Unknown group is 1:12898.

The same statistics for individual users are shown in Tables 2–5. The results also
depict the reason for the phenomena described earlier in this paper. Most flows (91%)
belonging to user number 3 consist of 23 packets in average, comparing to 70–112 packets
for other users. That is why we encounter more flows from user number 3 than from
users 1 and 4, but we see lower amount of traffic.

The cumulative amount of traffic generated by top 5 applications for all users alto-
gether are shown in Figure 3. It is clearly depicted that the amount of traffic generated
by uTorrent is over 6 times bigger than the amount of traffic generated by the second
biggest traffic provider in our chart (chrome), and 3 times bigger than the amount of
traffic generated by all applications besides the top 5. Large amount of uTorrent traffic
led us to study its behavior more carefully. The cumulative amounts of traffic generated
by downloading and uploading files by uTorrent are shown in Figure 4 and Figure 5,
respectively. The charts depict the very interesting characteristics of bittorrent traffic
- downloading and uploading is realized simultaneously, so the download and upload
curves have the same shapes. It is, however, worth noticing that the amount of down-
loaded traffic is around 7 times bigger than the amount of traffic uploaded by the clients.
The next interesting observation is that user number 4 uploads almost the same amount

Table 2: Top 10 Applications for User 1

Order
Number Application Amount

[MB]
% of All
Traffic

Number
of Flows

% of all
Flows

Packets
in a Flow
(Average)

1 firefox 29921 28 330734 21 112
2 chrome 27143 26 242937 15 142
3 libgcflashplay 12028 11 88 0 139567
4 libgcflashplaya 8312 8 59 0 135731
5 Unknown 5449 5 869134 56 9
6 http 4718 4 3104 0 1520
7 plugin-contain 2632 2 413 0 8058
8 iplalite 2618 2 473 0 5661
9 clwb3 2525 2 266 0 11300
10 filezilla 2249 2 62 0 38528
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Table 3: Top 10 Applications for User 2

Order
Number Application Amount

[MB]
% of All
Traffic

Number
of Flows

% of all
Flows

Packets
in a Flow
(Average)

1 uTorrent 295981 80 5379088 89 70
2 svchost 27757 7 115166 1 413
3 chrome 25703 6 272772 4 112
4 java 14746 3 42703 0 417
5 firefox 1660 0 5144 0 354
6 Unknown 1154 0 152489 2 17
7 skype 842 0 18452 0 307
8 thebat 339 0 1908 0 238
9 SoftwareUpdate 223 0 32 0 7327
10 dropbox 145 0 7106 0 74

Table 4: Top 10 Applications for User 3

Order
Number Application Amount

[MB]
% of All
Traffic

Number
of Flows

% of all
Flows

Packets
in a Flow
(Average)

1 uTorrent 19315 62 1267869 91 23
2 SoftonicDownloader 7105 22 15035 1 509
3 chrome 2819 9 83349 5 46
4 java 1524 4 2214 0 849
5 svchost 121 0 237 0 550
6 Unknown 66 0 24197 1 10
7 Pity 28 0 33 0 914
8 e-pity2011 20 0 12 0 1800
9 AcroRd32 1 0 15 0 94
10 AdobeARM 0 0 11 0 31

Table 5: Top 10 Applications for User 4

Order
Number Application Amount

[MB]
% of All
Traffic

Number
of Flows

% of all
Flows

Packets
in a Flow
(Average)

1 uTorrent 33395 50 504063 52 78
2 moc 20943 31 141557 14 179
3 iexplore 3760 5 81306 8 60
4 java 2494 3 36459 3 86
5 firefox 2074 3 45927 4 59
6 vmnat 2015 3 2983 0 709
7 Unknown 722 1 89220 9 15
8 mantra 259 0 7746 0 49
9 javaw 160 0 158 0 1420
10 svchost 113 0 2656 0 51
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Table 6: Top 10 HTTP Content-Types for All Users

Order
Number Content-Type Amount

[MB]

% of All
HTTP
Traffic

Number
of

Contents

% of
All

Average
Number
of Packets

1 video/x-flv 35828 34 16238 0 1543
2 audio/mpeg 11884 11 1945 0 4355
3 application/octet-

stream
8832 8 17688 0 351

4 application/x-msdos-
program

7095 6 1673 0 2963

5 video/mp4 5987 5 5983 0 696
6 image/jpeg 5888 5 516090 18 9
7 application/x-debian-

package
5119 4 2444 0 1447

8 application/zip 3278 3 309 0 7426
9 text/html 2398 2 618695 22 4
10 text/plain 2013 2 348826 12 6

of data as it downloads, so it is possible that he has a symmetric Internet connection.

3.3 Top 10 HTTP Content-Types
The previous subsection showed that besides the bittorrent traffic, web browsers account
for the most of traffic transmitted in computer networks. This fact is not surprising since
more and more services are becoming web-based, including web radio, web television,
web applications, etc. Therefore, the knowledge of which application generated the
traffic is not sufficient and we needed to perform the examination what the browser
traffic is. Our Volunteer-Based System is able to provide us information about the
Content-Type headers transmitted by the web server to the browser for each part of
information received by the client. During our research, 191 different HTTP content-
types accounting for 98.5GB of data were identified, and for this study we just list
the top 10 of them. Grouping such content-types into particular categories (like audio,
video, binary data, etc) is outside the scope of this paper and it is a subject to further
examinations.

The top HTTP content-types for all users altogether are shown in Table 6. The
content types are ordered according to the amounts of transmitted data. Unlikely than
when describing traffic generated by various applications (we were taking into account
inbound as well as outbound traffic), we consider in this point only the inbound traffic.
The reason is that only the inbound traffic is responsible for delivering the content to
the clients. The outbound traffic while transmitting HTTP contents is very low and it
consists of small packets containing acknowledgments and new parts requests. Table 7
contains the comparison of the inbound and outbound characteristics of the traffic while
downloading particular contents via HTTP.
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Figure 3: Cumulative Amount of Traffic Generated by Top 5 Applications Over Time

Figure 4: Cumulative Amount of Traffic Downloaded by uTorrent Over Time

Figure 5: Cumulative Amount of Traffic Uploaded by uTorrent Over Time
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Table 7: Characteristics of Inbound and Outbound Traffic for Top 10 HTTP Content-Types for All
Users

Order
Number Content-Type

Average
Inbound
Packet
Size [B]

Average
Outbound
Packet
Size [B]

% of
Inbound
Packets

% of
Inbound
Bytes

1 video/x-flv 1499 51 64 98
2 audio/mpeg 1470 48 57 97
3 application/octet-stream 1474 46 64 98
4 application/x-msdos-program 1498 41 65 98
5 video/mp4 1244 104 58 94
6 image/jpeg 1496 47 66 98
7 application/x-debian-package 1516 48 67 98
8 application/zip 1496 41 65 98
9 text/html 880 226 53 81
10 text/plain 1032 149 63 92

The results shows that the majority of HTTP traffic is generated by video and
binary files downloaded by users. The web traffic, however, also occupies three places
(image/jpeg, text/html, and text/plain) in the list of top 10 HTTP content-types. It is
worth mentioning that these three content-types account for 52% of the total number of
transferred HTTP contents, but only for 9% of the total number of transferred HTTP
traffic, due to a low number of packets from which these contents consist of (4–9 in
average).

The same statistics for individual users are shown in Tables 8–11. For each user, in
the top 10 content-types we can find the ones characteristic for web browsing activities
(image/jpeg, text/html, and text/plain) and the ones characteristic for video services,
as YouTube (video/x-flv). The latter content-type is also commonly used by Video on
Demand (VoD) applications, as Ipla, which are not web browsers, but they use HTTP to
download video data to the user’s computer. The other interesting dependency, which
can be noticed based on these four tables is the inverse proportionality between the
number of observed occurrences of the particular content-type and the average number
of packets contained by the content. It means that most often we observe relatively short
contents (as HTML files or web images), and larger ones are more rare (as movies).



146 Paper VI. Obtaining Application-Based and Content-Based Internet Traffic Statistics

Table 8: Top 10 HTTP Content-Types for User 1

Order
Number Content-Type Amount

[MB]

% of All
HTTP
Traffic

Number
of

Contents

% of
All

Average
Number
of Packets

1 video/x-flv 23757 45 6490 0 2554
2 audio/mpeg 6693 12 198 0 24380
3 video/mp4 3428 6 550 0 4316
4 application/x-debian-

package
3319 6 202 0 11190

5 image/jpeg 3019 6 271485 21 9
6 application/octet-

stream
2401 4 6636 0 261

7 text/html 1184 2 232431 18 5
8 text/plain 1156 2 168202 13 6
9 video/webm 807 1 30 0 18612
10 image/png 781 1 86470 6 8

Table 9: Top 10 HTTP Content-Types for User 2

Order
Number Content-Type Amount

[MB]

% of All
HTTP
Traffic

Number
of

Contents

% of
All

Average
Number
of Packets

1 video/x-flv 5553 35 6210 0 632
2 video/mp4 2083 13 5311 0 276
3 application/octet-

stream
1840 11 6777 0 194

4 image/jpeg 1473 9 111872 14 11
5 text/html 492 3 133701 17 5
6 text/plain 442 3 139826 18 4
7 application/rar 431 2 2 0 152136
8 image/png 429 2 43620 5 9
9 application/x-

shockwave-flash
404 2 11304 1 27

10 application/x-
javascript

298 2 39194 5 7
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Table 10: Top 10 HTTP Content-Types for User 3

Order
Number Content-Type Amount

[MB]

% of All
HTTP
Traffic

Number
of

Contents

% of
All

Average
Number
of Packets

1 application/x-msdos-
program

6913 71 1440 1 3366

2 video/x-flv 1264 12 560 0 1604
3 image/jpeg 195 2 21811 15 9
4 application/x-

shockwave-flash
173 1 3583 2 36

5 video/mp4 157 1 33 0 3373
6 image/png 148 1 21156 14 7
7 application/x-

javascript
141 1 16095 11 8

8 application/x-compress 141 1 1 0 99186
9 application/octet-

stream
101 1 313 0 229

10 text/html 87 0 26875 18 4

Table 11: Top 10 HTTP Content-Types for User 4

Order
Number Content-Type Amount

[MB]

% of All
HTTP
Traffic

Number
of

Contents

% of
All

Average
Number
of Packets

1 audio/mpeg 5027 20 925 0 3808
2 video/x-flv 5005 20 2978 0 1185
3 application/octet-

stream
4463 17 3962 0 788

4 application/zip 3062 12 123 0 17419
5 application/x-debian-

package
1797 7 2242 0 560

6 image/jpeg 1169 4 110922 18 9
7 application/x-gzip 646 3 37 0 12700
8 text/html 642 3 225688 37 3
9 text/plain 381 1 37874 6 9
10 video/mp4 316 1 89 0 2495
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Figure 6: Cumulative Amount of Traffic Generated by Top 5 HTTP Content-Types

The cumulative amount of traffic generated by the top 5 HTTP content-types for all
users altogether are shown in Figure 6. It is clearly depicted that the amount of traffic
generated by video/x-flv is around 2.5 times bigger than the amount of traffic generated
by the second biggest traffic provider in our chart (application/octet-stream), and it also
corresponds to the amount of traffic generated by all HTTP content-types besides the
top 5.

3.4 Characterizing Application Traffic
With the data collected it is possible to characterize traffic from different applications
by a large number of metrics. In this section, we will shortly demonstrate some of the
interesting metrics, which can be used to characterize traffic based on the data collected
throughout the study:

• Average packet sizes: inbound, outbound, and total

• Distribution of inbound and outbound packets

• Distribution of inbound and outbound packets carrying data

The results are presented in Table 12. Quite a few interesting observations can be
made. While not surprising, it is interesting to observe that for chrome 60% of the
packets are inbound. If only packets carrying data are taken into account, this number
increases to 71%. For dropbox, which was extensively analyzed on the flow and volume
level in [21], it is interesting to note that while the number of inbound and outbound
packets are approximately the same, there is actually quite a large difference in the size
of inbound and outbound packets. Looking into the more detailed figures for dropbox,
it can actually be seen that 49% of the outbound data packets are big (above 1320B),
while this is only so for 12% of the inbound data packets.
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Table 12: Characterizing Traffic Generated by Various 5 Applications for All Users

Application
Name

Average
Packet
Size
In [B]

Average
Packet
Size

Out [B]

Average
Packet
Size [B]

% of
Packets

In

% of
Packets
Out

% of
Data

Packets
In

% of
Data

Packets
Out

chrome 1314 130 842 60 40 71 29
dropbox 272 832 562 48 52 43 57
skype 207 178 193 51 49 51 49
uTorrent 1133 351 810 58 42 61 39
wget 1501 54 864 55 45 55 45

4 Conclusion and Discussion
In this paper, we have demonstrated how the Volunteer-Based System developed at
Aalborg University can be used for generating useful statistics of Internet traffic usage
– statistics which are useful academic as well as practical network engineering purposes.
The system is based on monitoring traffic on the host, which has several advantages
over traditional approaches for traffic monitoring - in particular, it is possible to obtain
precise mappings between the applications and the traffic generated, which is a big help
when training statistical classifiers. The paper demonstrated some of the statistics that
can be obtained using the system, and examples of how they can be further processed
to useful statistical information.

We focused in our studies on statistics calculated for various network applications,
and presented both the overall statistics and statistics that characterizes specific ap-
plications. Web browsers can carry today many different kinds of traffic, including
interactive voice and video. We have demonstrated how we can use VBS to separate
various types of HTTP traffic. The information gathered by the system can be used
in many different ways: to create realistic models of computer networks, to provide
accurate training data to Machine Learning Algorithms, to develop new and enhance
existing networks. The current study has involved only a low number of volunteers in
order to test the system prior to a large-scale implementation, and with the satisfactory
results we are now ready to move on.

This paper is mainly intended as a demonstration of the system, and with the limited
number of users the results do not represent the truth of neither application behavior
nor distribution between applications. For the latter, it would be necessary to recruit
not only a large number of volunteers, but also a set of volunteers representing the group
that should be studied. For the former, a smaller number of users would be sufficient
- as long as the group is large enough to ensure that different usages of the different
applications are covered. That being said, we still believe that the results provide
interesting indications of application behaviors for the most common applications such
as Bittorrent and web traffic. It is important to keep in mind, though, that different
user groups would still have different behaviors - for example, the use of e.g. web radios
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or web browsers could be different in different countries/regions depending on cultures,
as well as between different user segments. If the system is to be used for training
statistical classifiers, we would recommend that the data are collected from the same
network as the classifier is later to be used in, in order to cope with these challenges.

Being aware that the amount of data is crucial, we highly encourage user groups
and researchers to use the proposed system for collecting data and if possible sharing
the anonymized traces with other researchers. Therefore, the system is based on open
source code available from [12]. Other contributors would be welcome to set up their
own servers for data collection, or to collaborate with the authors on the data collection.

Future research will focus on grouping the applications and the HTTP content-
types into several sets, like voice, video, file transfer, interactive browsing, etc. This
is not a trivial task, since grouping manually such large number of applications and
content-types is not doable. Furthermore, the interactive connections (like interactive
web browsing) should treat all the files in that connections as a whole, without splitting
that into particular HTML documents, web images, stylesheets, etc. A kind of clustering
algorithm can be used to partially automatize that process.
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Abstract

The validation of the different proposals in the traffic classification literature is
a controversial issue. Usually, these works base their results on a ground-truth
built from private datasets and labeled by techniques of unknown reliability. This
makes the validation and comparison with other solutions an extremely difficult
task. This paper aims to be the first step towards addressing the validation and
trustworthiness problem of network traffic classifiers. We perform a comparison
between 6 well-known DPI-based techniques, which are frequently used in the
literature for ground-truth generation. In order to evaluate these tools, we have
carefully built a labeled dataset of more than 500 000 flows, which contains traffic
from popular applications. Our results present PACE, a commercial tool, as the
most reliable solution for ground-truth generation. However, among the open-
source tools available, nDPI and especially Libprotoident, also achieve very high
precision, while other, more frequently used tools (e.g., L7-filter) are not reliable
enough and should not be used for ground-truth generation in their current form.

Keywords

accuracy, PACE, OpenDPI, nDPI, Libprotoident, NBAR, L7-filter

1 Introduction and Related Work
During the last decade, traffic classification has considerably increased its relevance,
becoming a key aspect for many network related tasks. The explosion of new appli-
cations and techniques to avoid detection (e.g., encryption, protocol obfuscation) have
substantially increased the difficulty of traffic classification. The research community
have thrown itself into this problem by proposing many different solutions. However,
this problem is still far from being solved [1].

Most traffic classification solutions proposed in the literature report very high ac-
curacy. However, these solutions mostly base their results on a private ground-truth
(i.e., dataset), usually labeled by techniques of unknown reliability (e.g., ports-based or
DPI-based techniques [2–5]). That makes it very difficult to compare and validate the
different proposals.

The use of private datasets is derived from the lack of publicly available datasets with
payload. Mainly because of privacy issues, researchers and practitioners are not allowed
to share their datasets with the research community. To the best of our knowledge, just
one work has tackled this problem. Gringoli et al. in [6] published anonymized traces
without payload, but accurately labeled using GT. This dataset is very interesting to
evaluate Machine Learning-based classifiers, but the lack of payload makes it unsuitable
for DPI-based evaluation.
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Table 1: DPI-Based Techniques Evaluated

Name Version Applications
PACE 1.41 (June 2012) 1000
OpenDPI 1.3.0 (June 2011) 100
nDPI rev. 6391 (March 2013) 170
L7-filter 2009.05.28 (May 2009) 110
Libprotoident 2.0.6 (Nov 2012) 250
NBAR 15.2(4)M2 (Nov 2012) 85

Another crucial problem is the reliability of the techniques used to set the ground-
truth. Most papers show that researchers usually obtain their ground-truth through
port-based or DPI-based techniques [2–5]. The poor reliability of port-based techniques
is already well known, given the use of dynamic ports or well-known ports of other
applications [7, 8]. Although the reliability of DPI-based techniques is still unknown,
according to conventional wisdom they are, in principle, one of the most accurate tech-
niques.

Some previous works evaluated the accuracy of DPI-based techniques [3, 5, 9, 10].
These studies rely on a ground-truth generated by another DPI-based tool [5], port-
based technique [3] or a methodology of unknown reliability [9, 10], making their com-
parison and validation very difficult. Recently, a concomitant study to ours [10] com-
pared the performance of four DPI-based techniques (i.e., L7-filter, Tstat, nDPI, and
Libprotoident). This parallel study confirms some of the findings of our work presenting
nDPI and Libprotoident as the most accurate open-source DPI-based techniques. In [11]
the reliability of L7-filter and a port-based technique was compared using a dataset ob-
tained by GT [6] showing that both techniques present severe problems to accurately
classify the traffic.

This paper presents two main contributions. First, we publish a reliable labeled
dataset with full packet payloads [12]. The dataset has been artificially built in order
to allow us its publication. However, we have manually simulated different behaviors
to make it as representative as possible. We used VBS [13] to guarantee the reliability
of the labeling process. This tool can label the flows with the name of the process that
created them. This allowed us to carefully create a reliable ground-truth that can be
used as a reference benchmark for the research community. Second, using this dataset,
we evaluated the performance and compared the results of 6 well-known DPI-based
techniques, presented in Table 1, which are widely used for the ground-truth generation
in the traffic classification literature.

These contributions pretend to be the first step towards the impartial validation of
network traffic classifiers. They also provide to the research community some insights
about the reliability of different DPI-based techniques commonly used in the literature
for ground-truth generation.
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2 Methodology
2.1 Testbed
Our testbed is based on VMWare virtual machines (VMs). We installed three VMs for
our data generating stations and we equipped them with Windows 7 (W7), Windows XP
(XP), and Ubuntu 12.04 (LX). Additionally, we installed a server VM for data storage.
To collect and accurately label the flows, we adapted Volunteer-Based System (VBS)
developed at Aalborg University [13]. The task of VBS is to collect information about
Internet traffic flows (i.e., start time of the flow, number of packets contained by the
flow, local and remote IP addresses, local and remote ports, transport layer protocol)
together with detailed information about each packet (i.e., direction, size, TCP flags,
and relative timestamp to the previous packet in the flow). For each flow, the system
also collects the process name associated with that flow. The process name is obtained
from the system sockets. This way, we can ensure the application associated to a
particular traffic. Additionally, the system collects some information about the HTTP
content type (e.g., text/html, video/x-flv). The captured information is transmitted to
the VBS server, which stores the data in a MySQL database. The design of VBS was
initially described in [13]. On every data generating VM, we installed a modified version
of VBS. The source code of the modified version was published in [14] under a GPL
license. The modified version of the VBS client captures full Ethernet frames for each
packet, extracts HTTP URL and Referer fields. We added a module called pcapBuilder,
which is responsible for dumping the packets from the database to PCAP files. At the
same time, INFO files are generated to provide detailed information about each flow,
which allows us to assign each packet from the PCAP file to an individual flow. We also
added a module called logAnalyzer, which is responsible for analyzing the logs generated
by the different DPI tools, and assigning the results of the classification to the flows
stored in the database.

2.2 Selection of the Data
The process of building a representative dataset, which characterizes a typical user be-
havior, is a challenging task, crucial on testing and comparing different traffic classifiers.
Therefore, to ensure the proper diversity and amount of the included data, we decided
to combine the data on a multidimensional level. Based on w3schools statistics, we
selected Windows 7 (55.3% of all users), Windows XP (19.9%), and Linux (4.8%) –
state for January 2013. Apple computers (9.3% of overall traffic) and mobile devices
(2.2%) were left as future work. The selected applications are shown below.

• Web browsers: based on w3schools statistics: Chrome and Firefox (W7, XP, LX),
Internet Explorer (W7, XP).
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• BitTorrent clients: based on CNET ranking: uTorrent and Bittorrent (W7, XP),
Frostwire and Vuze (W7, XP, LX)

• eDonkey clients: based on CNET ranking: eMule (W7, XP), aMule (LX)

• FTP clients: based on CNET ranking: FileZilla (W7, XP, LX), SmartFTP Client
(W7, XP), CuteFTP (W7, XP), WinSCP (W7, XP)

• Remote Desktop servers: built-in (W7, XP), xrdp (LX)

• SSH servers: sshd (LX)

• Background traffic: DNS and NTP (W7, XP, LX), NETBIOS (W7, XP)

The list of visited websites was based on the top 500 websites according to Alexa
statistics. We chose several of them taking into account their rank and the nature
of the website (e.g., search engines, social medias, national portals, video websites)
to assure the variety of produced traffic. These websites include: Google, Facebook,
YouTube, Yahoo!, Wikipedia, Java, and Justin.tv. For most websites, we performed
several random clicks to linked external websites, which should better characterize the
real behavior of the real users and include also other websites not included in the top 500
ranking. This also concerns search engines, from which we manually generated random
clicks to the destination web sites. Each of the chosen websites was processed by each
browser. In case it was required to log into the website, we created fake accounts.
In order to make the dataset as representative as possible we have simulated different
human behaviors when using these websites. For instance, on Facebook, we log in,
interact with friends (e.g., chat, send messages, write in their walls), upload pictures,
create events or play games. On YouTube, we watched the 10 most popular videos,
which we randomly paused, resumed, and rewound backward and forward. Also, we
randomly made some comments and clicked Like or Not like buttons. The detailed
description of actions performed with the services is listed in our technical report [15].
We tested the P2P (BitTorrent and eDonkey) clients by downloading files of different
sizes and then leaving the files to be seeded for some time, in order to obtain enough
of traffic in both directions. We tried to test every FTP client using both the active
transfer mode (PORT) and passive transfer mode (PASV), if the client supports such a
mode.

2.3 Extracting the Data for Processing
Each DPI tool can have different requirements and features, so the extracting tool must
handle all these issues. The PCAP files provided to PACE, OpenDPI, L7-filter, nDPI,
and Libprotoident are accompanied by INFO files, which contain the information about
the start and end of each flow, together with the flow identifier. Because of that, the
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software, which uses the DPI libraries, can create and terminate the flows appropriately,
as well as provide the classification results together with the flow identifier. Preparing
the data for NBAR classification is more complicated. There are no separate INFO files
describing the flows, since the classification is made directly on the router. We needed
to extract the packets in a way that allows the router to process and correctly group
them into flows. We achieved that by changing both the source and destination MAC
addresses during the extraction process. The destination MAC address of every packet
must match up with the MAC address of the interface of the router, because the router
cannot process any packet which is not directed to its interface on the MAC layer. The
source MAC address was set up to contain the identifier of the flow to which it belongs,
so the flows were recognized by the router according to our demands. To the best of
our knowledge, this is the first work to present a scientific performance evaluation of
NBAR.

2.4 Classification Process
We designed a tool, called dpi_benchmark, which can read the PCAP files and provide
the packets one-by-one to PACE, OpenDPI, L7-filter, nDPI, and Libprotoident. All the
flows are started and terminated based on the information from the INFO files. After
the last packet of the flow is sent to the classifier, the tool obtains the classification
label associated with that flow. The labels are written to the log files together with
the flow identifier, which makes us later able to relate the classification results to the
original flows in the database. A brief description of the DPI-tools used in this study is
presented in Table 1. Although some of the evaluated tools have multiple configuration
parameters, we have used in our evaluation the default configuration for most of them.
A detailed description of the evaluated DPI-tools and their configurations can be found
in [15].

Classification by NBAR required us to set up a full working environment. We used
GNS3 – a graphical framework, which uses Dynamips to emulate our Cisco hardware.
We emulated the 7200 platform, since only for this platform supported by GNS3 was
available the newest version of Cisco IOS (version 15), which contains Flexible NetFlow.
The router was configured by us to use Flexible NetFlow with NBAR on the created
interface. Flexible NetFlow was set up to create the flows taking into account the same
parameters as are used to create the flow by VBS. On the computer, we used tcpreplay
to replay the PCAP files to the router with the maximal speed, which did not cause
packet loss. At the same time, we used nfacctd, which is a part of PMACCT tools, to
capture the Flexible NetFlow records sent by the router to the computer. The records,
which contain the flow identifier (encoded as source MAC address) and the name of the
application recognized by NBAR, were saved into text log files. This process is broadly
elaborated in our technical report [15].
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Table 2: Application Classes in the Dataset

Application Number of Flows Number of Megabytes
eDonkey 176581 2823.88
BitTorrent 62845 2621.37
FTP 876 3089.06
DNS 6600 1.74
NTP 27786 4.03
RDP 132907 13218.47
NETBIOS 9445 5.17
SSH 26219 91.80
Browser HTTP 46669 5757.32
Browser RTMP 427 3026.57
Unclassified 771667 5907.15

2.5 Dataset
Our dataset contains 1 262 022 flows captured during 66 days, between February 25,
2013 and May 1, 2013, which account for 35.69GB of pure packet data. The applica-
tion name tag was present for 520 993 flows (41.28% of all the flows), which account
for 32.33GB (90.59%) of the data volume. Additionally, 14 445 flows (1.14% of all
the flows), accounting for 0.28GB (0.78%) of data volume, could be identified based
on the HTTP content-type field extracted from the packets. Therefore, we were able
to successfully establish the ground truth for 535 438 flows (42.43% of all the flows),
accounting for 32.61GB (91.37%) of data volume. The remaining flows are unlabeled
due to their short lifetime (below 1 s), which made VBS incapable to reliably establish
the corresponding sockets. Only these successfully classified flows will be taken into
account during the evaluation of the classifiers. However, all the flows are included in
the publicly available traces. This ensures data integrity and the proper work of the
classifiers, which may rely on coexistence of different flows. We isolated several appli-
cation classes based on the information stored in the database (e.g., application labels,
HTTP content-type field). The classes together with the number of flows and the data
volume are shown in Table 2. We have published this labeled dataset with full packet
payloads in [12]. Therefore, it can be used by the research community as a reference
benchmark for the validation and comparison of network traffic classifiers.

3 Performance Comparison
This section provides a detailed insight into the classification results of different types of
traffic by each of the classifiers. All these results are summarized in Table 3 and Table 4,
where the ratio of correctly classified flows (i.e., precision or true positives), incorrectly
classified flows (i.e., errors or false positives) and unclassified flows (i.e., unknowns) are
respectively presented. The complete confusion matrix can be found in our technical
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Table 3: Evaluation of DPI tools – Part 1

Application Classifier Correct [%] Wrong [%] Unclassified [%]
PACE 94.80 0.02 5.18
OpenDPI 0.45 0.00 99.55

eDonkey L7-filter 34.21 13.70 52.09
nDPI 0.45 6.72 92.83
Libprotoident 98.39 0.00 1.60
NBAR 0.38 10.81 88.81
PACE 81.44 0.01 18.54
OpenDPI 27.23 0.00 72.77

BitTorrent L7-filter 42.17 8.78 49.05
nDPI 56.00 0.43 43.58
Libprotoident 77.24 0.06 22.71
NBAR 27.44 1.49 71.07
PACE 95.92 0.00 4.08
OpenDPI 96.15 0.00 3.85

FTP L7-filter 6.11 93.31 0.57
nDPI 95.69 0.45 3.85
Libprotoident 95.58 0.00 4.42
NBAR 40.59 0.00 59.41
PACE 99.97 0.00 0.03
OpenDPI 99.97 0.00 0.03

DNS L7-filter 98.95 0.13 0.92
nDPI 99.88 0.09 0.03
Libprotoident 99.97 0.00 0.04
NBAR 99.97 0.02 0.02
PACE 100.00 0.00 0.00
OpenDPI 100.00 0.00 0.00

NTP L7-filter 99.83 0.15 0.02
nDPI 100.00 0.00 0.00
Libprotoident 100.00 0.00 0.00
NBAR 0.40 0.00 99.60

report [15].
Regarding the classification of P2P traffic, eDonkey is the first application studied.

Only PACE, and especially Libprotoident, can properly classify it (precision over 94%).
nDPI and OpenDPI (that use the same pattern), as well as NBAR, can classify almost
no eDonkey traffic (precision below 1%). L7-filter classifies 1/3 of the flows, but it
also produces many false positives by classifying more than 13% of the flows as Skype,
NTP, and Finger. The wrongly classified flows by nDPI were labeled as Skype, RTP,
and RTCP, and by NBAR as Skype. The classification of BitTorrent traffic, the second
P2P application studied, is not completely achieved by any of the classifiers. PACE
and Libprotoident achieve again the highest precision (over 77%). The rest of the
classifiers present severe problems to identify this type of traffic. When misclassified,
the BitTorrent traffic is usually classified as Skype.

The performance of most DPI tools with more traditional applications is significantly
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Table 4: Evaluation of DPI tools – Part 2

Application Classifier Correct [%] Wrong [%] Unclassified [%]
PACE 95.57 0.00 4.43
OpenDPI 95.59 0.00 4.41

SSH L7-filter 95.71 0.00 4.29
nDPI 95.59 0.00 4.41
Libprotoident 95.71 0.00 4.30
NBAR 99.24 0.05 0.70
PACE 99.04 0.02 0.94
OpenDPI 99.07 0.02 0.91

RDP L7-filter 0.00 91.21 8.79
nDPI 99.05 0.08 0.87
Libprotoident 98.83 0.16 1.01
NBAR 0.00 0.66 99.34
PACE 66.66 0.08 33.26
OpenDPI 24.63 0.00 75.37

NETBIOS L7-filter 0.00 8.45 91.55
nDPI 100.00 0.00 0.00
Libprotoident 0.00 5.03 94.97
NBAR 100.00 0.00 0.00
PACE 80.56 0.00 19.44
OpenDPI 82.44 0.00 17.56

RTMP L7-filter 0.00 24.12 75.88
nDPI 78.92 8.90 12.18
Libprotoident 77.28 0.47 22.25
NBAR 0.23 0.23 99.53
PACE 96.16 1.85 1.99
OpenDPI 98.01 0.00 1.99

HTTP L7-filter 4.31 95.67 0.02
nDPI 99.18 0.76 0.06
Libprotoident 98.66 0.00 1.34
NBAR 99.58 0.00 0.42

higher. FTP traffic is usually correctly classified. Only L7-filter and NBAR present
problems to label it. The false positives produced by L7-filter are because the traffic
is classified as SOCKS. Table 3 also shows that all the classifiers can properly classify
DNS traffic. Similar results are obtained for NTP, which almost all the classifiers can
correctly classify it. However, NBAR completely miss the classification of this traffic.
SSH was evaluated in its Linux version. Table 4 shows that NBAR almost classified all
the flows while the rest of classifiers labeled more than 95% of them.

Similar performance is also obtained with RDP, usually employed by VoIP applica-
tions, as shown in Table 4. Again, L7-filter and NBAR cannot classify this application
at all. The false positives for L7-filter, Libprotoident, and NBAR are mainly due to
Skype, RTMP, and H323, respectively.

Unlike previous applications, the results for NETBIOS are quite different. Sur-
prisingly, NBAR and nDPI are the only classifiers that correctly label the NETBIOS
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traffic. PACE can classify 2/3 of this traffic and OpenDPI only 1/4. On the other hand,
the patterns from L7-filter and Libprotoident do not properly detect this traffic. The
wrongly classified flows by Libprotoident are labeled as RTP and Skype, and by L7-filter
as eDonkey, NTP, and RTP.

We also evaluated the RTMP traffic, a common protocol used by browsers and
plugins for playing Flash content. It is important to note that only Libprotoident has a
specific pattern for RTMP. Because of that, we have also counted as correct the RTMP
traffic classified as Flash although that classification is not as precise as the one obtained
by Libprotoident. L7-filter and NBAR cannot classify this type of traffic. The rest of
the classifiers achieve similar precision, around 80%. The surprising amount of false
positives by nDPI is because some traffic is classified as H323. L7-filter errors are due
to wrongly classified traffic as Skype and TSP.

Table 4 also presents the results regarding the HTTP protocol. All of them but
L7-filter can properly classify most of the HTTP traffic. L7-filter labels all the traffic
as Finger or Skype. nDPI classifies some HTTP traffic as iMessage_Facetime. The
amount of errors from PACE is surprising, as this tool is usually characterized by very
low false positive ratio. All the wrong classifications are labeled as Meebo traffic. The
older Meebo pattern available in OpenDPI and the newer from nDPI seems not to have
this problem.

Most incorrect classifications for all the tools are due to patterns that easily match
random traffic. This problem especially affects L7-filter and, in particular, with the pat-
terns used to match Skype, Finger, and NTP traffic. The deactivation of those patterns
would considerably decrease the false positive ratio but it would disable the classifi-
cation of those applications. In [4], the authors use a tailor-made configuration and
post-processing of the L7-filter output in order to minimize this overmatching problem.

3.1 Sub-Classification of HTTP traffic
Our dataset also allows the study of HTTP traffic at different granularities (e.g., iden-
tify different services running over HTTP). However, only nDPI can sub-classify some
applications at this granularity (e.g., YouTube or Facebook). Newer versions of PACE
also provide this feature but we had no access to it for this study. Table 5 presents the
results for four applications running over HTTP identified by nDPI. Unlike the rest of
tools that basically classify this traffic as HTTP, nDPI can correctly give the specific
label with precision higher than 97%. Furthermore, the classification errors are caused
by traffic that nDPI classifies as HTTP without providing the lower level label.

Another sub-classification that can be studied with our dataset is the Flash traffic
over HTTP. However, the classification of this application is different for each tool
making its comparison very difficult. PACE, OpenDPI, and nDPI have a specific pattern
for this application. At the same time, these tools (as well as L7-filter) have specific
patterns for video traffic, which may or may not run over HTTP. In addition, nDPI
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Table 5: HTTP Sub-Classification by nDPI

Application Correct [%] Wrong [%] Unclassified [%]
Google 97.28 2.72 0.00
Facebook 100.00 0.00 0.00
YouTube 98.65 0.45 0.90
Twitter 99.75 0.00 0.25

has specific labels for Google, YouTube, and Facebook that can also carry Flash traffic.
Libprotoident and NBAR do not provide any pattern to classify Flash traffic over HTTP.
Table 6 shows that nDPI can correctly classify 99.48% of this traffic, 25.48% of which
is classified as Google, YouTube, or Facebook. PACE and OpenDPI can properly classify
around 86% of the traffic. The errors produced in the classification are almost always
related to traffic classified as HTTP with the exception of L7-filter that classifies 86.49%
of the traffic as Finger.

Table 6: Flash Evaluation

Classifier Correct [%] Wrong [%] Unclassified [%]
PACE 86.27 13.18 0.55
OpenDPI 86.34 13.15 0.51
L7-filter 0.07 99.67 0.26
nDPI 99.48 0.26 0.26
Libprotoident 0.00 98.07 1.93
NBAR 0.00 100.00 0.00

4 Discussion
This section extracts the outcomes from the results obtained during the performance
comparison. Also, we discuss the limitations of our study. Table 7 presents the summary
of the results from Section 3. The Precision (i.e., the first column) is computed similarly
to Section 3, but we take into account all the applications together (i.e., 100 * # correctly
classified flows / # total flows). However, this metric is dependent on the distribution of
the dataset. Because of that, we also compute a second metric, the Average Precision.
This statistic is independent from the distribution and is calculated as follow:

Avg. Precision =
∑N

i=1
correctly classified i flows

total i flows

N

where N is the number of applications studied (i.e., N = 10).
As it can be seen in Table 7, PACE is the best classifier. Even while we were not

using the last version of the software, PACE was able to properly classify 94% of our
dataset. Surprisingly for us, Libprotoident achieves similar results, although this tool
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Table 7: Summary

Classifier Precision [%] Average Precision [%]
PACE 94.22 91.01
OpenDPI 52.67 72.35
L7-filter 30.26 38.13
nDPI 57.91 82.48
Libprotoident 93.86 84.16
NBAR 21.79 46.72

only inspects the first four bytes of payload for each direction. On the other hand, L7-
filter, and NBAR perform poorly in classifying the traffic from our dataset. The more
fair metric, Avg. Precision, presents similar results. PACE is still the best classifier,
however, it has increased the difference by several points to the second best classifier,
Libprotoident. Unlike before, nDPI is almost as precise as Libprotoident with this
metric. L7-filter and NBAR are still the tools that present the worst performance.

Nonetheless, the previous conclusions are obviously tied to our dataset. Although
we have tried our best to emulate the real behavior of the users, many applications,
behaviors and configurations are not represented on it. Because of that, it has some
limitations. In our study we have evaluated 10 well-known applications, however adding
more applications as Skype or Spotify is part of our ongoing future work. The results
obtained from the different classifiers are directly related to those applications. Thus,
the introduction of different applications could arise different outcomes. The traffic
generated for building the dataset, although has been manually and realistically created,
is artificial. The backbone traffic would carry different behaviors of the applications that
are not fully represented in our dataset (e.g., P2P clients running on port 80). Therefore,
the performance of the tools studied could not be directly extrapolated from the current
results, but it gives an idea of their precision in the evaluated set of applications. At
the same time, the artificially created traffic allowed us to publish the dataset with full
packet payloads.

5 Conclusions
This paper presents the first step towards validating the reliability of the accuracy of
the network traffic classifiers. We have compared the performance of six tools (i.e.,
PACE, OpenDPI, L7-filter, nDPI, Libprotoident, and NBAR), which are usually used
for the traffic classification. The results obtained in Section 3 and further discussed
in Section 4 show that PACE is, on our dataset, the most reliable solution for traffic
classification. Among the open-source tools, nDPI and especially Libprotoident present
the best results. On the other hand, NBAR and L7-filter present several inaccuracies
that make them not recommendable as a ground-truth generator.

In order to make the study trustworthy, we have created a dataset using VBS [13].



References 165

This tool associates the name of the process to each flow making its labeling totally
reliable. The dataset of more than 500K flows contains traffic from popular applica-
tions like HTTP, eDonkey, BitTorrent, FTP, DNS, NTP, RDP, NETBIOS, SSH, and
RDP. The total amount of data properly labeled is 32.61GB. Furthermore, and more
important, we release to the research community this dataset with full payload, so it
can be used as a common reference for the comparison and validation of network traffic
classifiers.

As the future work, we plan to extend this work by adding new applications to the
dataset (e.g., Skype, Games) and especially focus on HTTP-based applications. We also
plan to introduce new tools to the study (e.g., NBAR2).
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Abstract

Existing tools for traffic classification are shown to be incapable of identifying the
traffic in a consistent manner. For some flows only the application is identified,
for others only the content, for yet others only the service provider. Further-
more, Deep Packet Inspection is characterized by extensive needs for resources
and privacy or legal concerns. Techniques based on Machine Learning Algorithms
require good quality training data, which are difficult to obtain. They usually
cannot properly deal with other types of traffic, than they are trained to work
with, and they are unable to detect the content carried by the flow, or the service
provider. To overcome the drawbacks of already existing methods, we developed a
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novel hybrid method to provide accurate identification of computer network traf-
fic on six levels: Ethernet, IP protocol, application, behavior, content, and service
provider. Our system built based on the method provides also traffic accounting
and it was tested on 2 datasets. We have shown that our system gives a consistent,
accurate output on all the levels. We also showed that the results provided by our
system on the application level outperformed the results obtained from the most
commonly used DPI tools.

Keywords

traffic classification, C5.0, Machine Learning Algorithms, computer networks, browser
traffic, Internet traffic

1 Introduction
1.1 Background
Classification and accounting of traffic in computer networks is an important task. To
ensure the proper quality for the users, Internet Service Providers (ISPs) are required
to know how their networks are being used. To satisfy their needs, information about
the network usage must be presented on multiple levels, which characterize different
aspects of the traffic: layer 3, layer 4 and application protocols, the behavior, the carried
content, and the service provider. At first, the knowledge of how particular applications
contribute to the traffic volume allows to adjust the network structure and settings. For
example, users, who prefer to download large amounts of data using Peer-to-Peer (P2P)
applications, can be offered higher bandwidth during the night, while the Quality of
Service (QoS) policies in the network can be adjusted to support the most commonly
used interactive applications, such as Skype. However, each application can be used
in many different ways. For example, HTTP clients, as web browsers, can be used to
browse pages, stream Internet radios or Internet TVs, or download big files. Therefore,
to assure the proper quality of delivery, the network providers require the information
about how the applications are being used. ISPs can buy bandwidth from multiple
providers, which are characterized by different pricing and links of different quality to
various service providers (as Yahoo, Google, Facebook, etc). To reduce the cost and
provide better quality to the users, it is important to know which services are most
commonly used and what kind of content (audio, video, etc.) is being offered by the
services.

The first challenge would be where and how to monitor the traffic. The best places
for traffic monitoring are access, distribution, or core links of the ISPs networks, as we
cannot expect to install any software on all of the users’ devices. The examination of
the traffic must not violate the law and users’ privacy. Moreover, the measurements



1. Introduction 169

must be done in real-time, or nearly real-time, to avoid storing huge amounts of data,
which is not doable in high-speed infrastructures with links exceeding 10Gbit/s, without
involving large processing power and storage space.

1.2 Existing Methods for Traffic Classification
There are three main methods of traffic classification in computer networks: classifi-
cation by transport-layer port numbers, Deep Packet Inspection (DPI), and statistical
classification. A survey on various methods for traffic identification can be found in [1].

Distinguishing the traffic based on port numbers [2, 3] is a well-known method, which
is implemented by many network devices, as routers and layer-3 switches. The method
is fast, but it is not capable of detecting protocols which use dynamic port numbers, as
Skype or other P2P [4–6]. The same concerns services, which use different port numbers
than the default ones.

DPI is more flexible since it relies on inspection of the application payload [7]. Unfor-
tunately, not all the applications leave patterns, which allow to precisely identify packets
belonging to the applications. Therefore, some application protocols are not detected
at all, overmatched (giving false positives), or undermatched (giving false negatives)
– see the pattern descriptions of l-7 filter [8]. Classification methods, which use DPI,
are slow and they require a lot of processing power, which makes them unfeasible for
real-time processing in high-speed networks [4, 5]. Furthermore, it can be even impossi-
ble to use DPI if the payload is encrypted, the application signatures were changed [4],
or the national law forbids to use this technique because of privacy and confidentiality
concerns [4].

The statistical analysis, a newly emerged technology, is a reply to the drawbacks
of the methods described above. There are two different techniques used in statistical
identification of data: classification and clustering. Creating classification rules and
data clusters based on statistical parameters by hand is slow and inefficient. For that
purpose, tools based on Machine Learning Algorithms (MLAs) were invented, which
are able to generate the rules or clusters based on sample data provided as the training
input. The accuracy of statistical classification was assessed to be over 95%, while
the ability to distinguish various application protocols was comparable to DPI, and
the speed was similar to port-based classification [2–4, 6, 7, 9–11]. However, current
applications of MLAs have many drawbacks. At first, training of MLAs requires good
quality data. Otherwise, we risk obtaining results of poor accuracy. At second, the
classification attributes need to be carefully selected. If the classifier uses time-based
attributes, the classification results can be biased by conditions in the network at the
time of measurement. At third, if the classifier is trained to recognize only several
selected types of traffic, its ability to classify traffic in the real network is also limited.
In such case, any flow representing another type of traffic will be misclassified by being
assigned to the most probable class of the included traffic types.
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1.3 Our Contributions
All the classification methods described above have one thing in common: they are not
able to identify the traffic on multiple levels in a consistent manner. The port-based
classification usually gives the name of the application protocol, while its reliability
is low. As we show later in Section 4.4, the currently available DPI tools are not
suitable for this purpose as well. Either their results are a mix of application names,
content names, and service provider names, while no consistency on any level is preserved
(PACE, OpenDPI, nDPI, and Libprotoident), or the classification is given consistently
only on the application level, while their accuracy is too low to use these tools for traffic
accounting purposes (NBAR and L7-filter). Machine Learning based tools are not able
to detect directly the content carried by the traffic or its service provider. However,
consistent multi-level classification is needed to ensure proper accounting of the traffic
in order to satisfy the broad requirements shown is Section 1.1 imposed by the network
users, ISPs, and scientists. Because the output of the existing tools is not consistent
(or not reliable), it is not easy to create a combined tool, which executes the particular
classifiers and merges their output, so it becomes consistent on all the levels.

Therefore, we developed a hybrid classification method, which accurately identifies
the traffic on multiple levels: Ethernet, IP protocol, application, behavior, content, and
service provider. In fact, the identification of the Ethernet, IP protocol levels can be done
accurately based on fixed fields in packet headers, so this contribution might seem to be
trivial. However, these levels are not included in the output by the most common tools
used for traffic classification (as DPI-based), although they are extremely important for
traffic accounting purposes. Thus, based on the accounting performed by our system,
the operators are able to see the number of flows and the traffic volume on the selected
classification levels, which passed the monitored network interface during the selected
time. The classification methods were designed for traffic accounting purposes and,
therefore, they rely on some flow parameters, which makes the system incapable of
a flow identification before the flow is terminated. It means that the system cannot
be used for any security functions, as blocking the unwanted traffic from reaching the
network.

Our classification methods give the ability to work also with the traffic, which is
not defined to be identified by the system – the classification result is explicitly given
as UNKNOWN, instead of assigning the flow to the most probable class, which is the
most common behavior of similar tools based on Machine Learning techniques. In
this paper, we show many different techniques (based on packet headers, C5.0 MLA,
IP addresses) used to classify the traffic on multiple levels. The Machine Learning
techniques use training data delivered by our host-based traffic monitoring tool, which
ensures precision close to 100% in data labeling. Furthermore, we present the full design,
evaluation, and the practical open-source prototype of the system1. The prototype was

1Our Java implementation can be obtained for free from SourceForge [12]
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built to demonstrate the methods shown in this paper and their accuracy, thus, it was
not evaluated regarding the speed and processing requirements.

1.4 Structure of the Paper
The remainder of this paper is structured as follows. We start by introducing the
classification and accounting methods in Section 2. The process of obtaining the sup-
plementary inputs to the system is shown in Section 3. Our system was evaluated on
two sets of data; the first including full packet payloads (Section 4) and the second only
packet headers (Section 5). The results were discussed and compared with the results
obtained by other classification tools in Section 6. Section 7 shows the related work in
this area, while Section 8 concludes the paper.

2 Classification and Accounting Methods
Our system performs classification of Ethernet traffic independently on six levels:

1. Ethernet level (for example IP, IPX, APPLETALK)

2. IP protocol level (for example ICMP, TCP, UDP, EIGRP)

3. Application level (for example HTTP, SSH, BITTORRENT, EDONKEY)

4. Behavior level (for example WEBBROWSING, FILETRANSFER, STREAMING)

5. Content level (for example VIDEO, AUDIO)

6. Service provider level (for example YOUTUBE, MSN, WIKIPEDIA)

The traffic labeling is done by several modules, through which the traffic information
is subsequently passed.

2.1 Traffic Capturing and Basic Classification Module
This module is responsible for capturing all the Ethernet frames from the network and
for the identification on level 1 (Ethernet) and 2 (IP protocol). At first, the captured
frames are inspected to obtain the value of the EtherType field, which determines the
classification on level 1. The list of possible values for level 1 corresponds to the possible
values of the EtherType field and can be found in the IEEE Public EtherType list [13].
Then, all the packets are grouped into flows in the following manner:

a) If the EtherType is IP, the network and transport layer headers are inspected as well.
The flows are constructed based on the 5-tuple: local and remote IP addresses, local



172 Paper VIII. Multilevel Classification and Accounting of Traffic in Computer Networks

and remote ports, and the transport protocol name. The level 2 class is determined
based on the value of the Type field from the IP packet. The list of possible classes
for level 2 can be found on the official IANA website [14]. If the class cannot be
determined, it is set to UNKNOWN.

b) If the EtherType is of another type, the flows are constructed based on 3-tuple: local
and remote MAC addresses, and the EtherType value. The level 2 class is always set
to UNKNOWN.

When no new packet in the flow is noticed for over 1 minute, the flow is considered
to be terminated and it is provided to the next module.

2.2 Application and Behavior Classification Module
This module is responsible for classification of the traffic on level 3 (application) and
4 (behavior). The classification is performed by C5.0, which is based on a machine
learning algorithm. Only the traffic classified on level 2 as TCP or UDP needs to be
examined by this module – the rest obtains the class UNKNOWN on both levels without
any inspection. Both levels 3 and 4 are assessed together, since the behavior is directly
associated with the particular application.

The list of possible values for levels 3 and 4 determined by this module is shown in
Table 1. The values were selected to cover the most common types of traffic (regarding
the number of flows and the number of transmitted bytes) collected by our user-based
traffic analysis software and can be further extended when needed. The UNKNOWN
behavior contains a mix of various application behaviors, which we are not able to
separate and can also contain some elements, which belong to other, explicitly specified
classes (as for example for EDONKEY, the UNKNOWN behavior level class can contain
some elements of the FILETRANSFER class, which we were not able to separate).
Note that the different behaviors can be evaluated only with respect to the particular
application.

The classification by C5.0 relies on the following attributes:

• Local and remote port numbers.

• Transport protocol name.

• Number of packets and bytes carried by the flow.

• Percent of packets and bytes, which go in the inbound direction.

• Average, maximum, minimum, first quartile, median, third quartile, and standard
deviation of total, inbound, and outbound packet size.

• Percent of total, inbound, and outbound packets, which carry any data.
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Table 1: List of Applications and Their Behaviors Recognized by Our System

Application Behavior
AMERICASARMY UNKNOWN, GAMESESSION
BITTORRENT UNKNOWN, FILETRANSFER
DHCP INTERACTIVE
DNS INTERACTIVE
DOWNLOADER UNKNOWN, FILETRANSFER
EDONKEY UNKNOWN, FILETRANSFER
FTP UNKNOWN, CONTROL, FILETRANSFER
HTTP UNKNOWN, FILETRANSFER, WEBBROWSING, WEBRADIO
HTTPS UNKNOWN
NETBIOS UNKNOWN
NTP INTERACTIVE
RDP UNKNOWN
RTMP STREAMING
SKYPE UNKNOWN, CONVERSATION
SSH UNKNOWN
TELNET INTERACTIVE
UNKNOWN UNKNOWN

• Percent of total, small (< 70B), and big (> 1320B) packets carrying data, which
are going into the inbound direction.

• Percent of total, inbound, and outbound packets carrying data, which are small
(< 70B) and big (> 1320B).

• Percent of total, inbound, and outbound packets, which have ACK and PSH flag
set.

• Percent of packets containing ACK, and PSH flag, which are going in the inbound
direction.

We use mainly attributes based on packet sizes and to avoid using any time-related
statistics, which are sensitive to disturbances in the network. The decision tree obtained
from the training process allows to identify the application and behavior classes without
the knowledge of anything besides the properties of the network and transport layers.

2.3 Content Classification Module
This module is responsible for classification of the traffic on level 5 (content). The
classification relies either on static associations with the previous levels, or it is based
on the IP addresses, where the module requires a file with mappings between the IP
addresses and the types of the content (see Table 2). If this level cannot be determined,
it is set to UNKNOWN.
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Table 2: Mappings Between the Application & Behavior Classes and the Content

Application & Behavior Content
HTTP FILETRANSFER Based on IP addresses: AUDIO, VIDEO, UNKNOWN
HTTP WEBBROWSING WWW
HTTP WEBRADIO AUDIO
RTMP STREAMING MULTIMEDIA
All the other classes UNKNOWN

2.4 Service Provider Classification Module
This module is responsible for classification of the traffic on level 6 (service provider).
At first, the class is tried to be identified based on the IP addresses. For that purpose,
the classifier needs a list of IP addresses and the corresponding names of the service
providers. Yet unclassified flows are classified as P2P if they directly connect two end-
users (the application level was identified as BITTORRENT, EDONKEY, or SKYPE).
Still unclassified flows are classified as LOCAL if the remote IP address belongs to the
private IP addresses pools, or if the application level associated with that flows is DHCP
or NETBIOS. All other flows are assumed to be UNKNOWN.

Afterwards, this module verifies if the classifications on lower levels are consistent
with the detected service. In case of misfits (i.e., a flow classified as BITTORRENT
was estimated to originate from YouTube based on its IP), the classifications on the
application, behavior, and content levels are being changed to UNKNOWN.

2.5 Traffic Accounting Module
This module is responsible for accounting of the traffic. The information about the flows
is directed to this module as the final step, after the flows are classified on all the levels.
There are two modes available for logging: aggregated statistics and per-flow records.
The following information is logged to create the per-flow records:

• Timestamp of the start of the flow.

• Local and remote MAC addresses (for non-IP flows only).

• Local and remote IP addresses (for IP flows only).

• Local and remote transport layer port numbers (for IP flows only).

• Number of packets and bytes in the flow, separately in both directions.

• Results from the classification on all the six levels.

The statistics can be aggregated by: the day of the measurement, local MAC address
(for non-IP flows only), local IP address (for IP flows only), or the results from the
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classification on all the six levels. For each aggregate, we log the number of flows,
packets, and bytes, separately in both directions.

3 Obtaining the Supplementary Inputs
Three of our system modules require additional inputs:

a) Application and behavior classification module requires a file with decision trees,
based on which the embedded C5.0 classifier can recognize the application and be-
havior associated with the particular flows.

b) Content classification module requires a file with mappings between the IP addresses
and the most common types of content, which are from this IP address provided.

c) Service provider classification module requires a file with mappings between the IP
addresses and the provider service names associated with them.

The process of obtaining the particular inputs is shown in Figure 1.

3.1 C5.0 Decision Trees
Creating the Ground-Truth

To create the ground-truth dataset, we used Volunteer-Based System (VBS) for Research
on the Internet developed at Aalborg University [15]. The tool was released under The
GNU General Public License v3.0 and it is published as a SourceForge project [12].
VBS consists of clients installed on machines belonging to volunteers and of the server
with the central database. The clients collect the information about the flows of all
Internet traffic data to and from the machine (i.e., start time of the flow, number of
packets contained by the flow, local and remote IP addresses, local and remote ports,
transport layer protocol) together with detailed information about each packet (i.e.,
direction, size, TCP flags, and relative timestamp to the previous packet). For each
flow, the associated process name obtained from the system sockets is also collected.
Additionally, the system collects some information about the types of transferred HTTP
contents, for example text/css or video/x-mpg. The captured information is transmitted
to the VBS server, which stores the data in a MySQL database. Therefore, the dataset
created based on the information from VBS can be used as a source of ground truth
for training of the C5.0 classifier. The design of VBS shown in Figure 2 was initially
described in [16] and the current version with further improvements and refinements is
shown in [15].

However, there are some limitations of VBS, which have an impact on the collected
dataset. The socket must be open for at least 1 second to be noticed by VBS, so the
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Figure 2: Overview of the VBS System [17]

process name could be collected. Therefore, in case of short flows (as 2-packets long
DNS flows), the corresponding process name is not observed. Other limitations result
from the host-monitoring nature of VBS, which collects only the data associated with
the particular computer, on which it is installed. To create a representative dataset, the
system must be installed on a representative group of users, who use their computers in
a normal way.

Labeling the Ground-Truth

At first, we needed to create the rules to label the ground-truth dataset by application
and behavior classes. All the rules were created by us manually, as it is not possible
to automatically discover the character of the application based on the process name,
or to discover the behavior of the traffic based on its general characteristics. The
manual generation of classification rules is time-consuming, however, it allows us to
make the classification consistent on all the levels. The rules are based mainly on our
own observations regarding the traffic of the particular type. Another option would be to
use an automatic training method, which could be based on results of DPI classification
(as used in [18]), or on the process names from VBS. Unfortunately, by using output
from DPI tools, we would mix the classifications on different levels. On the other
hand, using the process names would create separate classes for each application (e.g.,
uTorrent, BitTorrent) instead of creating logical application groups. That would impose
classification errors and add unneeded complexity, while the output would present lower
value to the user. Additionally, there would be no way to discover the particular behavior
of the application.

Labeling the flows with ground truth information on the application and behavior
levels is split into two steps: we start by assigning the application class, and then, we
assess the behavior within the particular application. The rules are processed from
the most detailed to the most general, and only the previously unclassified cases are
taken into account. For example, rules for HTTP traffic are processed before the rules



178 Paper VIII. Multilevel Classification and Accounting of Traffic in Computer Networks

UNKNOWN_UNKNOWN

HTTP_UNKNOWN EDONKEY_UNKNOWN

HTTP_WEBBROWSING HTTP_FILETRANSFER

Figure 3: An example of Supersets and Subsets in Our Classification System

for the BITTORRENT traffic, because BitTorrent clients also use HTTP to download
updates, etc. Obviously, this traffic must be classified as HTTP, not as BITTORRENT.
The rules used to establish the ground truth on the application and behavior levels for
all the flows in the VBS database are shown in our technical report [19].

Final Steps

Machine Learning based classification heavily depends on the quality of the training
data, so the data used for training must be accurately assigned to the proper classes.
In our case, the selected traffic classes are not disjoint but organized in supersets and
subsets. For example, HTTP WEBBROWSING is a subset of HTTP UNKNOWN,
which is in turn a subset of UNKNOWN UNKNOWN (see Figure 3). Our rules for
labeling the ground-truth are not always able to assign a flow to a specific subset.
Thus, some number of flows remains in one of the supersets.

As long as most of the flows are assigned to the proper subsets, Machine Learning
based tools are able to use the data without decrease of accuracy. However, in some
cases, the ground truth contains more elements of the particular class in the superset,
instead of in the proper subset. That concerns short flows, as for example DNS flows,
which are usually a few packets long, and for which we usually do not have captured the
process names. Therefore, most of DNS flows remain in the UNKNOWN UNKNOWN
class. If we use all the flows to generate the training data, we risk that some applications
(as DNS) will not be classified at all. To avoid this issue, we need to exclude the
problematic flows from the ground-truth dataset, so that the subsets always include
more flows of the particular class than their supersets. Only the flows which do not have
assigned application names and which do not contain any HTTP header are subject to
be partly excluded. We decided that the number of flows contained by the superset and
suspicious to belong to its subset must not exceed 25% of the number of flows contained
by the subset.

Finally, the training part of the groud-truth dataset was used to generate the decision
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tree by C5.0.

3.2 Mappings between IP Addresses and Content Types
To obtain the required mappings, we again decided to use the data collected by VBS,
as it also collects the value of the content-type field in HTTP headers. At first, we
searched inside all the flows for files, which were at least 1MB large and inspected their
content-type field from the HTTP headers. If the file was of the type of audio/xxx, the
source IP address of the file was assigned to the AUDIO class. If it was of the type of
video/xxx, the source IP address was assigned to the VIDEO class. If it was of another
type, the source IP address was assigned to the UNKNOWN class. After this step, we
had records of IP addresses assigned to the AUDIO, VIDEO, or UNKNOWN classes –
one record for each transmitted file. The final mappings were obtained by finding the
most common classes for the particular IP addresses.

3.3 Mappings between IP Addresses and Service Providers
Our concept assumes creating a database of IP addresses assigned to the most often
used services, based on DNS responses. Due to privacy issues, VBS does not inspect
DNS packets, so processing of the DNS responses in order to obtain the IP addresses
associated with the particular services was moved to another project, which relies on
network-based monitoring. On a computer, which has access to the network traffic, we
installed our software, which inspects all DNS replies and extracts from them the name
of the service, which was queried, together with all the IP addresses associated with
that service name. If the questioned domain name was an alias (CNAME), all the DNS
replies are recurrently processed and all the IP addresses are extracted. DPI of DNS
replies is fast and lightweight, so a dedicated host is able to process all the DNS replies
even in a high-speed network.

It is worth mentioning that one machine, which possesses a single IP address, can
be used by many different network services offered by different providers. The same IP
address can be used by, for example, both Google and Yahoo!, or the questioned domain
name can correspond to a proxy. It is not useful to process the DNS responses directly
by the main classifier and to extract the IP addresses in the real time. A DNS response
can be buffered on a host for many days, when the buffered information can be used
to get the IP address of the particular domain name. In the meantime, the host can
obtain multiple DNS responses with other domain names corresponding to the same IP
address, so there is no possibility to accurately obtain the real domain name associated
with the particular flow by monitoring the packets in the network. It would be possible
only by host-based monitoring, when all requests to DNS cache will be handled as well.

The collected domain names, together with the IP addresses are stored in a table
together with a counter, which informs us how many times the DNS responses contained
the particular domain name associated with the particular IP address. Based on that,
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we can see which domains were questioned the most, and we can create appropriate
rules for the service providers (as for example for YouTube, the domain names must
contain youtube., ytimg.com, or youtube-nocookie.).

Based on the table, the mappings between the service provider names and the IP ad-
dresses can be made. Normally, each IP address is associated with the service provider
name, that amounts for the highest number of occurrences for the given IP address.
However, we can have multiple different lists with mappings, which will be used de-
pending on the previous classifications of the flow (i.e., flows previously classified as
HTTP FILETRANSFER VIDEO can use another list than flows classified as RTMP
STREAMING, etc.).

4 Evaluation on a Dataset with Full Payloads
The evaluation of the multi-level classifier requires a few steps. The dataset used for
the evaluation is created, the ground truth is established by labeling the dataset on all
the levels, and the dataset is divided into the training and the testing part. The former
part is used for creating the necessary input files (decision trees, mappings between the
IP addresses and the content types or service providers), and the latter part is used for
the evaluation of the classification accuracy.

4.1 Creating and Labeling the Dataset
To make any dataset useful for the purpose of the evaluation of our method, we needed
to be able to label the traffic on all the levels. The dataset collected by VBS is able to
deliver all the necessary information associated with each flow (as IP protocol, applica-
tion name) but the name of the service provider. Therefore, we chose to use the dataset
collected by a modified version of VBS, which we adjusted to collect also the packet
payloads. It was used in collaboration with UPC BarcelonaTech to test the accuracy of
different DPI tools (see the technical report published at UPC [20] and the conference
paper [21]).

We started by establishing the ground truth – every flow from the dataset was
classified on all the 6 levels using the objective information, including process names
from the system sockets, and HTTP URLs from the HTTP headers.

Ethernet Level

All the flows were classified as IP, since VBS collects only IP traffic. However, this did
not influence the obtained classification accuracy – the classification on that level is also
based on the EtherType field, so the classification results would always be the same as
the ground truth.
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IP Protocol Level

The flows were classified as TCP or UDP based on the information extracted from
the packet headers. VBS collects only TCP and UDP traffic. However, this did not
influence the obtained classification accuracy – the classification on that level is also
based on the IP protocol field, so the classification results would always be the same as
the ground truth.

Application and Behavior Levels

To obtain the ground truth, we used the rules for generating the training data for the
Machine-Learning based classifier on the application and behavior levels, which were
processed in the same order as we described in Section 3.1. The rules were based on the
process names from the system sockets and other objective information from VBS.

Content Level

To establish the ground truth, we made three steps. At first, we used the same static
mappings as described in Section 2.3. Then, the class of HTTP FILETRANSFER flows
(which is normally determined based on IP addresses), was determined based on the
real content reflected by the content-type field from HTTP headers.

Service Provider Level

To establish the ground truth, we made the steps in the same order as described in
Section 2.4. Although we had all the DNS packets together with their payload, we
could not use them to generate the ground truth, as one IP address could correspond
to many different service providers. Therefore, instead of using the DNS mappings,
we classified the flows based on the URLs found in the HTTP header of the packets
belonging to these flows. The limitation of this method is that we were able to classify
only HTTP flows. Based on the collected data, we chose 14 service providers to use
in the experiment. As the second step, we used the static mappings as described in
Section 2.4.

4.2 Dataset
Based on the established ground truth, we show the statistics about the applications
and their behaviors contained by our dataset. The dataset consisted of 1 262 022 flows
(303 189 TCP and 958 833 UDP) amounting for 35.69GB (33.97GB TCP and 1.72GB
UDP).
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Table 4: Ground-Truth Classification of Service Providers for the HTTP Traffic

Service Flows MB Flows [%] MB [%]
YOUTUBE 2210 1949.19 3.55 30.06
UNKNOWN 22182 1349.45 35.65 20.81
ORACLE 103 841.74 0.17 12.98
FACEBOOK 5285 681.33 8.50 10.51
WIKIPEDIA 4078 508.19 6.55 7.84
YAHOO 16913 487.49 27.19 7.52
GOOGLE 3273 326.88 5.26 5.04
JUSTIN.TV 4075 134.05 6.55 2.07
UBUNTU.COM 247 102.65 0.40 1.58
MICROSOFT.COM 1301 55.56 2.09 0.86
DOUBLECLICK.NET 2072 38.72 3.33 0.60
TWITTER 297 7.59 0.48 0.12
TRIBALFUSION.COM 95 1.59 0.15 0.02
SCORECARDRESEARCH.COM 82 0.20 0.13 0.00

We were not able to establish the ground truth on the application level for 59.25%
of flows, which amounted for 11.40% of the total data volume. TCP flows amounted
for 3.18% of the total number of flows and 10.88% of the total data volume without
established ground truth. UDP flows amounted for 56.07% of the total number of
flows and 0.52% of the total data volume without established ground truth. In fact,
this is caused by a huge number of unclassified DNS flows, which are usually 2-packets
long, so the corresponding socket application name could not be observed during the
capture. The overall ground-truth classification of our dataset on all the levels is shown
in Table 3.

For some HTTP flows, we detected the service provider based on the URL field in
the HTTP header. The statistics for HTTP flows are shown in Table 4 – we labeled
64.35% of HTTP flows amounting for 79.19% of the HTTP data volume.

In total, for all the flows, we detected the service provider for 22.89% of flows
amounting for 28.97% of the total data volume.

We split our dataset into 2 disjoint sets, where each of them contained approximately
the same number of flows. Each flow was randomly assigned to either set 1 or set 2.
Both sets were used during the training and testing of the classifier. At first, set 1 was
used as the training set and test 2 as the test set, then the same procedure was done
with both sets swapped. Thanks to that, we were able to test the classifier on all the
flows contained by our dataset, while at the same time no flow was present both in the
training and in the test set.

4.3 Results
The classification results are shown and discussed separately for each classification mod-
ule. As the results are calculated on the per-class basis, they are only shown in terms of
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flows – the classes represent the same types of flows, so the percents of flows and bytes
and similar.

There are two most common metrics provided by the scientific publications for the
results concerning classification techniques: precision and sensitivity (called also com-
pleteness or recall). Then, the final accuracy is calculated as a weighted mean from
these two basic metrics. Our analysis method is based on only one metric, this is sen-
sitivity – we take into account the original classes of flows and then we look if the
flows were assigned to the proper traffic classes or not. There are several grounds for
that. At first, we have a lot of unknown flows in the test set. The unknown traffic
can be classified either as unknown, or it can be recognized by the classifier as a part
of another traffic class. In this case, we assume that the classification is correct and
that the classifier recognized properly the class of the traffic, which was initially not
marked in the ground-truth set. In fact (as we compared the results with PACE), the
classifier correctly recognized most of this traffic, so the test set was classified better
(much less unknown cases) by our classifier than the initial ground-truth was. However,
as we cannot prove that the unknown traffic was classified correctly, we decided to avoid
using the per-class precision. As all the traffic in our set was assigned to a class (or left
as unknown, if we were not able to determine the class), all the classification error are
always visible as the lower class sensitivity.

Traffic Capturing and Basic Classification Module

As we expected, this module reached 0.00% of error rate and classified properly all the
cases. All 1 262 022 flows were classified on the Ethernet level as IP. On the IP protocol
level, 303 189 (24.02%) of the flows were classified as TCP and 958 833 (75.98%) as
UDP.

Application and Behavior Classification Module

The results obtained by this module are shown in Table 5. We present the number of
flows in each traffic category (based on the ground truth) together with the percentage
of flows, which were classified correctly, wrong, or as UNKNOWN. There are two cate-
gories for the flows correctly classified. The first category, correct, means that the flows
were assigned to the same class as the original one or to a subset of the original class.
For example, flows from the BITTORRENT UNKNOWN class were classified as BIT-
TORRENT UNKNOWN, or BITTORRENT FILETRANSFER. The second category,
correct-lg, means that we obtained results of lower granularity than the original class,
but still both application and behavior levels are not misclassified. For example, flows
from the BITTORRENT FILETRANSFER class were classified as BITTORRENT UN-
KNOWN.

As observed, the total error rate for all the flows was 0.08%, while 0.54% of flows
remained unknown. If we look at the average from all the traffic classes, the error
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Table 5: Classification by the Application and Behavior Classification Module for the Particular Types
of the Traffic

Application & Behavior Flows Correct
[%]

Correct-LG
[%]

Wrong
[%]

Unknown
[%]

BITTORRENT FILETRANSFER 1038 97.59 0.39 1.16 1.06
BITTORRENT UNKNOWN 61807 98.17 0.00 0.22 1.61
DNS INTERACTIVE 6600 95.00 0.00 0.03 4.97
EDONKEY FILETRANSFER 135 87.41 2.22 4.44 5.93
EDONKEY UNKNOWN 176446 99.52 0.00 0.08 0.40
FTP CONTROL 61 98.36 0.00 0.00 1.64
FTP FILETRANSFER 797 97.24 0.00 1.00 1.76
FTP UNKNOWN 18 33.33 0.00 0.00 66.67
HTTP FILETRANSFER 439 92.94 4.78 1.82 0.46
HTTP UNKNOWN 15840 99.72 0.00 0.21 0.06
HTTP WEBBROWSING 45934 87.38 12.47 0.10 0.05
HTTPS UNKNOWN 8539 93.64 0.00 0.20 6.16
NETBIOS UNKNOWN 9445 100.00 0.00 0.00 0.00
NTP INTERACTIVE 27786 100.00 0.00 0.00 0.00
RDP UNKNOWN 132907 100.00 0.00 0.00 0.00
RTMP STREAMING 145 88.97 0.00 2.76 8.28
SSH UNKNOWN 26219 99.49 0.00 0.02 0.50
For all flows together 514156 98.26 1.12 0.08 0.54
Average from all classes 92.28 1.17 0.71 5.86

rate was slightly bigger (0.71%) and 5.86% of flows remained unknown. Additionally,
we tried to identify 747 866 flows, which ground truth was given as UNKNOWN UN-
KNOWN : 88.49% of them were classified as DNS INTERACTIVE, 4.20% as EDON-
KEY UNKNOWN, 1.13% as other classes, while only 6.18% remained as UNKNOWN
UNKNOWN. It means that the classifier built by us was able to recognize almost all
the traffic for which we were not able to establish the ground truth due to the unknown
application name.

Content Classification Module

The results of the classification of the particular types of contents is shown in Ta-
ble 6. As presented, we did not obtain any false classification within the flows from
the MULTIMEDIA, VIDEO, and WWW classes. The rate of the unclassified flows is
heavily influenced by the size of the training and testing sets used in the experiment.
In our case, the ground truth for the flows labeled as UNKNOWN was established as
non-MULTIMEDIA, non-VIDEO, and non-WWW. We obtained 0.22% of errors for this
class, which means that the same IP addresses were used both for the flows transmitting
files from the MULTIMEDIA, VIDEO, and WWW classes, and for flows transmitting
other kinds of files. In total, we classified properly 99.32% of flows, 0.22% of flows were
classified wrong, and 0.47% remained unknown.
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Table 6: Classification by the Content Classification Module

Content Flows Correct [%] Wrong [%] Unknown [%]
MULTIMEDIA 145 88.97 0.00 11.03
VIDEO 295 77.29 0.00 22.71
WWW 45934 87.38 0.00 12.62
UNKNOWN 1215648 99.78 0.22 0.00
All flows 1262022 99.32 0.22 0.47
Average from classes 88.36 0.06 11.59

Table 7: Classification by the Service Provider Classification Module

Service provider Flows Correct [%] Wrong [%] Unknown [%]
DOUBLECLICK.NET 2072 70.70 26.59 2.70
FACEBOOK 5285 97.35 1.06 1.59
GOOGLE 3273 41.34 42.65 16.01
JUSTIN.TV 4075 50.38 8.20 41.42
LOCAL 9445 100.00 0.00 0.00
MICROSOFT.COM 1301 84.24 15.14 0.61
ORACLE 103 65.05 19.42 15.53
P2P 239426 99.25 0.01 0.74
SCORECARDRESEARCH 82 1.22 95.12 3.66
TRIBALFUSION.COM 95 85.26 0.00 14.74
TWITTER 297 85.19 7.07 7.74
UBUNTU.COM 247 99.19 0.00 0.81
WIKIPEDIA 4078 98.58 0.81 0.61
YAHOO 16913 91.12 4.88 4.00
YOUTUBE 2210 82.67 15.02 2.31
All flows 288902 96.95 1.34 1.71
Average from classes 76.77 15.73 7.50

Service Provider Classification Module

The results of classification of particular service providers is shown in Table 7. The
correct service provider name was given to 96.95% of classified flows, the wrong ser-
vice provider name was given to 1.34% of flows, while for 1.71% it remained unknown.
A significant percent of errors originated from DOUBLECLICK.NET and SCORE-
CARDRESEARCH.COM, which represent advertising services. It looks like their phys-
ical infrastructure is not centralized, but distributed among servers of other services,
to which they supply advertisements. We also observed a significant misclassification
between GOOGLE and YOUTUBE, as it seems that they use the same IP addresses.

4.4 Comparison with the Results from DPI Tools on the Appli-
cation Level

The dataset containing packets with full payloads was used previously in [20] and [21] to
evaluate the accuracy of various DPI traffic classifiers: PACE, OpenDPI, nDPI, Libpro-
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Table 8: DPI Tools Included in Our Comparison

Name Version Released Identified
Applications

PACE 1.41 June 2012 1000
OpenDPI 1.3.0 June 2011 100
nDPI rev. 6391 March 2013 170
L7-filter 2009.05.28 May 2009 110
Libprotoident 2.0.6 Nov 2012 250
NBAR 15.2(4)M2 Nov 2012 85

toident, NBAR, and two different variants of L7-filter. Therefore, all the flows contained
by the dataset were labeled by all of the DPI tools, which allowed us to compare their
accuracy with the accuracy of our system. Table 8 shows the versions of the DPI tools
used in the experiment together with the number of applications recognized by them.
L7-filter was tested in two different configurations. In the first version (L7-filter-all), we
activated all the patterns, giving a low priority to the patterns marked as overmatching.
In the second version (L7-filter-sel), the patterns declared as overmatching were not
activated. In both cases, the patterns are matched to the first 10 packets or the first
10 000B in each traffic direction.

All the tools provide results on different levels of granularity. For example, Libpro-
toident provides only transport protocol name if it is not able to detect the application.
On the other hand, PACE, OpenDPI and nDPI sometimes provide only the content-level
classification (as FLASH ) without indicating what the application really is (for FLASH
it can be HTTP, RTMP, etc). Because most of the results obtained from these DPI
tools are on the application level, we decided to compare the classification results on our
application level. The results provided by the DPI tools were considered to be correct
only if the proper result on the application level was returned. In the comparison, we
included only these cases, for which the ground truth was obtained. The percent of
correct classification by all the tools is shown in Table 9. The percents concern the class
sensitivity. As the classification levels obtained from the DPI tools are not consistent,
we are not able to map the flows 1:1 to a particular application or protocol – some
flows should be mapped to many groups at once, for example, to HTTP and BitTorrent
(if it is the BitTorrent application which uses HTTP to download a tracker file from a
website). Therefore, it is hard to decide how the precision is affected itself. However,
it is generally easy to calculate the sensitivity: we take into account all the BitTorrent
flows and determine how they are classified – regardless if the result is BitTorrent or
HTTP, both the results are recognized as correct.
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The comparison shows that our multilevel classification system provided very precise
results. The overall accuracy of our system was 99.38% and the average per-class
accuracy was 97.44%. The values are higher than the accuracy of the tested DPI
tools.

5 Evaluation on the Full VBS Dataset
After the small-scale system evaluation on the dataset containing full packet payloads,
we decided to repeat the experiment on a much bigger dataset. For this purpose, we
used the full dataset collected by VBS and stored at Aalborg University. The dataset
contained traces collected by VBS clients installed on 54 machines belonging to volun-
teers in Denmark and Poland during around 1.5 years from December 27, 2011 to June
12, 2013. The volunteers were both private and corporate users. Such kind of setup
ensures high diversity of the data despite the relatively limited number of installations.
VBS in its original version did not collect packet payloads, so we were able to test the
classification only on the application, behavior, and content levels. However, the clas-
sification results on the Ethernet and IP provider levels are accurate by nature, so no
testing was needed. The methods of obtaining the ground truth and testing the clas-
sifier were the same as for the dataset with full packet payloads, which was described
previously in Section 4.1.

5.1 Dataset
Based on the established ground truth, we show the statistics about the applications
and their behaviors contained by our dataset. The dataset consisted of 23 333 721 flows
(11 283 867 TCP and 12 049 854 UDP) amounting for 1 677.96GB (1 114.85GB TCP
and 563.11GB UDP).

We were not able to establish the ground truth on the application level for 26.33%
of flows, which amounted for 15.33% of the total data volume. TCP flows amounted
for 13.08% of the total number of flows and 10.52% of the total data volume without
established ground truth. UDP flows amounted for 13.25% of the total number of flows
and 4.81% of the total data volume without established ground truth. In fact, this was
caused by a huge number of unclassified DNS flows, which are usually 2-packets long,
so the corresponding socket application name could not be observed during the capture.
The overall ground-truth classification of our VBS dataset is shown in Table 10.
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5.2 Results
The classification results are shown and discussed separately for each classification mod-
ule. As the results are calculated on the per-class basis, they are only shown in terms of
flows – the classes represent the same types of flows, so the percents of flows and bytes
and similar. The error metric is calculated in the same manner as described previously
in Section 4.3.

Application and Behavior Classification Module

The results obtained by this module are shown in Table 11. We present the number of
flows in each traffic category (based on the ground truth) together with the percentage of
flows, which were classified correctly, wrong, or as UNKNOWN. The category notation
is the same as for the dataset with full packet payloads, which was previously described
in Section 4.3.

As observed, the total error rate for all the flows was 0.09%, while 0.75% of flows
remained unknown. If we look at the average from all the traffic classes, the error rate
was bigger (6.03%) and 6.31% of flows remained unknown. As shown in Table 11, the
per-class error rate was higher due to several classes, which contained only a few flows.
An example can be RDP UNKNOWN, which contained only 12 flows, which were mostly
misclassified. However, the misclassification was not only made due to poor training on
a limited number of flows; in our dataset we could see that the possessed by us RDP
UNKNOWN flows were just connection requests, which were probably rejected from the
server, so no real RDP connection was established. Additionally, we tried to identify
6 143 452 flows, which ground truth was given as UNKNOWN UNKNOWN : 29.41% of
them were classified as DNS INTERACTIVE, 2.42% as BITTORRENT UNKNOWN,
1.97% as other classes, while 66.20% remained as UNKNOWN UNKNOWN.

Content Classification Module

The results of the classification of the particular types of contents is shown in Table 12.
As presented, we obtained very low classification error (below 1%) within the flows
from the MULTIMEDIA, VIDEO, and WWW classes, and higher classification error
of AUDIO flows (6.01%). The rate of the unclassified flows fluctuated around 13%
for all the classes. In our case, the ground truth for the flows labeled as UNKNOWN
was established as non-AUDIO, non-MULTIMEDIA, non-VIDEO, and non-WWW. We
obtained only 1.06% of errors for this class, which means that the same IP addresses were
used both for the flows transmitting files from the AUDIO, MULTIMEDIA, VIDEO,
and WWW classes, and for flows transmitting other kinds of files. In total, we classified
properly 97.62% of flows, 0.96% of flows were classified wrong, and 1.42% remained
unknown.
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Table 11: Classification by the Application and Behavior Classification Module for the Particular
Types of the Traffic in VBS Dataset

Application & Behavior Flows Correct
[%]

Correct-LG
[%]

Wrong
[%]

Unknown
[%]

AMERICASARMY GAMESESSION 80 78.75 0.00 15.00 6.25
AMERICASARMY UNKNOWN 6260 99.89 0.00 0.08 0.03
BITTORRENT FILETRANSFER 85705 99.47 0.11 0.12 0.30
BITTORRENT UNKNOWN 11436447 99.78 0.00 0.02 0.20
DHCP INTERACTIVE 4459 99.57 0.00 0.00 0.43
DNS INTERACTIVE 158319 91.05 0.00 0.08 8.88
DOWNLOADER FILETRANSFER 284 70.42 8.10 15.14 6.34
DOWNLOADER UNKNOWN 132375 96.13 0.00 2.06 1.81
EDONKEY FILETRANSFER 2719 92.42 0.88 4.74 1.95
EDONKEY UNKNOWN 82596 96.53 0.00 1.99 1.48
FTP CONTROL 105 79.05 0.00 0.00 20.95
FTP FILETRANSFER 124 71.77 0.00 4.03 24.19
FTP UNKNOWN 11 54.55 0.00 0.00 45.45
HTTP FILETRANSFER 34676 97.56 1.52 0.80 0.12
HTTP UNKNOWN 1583731 99.13 0.00 0.01 0.86
HTTP WEBBROWSING 2355298 86.06 13.30 0.03 0.61
HTTP WEBRADIO 326 92.64 0.31 7.06 0.00
HTTPS UNKNOWN 748695 91.94 0.00 0.41 7.66
NETBIOS UNKNOWN 13133 99.97 0.00 0.00 0.03
NTP INTERACTIVE 58375 99.80 0.00 0.01 0.19
RDP UNKNOWN 12 8.33 0.00 83.33 8.33
RTMP STREAMING 497 85.92 0.00 4.83 9.26
SKYPE CONVERSATION 2480 89.35 1.09 3.95 5.60
SKYPE UNKNOWN 483562 98.51 0.00 0.95 0.55
For all flows together 17190269 97.33 1.83 0.09 0.75
Average from all classes 86.61 1.05 6.03 6.31

6 Discussion and Comparison of the Results
The results show that our classifier is able to identify the traffic on multiple different
levels with high accuracy. What is unique for tools relying on Machine Learning capabil-
ities, our classifier can properly handle traffic from non-recognized applications, marking
it as UNKNOWN. We also compared the results of classification by our classifier to the
results given by various DPI tools.

PACE. This DPI tool from ipoque [22] provides very accurate results on the applica-
tion level. We assessed its accuracy as 93.78% on our dataset with full payloads. How-
ever, some of the results are given on content level instead, as FLASH, QUICKTIME,
or WINDOWSMEDIA. In these cases, we do not really know what is the application.
For example, FLASH content can be transmitted by both HTTP or RTMP application
protocols. Furthermore, the FLASH content can be streamed (as in RTMP) or just
downloaded to the user’s computer, and then saved to a permanent file, or played by
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Table 12: Classification by the Content Classification Module of VBS Dataset

Content Flows Correct [%] Wrong [%] Unknown [%]
AUDIO 1765 80.11 6.01 13.88
MULTIMEDIA 497 86.12 0.20 13.68
VIDEO 23511 87.27 0.60 12.13
WWW 2355298 86.06 0.00 13.94
UNKNOWN 20952650 98.94 1.06 0.00
All flows 23333721 97.62 0.96 1.42
Average from classes 87.70 1.58 10.73

the browser (as in the case of YouTube videos, which use HTTP). Furthermore, we do
not have knowledge about the service provider names.

OpenDPI. This DPI tool was an open-source fork of PACE, with removed support
for encrypted protocols and optimization functions. Its accuracy on the application level
in our case was 54.19%. Therefore, the range of the values provided by OpenDPI is
almost the same as returned by PACE.

nDPI. This DPI tool is an open-source fork of OpenDPI, which was extended to
support some of the protocols, which were removed in OpenDPI. Its accuracy on the
application level was in our case 55.76%. Furthermore, it is able to provide the classi-
fication on the service provider level, as facebook, google, or twitter. However, the final
output of the classification is mixed on different levels. For some flows we only obtain
the application name (as dns or bittorrent), for some we only obtain the content (as
flash), and for some we only obtain the service provider name (as facebook). Based on
the application name we cannot estimate what is the service provider or the content,
and vice versa.

Libprotoident. This tool presents a method called Lightweight Packet Inspection
(LPI) [23], as it inspects only first four Bytes of payload in each direction. Therefore, it
can be used in many places, where the collected payload must be truncated due to pri-
vacy reasons or legal issues. Its accuracy on the application level in our case was 94.04%,
which means that the tool achieved the highest accuracy among all of the tested DPI
tools. The output from the classifier seems to be also structured in an interesting way,
since for many application protocols it gives also information about the transport-layer
protocol (as DNS_TCP, BitTorrent_UDP, or Unknown_UDP), which is also unique
among all the tested DPI tools. However, many flows obtain the classification only on
the content level (as Flash_Player), or the service provider level (as YahooError).

NBAR. Network-Based Application Recognition (NBAR) was added to many Cisco
devices as a feature, which was supposed to work together with other functions of
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these devices, as traffic filtering or shaping. This tool combines different techniques, as
port-based classification and DPI. Its accuracy on the application level was in our case
25.18%. This tool provides a very consistent output, as all the results are given on the
application level. Despite that, the classification accuracy of other tools tested by us
was higher.

L7-Filter. L7-filter [24] is an open-source combination of the DPI engine and rules,
which can be downloaded separately and applied to the traffic in various configurations,
depending on their status and order. Since the last version of the rules is from 2009,
the accuracy on the application level was in our case 16.19–30.21% depending on the
configuration. As we observed, the results were returned always on the application level.

UPC Classifier. Another interesting classification approach is shown by authors of
a tool developed at UPC BarcelonaTech [25]. The authors performed extensive work
regarding traffic classification by various MLAs (including C5.0). They succeeded in
comparing various classification techniques in distinguishing of 14 different application
classes, and they achieved accuracy of 88-97%. The final classification tool is based on
C5.0 and it uses an automatic retraining system. It is shown to provide in the particular
network results, which are comparable to the results achieved by PACE. The ground
truth for the training data is established based on DPI techniques: at first, the class of
a flow is tried to be obtained by PACE. If PACE cannot provide the result, L7-filter
and nDPI are used. Only the cases for which the ground truth is obtained are provided
as the training data, so the classifier does not provide any UNKNOWN results – all the
cases are assigned to the most probable class. Besides that, the classifier also uses some
time-based parameters, as inter-arrival times of packets or duration of the flow, so the
results can depend on the conditions in the network. The format of the results is a mix
of the formats of results provided by PACE, L7-filter, and nDPI.

In our study, we tried to cover the biggest possible extent of applications and their
behaviors. It has, however, many limitations:

• Our classifier is able to recognize only 16 applications and 14 different behaviors
in total. Deep Packet Inspection tools as well as automatically trained classifiers
are able to recognize thousands of different applications. The construction of the
multilevel classifier requires us to manually create rules for each application (or
group of applications) and for each of its behaviors. Therefore, we could include
in our study only these applications, from which we collected sufficient amount of
traffic. Nevertheless, our classification covers nearly 90% of the total data volume
in the dataset with full payloads and 85% of the data volume in the second dataset.

• Our datasets contain limited number of applications. The first dataset, which
includes full payloads, was created by us using 3 virtual machines and running
the selected applications. The second dataset contains the data obtained from
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54 users from Denmark and Poland over 1.5 years. However, the users can be
considered as not being enough representative – half of them are students using
computers in a school, and the majority of the rest are highly qualified network
users.

• The amount and the character of the flows for which we established the ground
truth also has an impact on the overall accuracy. As shown, we were not able to
establish the ground truth for around 60% of flows in the first dataset and for
26% of flows in the second dataset. These flows in majority contain less than 10
packets, usually 2–4, so the socket name is not noticed by VBS. Therefore, our
results should be considered as results of classification of longer flows.

• For the second dataset (without packet payloads), we were not able to evaluate
the classifier on the Ethernet, IP protocol, and service provider levels. Although
the classifier should be always accurate on the Ethernet and IP protocol levels, the
accuracy of the classification on the service provider level is a big question mark.

• Considering a big variety of different types of contents and service providers, we did
not study how much training is needed for the classifier to provide high accuracy
in a real environment. We neither know, what is the accuracy of the classifier
trained in one environment and working in another one.

• Constructing the rules used to establish the ground truth for the selected appli-
cations and their behaviors is a time-consuming task. The time spent on that can
be compared with the time needed to construct DPI rules.

7 Related Work
7.1 Classification Approaches Using MLAs
Usage of Machine Learning Algorithms (MLAs) in traffic classification is broadly covered
by existing scientific literature. A comprehensive survey of various Machine Learning-
based classification approaches is done in [26]. In [4], the authors succeeded in dis-
tinguishing 12 different applications by C4.5 based on first 5 packets in the flow with
accuracy of around 97%. J48 (a Java implementation of C4.5 with further improve-
ments) was used in [5] to classify 5 different applications. The authors showed that it is
possible to skip from 10 to 1000 packets from the beginning of a flow without significant
decrease of the accuracy, which was fluctuating around 96%. The attribute set used in
this experiment included time-based attributes like flow duration and inter-arrival time.
In [27], J48 was used to detect FTP and BitTorrent traffic based on size-dependent
attributes, and the authors demonstrated that encryption mechanisms do not influence
accuracy of the classification, which reached around 98%.
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In [3], the authors achieved 96-99% of accuracy, while distinguishing traffic belonging
to 5 different classes by C4.5. The classification attributes included those that require
the possession of whole flows (like flow duration) as well as time-based attributes (as
inter-arrival time distribution). It is worth mentioning that the training data were cre-
ated by pre-classification based on ports. Flow duration as classification attribute was
also used in [10], where the authors identified 6 applications with accuracy around 88%
using C4.5. The method described in [28] tries to recognize different kinds of HTTP
traffic, including video progressive download, based on flows groups. This interesting
Machine Learning approach uses Weka software. Another approach for traffic classifi-
cation is described in [29] and is based on signatures contained by packets belonging to
flows of particular types. Signature matching also requires processing of whole flows (at
least until the signature is matched).

7.2 Approaches for Obtaining Training Data
The accuracy and results of traffic classification by MLAs are heavily dependent on the
quality of the data based on which the classifier was trained. Inaccurate training data
can result in many problems, as low classification accuracy, or high accuracy, but inap-
propriate classification of test cases (if training cases were pre-classified incorrectly). In
all the papers referenced above, the training data were obtained in one of the following
ways: collecting data from one application a time, port-based classification, DPI, sta-
tistical classification, or using public data traces. Drawbacks of most of the methods
were already described. Collecting data from one application at a time, for example
using Wireshark, is time-consuming, not scalable, and it requires a good separation of
background traffic, such as DNS requests, or system updates.

Obtaining the ground truth can be based on already existing datasets. An example
are Cooperative Association for Internet Data Analysis (CAIDA) data traces, which
were collected in a passive or an active way [30]. Another example is the Internet
Measurement Data Catalog [31], also operated by CAIDA, which provides the references
to different sources of data traces, which are available for research. The data are not
stored by CAIDA itself, but on external servers [32]. Although the datasets are pre-
classified (or they claim to contain only the traffic from the particular application /
protocol), we do not know how the sets were created and how clean they are, which is
a very important factor during testing traffic classifiers. MAWI repository [33] contains
various packet traces, including daily 15-minutes traces made at a trans-Pacific line
(150Mbit/s link). The traces contain the first 96 bytes of the payload and they were
used in several publications, including the ones about testing of different traffic classifiers
[34]. However, their usefulness in testing of classifiers is quite limited since we do not
know what they consist of. Another useful data source is the Community Resource for
Archiving Wireless Data At Dartmouth (CRAWDAD) [35], which stores wireless trace
data from many contributing locations. Some interesting comparison studies were made
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using datasets from different providers. In [36], the authors compare the data obtained
from CAIDA and CERNET [37]. Many significant differences between them were found
and they concern the lifetimes, lengths, rates of the flows, and the distribution of the
TCP and UDP ports among them. Another interesting project is The Waikato Internet
Traffic Storage (WITS) [38], which aims to collect and document all the Internet traces
that the WAND Network Research Group from the University of Waikato has in their
possession. Some of the traces can be freely downloaded and they contain traffic traces
from various areas and of different types (as DSL residential traffic, university campus
traffic, etc). Most of the traces do not have payload (it is zeroed or truncated).

7.3 Our Previous Approaches to Traffic Classification
To avoid problems with establishing of the ground truth for the use of the training
data, at Aalborg University we constructed a new tool for collecting of network data,
Volunteer-Based System (VBS), which relies on data collected from users, who agree to
install the VBS client on their computers. The current architecture and implementation
of VBS was presented in [15]. The system was introduced in Section 3.1, as it was
also used in our current approach for establishing the ground truth. We conducted
several experiments and invented a few methods for traffic classification and Quality of
Service (QoS) assessment using the data collected by VBS [39–42]. Other examples of
usage of the VBS tool were obtaining statistics on the flow, application, and content
levels [43, 44], obtaining the ground truth for comparison of different DPI tools [20, 21],
or a direct comparison of the DPI tools [45].

As the classification tool in all of our experiments, we chose C5.0, as this improved
version of C4.5 is characterized by better performance and accuracy [46]. Our first ap-
proach involved recognizing traffic belonging to 7 different traffic groups: Skype, FTP,
BitTorrent, web browsing, web radio, interactive gaming, and SSH. We achieved accu-
racy of over 99% dependent on the classification options, by using only 35 packets from
a random point in the flow [39]. However, in this experiment we did not sub-classify the
traffic inside the web browsing class, which can be characterized by different behavior
and which can carry various contents: regular website browsing, audio streaming, video
streaming, file downloads, etc. Therefore, we updated VBS and included the possibil-
ity of inspecting the content-type header in HTTP packets. We found out that one
transport-layer flow can contain multiple application-layer HTTP streams, which trans-
mit various types of content: HTML files, web images, audio files, etc. The first packet
(and only first packet) of each HTTP stream contains the content-type header, which
indicates the type of the content. In [42], we demonstrated how to use this information
in classification of HTTP traffic by C5.0. This initial approach had overall classification
accuracy of around 85%, but we observed poor accuracy between some traffic classes,
e.g. 30% of error between video and file transfer. Later, we found out that this was
caused by including in the video class not only the streamed content, but also video
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content, which was downloaded to the users’ computers by HTTP (for example, from
YouTube). Other concerns include the problem with precisely defining traffic behavior,
as web browsing. The disability to deal with the unknown traffic (other than matched
by our classes) was the last important issue, and the show stopper at the same time –
without resolving this issue, the solution could not be implemented in the real network.

7.4 Traffic Identification by Clustering
Usage of MLAs in recognition of computer network traffic by clustering is less popu-
lar than classification. The most commonly used clustering algorithms are K-Means,
Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Expectation
Maximization (EM), and other based on them [47–54]. As the environment for perform-
ing experiments, the scientist most often choose Waikato Environment for Knowledge
Analysis (WEKA), which provides support for K-Means, COBWEB, DBSCAN, EM,
Farthest First, Ordering Points to Identify the Clustering Structure (OPTICS), and
many other clustering techniques. All these algorithms in the context of WEKA were
described and compared in [55]. The authors have noticed that DBSCAN and EM al-
gorithms do not require that the researchers know the number of clusters before the
experiments starts (contrary to K-Means), and therefore, they are the most useful clus-
tering tools to resolve real life problems. K-Means and DBSCAN were considered for
TCP traffic classification of 8 different applications in [47]. Pre-classified public data
traces (1000 and 2000 samples per category) were used as the input. The overall ac-
curacy of clustering was assessed depending on the chosen data traces to be 79% and
84% for K-Means, while for DBSCAN it was 76% and 72%.

Another approach, which is able to detect both seen and unseen yet applications by
Particle Swarm Optimization (PSO) algorithm was made in [48]. The authors found out
that 5000 samples in the training data are sufficient to obtain the clustering accuracy of
7 different applications of around 95%. The other papers, which describe the clustering
techniques in traffic classification, also deal with quite low number of cases provided to
the algorithm, for example, 5000 samples in total in [49] and 500 samples per application
in [54]. The performance of the available clustering algorithms was not assessed while
trying to construct the clusters from big amounts of data, which is necessary while
trying to create an effective classifier for the core network traffic.

8 Conclusions
This paper introduces a novel hybrid method for traffic classification and accounting,
which was created to overcome the drawbacks of already existing methods and tools.
The classification is performed on six levels: Ethernet, IP protocol, application, behavior,
content, and service provider. The system created based on the method was tested on
two datasets and it was shown that it provides accurate results on all the levels. The
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classification error did not exceed 1.5% on any level during the evaluation on both
datasets. Since the method does not require to inspect the application-layer packet
payloads, the classification is fast and lightweight. So, it can be performed even in high-
speed networks. Moreover, the process does not interfere with users’ privacy issues. Due
to the consistent classification of each flow on all the levels, the accounted traffic can
be used to generate many useful reports. The reports can be used by ISPs to improve
their services, lower costs, and attract new customers. Our open-source prototype of
the system in Java can be downloaded from Sourceforge [12]. The future work will
concentrate on introducing support for new applications and their behaviors.
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Abstract

Deep Packet Inspection (DPI) is the state-of-the-art technology for traffic classi-
fication. According to the conventional wisdom, DPI is the most accurate clas-
sification technique. Consequently, most popular products, either commercial or
open-source, rely on some sort of DPI for traffic classification. However, the actual
performance of DPI is still unclear to the research community, since the lack of
public datasets prevent the comparison and reproducibility of their results. This
paper presents a comprehensive comparison of 6 well-known DPI tools, which
are commonly used in the traffic classification literature. Our study includes 2
commercial products (PACE and NBAR) and 4 open-source tools (OpenDPI, L7-
filter, nDPI, and Libprotoident). We studied their performance in various scenarios
(including packet and flow truncation) and at different classification levels (appli-
cation protocol, application and web service). We carefully built a labeled dataset
with more than 750K flows, which contains traffic from popular applications. We
used the Volunteer-Based System (VBS), developed at Aalborg University, to
guarantee the correct labeling of the dataset. We released this dataset, including
full packet payloads, to the research community. We believe this dataset could
become a common benchmark for the comparison and validation of network traffic
classifiers. Our results present PACE, a commercial tool, as the most accurate
solution. Surprisingly, we find that some open-source tools, such as nDPI and
Libprotoident, also achieve very high accuracy.

Keywords

Deep Packet Inspection, PACE, nDPI, Libprotoident, NBAR, L7-filter

1 Introduction
The payload of the packets contains an enormous amount of information. Deep Packet
Inspection (DPI) technologies exploit this source of information by searching for spe-
cific patterns (i.e., signatures) in the content of the packets. It is thus not surprising
that DPI became a fundamental technology for many applications, including network
management, intrusion detection, and network forensics, to mention just a few examples.

One of the most prolific applications of the DPI technology is in the area of network
traffic classification. Generally, DPI-based techniques extract, in an offline phase, a
set of characteristic signatures of network applications and services (e.g., Skype, Bit-
Torrent, Facebook, YouTube) from the payload of the packets they generate. These
signatures are later employed, usually in an online phase, to classify the traffic flowing
in a network. However, this process is very complex. On the one hand, the extraction
of signatures is a difficult task that should be periodically performed in order to adapt
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them to the continuous evolution of the applications (e.g., new applications, new ver-
sions, new obfuscation techniques). On the other hand, pattern matching algorithms for
online classification are computationally complex and usually require expensive hard-
ware. Even so, DPI is commonly considered as the most accurate technique for traffic
classification, and most commercial solutions rely on it [1–4].

Although the state-of-the-art proposals in the traffic classification field show very
accurate results, the network classification problem is far from being totally solved.
As already pointed out in [5], an important aspect that remains unsolved is the vali-
dation and comparison of the existing techniques for traffic classification. One of the
main problems is that this validation directly depends on the techniques used to set the
ground-truth. This task is usually carried out in the literature by DPI techniques given
their presumably high accuracy. However, the actual accuracy of DPI-based techniques
is still not clear. Previous works that tried to compare the performance of different
DPI techniques showed that the ground-truth used to validate the proposals was ob-
tained through port-based techniques, other DPI-based techniques, or methodologies
of unknown reliability [6–10]. Thus, making the results of the comparison arguable.
In addition, most commercial tools are black boxes that claim high accuracy based on
their own studies, which cannot be validated because they were performed using private
datasets.

The first step in the proper validation of traffic classification techniques would be
the use of publicly available datasets. In this way, its comparison with other proposals
would be easier. An example are the Cooperative Association for Internet Data Analysis
(CAIDA) [11] or the Internet Measurement Data Catalog [12]. Although the datasets
are pre-classified, the actual reliability of this labeling is unknown, which is a very
important factor during testing traffic classifiers. Also, most of them have no payload
or just the first bytes of each packet. The MAWI repository [13] contains various packet
traces, including daily 15-minutes traces made at an trans-Pacific line (150Mbit/s link).
The bandwidth of this link has changed through the years. The traces contain the
first 96 bytes of the payload and the traffic is usually asymmetric. Another useful
data source is the Community Resource for Archiving Wireless Data At Dartmouth
(CRAWDAD) [14], which stores wireless trace data from many contributing locations.
Another interesting project is The Waikato Internet Traffic Storage (WITS) [15], which
aims to collect and document all the Internet traces that the WAND Network Research
Group from the University of Waikato has in their possession. Some of the traces can
be freely downloaded and they contain traffic traces from various areas and of different
types (as DSL residential traffic, university campus traffic, etc). Most of the traces do
not have payload (i.e., it is zeroed) or truncated.

All these datasets although useful for many network evaluations are of limited inter-
est for DPI validation given that no correct labeling can be performed to them.

In [16], it was introduced a method for validation of classification algorithms, which
is independent of other classification methods, deterministic, and allows to automatize
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testing of large data sets. The authors developed a Windows XP driver based on the
Network Driver Interface Specification (NDIS) library. Another approach to obtain the
ground-truth was taken in [17]. The authors created a tool, which collects the data from
the network and labels the flows with the real application names (e.g., Thunderbird) and
application protocol names (e.g., SMTP). This tool is somehow similar to VBS, the tool
used in this work for the ground-truth generation and further described in Section 3.1.1.
Yet another way of establishing the ground-truth was shown in [18], which describes a
system developed to accelerate the manual verification process. The authors proposed
Ground Truth Verification System (GTVS) based on the DPI signatures derived from
the databases available in the Internet, including L7-filter. GTVS, however, does not
collect the application names from the operating systems, so the established truth cannot
be completely verified.

In a previous conference paper [19], we tried to face the problem of ground-truth
reliability. We described various methods of obtaining the ground-truth for testing
various traffic classification tools. As part of the evaluation, we tested several DPI-based
traffic classifiers and assessed if they can be used for obtaining reliable ground-truth.
This paper is not only an extension but a more broad and comprehensive validation
of DPI-based techniques. The focus of this paper is different, as we directly compare
the selected DPI tools regarding their per-class accuracy. Reference datasets for the
use in this paper as well as the previous one are generated by the same methodology
further explained in Section 3. However, both datasets are completely different. The
dataset used in this paper is significantly larger than the one used in the conference
paper. Furthermore, the new dataset also contains labeled non-HTTP flows belonging
to various web services, which is a unique feature. The methodology of testing the
classifiers is also different. In our previous paper, we tested the accuracy of the classifiers
on a single level. In the current paper, we evaluate different levels (i.e., application, web
service, etc), so the new evaluation method is more detailed and complete.

This paper compares and validates six well-known DPI-based tools used for network
traffic classification. In order to allow the validation of our work, we publish the reli-
able labeled dataset used to perform our study. Two main aspects have been carefully
addressed when building this dataset: the reliability of the labeling and the represen-
tativeness of the data. We used the VBS tool [20] to guarantee the correctness of the
labeling process. This tool, described in Section 3, is able to label the flows with the
name of the process that creates them. This allowed us to carefully create a reliable
ground-truth that can be used as a reference benchmark for the research community
to compare other proposals. The selection of applications for our dataset was made
based on well-known indexes of the most commonly used Internet applications and web
services. In order to allow the publication of the dataset and avoid any privacy issues,
we created the traffic by running a large set of applications and meticulously simulating
common behaviors of the users.

The main contributions of this paper can be summarized as follows:



2. Classification Tools 211

• We publish a reliable labeled dataset with full packet payloads. The dataset,
further described in Section 4, contains traffic from a diverse set of commonly
used applications. Although artificially created, we carefully simulated human
behaviors in order to produce a dataset that is as much realistic as possible.

• We compare six well-known DPI-based tools widely used for network traffic classi-
fication. Using the previous dataset, we evaluate the precision of PACE, OpenDPI,
nDPI, L7-filter, Libprotoident, and NBAR, and compare their results at various
classification levels and in different scenarios. We are aware that OpenDPI and
L7-filter are abandoned projects, which development stopped several years ago.
However, we decided to include them into our evaluation as a reference and for
completeness, as many existing scientific papers base their results on these two
classifiers.

In this paper, we focus on a single performance parameter: the classification accu-
racy. We acknowledge that other performance parameters are also important, such as
speed, scalability, complexity, robustness, or price of the solutions. However, given that
the research community is mainly using DPI-based technique for offline ground-truth
generation we think those metrics are less decisive. Furthermore, we believe that our
dataset will be useful to evaluate most of these parameters as well.

This work presents an independent and impartial comparison of the most popular
DPI-based tools used in the traffic classification literature. As a consequence, our study
also provides valuable insights about the reliability of the tools commonly used by re-
searchers to generate their ground truth. The results presented can also help researchers
and network managers to better decide which DPI solution is more suitable for their
needs and scenarios. Indirectly, we also provide information about the reliability of
those non-DPI classification techniques proposed in the literature that used one of the
DPI techniques compared in this paper to set their ground truth.

The remainder of this paper is organized as follows. Section 2 describes the DPI-
based tools and their configurations used for the evaluation. Section 3 presents the
methodology used to obtain the reliable dataset that is described in Section 4. Section 5
presents the results of the performance evaluation of the different DPI-based techniques.
Section 6 discusses the results, compares them with the literature, and comments the
limitations of our evaluation. Section 7 reviews the related work. Finally, Section 8
concludes and summarizes the outcomes and contributions of the paper.

2 Classification Tools
On the market, there are many available DPI-based traffic classification solutions. For
our experiment, we selected PACE, OpenDPI, nDPI, Libprotoident, NBAR, and L7-
filter, which will be broadly introduced in this section. Table 1 summarizes these DPI-
based tools along their characteristics.
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Table 1: DPI Tools Included in Our Comparison

Name Version Released Identified
Applications

PACE 1.47.2 November 2013 1000
OpenDPI 1.3.0 June 2011 100
nDPI rev. 7543 April 2014 170
L7-filter 2009.05.28 May 2009 110
Libprotoident 2.0.7 November 2013 250
NBAR 15.2(4)M2 November 2012 85

PACE. It is a proprietary classification library developed by ipoque entirely in C,
which supports classical DPI (pattern matching), behavioral, heuristic, and statistical
analysis. According to its website, PACE is able to detect encrypted protocols as well as
protocols which use obfuscation. Overall, more than 1000 applications and 200 network
protocols are supported. It is also possible to include user-defined rules for detection of
applications and protocols. To the best of our knowledge, PACE is the only commercial
tool used in the literature to build the ground truth [8].

OpenDPI. It was an open-source classifier derived from early versions of PACE by
removing support for encrypted protocols, as well as all performance optimizations.
The project is now considered as closed. In [6, 7], the authors mention that OpenDPI
is not a classic DPI tool, as it uses other techniques apart from pattern matching
(i.e., behavioral and statistical analysis). Thanks to that, it should not provide false
classification results, but some traffic can remain unclassified [6]. Another interesting
feature is flow association, which relies on inspecting the payload of a known flow to
discover a new flow, as inspecting a control FTP session to obtain the five tuple of the
newly initiated data session [10].

nDPI. It is an OpenDPI fork, which is optimized and extended with new proto-
cols [21]. It re-introduced support for many encrypted ones due to analysis of session
certificates. Overall, nDPI for now supports more than 100 protocols [22]. The current
architecture is scalable, but it does not provide the best performance and results: each
of the protocols has its own signature scanner, through which the packets are examined.
Every packet is examined by each scanner, regardless, if a match was found. If there
are multiple matches per flow, the returned value is the most detailed one [10]. Addi-
tionally, there is no TCP or IP payload re-assembly, so there is no possibility to detect
a signature split into multiple TCP segments / IP packets [22].

Libprotoident. This C library [8] introduces Lightweight Packet Inspection (LPI),
which examines only the first four bytes of payload in each direction. That allows to
minimize privacy concerns, while decreasing the disk space needed to store the packet
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traces necessary for the classification. Libprotoident supports over 200 different pro-
tocols and the classification is based on a combined approach using payload pattern
matching, payload size, port numbers, and IP matching.

Cisco Network Based Application Recognition (NBAR). It was developed to
add the ability to classify the network traffic by using the existing infrastructure [23]. It
is able to classify applications, which use dynamic TCP and UDP port numbers. NBAR
works with Quality of Service (QoS) features, thanks to what the devices (e.g., routers)
can dynamically assign a certain amount of bandwidth to a particular application, drop
packets, or mark them in a selected way. The authors claim that NBAR supports a
wide range of stateful protocols, which are difficult to classify.

L7-filter. It was created in 2003 as a classifier for Linux Netfilter, which can recognize
the traffic on the application layer [24]. The classification is based on three techniques.
At first, simple numerical identification based on the standard iptables modules, which
can handle port numbers, IP protocol numbers, number of transferred bytes, etc. At
second, payload pattern matching based on regular expressions. At third, the applica-
tions can be recognized based on functions. L7-filter is developed as a set of rules and a
classification engine, which can be used independently of each other. The most recent
version of L7-filter classification engine is from January, 2011, and the classification rules
from 2009.

3 Methodology
Our experiment involved numerous steps, which will be defined and described in this
section. We had two main goals – building the dataset and testing the classifiers. Each
of them required an individual methodology.

3.1 Building of the Dataset
3.1.1 Testbed

Our testbed consisted of 7 machines, which were used for running the selected applica-
tions and generating the traffic data, and of a server. We equipped the data generating
machines with Windows 7 (3 machines), Ubuntu (3 machines), and Windows XP (1 ma-
chine). The additional Ubuntu server machine was equipped with a MySQL database
for data storage.

To collect and accurately label the flows, we adapted the Volunteer-Based System
(VBS) developed at Aalborg University [25]. The goal of the VBS project is to collect
flow-level information from the Internet traffic (e.g., start time of the flow, number of
packets contained by the flow, local and remote IP addresses, local and remote ports,
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transport layer protocol) together with detailed information about each packet (e.g.,
direction, size, TCP flags, and relative timestamp to the previous packet in the flow).
For each flow, the system collects the process name associated with it, which is obtained
from the system sockets. Additionally, the system collects some information about the
types of the transferred HTTP contents (e.g., text/html, video/x-flv). The captured in-
formation is transmitted to the VBS server, which stores the data in a MySQL database.

On every data generating machine, we installed a modified version of VBS. The
source code of the original system as well as the modified version is publicly available
in [26] under GNU General Public License v3.0. The modified version of the VBS client
captures, apart from the data described above, full Ethernet frames for each packet,
and extracts the HTTP URL and Referrer fields – all the information is transmitted to
the server, and stored in the MySQL database. We added a module called pcapBuilder,
which is responsible for dumping the packets from the database to PCAP files. At the
same time, INFO files are generated to provide detailed information about each flow,
which allows us to assign each packet from the PCAP file to an individual flow.

3.1.2 Selection of the Data

The process of building a representative dataset, which characterizes a typical user be-
havior, is a challenging task, crucial from the point of testing and comparing different
traffic classifiers. Therefore, to ensure the proper diversity and amount of the included
data, we decided to combine the data on a multidimensional level. Based on w3schools
statistics [27], we found that most PC users use Windows 7 (56.7% of users), Windows
XP (12.4%), Windows 8 (9.9%), and Linux (4.9%) - state for October 2013. Apple
computers contribute for 9.6% of the overall traffic, and mobile devices for 3.3%. Be-
cause of the lack of the equipment and/or software for Apple computers, Windows 8,
and mobile devices, we decided to include in our study Windows 7 (W7), Windows XP
(XP), and Linux (LX), which cover now 74.0% of the used operating systems.

The application protocols, applications, and web services selected for this study are
shown below. To group them, we adopted the same classification categories used in the
reports from Palo Alto [28].

1. File-sharing applications. According to [28], they account for 6% of the total
bandwidth. Inside that group, BitTorrent accounts for 53%, FTP for 21%, Drop-
box for 5%, Xunlei for 4%, and eMule for 3%. Based on the statistics found
in [28], as well as those in the CNET [29] and the OPSWAT P2P clients popu-
larity list, the CNET FTP clients popularity list [30], and the Direct Download
popularity list [31], we selected the following applications:

• BitTorrent: uTorrent (Windows), kTorrent (Linux).
• eDonkey: eMule (Windows), aMule (Linux). The studied configurations
were: outgoing-non-obfuscated-incoming-all, all-obfuscated.
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• FTP: FileZilla (Windows, Linux) in active mode (PORT) and passive mode
(PASV).
• Dropbox (Windows, Linux).
• Web-based direct downloads: 4Shared (+ Windows app), MediaFire, Put-
locker.
• Webdav (Windows).

2. Photo-video group. According to the reports from Palo Alto [28], they account
for 16% of the total bandwidth, where YouTube accounts for 6% of total, Netflix
for 2% of total, other HTTP video for 2% of total, RTMP for 2% of total, and
others for 4% of traffic in total. To select the applications in this category we also
used the Ebizmba ranking of video websites [32].

• YouTube: most watched videos from all the times according to the global
ranking [33].
• RTMP: around 30 random short live video streams (1–10 minutes) were
watched from Justin.tv.
• Vimeo – a web-based photo sharing solution.
• PPStream (Windows) – P2P streaming video software.
• Other HTTP video.

3. Web browsing traffic. Based on w3schools statistics [34], the most popular web
browsers are: Chrome (48.4% of users), Firefox (30.2%), and Internet Explorer
(14.3%). These browsers were used to generate the web traffic. According to
the reports from Palo Alto [28], they account for 20% of the total bandwidth.
The selection of the websites was based on Alexa statistics [35], Ebizmba web
statistics [36], Quantcast statistics [37], and Ebizmba search engines popularity
[38]. In order to make the dataset as representative as possible, we simulated
different human behaviors when using these websites. For instance, on Facebook,
we log in, interact with friends (e.g., chat, send messages, write in their walls),
upload pictures, create events or play games. Similar behaviors were simulated
for other popular web services, such as Twitter, Google+, eBay, etc. The detailed
description of actions performed with the services is listed in our technical report
[39].

4. Encrypted tunnel traffic. According to the reports from Palo Alto [28], they
account for 9% of the total bandwidth, where 6% of total is SSL and 2% of total
is SSH.

• SSL (Windows, Linux): collected while using various applications and web
services.
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• SSH (Linux).
• TOR (Windows). First, we used TOR to browse various websites and down-
load big files. Then, we configured TOR to act as an internal relay, so we
participated in creating the invisible path for other users.

• Freenet (Windows): for browsing the intranet and also as a relay for other
peers.

• SOCKSv5 (Windows). We created a SOCKSv5 server on Linux, and used it
for Firefox and uTorrent.

5. Storage-backup traffic. According to Palo Alto [28], they account for 16% of the
total bandwidth, where at least half of the bandwidth is consumed by MS-SMB,
and the rest by many different applications. Therefore, the only tested application
was MS-SMB (Windows, Linux).

6. E-mail and communication traffic. According to the reports from Palo Alto [28],
e-mail traffic accounts for 3% of the total bandwidth. E-mail market share from
October 2013 [40] shows that only one desktop mail client, Microsoft Outlook
(17%), is in the top 10 of used mail clients. The rest is split between web-based
clients (as GMail) and mobile clients (Mac, Android). The tested applications /
web-based mail services include: Gmail, Hotmail, Windows Live Mail (Windows),
and Mozilla Thunderbird (Windows). The desktop e-mail applications (Windows
Live Mail and Mozilla Thunderbird) were tested to use various protocols: SMTP-
PLAIN (port 587), SMTP-TLS (port 465), POP3-PLAIN (port 110), POP3-TLS
(port 995), IMAP-STARTTLS (port 143), and IMAP-TLS (port 993). We also
tested Skype between Windows and Android OS: video sessions, voice conversa-
tions, and file transfers.

7. Management traffic. DNS, ICMP, NETBIOS, NTP, RDP.

8. Games. Based on the most played online games in USA according to DFC Intel-
ligence [41], we selected:

• League of Legends (Windows) – with all launchers.
• World of Warcraft (Windows) – including all launchers.
• Pando Media Booster (Windows) – a process added by League of Legends to
seed the game installer to other users, which offloads the servers, because the
download is performed in the P2P mode. It generates enormous accounts of
traffic and fills the connection.

• Steam – delivers a range of games straight to a computer’s desktop. Includes
automatic updates, lists of games and prices, posters, plus access to a large
number of games. We included Steam on the list as it is a platform for
numerous games.
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• America’s Army – a popular game from Steam.

9. Others. This category includes:

• Music applications: Spotify, iTunes (Windows).
• P2P Internet TVs: PPLive, Sopcast (Windows).

3.2 Testing of the DPI Tools
The process of testing different DPI tools is complex and, therefore, we split it into
several parts: labeling of the data, the classification process, and analysis of the classi-
fication logs. Some of the steps can be different for some DPIs than for the others – in
these cases the differences are explicitly highlighted. We evaluate only one performance
parameter: the classification accuracy. We acknowledge that other performance param-
eters are also important, such as speed, scalability, complexity, robustness, or price of
the solutions, however, their evaluation is outside the scope of this paper.

3.2.1 Labeling of the Data

All the flows stored in the database need to be properly marked by attaching to them
the labels of the applications, application protocols, web services, types of the content,
or Internet domains. One flow can be associated with multiple labels. Flows, which are
not labeled, are not taken into consideration while extracting them to PCAP files.

We classify the flows at different levels. We start the labeling process by identifying
the web flows and assigning them to the selected web services. Every web service is
identified by a set of domains. The domains were chosen based on the number of their
occurrences in the collected HTTP flows. The HTTP flows are marked with a web
service label only if they contain the traffic from the matching domains. In case the
flow contains traffic from domains belonging to multiple services (or to domains, which
are not assigned to the selected services), the flow is left as unlabeled. The HTTP flows
are also marked with the labels of the type of the transmitted content (e.g., video/x-flv),
if they transmit audio or video. Those flows that are not HTTP belonging to the web
services (e.g., SSL) are labeled using an heuristic method as follows. To be recognized
as a non-HTTP web flow, the application name associated with the flow should be the
name of a web browser (e.g., chrome), a name of a web browser plugin (e.g., plugin-
container, flashgcplay), or the name should be missing. Then, we look at the HTTP
flows, which were originated from 2 minutes before to 2 minutes after the non-HTTP
flow. If all the corresponding (i.e., originated from the same local machine and reaching
the same remote host) HTTP flows have a web service label assigned, and the service
label is the same for all of the flows, the non-HTTP flow is classified with the same web
service label.
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Afterwards, we identify the application protocols. The application protocol label is
applied only to those flows for which we are sure that transmit the specific application
protocol. Finally, we identify the applications. We consider applications and protocols
individually because, for example, a web-browser may use many different protocols
besides HTTP, or a BitTorrent client can connect to websites to download files using
HTTP or SSL, etc.

3.2.2 Classification Process

The packets were extracted into PCAP files in 3 different modes: the normal one, with
truncated packets (i.e., Ethernet frames were overwritten by 0s after the 70th byte), and
with truncated flows (we extracted only 10 first packets for each flow). We designed
a tool, called dpi_benchmark, which is able to read the PCAP files and provide the
packets one-by-one to PACE, OpenDPI, L7-filter, nDPI, and Libprotoident. All the
flows are started and terminated based on the information from the INFO files, which
contain the timestamps. After the last packet of the flow is sent to the classifier, the
tool obtains the label associated with that flow. The labels are written to the log files
together with the flow identifier, which makes us later able to relate the classification
results to the original flows in the database.

We used the default configurations of all classifiers except for L7-filter, which was
evaluated in two different configurations. The first version (L7-filter-all) had all the
patterns activated , but the patterns marked as overmatching by their authors have
a low priority. For the second version (L7-filter-com) we adapted the methodology
proposed in [42], which does not activate the patterns declared as overmatching and the
default pattern priorities were modified.

Classification by NBAR required to build a complete working environment. We did
not have any Cisco device that could be used for the experiment. Therefore, we used
GNS3 – a graphical framework, which uses Dynamips to emulate our Cisco hardware.
We emulated 7200 platform, since this is the only platform supported by GNS3 that
can run the newest version of Cisco IOS (version 15), which contains Flexible NetFlow.
Previous versions of Cisco IOS contain only traditional NetFlow, which does not support
NBAR reporting on the per flow basis. We connected the virtual router to a real
computer by using a virtual interface. The router was configured to use Flexible NetFlow
with NBAR on the created interface.

Every flow recognized by Flexible NetFlow was tagged by the application name
obtained from NBAR. On the computer, we used tcpreplay to replay the PCAP files to
the router with the maximal speed that did not cause packet loss. At the same time,
we used nfacctd, which is part of PMACCT tools [43], to capture the Flexible NetFlow
records sent by the router to the computer.

The data stored in the classification logs was processed and imported back to the
database. We matched the log records to the proper flows in the database using the
flow identifier contained by each flow record. NBAR relies on Flexible NetFlow, which
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treats the flows in a unidirectional way. It means that we needed to assess the type
of the bi-directional flow based on 2 unidirectional flows (inbound and outbound). In
most of the cases the label from both unidirectional flows were the same. In a few cases
there was only an inbound or an outbound flow, since there were no packets going in
the opposite direction. In case, both unidirectional flows existed and the label of each
of them was different, the bidirectional flow got the label from the unidirectional flow
that accounted for more bytes.

3.3 Analysis of the Results
The method for analysis of the results depend on the level of classification on which the
flows were labeled:

• Application protocol level, such as DNS, HTTP, or POP3: To consider the classi-
fication as correct, the label reported by the classifier must be an application pro-
tocol (e.g., DNS, HTTP), but not at a different level (e.g., FLASH, YOUTUBE).
This is useful to test if the tool can recognize the specific application protocol.
If the result is given at a different level, the flow is considered as unclassified.
However, the same flow will be classified as correct during other tests at different
levels, when we for example look for a web service called YouTube. Those flows
with labels belonging to different application protocols, and services and applica-
tions that do not belong to this application protocol are considered as wrong.

• Web service level, such as Yahoo or YouTube: the classification is considered to
be correct only if the name of the web service is given. If it is given at a different
level, such as HTTP or FLASH, the flow is considered as unclassified.

• Application level (when the application uses its proprietary application-level pro-
tocols). For example, uTorrent and Skype applications can use multiple protocols,
including their proprietary protocols called respectively Skype and BitTorrent, and
other protocols, such as HTTP or SSL. For example, HTTP and SSL can be used
to connect to the web server to download the user’s data or advertisements. There-
fore, in the case of Skype, flows labeled by DPI tools as Skype, HTTP, SSL are
all marked as correct.

• Application level (when the application does not use its proprietary application-
level protocols, but directly uses HTTP, SSL, etc.) It concerns for example Spotify.
Then, only the flows marked as Spotify are considered to be labeled correctly, as
no specific application-level protocol exists for this application, so we expect the
application name itself to be identified.

Thanks to this multilevel testing approach, we obtained the knowledge of which
classifier is able to provide results on each particular level of classification. This knowl-
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Table 2: Application Protocols in the Dataset

Protocol Number of Flows Number of Megabytes
DNS 18251 7.66
HTTP 43127 7325.44
ICMP 205 2.34
IMAP-STARTTLS 35 36.56
IMAP-TLS 103 410.23
NETBIOS Name Service 10199 11.13
NETBIOS Session Service 11 0.01
SAMBA Session Service 42808 450.39
NTP 42227 6.12
POP3-PLAIN 26 189.25
POP3-TLS 101 147.68
RTMP 378 2353.67
SMTP-PLAIN 67 62.27
SMTP-TLS 52 3.37
SOCKSv5 1927 898.31
SSH 38961 844.87
Webdav 57 59.91

edge would allow, for example, the end user to adjust the choice of the DPI technique
according to the desired level of classification.

4 Dataset
Our basic dataset (without truncated packets or flows) contains 767 690 flows, which
account for 53.31GB of pure packet data. The application name was present for 759 720
flows (98.96% of all the flows), which account for 51.93GB (97.41%) of the data volume.
The remaining flows are unlabeled due to their short lifetime (usually below 1 s), which
made VBS incapable to reliably establish the corresponding sockets. The application
protocols together with the number of flows and the data volume are shown in Table 2,
while the applications in Table 3 and the web services in Table 4. The data volume
is presented here only for an overview – the rest of the paper uses only the number of
flows as the reference value.

We are going to publish our basic labeled dataset with full packet payloads on
our website [44]. Therefore, it can be used by the research community as a reference
benchmark for the validation of network traffic classifiers.

5 Results
This section provides an overview of the classification results of the different types of
traffic by each of the classifiers. The evaluation was performed on 3 datasets: a normal
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Table 3: Applications in the Dataset

Application Number of Flows Number of Megabytes
4Shared 144 13.39
America’s Army 350 61.15
BitTorrent clients (encrypted) 96399 3313.98
BitTorrent clients (non-encrypted) 261527 6779.95
Dropbox 93 128.66
eDonkey clients (obfuscated) 12835 8178.74
eDonkey clients (non-obfuscated) 13852 8480.48
Freenet 135 538.28
FTP clients (active) 126 341.17
FTP clients (passive) 122 270.46
iTunes 235 75.4
League of Legends 23 124.14
Pando Media Booster 13453 13.3
PPLive 1510 83.86
PPStream 1141 390.4
RDP clients 153837 13257.65
Skype (all) 2177 102.99
Skype (audio) 7 4.85
Skype (file transfer) 6 25.74
Skype (video) 7 41.16
Sopcast 424 109.34
Spotify 178 195.15
Steam 1205 255.84
TOR 185 47.14
World of Warcraft 22 1.98
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Table 4: Web Services in the Dataset

Web Service Number of Flows Number of Megabytes
4Shared 98 68.42
Amazon 602 51.02
Apple 477 90.22
Ask 171 1.86
Bing 456 36.84
Blogspot 235 10.53
CNN 247 3.66
Craigslist 179 4.09
Cyworld 332 13.06
Doubleclick 1989 11.24
eBay 281 8.31
Facebook 6953 747.35
Go.com 335 25.83
Google 6541 532.54
Instagram 9 0.22
Justin.tv 2326 126.33
LinkedIn 62 2.14
Mediafire 472 27.99
MSN 928 23.22
Myspace 2 2.54
Pinterest 189 3.64
Putlocker 103 71.92
QQ.com 753 10.46
Taobao 387 24.29
The Huffington Post 71 21.19
Tumblr 403 52.56
Twitter 1138 13.67
Vimeo 131 204.45
Vk.com 343 9.59
Wikipedia 6092 521.95
Windows Live 26 0.16
Wordpress 169 33.31
Yahoo 17373 937.07
YouTube 2534 1891.79
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set, a set with truncated packets, and a set with truncated flows. This section presents a
description of the most interesting results, but a discussion is later presented in Section 6
with the conclusions that can be drawn from them. The following subsections present
the results for the normal dataset, while the results for the sets with truncated packets
or flows are discussed separately. All the accuracy results are given in terms of flows.
The methodology used to compute the accuracy is shown in Section 3.3. The interested
reader may find the complete confusion matrix in the technical report [39].

5.1 Application Protocols
The evaluation of the classification of application protocols is shown in Table 5, Table 6,
and Table 7. The columns present the percentage of correctly and wrongly classified as
well as unclassified flows belonging to various application protocols by each classifier.

An important performance parameter of DPI-based techniques is the completeness
of their results (i.e., number of applications they can classify). This section evaluates 17
different application protocols. As shown in the tables, none of the techniques is able to
classify all of them. Among the different techniques studied, nDPI and Libprotoident
are the most complete, classifying 15 out of 17. At the far end, L7-filter only classifies
9 of 17.

Another important aspect of DPI techniques is their ratio of false positives (i.e., in-
correct classifications). Usually techniques leave the non-recognized flows as unclassified,
trying to decrease the number of false positives. Even though, both versions of L7-filter
are characterized for producing a high number of incorrect classifications (e.g., L7-filter-
all classifies 85.79% of HTTP traffic as Finger). Regarding the specific classifications,
most of traditional application protocols (i.e., DNS, HTTP, IMAP-STARTTLS, POP3-
PLAIN, SMTP-PLAIN and SSH) are generally well detected by all the techniques (e.g.,
accuracy between 70.92% and 100%). Unexpectedly, Libprotoident is the only classi-
fier able to identify all the tested encrypted protocols. Regardless of the classifier, the
undetected encrypted traffic is usually identified as regular SSL. An interesting case is
presented by the classification of RTMP. Only nDPI and Libprotoident are able to prop-
erly classify it. PACE and OpenDPI classify this traffic as Flash. Although both traffics
are usually related, the classification as Flash cannot be considered as being correct, as
Flash is only a content container. Flash content (audio, video or any other binary file)
can be transported using various applications protocols (e.g., HTTP, RTMP) or even
different transport protocols (both TCP and UDP).

5.2 Applications
The second level of classification studies the application that uses its proprietary application-
level protocols (e.g., BitTorrent, Skype). The evaluation of the classification of various
applications is shown in Table 8, Table 9, Table 10, and Table 11. The columns present
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Table 5: Evaluation of Application Protocols – Part 1

Protocol Classifier Correct [%] Wrong [%] Unclassified [%]
PACE 99.95 0.00 0.05
OpenDPI 99.99 0.00 0.01
L7-filter-all 99.62 0.05 0.33

DNS L7-filter-com 99.62 0.02 0.36
nDPI 100.00 0.00 0.00
Libprotoident 99.96 0.00 0.04
NBAR 99.99 0.00 0.01
PACE 70.92 0.63 28.45
OpenDPI 95.68 0.59 3.73
L7-filter-all 3.58 96.04 0.38

HTTP L7-filter-com 35.25 10.28 54.47
nDPI 17.25 0.83 81.92
Libprotoident 99.80 0.07 0.13
NBAR 99.04 0.17 0.79
PACE 100.00 0.00 0.00
OpenDPI 100.00 0.00 0.00
L7-filter-all 0.00 0.00 100.00

ICMP L7-filter-com 0.00 0.00 100.00
nDPI 100.00 0.00 0.00
Libprotoident 100.00 0.00 0.00
NBAR 100.00 0.00 0.00
PACE 100.00 0.00 0.00
OpenDPI 100.00 0.00 0.00
L7-filter-all 100.00 0.00 0.00

IMAP L7-filter-com 100.00 0.00 0.00
STARTTLS nDPI 100.00 0.00 0.00

Libprotoident 100.00 0.00 0.00
NBAR 100.00 0.00 0.00
PACE 0.00 0.00 100.00
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 0.00 100.00

IMAP L7-filter-com 0.00 0.00 100.00
TLS nDPI 0.00 0.00 100.00

Libprotoident 100.00 0.00 0.00
NBAR 100.00 0.00 0.00
PACE 99.96 0.00 0.04
OpenDPI 98.51 0.00 1.49

NETBIOS L7-filter-all 0.00 5.63 94.37
Name L7-filter-com 0.00 9.15 90.85
Service nDPI 99.97 0.00 0.03

Libprotoident 0.04 4.94 95.02
NBAR 100.00 0.00 0.00
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Table 6: Evaluation of Application Protocols – Part 2

Protocol Classifier Correct [%] Wrong [%] Unclassified [%]
PACE 100.00 0.00 0.00
OpenDPI 100.00 0.00 0.00

NETBIOS L7-filter-all 9.09 0.00 90.91
Session L7-filter-com 9.09 0.00 90.91
Service nDPI 100.00 0.00 0.00

Libprotoident 100.00 0.00 0.00
NBAR 100.00 0.00 0.00
PACE 100.00 0.00 0.00
OpenDPI 100.00 0.00 0.00

SAMBA L7-filter-all 100.00 0.00 0.00
Session L7-filter-com 100.00 0.00 0.00
Service nDPI 100.00 0.00 0.00

Libprotoident 100.00 0.00 0.00
NBAR 0.00 0.00 100.00
PACE 100.00 0.00 0.00
OpenDPI 100.00 0.00 0.00
L7-filter-all 99.86 0.14 0.00

NTP L7-filter-com 99.86 0.13 0.01
nDPI 100.00 0.00 0.00
Libprotoident 100.00 0.00 0.00
NBAR 0.00 0.00 100.00
PACE 100.00 0.00 0.00
OpenDPI 100.00 0.00 0.00
L7-filter-all 100.00 0.00 0.00

POP3 L7-filter-com 100.00 0.00 0.00
PLAIN nDPI 100.00 0.00 0.00

Libprotoident 100.00 0.00 0.00
NBAR 100.00 0.00 0.00
PACE 0.00 0.00 100.00
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 5.93 94.06

POP3 L7-filter-com 0.00 0.99 99.01
TLS nDPI 88.12 0.00 11.88

Libprotoident 100.00 0.00 0.00
NBAR 100.00 0.00 0.00
PACE 0.00 0.00 100.00
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 23.54 76.46

RTMP L7-filter-com 0.00 23.54 76.46
nDPI 70.90 15.87 13.23
Libprotoident 86.51 0.26 13.23
NBAR 0.00 0.26 99.74
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Table 7: Evaluation of Application Protocols – Part 3

Protocol Classifier Correct [%] Wrong [%] Unclassified [%]
PACE 100.00 0.00 0.00
OpenDPI 100.00 0.00 0.00
L7-filter-all 100.00 0.00 0.00

SMTP L7-filter-com 100.00 0.00 0.00
PLAIN nDPI 100.00 0.00 0.00

Libprotoident 100.00 0.00 0.00
NBAR 100.00 0.00 0.00
PACE 0.00 0.00 100.00
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 0.00 100.00

SMTP L7-filter-com 0.00 0.00 100.00
TLS nDPI 3.85 0.00 96.15

Libprotoident 100.00 0.00 0.00
NBAR 0.00 0.00 100.00
PACE 78.26 0.00 21.74
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 100.00 0.00

SOCKSv5 L7-filter-com 0.00 100.00 0.00
nDPI 92.99 0.00 7.01
Libprotoident 100.00 0.00 0.00
NBAR 0.00 0.00 100.00
PACE 93.98 0.51 5.51
OpenDPI 93.98 0.12 5.90
L7-filter-all 94.19 0.36 5.45

SSH L7-filter-com 94.19 0.12 5.69
nDPI 93.98 0.80 5.22
Libprotoident 94.19 0.36 5.45
NBAR 93.71 0.64 5.65
PACE 3.51 0.00 96.49
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 7.02 92.98

Webdav L7-filter-com 0.00 7.02 92.98
nDPI 0.00 0.00 100.00
Libprotoident 0.00 0.00 100.00
NBAR 0.00 0.00 100.00
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the percentage of correctly and wrongly classified as well as unclassified flows belonging
to various applications by each of the classifier.

At application level the most complete technique is PACE, classifying 20 out of the
22 evaluated applications, followed by nDPI (17) and Libprotoident (14). Again, L7-
filter is among the worst techniques (8), but it is overcame by NBAR that classifies only
4 applications.

Regarding the false positive ratio, the lowest percentage of misclassified flows were
obtained from PACE and OpenDPI. Contrary, the highest ratio of misclassified flows
is again obtained from the classifications by both versions of L7-filter (e.g., 97% of
America’s Army traffic is classified as Skype and RTP).

As shown in the tables, the classification on application level presents more problems
than on application protocol level. It is particularly striking that almost no classifier is
able to completely classify all the flows (i.e., 100%) from a specific application. This
can be derived from the fact that usually applications use different internal operations
that produce different traffic. Therefore, techniques need a specific pattern for every
type of operation. For instance, the accuracy with Skype is always lower than 100%
because none of the techniques is able to classify neither Skype file transfers nor videos.
Among the different studied techniques, PACE is the most accurate followed by nDPI
and Libprotoident. Surprisingly, PACE presents severe problems with a traditional ap-
plication as FTP, almost non classifying all its traffic. Another interesting observations
extracted from the results are shown below:

• L7-filter, the most unreliable on this level, usually misclassifies the flows as Skype
and Finger. However, around 1/3 of the Skype flows are misclassified by it as
RTP, Finger, eDonkey, or NTP.

• The authors of traffic classifiers focus on popular applications, which either gener-
ate heavy data volume, or are critical regarding QoS requirements. Non-encrypted
BitTorrent flows and Skype flows are the only groups of applications that are gen-
erally well detected by all the classifiers.

• America’s Army game is not classified by any tool. The few correct classifications
obtained by nDPI are due to the recognition of some flows originated by the
TeamSpeak client integrated with the game.

5.3 Web Services
The last level studied evaluates many different web services. Because of clarity and un-
derstanding, we do not present the results as a table but as a summary of the important
outcomes.

The results with web services follow the outcomes obtained on previous levels. PACE
is the most complete and accurate technique. The bad results of the rest of techniques
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Table 8: Evaluation of Applications – Part 1

Application Classifier Correct [%] Wrong [%] Unclassified [%]
PACE 27.08 0.00 72.92
OpenDPI 27.08 0.00 72.92
L7-filter-all 0.00 1.39 98.61

4Shared L7-filter-com 0.00 0.00 100.00
nDPI 0.00 0.00 100.00
Libprotoident 0.00 0.00 100.00
NBAR 0.00 0.00 100.00
PACE 0.00 0.00 100.00
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 97.71 2.29

America’s L7-filter-com 0.00 97.43 2.57
Army nDPI 4.00 0.00 96.00

Libprotoident 0.00 89.14 10.86
NBAR 0.00 72.00 28.00
PACE 78.68 0.05 21.27
OpenDPI 0.27 0.00 99.73

BitTorrent L7-filter-all 40.54 10.17 49.29
clients L7-filter-com 40.62 7.30 52.08
(encrypted) nDPI 54.41 0.18 45.41

Libprotoident 60.31 0.02 39.67
NBAR 1.29 0.63 98.08
PACE 99.87 0.00 0.13
OpenDPI 80.61 0.00 19.39

BitTorrent L7-filter-all 94.56 0.49 4.95
clients L7-filter-com 94.60 0.42 4.98
(non-encrypted) nDPI 99.41 0.02 0.57

Libprotoident 99.30 0.00 0.70
NBAR 77.84 0.36 21.80
PACE 94.62 0.00 5.38
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 0.00 100.00

Dropbox L7-filter-com 0.00 0.00 100.00
nDPI 98.92 0.00 1.08
Libprotoident 0.00 0.00 100.00
NBAR 0.00 0.00 100.00
PACE 36.06 7.26 56.68
OpenDPI 0.00 0.00 100.00

eDonkey L7-filter-all 11.64 16.59 71.77
clients L7-filter-com 11.64 11.09 77.27
(obfuscated) nDPI 11.04 2.67 86.29

Libprotoident 11.47 0.00 88.53
NBAR 0.00 15.93 84.07
PACE 16.50 3.74 79.76
OpenDPI 3.98 0.30 95.72

eDonkey L7-filter-all 17.97 16.32 65.71
clients L7-filter-com 17.99 10.79 71.22
(non-obfuscated) nDPI 15.57 2.28 82.23

Libprotoident 17.86 0.31 81.83
NBAR 2.05 11.19 86.76
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Table 9: Evaluation of Applications – Part 2

Application Classifier Correct [%] Wrong [%] Unclassified [%]
PACE 79.26 0.00 20.74
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 20.00 80.00

Freenet L7-filter-com 0.00 14.07 85.93
nDPI 0.00 3.70 96.30
Libprotoident 0.00 0.00 100.00
NBAR 0.00 15.56 84.44
PACE 5.56 0.00 94.44
OpenDPI 97.62 0.00 2.38

FTP L7-filter-all 5.56 92.06 2.38
clients L7-filter-com 5.56 90.47 3.97
(active) nDPI 98.41 0.00 1.59

Libprotoident 100.00 0.00 0.00
NBAR 50.79 0.00 49.21
PACE 4.92 0.00 95.08
OpenDPI 67.21 0.00 32.79

FTP L7-filter-all 4.92 76.23 23.77
clients L7-filter-com 4.92 73.77 26.23
(passive) nDPI 72.95 0.00 27.05

Libprotoident 73.77 22.95 32.80
NBAR 50.00 0.00 50.00
PACE 77.45 0.00 22.55
OpenDPI 0.00 0.00 100.00
L7-filter-all 63.83 6.81 29.36

iTunes L7-filter-com 63.83 0.00 36.17
nDPI 13.19 0.00 86.81
Libprotoident 0.00 0.00 100.00
NBAR 0.00 0.00 100.00
PACE 0.00 13.04 86.96
OpenDPI 0.00 0.00 100.00

League L7-filter-all 0.00 69.57 30.43
of L7-filter-com 0.00 4.35 95.65
Legends nDPI 0.00 13.04 86.96

Libprotoident 0.00 4.35 95.65
NBAR 0.00 0.00 100.00
PACE 99.45 0.39 0.16
OpenDPI 99.23 0.54 0.23

Pando L7-filter-all 0.00 0.74 99.26
Media L7-filter-com 0.00 0.55 99.45
Booster nDPI 99.26 0.63 0.11

Libprotoident 99.26 0.41 0.33
NBAR 0.00 0.36 99.64
PACE 88.21 0.00 11.79
OpenDPI 0.07 0.13 99.80
L7-filter-all 0.00 56.03 43.97

PPLive L7-filter-com 0.00 17.15 82.85
nDPI 43.91 1.05 55.04
Libprotoident 43.91 1.05 55.04
NBAR 0.00 0.40 99.60
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Table 10: Evaluation of Applications – Part 3

Application Classifier Correct [%] Wrong [%] Unclassified [%]
PACE 79.32 0.00 20.68
OpenDPI 0.79 0.00 99.21
L7-filter-all 0.00 38.39 61.61

PPStream L7-filter-com 0.00 15.07 84.93
nDPI 0.53 0.26 99.21
Libprotoident 0.96 0.00 99.04
NBAR 0.00 5.26 94.74
PACE 99.69 0.00 0.31
OpenDPI 99.70 0.00 0.30
L7-filter-all 0.00 92.25 7.75

RDP L7-filter-com 0.00 92.25 7.75
clients nDPI 99.69 0.02 0.29

Libprotoident 99.66 0.01 0.33
NBAR 0.00 0.67 99.33
PACE 83.51 5.05 11.44
OpenDPI 38.49 0.32 61.19
L7-filter-all 59.21 31.70 9.09

Skype L7-filter-com 62.52 24.67 12.81
(all) nDPI 99.82 0.00 0.18

Libprotoident 88.75 0.00 11.25
NBAR 70.37 3.40 26.23
PACE 100.00 0.00 0.00
OpenDPI 0.00 0.00 100.00
L7-filter-all 85.71 14.29 0.00

Skype L7-filter-com 100.00 0.00 0.00
(audio) nDPI 0.00 0.00 100.00

Libprotoident 0.00 0.00 100.00
NBAR 0.00 0.00 100.00
PACE 0.00 100.00 0.00
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 100.00 0.00

Skype L7-filter-com 0.00 100.00 0.00
(file transfer) nDPI 0.00 0.00 100.00

Libprotoident 0.00 0.00 100.00
NBAR 0.00 0.00 100.00
PACE 0.00 100.00 0.00
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 100.00 0.00

Skype L7-filter-com 0.00 100.00 0.00
(video) nDPI 0.00 0.00 100.00

Libprotoident 0.00 0.00 100.00
NBAR 0.00 0.00 100.00
PACE 66.27 3.07 30.66
OpenDPI 66.27 2.59 31.14
L7-filter-all 0.00 99.06 0.94

Sopcast L7-filter-com 0.00 74.76 25.24
nDPI 63.68 1.18 35.14
Libprotoident 46.70 0.24 53.06
NBAR 0.00 0.00 100.00
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Table 11: Evaluation of Applications – Part 4

Application Classifier Correct [%] Wrong [%] Unclassified [%]
PACE 37.64 2.25 60.11
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 43.26 56.74

Spotify L7-filter-com 0.00 10.11 89.89
nDPI 0.56 3.93 95.51
Libprotoident 0.56 0.00 99.44
NBAR 0.00 0.56 99.44
PACE 55.19 0.75 44.06
OpenDPI 0.33 0.00 99.67
L7-filter-all 0.00 65.89 34.11

Steam L7-filter-com 0.00 4.73 95.27
nDPI 76.02 0.42 23.56
Libprotoident 75.85 0.00 24.15
NBAR 0.00 0.58 99.42
PACE 85.95 0.00 14.05
OpenDPI 0.00 0.00 100.00
L7-filter-all 0.00 0.00 100.00

TOR L7-filter-com 0.00 0.00 100.00
nDPI 33.51 0.00 66.49
Libprotoident 33.51 0.00 66.49
NBAR 0.00 2.16 97.84
PACE 27.27 0.00 72.73
OpenDPI 0.00 0.00 100.00

World L7-filter-all 0.00 86.36 13.64
of L7-filter-com 0.00 22.73 77.27
Warcraft nDPI 13.64 13.64 72.72

Libprotoident 13.64 0.00 86.36
NBAR 0.00 0.00 100.00
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are mainly due to a not enough specific classification (e.g., Facebook traffic classified as
HTTP).

PACE recognizes 4Shared (84.69%), Amazon (58.97%), Apple (0.84%), Blogspot
(3.83%), eBay (67.97%), Facebook (80.79%), Google (10.79%), Instagram (88.89%),
Linkedin (77.42%), Mediafire (30.30%), Myspace (100%), QQ.com (32.14%), Twitter
(71.18%), Windows Live (96.15%), Yahoo (54.70%), and YouTube (81.97%). PACE
does not have problems with recognizing SSL flows belonging to these services, which
means that PACE must use other techniques than just looking directly into the packets
to associate the flows with the particular services, probably by analyzing the server
certificates.

The commercial tool clearly overcomes its open-source version OpenDPI that recog-
nizes only Direct Download websites: 4Shared (83.67%) and MediaFire (30.30%).

L7-filter recognizes only Apple (0.42%). Furthermore, L7-filter (especially L7-filter-
all) is characterized by a very high number of misclassified flows belonging to web
services (usually 80–99%). The flows are recognized in a vast majority as Finger and
Skype.

nDPI recognizes Amazon (83.89%), Apple (74.63%), Blogspot (4.68%), Doubleclick
(85.92%), eBay (72.24%), Facebook (80.14%), Google (82.39%), Yahoo (83.16%),
Wikipedia (68.96%), and YouTube (82.16%) being the second best technique on this
level.

Unlike on previous levels, Libprotoident recognizes only the Yahoo (2.36%) web
service. This result is understandable given that Libprotoident only uses the first 4
bytes of packet payload to classify a flow, making considerably more difficult a specific
classification as web service.

The worst technique on this level is NBAR that does not recognize any web services.

5.4 Impact of Packet Truncation
An important characteristic of each DPI tool is the amount of information needed from
each packet to identify the traffic. That significantly influences the classification speed
and the resources needed. Furthermore, many traffic traces are published with payload
truncated up to a certain number of bytes per packet for privacy reasons. As mentioned
before, Libprotoident is the only tool, which is advertised to use the particular extent
of the examined packets, namely first 4 bytes. Therefore, in order to discover the
internal properties of each tool, we decided to test the impact of packet truncation.
This subsection presents the differences between the classification results for the normal
dataset and the dataset with truncated Ethernet frames to the first 70B.

Truncation of packets has a considerable impact on the classification of most appli-
cation protocols by all tools except Libprotoident and NBAR, which tend to maintain
their normal accuracy. This suggests that NBAR can be somehow implemented as
Libprotoident to classify application protocols while the rest of techniques base their
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classification on the complete flow. L7-filter is not able to detect DNS traffic on this set,
while all the other classifiers present the accuracy of over 99%. Unexpectedly, NBAR
cannot detect NTP on the normal set, while it detects it 100% correctly on the set
with truncated packets. We can not present a verifiable reason of this result given that
NBAR is not an open-source tool.

At application level, only Libprotoident is able to keep its normal accuracy whereas
the rest of techniques considerably decreases their accuracies.

Regarding the web services level, only nDPI is able to recognize some web services
in this set. Exceptionally, the detection rate is almost the same as for the normal set.
Other classifiers tend to leave such traffic as unknown.

5.5 Impact of Flow Truncation
Another major concern is how many packets are needed in order to classify each flow.
That depends on the classification tool as well as on the application or protocol, which
we want to identify. However, the documentation of the traffic classifiers do not cover
these issues, although they are very important for conserving disk space while publishing
data traces used to test the tools. Therefore, we decided to study the impact of flow
truncation. This subsection presents the differences between the classification results
for the normal dataset and the dataset with truncated flows to the first 10 packets.

Truncation of flows does not have any noticeable impact on the classification of
application protocols. This result suggests that the classification of application protocols
relies on patterns or signatures extracted from the first packets of the flows.

Similar behavior is obtained on application level. However, in this case the impact
on the classification of applications is noticeable – the detection rate decreases. The only
exception is Libprotoident, which provides the same results as for the normal dataset.
Therefore, this insinuate that the classification of some applications probably rely on
techniques based on statistics (e.g., Machine Learning). FTP in the active mode is a
very interesting case, as Libprotoident maintains its 100% accuracy, while the accuracy
of the other classifiers drops to 5.56%. An strange case is presented with Plain eDonkey
traffic, as the best classification accuracy (45.28%) we obtained by using PACE on the
set with truncated flows, while the accuracy on the normal set was only 16.50%.

The percentage of correctly classified web services is usually the same or nearly the
same as for the normal set.

6 Discussion
This section extracts the outcomes from the results obtained during the performance
comparison. Also, we discuss the limitations of our study.

As it is shown in the previous section, PACE is the best classifier for most of the
studied classification groups. This high ranking is due to the ability of providing the
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results on various levels, as for example HTTP:generic:facebook. Other classifiers do
not offer this ability at all and only one chosen level is given, so, for example, they do
not offer the possibility to account the HTTP or SSL traffic, while they recognize the
web service of the transported content. However, PACE also is not totally consistent
in that matter. Facebook videos (which we observed as transported by HTTP) were
detected as, for example, FLASH:no_subprotocols:facebook, while the live video streams
from Justin.tv using RTMP, were classified as FLASH:no_subprotocols:not_detected.
So, we do not have the knowledge from the results obtained from the classifier which
application protocol was used (HTTP, RTMP, or other), because the content container
level is returned instead. Ideally, the DPI techniques should provide results on all
the possible levels, as HTTP:FLASH:VIDEO:YOUTUBE, so that kind of consistent
accounting could be performed. However, PACE is a commercial tool not accessible
for all the research community. Among the available open-source tools, nDPI and
Libprotoident reveal as the most reliable solutions. Surprisingly for us, Libprotoident
achieves very good results without giving a noticeable number of false classifications by
using the first four bytes of payload for each direction. On the other hand, L7-filter and
NBAR perform poorly in classifying the traffic from our dataset.

We did not observe large differences between the classifications performed on the
normal dataset and the set with truncated flows to maximum 10 packets. The set
with truncated packets is usually much worse classified than the other sets by all tools
except Libprotoident, which maintains the same accuracy. We found that our modified
version of L7-filter-com provides overall better results than the default L7-filter-all by
increased number of correct classifications and greatly reduced rate of misclassifications
(especially, regarding the web services).

Nonetheless, the previous conclusions are obviously tied to our dataset. Although
we have tried our best to emulate the real behavior of the users, many applications,
behaviors and configurations are not represented on it. Because of that it has some
limitations that we discuss next:

• In our study we have evaluated 17 well-known application protocols, 19 applica-
tions (including 4 in various configurations), and 34 web services. The results
obtained from the different classifiers are directly related to those groups. Thus,
the introduction of different groups could arise different outcomes.

• The traffic generated for building the dataset, although has been manually and
realistically created, is artificial. The backbone traffic would carry different be-
haviors of the groups that are not fully represented in our dataset (e.g., P2P
clients running on port 80). The performance of the tools studied might not be
directly extrapolated from the current results. However, the artificially created
traffic allowed us to publish the dataset with full packet payloads.

• The poor performance of NBAR and L7-filter might be affected by the charac-
teristics of our dataset. Thus, the reliability of previous works based on them is
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not called into question. Different configurations [10, 42, 45] and different or older
classification groups would probably produce different results.

• The classification levels have considerable impact on the results. For instance,
classifying Facebook, Google or Twitter is currently not possible by Libprotoident,
however it is possible by nDPI and PACE.

• The amount of data available would also have impacted on the performance. The
study presented in this paper is performed with full payload packets. However, in
other works the traces are usually collected with a few bytes of data [13, 46, 47]
(e.g., 96 bytes) in order to avoid packet loss, disk space, and privacy issues. For
this scenario, it seems that Libprotoident is a more suitable solution, giving it only
uses the first 4 bytes of every packet.

• The nature, distribution, and heterogeneity of the traffic would also impact the
performance. The amount of classes detected by PACE is considerably bigger
than detected by the rest of the classifiers, which makes PACE more suitable
for heterogeneous scenarios. Also, PACE and nDPI are able to classify traffic in
asymmetric scenarios.

7 Related Work
This section reviews the literature related to the comparison of DPI tools. The OpenDPI
tool amounts for most of the publications [6, 7, 10, 48, 49]. According to [6], the test
performed by the European Networking Tester Center (EANTC) in 2009 resulted in 99%
of detection and accuracy for popular P2P protocols by OpenDPI. The big amount of
flows marked as unknown by OpenDPI was confirmed in [48], where the authors made an
effort to calculate various parameters for traffic originated from different applications:
number of flows, data volume, flow sizes, number of concurrent flows, and inter-arrival
times. The study was based on 3.297TB of data collected during 14 days from an access
network with connected around 600 households. 80.1% of the flows, amounting for 64%
of the traffic volume, were marked as unknown by OpenDPI.

In [6], the authors study the impact of per-packet payload sampling (i.e., packet
truncation) and per-flow packet sampling (i.e., collect only the first packets of a flow)
on the performance of OpenDPI. The results show that OpenDPI is able to keep the
accuracy higher than 90-99% with only the first 4-10 packets of a flow. The impact by
the per-packet payload sampling is considerably higher. Their results use as ground-
truth the dataset labeled by OpenDPI with no sampling. Thus, the actual classification
of the dataset is unknown and no possible comparison with our work can be done.

Similar work, performed by the same authors, is described in [7]. The goal was
to find out what is the suggested number of packets from each flow, which needs to
be inspected by OpenDPI in order to achieve good accuracy, while maintaining a low
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computational cost. The focus was on Peer-to-Peer (P2P) protocols. The test was
performed on a 3GB randomly selected subset of flows from the data collected at an
access link of an institution over 3 days. The authors found that inspecting only 10
packets from each flow lowered the classification abilities of P2P flows by OpenDPI by
just 0.85% comparing to the classification of full flows, while saving more than 9% of
time.

In [10], the authors tested the accuracy of L7-filter and OpenDPI, and they also built
their own version of L7-filter with enhanced abilities of classification of the UDP traffic.
The data used in the experiment were collected by Wireshark, while the applications
were running in the background. The data were split into 27 traces, each for one
application, where all the applications were supported by both L7-filter and OpenDPI.
Other flows were removed from the dataset. However, they do not explain how they
validate the process of the isolation of the different applications. The obtained precision
was 100% in all the cases (none of the classification tools gave a false positive), while
the recall deviated from 67% for the standard L7-filter, through 74% for their own
implementation of L7-filter, and 87% for OpenDPI.

Fukuda compared in [47] the performance of L7-filter and OpenDPI on the backbone
traffic. The dataset used is characterized as being in majority asymmetric and containing
the packets truncated after 96 Bytes. The ground-truth is labeled using a port-based
technique and then the three DPI-based techniques are compared. The results show
that the DPI-based techniques are only able to classify 40-60% of the traffic in this
scenario.

In [8], the developers of Libprotoident evaluated the accuracy of the classification of
this tool and compared the results with OpenDPI, Nmap, and L7-filter. The ground-
truth was established by PACE, so only the flows recognized by PACE were taken into
account during the experiment. The accuracy was tested on two datasets: one taken
from the Auckland university network, and one from an Internet Service Provider (ISP).
On the first dataset, Libprotoident had the lowest error rate of less than 1% (OpenDPI:
1.5%, L7-filter: 12.3%, Nmap: 48%.). On the second dataset, Libprotoident achieved
the error rate of 13.7%, while OpenDPI 23.3%, L7-filter 22%, and Nmap 68.9%. The
authors claim that Libprotoident identified 65% of BitTorrent traffic and nearly 100% of
HTTP, SMTP, and SSL. Same authors also compared in [9] four open-source DPI-based
tools (i.e., nDPI, Tstat, Libprotoident, and L7-filter). Similarly to us, they artificially
built a labeled dataset using a complicate mix of filters in an isolated host. Unlike
us, their trace is not available to the community so no further comparison is possible.
However, their results confirms some of the findings of our paper presenting nDPI and
Libprotoident as the most accurate open-source DPI-based tools.

Another lightweight packet inspection approach was proposed in [50]. The authors
developed PortLoad, which was designed to be characterized by the speed of port-
based classifiers, while maintaining the accuracy of DPI tools. The authors showed
that almost all the matching strings start (99.98%) and finish (90.77%) in the first 32
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bytes of payload. Only the first packet in each direction is processed. PortLoad was
compared against L7-filter and the port-based approach. The experimental evaluation
showed that the processing time is cut down by more than 97% comparing to L7-filter,
while the accuracy was assessed to be 74%.

To the best of our knowledge, there are no accessible research studies or reports about
the accuracy of NBAR. However, an experiment was made to assess how big amount of
network traffic is classified by NBAR and L7-filter, and how big amount of traffic is left
as unknown [51]. The authors captured by Wireshark all the packets flowing in a local
network of an IT company during 1 hour. From 27 502 observed packets, 12.56% were
reported as unknown by NBAR, and 30.44% were reported as unknown by L7-filter.

A very comprehensive review of different methods for traffic classification was made
in 2013 by Silvio Valenti et al. [52]. The authors refer to 68 different positions in the
literature and cover the topic from the basis to more advanced topics, mostly dealing
with Machine Learning Algorithms (MLAs).

8 Conclusions
This paper presents a reliable evaluation of the accuracy of some of the most well-
known DPI-based network traffic classifiers. We compared the precision of six tools
(i.e., PACE, OpenDPI, L7-filter, nDPI, Libprotoident, and NBAR), which are usually
used for traffic classification. The results obtained in Section 5 and further discussed
in Section 6 show that PACE is, on our dataset, the most reliable solution for traffic
classification. Among the open-source tools, nDPI and Libprotoident present the best
results. The choice between them would depend on the scenario or the level on which
we would like to obtain the results. On the other hand, NBAR and L7-filter present
several inaccuracies that make them not recommendable for network traffic classification
in their current form.

In order to make the study trustworthy, we created a dataset using VBS [20]. This
tool associates the name of the process to each flow making its labeling totally reli-
able. The dataset of more than 750K flows contains traffic from popular applications.
Also, this dataset allows the validation of different techniques on different levels (i.e.,
application protocol, application, and web service). The total amount of data properly
labeled is 51.93GB. Furthermore, and more important, we released to the research com-
munity this dataset with full payload, so it can be used as a common reference for the
comparison and validation of network traffic classifiers.

Although this study is complete, the continuous evolution of the network applica-
tions and the DPI-based techniques allows a periodical updated of the evaluation. For
instance, this evaluation can be updated by adding new applications and web services
to the dataset (e.g., Netflix) and by introducing new classification tools to the study
(e.g., NBAR2 or Tstat). In this paper, we focused on the reliability of the DPI tools,
however, a possible line of future work can be related to their deployment for real-time
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classification (i.e., scalability and computational cost).
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Abstract

Network traffic analysis was traditionally limited to packet headers, because the
transport protocol and application ports were usually sufficient to identify the
application protocol. With the advent of port-independent, peer-to-peer, and en-
crypted protocols, the task of identifying application protocols became increasingly
challenging, thus creating a motivation for creating tools and libraries for network
protocol classification. This paper covers the design and implementation of nDPI,
an open-source library for protocol classification using both packet header and
payload. nDPI was extensively validated in various monitoring projects ranging
from Linux kernel protocol classification, to analysis of 10Gbit/s traffic, reporting
both high protocol detection accuracy and efficiency.

Keywords

passive traffic classification, Deep Packet Inspection, network traffic monitoring

1 Introduction
In the early days of the Internet, network traffic protocols were identified by a protocol
and port. For instance, SMTP used TCP port 25 while telnet used TCP port 23. This
well-know protocol/port association is specified in the /etc/protocols file, which is a
part of every Unix-based operating system. Over the time, with the advent of Remote
Procedure Call (RPC), the use of static ports became a problem. Therefore, specific
applications such as rpcbind and portmap were developed to handle dynamic mappings.
Historically, application ports up to 1024 identified essential system services, such as
email or remote system login and hence require super-user privileges; their port-to-
protocol bindings are preserved until today. Ports above 1024 are used for user-defined
services and are generally dynamic.

Protocol identification is often not reliable even when a static port is used. A case
in point is TCP/80 used for HTTP. Originally, HTTP was created to carry web-related
resources such as HTML pages and decorative content. However, its extensibility (in
no small part due to its header flexibility and MIME type specification) along with its
native integration in web browsers HTTP is now often used to carry non web-related
resources. For instance, it is now the de-facto protocol for downloading/uploading files,
thus replacing the File Transfer Protocol (FTP), which was designed specifically for that
purpose. The pervasive use of HTTP and its native support of firewalls (i.e., a firewall
recognizes and validates the protocol header), made HTTP (and its secure counterpart
HTTPS) the ideal developer choice when creating a new protocol that has to traverse
a firewall without restrictions. Many peer-to-peer protocols and popular applications
(e.g., Skype) use HTTP as the last resort when they need to pass through a firewall
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in case all other ports are blocked. We created traffic reports from various networks,
ranging from academic sites to commercial ISPs, and realized that HTTP is by far the
most widely used protocol. This does not mean that users mostly use it for surfing
the web. This protocol is extensively used by social networks, geographical maps, and
video-streaming services. In other words the equation TCP/80 = web is no longer valid.

The characterization of network protocols is required not only for creating accurate
network traffic reports, but increasingly, for overall network security needs. Modern
firewalls combine IP/protocol/port based security with selected protocol inspection in
order to validate protocols, in particular those based on UDP, e.g., Simple Network
Management Protocol (SNMP) and Domain Name System (DNS). VoIP protocols, such
as SIP and H.323, are inspected for specific information, e.g., the IP and port where voice
and video will flow. Cisco Network-based Application Recognition (NBAR) devices [1],
and Palo Alto Networks application-based firewalls [2] pioneered application-protocol
based traffic management. Today, these traffic inspection facilities are available on every
modern network security device, because the binding port/protocol scheme no longer
holds.

The need to increase network traffic visibility created a need for Deep Traffic In-
spection (DPI) libraries to replace the first generation of port-based tools [3]. Payload
analysis [4], however, uses extensive computational resource [5]. This difficulty triggered
the development of statistical analysis based approaches [6] often based on Machine-
Learning Algorithms (MLAs) [7, 8] instead of direct payload inspection. These meth-
ods often rely on statistical protocol properties such as packet size and intra-packet
arrival time distributions. Although some authors claim these algorithms provide high
detection accuracy [9, 10], real-life tests [11–16] demonstrated that:

• Such algorithms are able to classify only a few traffic categories (an order of mag-
nitude less than DPI libraries) and thus less suitable for fine protocol granularity
detection applications.

• Some tests show a significant rate of inaccuracy suggesting that such methods may
be useful in passive traffic analysis, but unlikely to be used for mission critical
applications, such as traffic blocking.

These needs constitute the motivation for developing an efficient open-source DPI
library where efficiency is defined by the requirement to monitor 10Gbps traffic using
solely commodity hardware (i.e., not specialized hardware needed). The use of open-
source is essential because:

• Commercial DPI libraries are very expensive both in terms of one-time license fee
and yearly maintenance costs. Sometimes their price is set based on yearly cus-
tomers revenues, rather than on a fixed per-license fee, thus further complicating
the price scheme.
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• Closed-source DPI toolkits are often not extensible by end-users. This means that
developers willing to add new/custom protocols support need to request these
changes to the toolkits manufacturer. In essence, users are therefore at the mercy
of DPI library vendors in terms of cost and schedule.

• Open-source tools cannot incorporate commercial DPI libraries as they are subject
to a Non-Disclosure Agreement (NDA) that makes them unsuitable to be mixed
with open-source software and included into the operating system kernel.

Although DPI was a hot topic for a long time, beside some rare exceptions, most
research works did not lead to the creation of a publicly available DPI toolkit but limited
their scope to prototypes or prof-of-concept tools. The need to create an efficient open-
source DPI library for network monitoring was the motivation for this work.

The rest of the paper is structured as follows. Section 2 describes the motivation
of this work and explains the differences from its predecessor OpenDPI [17]. Section 3
covers the nDPI design and implementation, while section 4 describes the validation
process. Section 5 concludes the paper. The current work on nDPI and the future plans
are described in Section 6.

2 Background and Motivation
DPI is defined as the analysis of a packet’s data payload in real time (i.e., DPI processing
must be faster than the traffic rate to be monitored as otherwise it would result in packet
drops) at a given physical location. Inspection is motivated by various reasons including
application protocol identification, traffic pattern analysis, and metadata (e.g., user
name) extraction. Some proprietary DPI library vendors such as iPoque, QOSMOS,
and Vineyard cover all aspects, whereas others, such as libprotoident [18], UPC [11],
L7-filter [19], and TIE [20] limit their scope to protocol identification [21–23].

Protocol detection may also be implemented using pattern matching or by using
specialized protocol decoders. The former approach is inefficient due to the use of
regular-expressions [24] and error-prone because it does not reconstruct packets in 6-
tuple flows (VLAN, Protocol, IP/port source/destination), thus missing cross-packet
matches. Searching for patterns within an un-decoded payload can also lead to out of
context search data (e.g., an email including an excerpt from a HTTP connection might
be confused with web-traffic) or mismatches when specific packet fields (e.g., NetBIOS
host name) are encoded.

Application drive the selection of the appropriate DPI library. We chose to focus on
network traffic monitoring that can range from passive packet analysis to active inline
packet policy enforcement. A DPI library must include the following features:

• High-reliability protocol detection for inline, per application, protocol policy en-
forcement.
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• Library extensibility is needed for new protocols and runtime in sub-protocols
definition. This feature is required because new protocols appear from time to time
or evolve (e.g., the Skype protocol changed significantly since after the Microsoft
acquisition). Permanent library maintenance is, therefore, required.

• Ability to integrate under an open-source license for use by existing open-source
applications and embedding into an operating system’s kernel. As already dis-
cussed, full source code availability is essential to safeguard privacy.

• Extraction of basic network metrics (e.g., network and application latency) and
metadata (e.g., DNS query/response) that can be used within monitoring appli-
cations thus avoiding duplicate packet decoding, once in the DPI library and also
in the monitoring application.

Our focus is, therefore, reliable protocol detection using protocol decoders combined
with the ability to extract selected metadata parameter for the use of applications that is
this library. This enables the extraction of selected metadata parameters that can then
be used by applications using the DPI library. Other open-source protocol detection
libraries, such as libprotoident, are limited in scope because they do not extract meta-
data and only analyze the first 4B of payload in each direction for protocol detection.
Because commercial DPI libraries could not be used a starting basis, we chose OpenDPI,
an open-source predecessor of the commercial iPoque Protocol and Application Classifi-
cation Engine (PACE), which is no longer maintained by its developers. OpenDPI was
designed to be both an application protocol detection and metadata extraction library.
Because it was unmaintained for some time, the library did not include any modern
protocol (e.g., Skype); the code was largely prototype quality and likely used as a proof
of concept for the commercial product. A point in favor of OpenDPI was the fact that it
was distributed under the GPLv3 license that allows developers to include it in software
applications without being bound to an NDA or other restrictions typical of commercial
DPI products. Furthermore, an open-source license allows the code to be inspected, key
requirement when the packet payload is inspected and potentially private information
might leak. Our choice of OpenDPI as the starting point was driven by these reasons.

2.1 From OpenDPI to nDPI
The OpenDPI library is written in C and it is divided in two main components: the core
library (responsible for handling raw packets, decoding IP layers 3 and 4, and extracting
basic information such as IP address and port) and plugin dissectors (responsible for
detecting the ~100 protocols supported by OpenDPI). nDPI inherited this two-layer
architecture but it addressed several issues present in the OpenDPI design:

• The OpenDPI library was designed to be extensible, but in practice the data
structures used internally were static. For instance, many data-types and bitmaps,
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used to keep the state for all supported protocols, were bound to specific sizes (e.g.,
128 bits) and thus limiting the number of identifiable protocols.

• Whenever a protocol was detected, the library tried to find further protocol
matches instead of just returning the first match. The result was a performance
penalty without a real need of requiring extra detection work.

• No encrypted protocol support (e.g., HTTPS). While encryption is designed to
preserve privacy and regular DPI libraries are not expected to decode the some
information can be gleaned to suggest the nature of the information carried on a
specific connection.

• OpenDPI was not designed to be a reentrant (i.e., thread-safe) library as it used
shared global variables. This required multi-threaded applications to create several
instances of the library or add semaphores in order to avoid multiple threads to
modify the same data at the same time. Per thread library state was required to
support reentrancy.

• Many parts of OpenDPI suggest problematic design choices. For instance, the
library was performing per-flow initializations, instead of doing them at once. As
the result, the applications using the library paid an unnecessary performance
penalty whenever a new connection was passed to OpenDPI.

• The protocol dissection was non-hierarchical. In other words, whenever a new
connection needed to be analyzed, the library was not applying the dissectors
based on their matching probability. For instance, if there is a connection on TCP
port 80, OpenDPI was not trying the HTTP dissector first, but it was applying
dissectors in the same order as they were registered in the library.

• The library had no runtime configuration capability; the only way to define new
dissectors was to code them in C. While this is usually a good policy for efficiency
reasons, at times more flexibility is needed. For instance, if a given user needs to
define a custom protocol Y as TCP/port-X it would be easier to have a runtime
configuration directive instead of changing the library code. OpenDPI assumes
that the library must have a dissector for all supported protocols, a difficult goal
to achieve in reality. In particular, in closed-environments such as a LAN, specific
hosts use proprietary/custom protocols that flow on specific ports/protocols. In
this case, it is more convenient for the user to detect them from the packet header
rather than from its payload.

• OpenDPI was not designed to extract any metadata from analyzed traffic. On one
hand this preserves privacy, but on the other it requires monitoring applications
to decode the application traffic again in order to extract basic information such
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as the URL from HTTP traffic. Reporting this information does not add any
overhead to the library as it is decoded anyway when parsing the packet payload.

Summarizing, OpenDPI was a good starting point for nDPI, because we did not have
to start from scratch. Many components of the original library were changed in order
to address the issues we identified. This was the ground work necessary to start the
creation of an efficient DPI library and extending the set of supported protocols. Not
surprisingly, the number of protocols recognized has an impact on both DPI detection
performance and protocol recognition. The more protocols recognized, the more time
spent on detection whenever a specific traffic pattern is not identified and thus all the
possible protocol decoders have to be tested for match. This means that DPI libraries
supporting many protocols may be slower in specific situation than those supporting
fewer. Another impact on performance is due to metadata extraction: the richer the set
of extracted attributes, the slower the processing. Although specific activities such as
string and pattern matching can be accelerated on specialized hardware platforms such
as Cavium and RMI, or using GPUs [25], we decided not to use any of these cards, in
order to let the library operate on all hardware platforms.

nDPI was designed to be used by applications that need to detect the application
protocol of communication flow. Its focus is on Internet traffic, thus all the available
dissectors support standard protocols (e.g., HTTP and SMTP) or selected proprietary
ones (e.g., Skype or Citrix) that are popular across the Internet community. In the
latter case, as protocol specifications are not publicly available, we had to create the
dissectors by reverse-engineering network traffic. Although nDPI can extract specific
metadata (e.g., HTTP URL) from analyzed traffic, it was not designed as a library to
be used in fields such as lawful interception or data leak prevention; its primary goal is
to characterize network traffic. Similarly to OpenDPI, nDPI can be used both inside
the Linux kernel and in user-space applications, and it work on most operating systems
including Linux, Windows, MacOS X, as well as non-Intel CPU architectures such as
ARM and MIPS.

3 Design and Implementation of nDPI
nDPI defines an application protocol by a unique numeric protocol Id and a symbolic
protocol name (e.g., Skype). Applications using nDPI will probably use the protocol
Id whereas humans the corresponding name. The protocol set includes both network
protocols such as SMTP or DNS, and communications over network protocols. For
instance, Facebook and Twitter are treated as two protocols, although that in fact they
are communications from/to Facebook/Twitter servers. A protocol is usually detected
by a traffic dissector written in C, but it can be defined also in terms of protocol/port, IP
address (e.g., traffic from/to specific networks), and protocol attributes. For instance,
the Dropbox traffic is identified by both the dissector for LAN-based communications,
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and by tagging as Dropbox the HTTP traffic on which the ‘Host’ header field is set to
‘*.dropbox.com’. As explained later in this section, nDPI supports over 170 protocols,
but it can also be further extended at runtime using a configuration file.

The nDPI library inherits some of OpenDPI design, where the library code is used
for implementing general functions, and protocol dissection is implemented in plugins.
All the library code is now fully reentrant, meaning that applications based on nDPI
do not need to use locks or other techniques to serialize operations. All the library
initialization is performed only once at startup, without a runtime penalty when a new
packet needs to be dissected. nDPI expects the caller to provide the packet divided in
flows (i.e., set of packets with the same VLAN, protocol, IP/port source/destination),
and that the packet was decoded up to layer 3. This means that the caller has to
handle all the layer-2 encapsulations, such as VLAN and MPLS, by leaving to nDPI
the task of decoding the packet from the IP layer up. nDPI comes with a simple test
application named pcapReader.c [26], that shows how to implement packet classification
and provides utility functions for efficient flow processing. The protocol dissectors are
registered with attributes, such as the default protocol and port. For instance, the
HTTP dissector specifies the default TCP/80, and the DNS dissector TCP/UDP on
port 53. This practice has two advantages:

• Packets belonging to a yet unclassified flow are passed to all registered dissectors,
starting from the most likely one. For instance, a TCP packet on port 80 is
first passed to the HTTP protocol and then (if not identified) to the remaining
registered dissectors. Of course only dissectors for TCP protocols are considered,
which reduces the number of dissectors that are tested, and decreases the matching
time. This optimization does not prevent detecting HTTP on non-standard ports.

• When a flow is still unclassified (none of the dissectors matched), nDPI can guess
the application protocol based on the transport protocol and port. Note that a
flow can be unclassified not just because of protocol dissectors limitations, but
also because not all flow packets where passed to nDPI. A typical example is the
case when nDPI has to dissect packets belonging to a flow whose beginning was
not analyzed (e.g., nDPI was activated after the flow start).

The protocol recognition lifecycle for a new flow begins from decoding layers 3 and
4 of the packet. In case there is a dissector registered for the packet protocol/port, such
dissector is tried first. In case of no match, all the compatible dissectors (i.e., in case of
a UDP packet, all UDP dissectors) are tried. If a dissector cannot match a packet, it
has two options: either the match failed because the analyzed packet will never match
(e.g., a DNS packet passed to the SNMP dissector), or it failed but it may be that
future packets will match. In the former case, the dissector will not be considered for
future packets belonging to the same flow, whereas in the latter the dissector will still
be considered for future packets belonging to the same flow. Protocol detection ends as
soon as a dissector matches.
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A typical question asked by nDPI users is how many packets are needed to detect
the application protocol or to decide that the given flow is unknown. From our experi-
ence, the number is protocol dependent. For most UDP-based protocols, such as DNS,
NetFlow, or SNMP one packet is enough to make this decision. Unfortunately, there
are other UDP-based protocols such as BitTorrent, whose signature might require up
to 8 packets in order to be detected. This leads us to the rule of thumb that for nDPI
at most 8 packets per direction are enough to make a decision.

3.1 Handling Encrypted Traffic
The trend of Internet traffic is towards encrypted communications. Due to security and
privacy concerns, HTTPS is slowly replacing HTTP not just for secure transactions
but also for sending tweets and messages to mobile terminals, posting notes, and per-
forming searches. Identifying this traffic as SSL is not enough, but it is necessary to
better characterize it. When using encrypted communications, the only part of the data
exchange that can be decoded is the initial key exchange. nDPI contains a decoder for
SSL that extracts the host name from the server certificate. This information is placed
in the nDPI flow metadata in a similar way as the server name from the ‘Host:’ HTTP
header. With this approach we can identify known services and tag them according to
the server name. For instance, an encrypted communication towards a server named
‘api.twitter.com’ is marked as Twitter, ‘maps.google.com’ as Google maps, and ‘*.what-
sapp.net’ as the WhatsApp messaging protocol. We can also discover self-signed SSL
certificates, which is important as it might indicate that the connection is not safe, not
just in terms of data leak, but also in terms of the activity behind the communication.
For instance symmetric (i.e., the traffic is not predominant in one direction such as in
HTTPS, where the client sends little traffic with respect to the traffic sent by the server)
long standing SSL connections with self-signed certificates often hide SSL VPNs.

As described later in this section, nDPI contains internally a configuration for many
known protocols that are discovered using the above technique. In addition, it is possible
to add at runtime a configuration file that further extends the set of detected protocols
so that new ones can be defined without changing the protocol dissector. With the
advent of Content Delivery Networks (CDN) this is probably the only way of identi-
fying the application protocol, as at any given time the same server (identified with a
single IP address) can deliver two different services provided by two customers using the
same CDN. As a fallback, nDPI can identify specific application protocols using the IP
address. For instance, nDPI detects many Apple-provided services, such as iTunes and
iMessage. In addition to that, it marks as Apple (a generic protocol) all communications
that were not specifically identified, but that were exchanged with the Apple-registered
IP addresses (i.e., 17.0.0.0/8).
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3.2 Extending nDPI
As previously explained, nDPI users can define protocols not just by adding a new
protocol dissector, but also providing a configuration file at runtime. New protocols
are defined by name. When nDPI detects that a protocol name is already defined
(e.g., in the above example SIP and HTTP are handled by the native dissector), the
configuration file extends the default configuration already present in nDPI. For instance
in the previous example, whenever nDPI sees TCP traffic on port 81 or 8181 it tags it as
HTTP. Additionally, nDPI can also identify a protocol using strings that are matched
against metadata extracted from the nDPI flow such as HTTP Host and SSL certificate
server name. The defined strings are stored by an automata based on the Multifast [27]
library that implements string matching according to the Aho-Corasick algorithm. This
library is quite efficient: at startup the automata creation takes little time (i.e., almost
instantaneous with tenth of strings, or some seconds with hundred thousand strings),
then this library configured performs over 10Gbps during search when configured with
hundred thousand strings.

4 Validation of nDPI
There are recent papers that compare the nDPI accuracy in terms of protocol detection
against other DPI toolkits. Their conclusion is that “nDPI and libprotoident were
successful at correctly classifying most (although admittedly not all) of the applications
that we examined and only one of the evaluated applications could not be classified by
both tools” [14], and “the best accuracy we obtained from nDPI (91 points), PACE
(82 points), UPC MLA (79 points), and Libprotoident (78 points)” [11]. These tests
showed that nDPI is pretty accurate, even more accurate than PACE, the commercial
version of the old OpenDPI library on which nDPI is based. We are aware that nDPI
had some false positives with Skype and BitTorrent due to the use of heuristics. In the
further nDPI versions (svn revision 7249 or newer), we decided to remove the use of these
heuristics, so that we basically eliminated false positives at the cost of slightly increasing
the number of undetected flows when using these two protocols. We also re-implemented
support for several other protocols, as FTP, SOCKSv4, SOCKSv5, eDonkey, PPLive,
Steam, RTMP, and Pando. Furthermore, we added the ability to discover new web
services, e.g., Wikipedia and Amazon.

The latest version of nDPI was tested using the same methodology and the same
dataset as in [28], so we could compare the results and show the impact of the latest
changes. In essence, the ground-truth was established by a host-based traffic monitoring
system, which marks flows by the process names obtained from the system sockets. The
results in the term of percent of flows classified correctly, incorrectly, and left unclassified
for the most popular protocols, applications, and web services are shown in Table 1.
Sometimes, the results were obtained on another level than the test presumed. For
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Table 1: Evaluation of the Latest Version of nDPI

Protocol Flows Correct [%] Wrong [%] Unknown [%]
DNS 18 251 100.00 0.00 0.00
HTTP 42 983 97.80 0.66 1.54
ICMP 205 100.00 0.00 0.00
IMAP (Start-TLS) 35 100.00 0.00 0.00
IMAP (TLS) 103 100.00 0.00 0.00
NETBIOS (Name Service) 10 199 99.97 0.00 0.03
NETBIOS (Session Service) 11 100.00 0.00 0.00
Samba Service 42 808 100.00 0.00 0.00
NTP 42 227 100.00 0.00 0.00
POP3 (plain mode) 26 100.00 0.00 0.00
POP3 (TLS) 101 100.00 0.00 0.00
RTMP 378 70.90 15.87 13.23
SMTP (plain mode) 67 100.00 0.00 0.00
SMTP (TLS) 52 100.00 0.00 0.00
SOCKSv5 1 927 92.99 0.00 7.01
SSH 38 961 93.98 0.80 5.22
BitTorrent (encrypted mode) 96 399 54.41 0.18 45.41
BitTorrent (mixed mode) 261 527 99.41 0.02 0.57
DropBox 93 98.92 0.00 1.08
eMule (obfuscated) 12 835 11.04 2.67 86.29
eMule (mixed mode) 13 852 17.57 2.28 80.15
FTP (active mode) 126 98.41 0.00 1.59
FTP (passive mode) 122 72.95 0.00 27.05
iTunes 235 93.62 0.00 6.38
Pando Media Booster 13 453 99.26 0.63 0.11
PPLive 1 510 43.91 1.06 55.03
RDP 153 837 99.69 0.02 0.29
Skype 2 177 92.38 7.44 0.18
Sopcast 424 63.68 8.49 27.83
Steam 1 205 76.02 0.42 23.57
TOR 185 33.51 0.00 66.49
web: Amazon 602 83.89 0.00 16.11
web: Apple 477 74.63 0.00 25.37
web: Facebook 6 953 80.14 0.00 19.86
web: Google 6 541 83.03 0.02 16.95
web Wikipedia 6 092 68.96 0.23 30.81
web: Yahoo! 17 373 83.16 0.02 16.82
web: YouTube 2 534 82.16 0.00 17.84
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# taskset -c 1 ./ pcapReader -i ~/ test.pcap
Using nDPI ( r7253 )
pcap file contains
IP packets : 3000543 of 3295278 packets
IP bytes :1043493248( avg pkt size 316 bytes )
Unique flows : 500
nDPI throughput : 3.42 M pps / 8.85 Gb/sec

Figure 1: Test Outcome of nDPI Validation

example, when we tested for the ability to detect the HTTP traffic, we also obtained
results as Google, Facebook, or DropBox. In this evaluation, we acknowledged such
results as correct, even though the protocol was not explicitly given. That could lead to
a minor inaccuracy in case if the detected Facebook traffic was in fact not HTTP (but,
for example, SSL). This is the only difference from the tests performed in [28], where
only the results on the asked level were considered as correct (e.g., HTTP), while the
others (e.g., Facebook) were considered as being unclassified).

As there are many extensive tests on nDPI protocol detection accuracy, this paper
focuses on nDPI performance. For that purpose, we developed an application named
pcapReader [26] that can both capture from a physical network device and read packets
from a pcap file. To test nDPI on a physical network at 10Gbps, we used the test
application on top of PF_RING [29], which allows applications on commodity hardware
to process packets in RX/TX at 10Gbps line rate for any packet size. For our tests,
we used a pcap file of over 3 million packets, captured on a heterogeneous environment,
thus including both LAN protocols (e.g., NFS and NetBios) and Internet protocols (e.g.,
Skype and DropBox). We used a PC running Ubuntu Linux 13.10 (kernel 3.11.0-15) on
a 8 core Intel i7 860. We bound the application to a single core, in order to test it in
the worst case, and see how the application can scale when using multiple cores. The
test outcome is depicted in Figure 1.

The outcome demonstrated that the test application processes packets at an average
speed of 3.5Mpps / 8.85Gbps using a single core. As the test pcap file used during the
test was captured on a real network, it contained some flows that began before the packet
capture started. nDPI detects a flow protocol by looking at the initial flow packets, so
some flows are not detected due to this reason. For undetected flows, nDPI can guess
the protocol by using the flow protocol/port registered during startup or it can leave the
flows undetected. When using this test application over PF_RING DNA on a 10Gbps
Intel adapter, it is possible to use the network driver with hardware flow balancing. In
this way, we can start one instance of the test application per virtual queue, binding
each instance to a different core. In sum, 10Gbps traffic can be inspected when balanced
across two cores (the above tests show DPI at 8Gbps using a single core), using the
modestly priced commodity hardware we used in our tests.
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In terms of memory usage, nDPI needs some memory to load the configuration and
automatas used for string-based matching. This memory used by nDPI is ~210KB with
no custom configuration loaded that increases of ~25KB when a custom configuration is
loaded. In addition to that, nDPI keeps per-flow information that is independent from
the application protocols and which takes ~1KB per flow.

5 Conclusion
This paper presents nDPI, an open-source toolkit released under GPLv3 license available
at https://svn.ntop.org/svn/ntop/trunk/nDPI/. It is currently able to detect more
than 170 protocols including Skype, BitTorrent, and other messaging protocols. The
validation test performed by third parties demonstrated that nDPI outperforms some
commercial and open-source toolkits in terms of protocol recognition accuracy. In terms
of performance, using two CPU cores and commodity hardware, nDPI can handle a
10Gbit link fully loaded with Internet traffic. This makes it suitable for scenarios where
both detection accuracy and high performance are a requirement.

6 Final Remarks
The development of nDPI is still ongoing. There are several important features, which
are missing in the current version of nDPI, however, they are planned to be included in
the official SVN trunk in the near future.

The most important drawback of the current implementation (as well as of the
majority of the currently existing traffic classification tools) is the quality of the provided
results. Habitually, the classifiers provide only result per flow, which is supposed to
characterize the flow in the most detailed manner. Therefore, the output is a mix
of results on various levels: IP protocols (i.e., TCP or UDP), application protocols
(e.g., DNS, HTTP, SSL, BitTorrent, or SMTPS), types of the content (e.g., MPEG, or
Flash), and finally, the service providers (e.g., Facebook, or YouTube). The usefulness
of such result is very limited. At first, one flow can use several application protocols
(as HTTP and Dropbox). At second, one application protocol (as DNS) can use several
IP protocols (TCP and UDP). At third, it is impossible to judge if the most detailed
level is the content (as Flash) or the service (as YouTube). Finally, this scheme does
not allow to provide precise accounting of the traffic (for example, it is not possible
to account the HTTP traffic, if the results are given on multiple levels, so in majority
of cases HTTP is even not mentioned). Therefore, we are changing the format of the
results, so all the possible classifications will be consistently provided.

https://svn.ntop.org/svn/ntop/trunk/nDPI/
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Traffic monitoring and analysis can be done for multiple different reasons: to 
investigate the usage of network resources, adjust Quality of Service (QoS) 
policies in the network, log the traffic to comply with the law, or create 
realistic models of traffic for academic purposes. The core activity in this 
area is traffic classification, which is the main topic of this thesis.

We introduced the already known methods for traffic classification (as by 
using transport layer port numbers, Deep Packet Inspection (DPI), statistical 
classification) and assessed their usefulness in particular areas. Statistical 
classifiers based on Machine Learning Algorithms (MLAs) were shown to be 
accurate and at the same time they do not consume a lot of resources and 
do not cause privacy concerns. However, they require good quality training 
data. We performed substantial testing of widely used DPI classifiers and 
assessed their usefulness in generating ground-truth, which can be used as 
training data for MLAs. Because the existing methods were shown to not be 
capable of generating the proper training data, we built our own host-based 
system for collecting and labeling of network data, which depends on 
volunteers. Afterwards, we designed and implemented our own system for 
traffic classification based on various statistical methods, which provides 
consistent results on all of the 6 levels: Ethernet, IP protocol, application, 
behavior, content, and service provider. Finally, we contributed to the open 
source community by improving the accuracy of nDPI traffic classifier. The 
thesis also evaluates the possibilities of using various traffic classifiers in 
order to assess the per-application QoS level.
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