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We consider stochastic differential equations with additive noise and conditions on the coefficients in those equations that allow
a time singularity in the drift coefficient. Given a maximum step size, ℎ∗, we specify variable (adaptive) step sizes relative to
ℎ
∗ which decrease as the time node points approach the singularity. We use an Euler-type numerical scheme to produce an

approximate solution and estimate the error in the approximation. When the solution is restricted to a fixed closed time interval
excluding the singularity, we obtain a global pointwise error of order 𝑂 (ℎ∗). An order of error 𝑂 (ℎ∗𝑝) for any 𝑝 < 1 is obtained
when the approximation is run up to a time within ℎ∗𝑞 of the singularity for an appropriate choice of exponent 𝑞. We apply this
scheme to Brownian bridge, which is defined as the nonanticipating solution of a stochastic differential equation of the type under
consideration. In this special case, we show that the global pointwise error is of order 𝑂 (ℎ∗), independent of how close to the
singularity the approximation is considered.

1. Introduction

Numerical approximation methods for stochastic differential
equations (SDEs) are well developed for SDEs with coeffi-
cients satisfying Lipschitz conditions. One of basic methods
is the Euler-Maruyama algorithm which is presented in [1]
and also well explained by Kloeden and Platen [2]. It is
developed using Taylor series expansions and the Itô formula
and is analogous to the Euler algorithm for the deterministic
case. The Euler method with constant step sizes gives the
global error 𝑂(ℎ1/2) when drift and diffusion terms satisfy
global Lipschitz and linear growth conditions. In addition
to methods with constant step sizes, methods with variable
(adaptive) step sizes have been developed, for example, those
in [3–7]. In general, these methods seek to improve the
efficiency of the algorithms by adapting the step sizes to the
state of the numerical solution at successive stages of the
algorithm.

We consider stochastic differential equations with addi-
tive noise and an endpoint singularitywith respect to the time

variable in the drift term. With this time singularity, the
global error estimate for the Euler-Maruyama scheme can
only be applied up to a fixed time before the singularity. Using
fixed step sizes to generate a numerical approximation for a
time closer to the singularity comes at a great cost in efficiency
due to the much smaller step size required to produce the
same order of global error. We seek to increase the efficiency
of the algorithm by using variable step sizes adapted to the
shape of the singularity. In making this adaptation, we must
also ensure that the step sizes do not become so small that
the sum of the steps cannot reach times arbitrarily close to
the singularity.

We consider a stochastic differential equation of the form

𝑑𝑋
𝑡
=
𝑔 (𝑡, 𝑋

𝑡
)

1 − 𝑡
𝑑𝑡 + 𝜎𝑑𝑊

𝑡
, 0 ≤ 𝑡 < 1, (1a)

𝑋 (0) = 𝑥
0
, (1b)

where 𝜎 is a constant,𝑊
𝑡
is standard Brownian motion, and

𝑔(𝑡, 𝑥) satisfies linear growth and Lipschitz conditions with
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bounds for derivatives up to the second order. For example,
suppose that, uniformly in 𝑡 on [0, 1),

𝑔 (𝑡, 𝑥)
 ≤ 𝑘0 (1 + |𝑥|) , (2a)

𝑔1 (𝑡, 𝑥)
 ≤ 𝑘1 (1 + |𝑥|) , (2b)

𝑔2 (𝑡, 𝑥)
 ≤ 𝐶1, (2c)

𝑔22 (𝑡, 𝑥)
 ≤ 𝐶2, (2d)

E [𝑋
2

𝑡
] ≤ 𝐾, (2e)

where 𝑔
𝑖
denotes the partial derivative of 𝑔with respect to the

𝑖th variable.
Note that the singularity in the drift term stops us

from using the standard results of numerical analysis. To
overcome this problem, we use variable step sizes and stop
the approximation at 𝑡 = 1 − 𝛿 where 0 < 𝛿 < 1. We estimate
bounds for the pointwise local error and we use a lemma [8]
to estimate the 𝐿2 global error. We fix a maximum step size
ℎ
∗ and produce variable steps and node points depending

on ℎ∗ in order to produce an estimate of the global error
of order 𝑂(ℎ∗) for fixed 𝛿. The same algorithm and analysis
using fixed step sizes fail to produce an estimate of global
error. We further show that there is a choice of 𝛿 depending
on ℎ∗ so that the global error is of order𝑂(ℎ∗𝑝) for positive 𝑝
and 𝛿 converges to 0 as ℎ∗ converges to 0. In this analysis we
also obtain an estimate of the number of node points required
for a given ℎ∗ and 𝛿. The trade-off for producing our global
error estimate is that this number grows faster than 1/ℎ∗,
the corresponding number of node points for fixed step size
approximations.

In Section 4, we apply this method to the process well
known as the Brownian bridge (BB). Here we use the version
of Brownian bridge that is the strong, adapted solution of a
stochastic differential equation of the form (1a)-(1b) [9, p. 75].
BB is a stochastic process that starts at a specific point and
converges to a specific point at a given time. BB is widely used
in Monte Carlo simulations and many other applications [10,
11]. Most of the applications use simpler anticipating versions
of BB like𝑋

𝑡
= 𝑊
𝑡
−𝑡𝑊
1
to avoid the approximation problem

that occurs from the singularity in the drift term. We apply
our methods to numerically approximate Brownian bridge
and obtain even better estimates of global error than those
for our general problem. For more properties of Brownian
bridge, one can refer to [12, p. 86–89].

Brownian bridge from 𝑎 to 𝑏 is given by the following SDE
[9, p. 75]. For the sake of simplicity, we use 𝑎 = 0 and 𝑏 = 1
later in our analysis. For fixed 𝑎, 𝑏 ∈ R,

𝑑𝑋
𝑡
=
𝑏 − 𝑋

𝑡

1 − 𝑡
𝑑𝑡 + 𝑑𝑊

𝑡
, 0 ≤ 𝑡 < 1, (3a)

𝑋
0
= 𝑎. (3b)

Then the solution of the above SDE is given by

𝑋
𝑡
= 𝑎 (1 − 𝑡) + 𝑏𝑡 + (1 − 𝑡) ∫

𝑡

0

𝑑𝑊
𝑠

1 − 𝑠
, 0 ≤ 𝑡 < 1. (4)

Also,

lim
𝑡→1

𝑋
𝑡
= 𝑏, almost surely. (5)

It is clear that BB satisfies conditions given in (2a)–(2d). It
can also be proven that BB satisfies the bounded moment
condition, (2e), but wewill show that our proposed numerical
method can be applied directly to the Brownian bridge
process to obtain the improved global error estimate without
using the assumption of bounded moments.

In Section 2, we discuss the Euler-Maruyamamethod and
some lemmas used in this paper. In Section 3, we propose the
numerical approximation with variable (adaptive) step sizes
based on the Euler-Maruyama algorithm and we analyze the
error. In Section 4, we apply these methods to approximate
the specific example, Brownian bridge, and we show that the
order of the global error estimate is better for BB than for the
general case.

2. Euler-Maruyama Algorithm and
Fundamental Lemmas

Let 𝑊
𝑡
be standard Brownian motion, and let F

𝑡
be the

natural filtration.We use the following general stochastic dif-
ferential equation and Itô formula to present the development
of Euler-Maruyama algorithm:

𝑑𝑋
𝑡
= 𝑎 (𝑡, 𝑋

𝑡
) 𝑑𝑡 + 𝑏 (𝑡, 𝑋

𝑡
) 𝑑𝑊
𝑡
, 𝑋
0
= 𝜉, (6)

where 𝑎(𝑡, 𝑋
𝑡
), 𝑏(𝑡, 𝑋

𝑡
) ∈ [0,∞] × Ω → R.

The same thing can be given in integral notation assuming
all the integrals exist [9, p. 22]. The second integral is the Itô
integral

𝑋
𝑡
= 𝑋
0
+ ∫

𝑡

0

𝑎 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑏 (𝑠, 𝑋
𝑠
) 𝑑𝑊
𝑠
. (7)

Theorem 1 (Itô Formula [9, p. 46]). Let 𝑋
𝑡
be an Itô process

given by

𝑑𝑋
𝑡
= 𝑎𝑑𝑡 + 𝑏𝑑𝑊

𝑡
, (8)

where 𝑎 : [0,∞] × Ω → R and 𝑏 : [0,∞] × Ω →

R are measurable, F
𝑡
-adapted, and integrable (resp., square

integrable) on every interval [0, 𝑡], almost surely. Let 𝑔(𝑡, 𝑥) ∈
C2([0,∞)×R). Then 𝑌

𝑡
= 𝑔(𝑡, 𝑋

𝑡
) is again an Itô process and

𝑑𝑌
𝑡
=
𝜕𝑔

𝜕𝑡
(𝑡, 𝑋
𝑡
) 𝑑𝑡 +

𝜕𝑔

𝜕𝑥
(𝑡, 𝑋
𝑡
) 𝑑𝑋
𝑡
+
1

2
𝑏
2
𝜕
2

𝑔

𝜕𝑥2
(𝑡, 𝑋
𝑡
) 𝑑𝑡.

(9)

Consider a sequence of times 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑁
and

the corresponding step sizes ℎ
𝑛
= 𝑡
𝑛
− 𝑡
𝑛−1

. Following [13, p.



International Journal of Stochastic Analysis 3

56], we use the Itô formula to expand the drift and diffusion
terms in (7),

𝑋(𝑡
𝑛+1
)

= 𝑋 (𝑡
𝑛
) + ∫

𝑡
𝑛+1

𝑡
𝑛

𝑎
𝑡
𝑑𝑡 + ∫

𝑡
𝑛+1

𝑡
𝑛

𝑏
𝑡
𝑑𝑊
𝑡

= 𝑋 (𝑡
𝑛
) + ∫

𝑡
𝑛+1

𝑡
𝑛

(𝑎
𝑡
𝑛

+ ∫

𝑡

𝑡
𝑛

(𝐴𝑎)
𝑠
𝑑𝑠 + ∫

𝑡

𝑡
𝑛

(𝐵𝑎)
𝑠
𝑑𝑊
𝑠
)𝑑𝑡

+ ∫

𝑡
𝑛+1

𝑡
𝑛

(𝑏
𝑡
𝑛

+ ∫

𝑡

𝑡
𝑛

(𝐴𝑏)
𝑠
𝑑𝑠 + ∫

𝑡

𝑡
𝑛

(𝐵𝑏)
𝑠
𝑑𝑊
𝑠
)𝑑𝑊
𝑡

= 𝑋 (𝑡
𝑛
) + 𝑎
𝑡
𝑛

ℎ
𝑛+1
+ 𝑏
𝑡
𝑛

Δ𝑊
𝑛+1
+ ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

(𝐴𝑎)
𝑠
𝑑𝑠 𝑑𝑡

+ ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

(𝐵𝑎)
𝑠
𝑑𝑊
𝑠
𝑑𝑡 + ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

(𝐴𝑏)
𝑠
𝑑𝑠 𝑑𝑊

𝑡

+ ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

(𝐵𝑏)
𝑠
𝑑𝑊
𝑠
𝑑𝑊
𝑡
,

(10)

where ℎ
𝑛+1

= 𝑡
𝑛+1
− 𝑡
𝑛
, Δ𝑊
𝑛+1

= 𝑊(𝑡
𝑛+1
) − 𝑊(𝑡

𝑛
), 𝐴𝑓 =

𝑓
1
+ 𝑎𝑓
2
+ (1/2)𝑏

2

𝑓
22
, 𝐵𝑓 = 𝑏𝑓

2
, 𝑎
𝑠
= 𝑎(𝑠, 𝑋(𝑠)), and 𝑏

𝑠
=

𝑏(𝑠, 𝑋(𝑠)). Because 𝑊 is standard Brownian motion, Δ𝑊
𝑛

forms a sequence of independent Gaussian random variables
with mean zero and Var(Δ𝑊

𝑛
) = ℎ
𝑛
.

The first three terms of expansion generate the Euler-
Maruyama algorithm with variable step sizes ℎ

𝑛
[2, p. 190].

The double integrals yield the local truncation error. So we
define the numerical scheme by

𝑌
𝑛+1
= 𝑌
𝑛
+ 𝑎 (𝑡
𝑛
, 𝑌
𝑛
) ℎ
𝑛+1
+ 𝑏 (𝑡
𝑛
, 𝑌
𝑛
) Δ𝑊
𝑛+1
. (11)

With suitable conditions on the coefficient function 𝑎
and with 𝑏 constant, it can be shown that mean square local
truncation error is of order 𝑂(ℎ3

𝑛+1
) as ℎ

𝑛+1
↓ 0. Let 𝜖

𝑛+1
=

𝑋
𝑛+1
−𝑌
𝑛+1

. When step sizes are fixed at ℎ, it follows that [13,
p. 60]

E [𝜖
2

𝑛+1
] ≤ (1 + 𝑚

1
ℎ)E [𝜖

2

𝑛
] + 𝑚
2
ℎ
3

. (12)

It can be further shown that the global error (E[𝜖2
𝑛
])
1/2

= 𝑂(ℎ)

as ℎ ↓ 0 [13, p. 61]. In the process of estimating the global
error, the following lemma is used. This is an easy extension
of a fundamental lemma of numerical analysis [8, p. 189].

Lemma 2. If 𝑀
1
≥ −1 and 𝑀

2
≥ 0 are real numbers and

{𝑎
𝑛
}
𝑁

𝑛=0
is a sequence with 𝑎

0
≥ 0 s.t.

𝑎
𝑛+1
≤ (1 +𝑀

1
) 𝑎
𝑛
+𝑀
2

(13)

for all 𝑛 = 0, 1, 2, . . . , 𝑁 − 1, then

𝑎
𝑛+1
≤ 𝑒
𝑛𝑀
1 (
𝑀
2

𝑀
1

+ 𝑎
0
) −

𝑀
2

𝑀
1

(14)

for all 𝑛 = 0, 1, 2, . . . , 𝑁 − 1.

3. Numerical Approximation for
SDE with Singularity

We return to the SDE of the form (1a)-(1b) presented in
Section 1:

𝑑𝑋
𝑡
=
𝑔 (𝑡, 𝑋

𝑡
)

1 − 𝑡
𝑑𝑡 + 𝜎𝑑𝑊

𝑡
, 0 ≤ 𝑡 < 1, (15a)

𝑋 (0) = 𝑥
0
, (15b)

where 𝜎 is a constant and 𝑔(𝑡, 𝑥) satisfies linear growth and
Lipschitz conditions with bounds for derivatives up to the
second order. In particular, we suppose that, uniformly in 𝑡
on [0, 1),

E [𝑔(𝑡, 𝑋
𝑡
)
2

] ≤ 𝐾
0
, (16a)

E [𝑔
1
(𝑡, 𝑋
𝑡
)
2

] ≤ 𝐾
1
, (16b)

𝑔2 (𝑡, 𝑥)
 ≤ 𝐶1, (16c)

𝑔22 (𝑡, 𝑥)
 ≤ 𝐶2. (16d)

It follows then that
𝑔 (𝑡, 𝑥) − 𝑔 (𝑡, 𝑦)

 ≤ 𝐶1
𝑥 − 𝑦

 . (17)

These conditions follow, for example, from the conditions
given in (2a)–(2e).

In this case, 𝑎(𝑡, 𝑥) = 𝑔(𝑡, 𝑥)/(1 − 𝑡) and 𝑏(𝑡, 𝑥) = 𝜎, and
thus

𝐴𝑎 =
𝑔 (𝑡, 𝑥)

(1 − 𝑡)
2

+
𝑔
1
(𝑡, 𝑥)

1 − 𝑡
+
𝑔 (𝑡, 𝑥) 𝑔

2
(𝑡, 𝑥)

(1 − 𝑡)
2

+
𝜎
2

𝑔
22
(𝑡, 𝑥)

2 (1 − 𝑡)
,

𝐵𝑎 =
𝜎𝑔
2
(𝑡, 𝑥)

(1 − 𝑡)
,

𝐴𝑏 = 𝐵𝑏 = 0.

(18)

Note that the derivatives of 𝑎 are not bounded. Nevertheless,
on each subinterval where 𝑡

𝑛+1
< 1, we have the expansion

from (10) and the numerical algorithm from (11), respectively:

𝑋
𝑛+1
= 𝑋
𝑛
+
𝑔 (𝑡
𝑛
, 𝑋
𝑛
)

1 − 𝑡
𝑛

ℎ
𝑛+1
+ 𝜎Δ𝑊

𝑛+1

+ ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

(𝐴𝑎)
𝑠
𝑑𝑠 𝑑𝑡 + ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

(𝐵𝑎)
𝑠
𝑑𝑊
𝑠
𝑑𝑡,

(19)

𝑌
𝑛+1
= 𝑌
𝑛
+
𝑔 (𝑡
𝑛
, 𝑌
𝑛
)

1 − 𝑡
𝑛

ℎ
𝑛+1
+ 𝜎Δ𝑊

𝑛+1
. (20)

Label the two integral terms as 𝐿
1
and 𝐿

2
, respectively, and

let 𝜖
𝑛+1
= 𝑋
𝑛+1
− 𝑌
𝑛+1

. We have

𝜖
𝑛+1
= 𝜖
𝑛
+

ℎ
𝑛+1

(1 − 𝑡
𝑛
)
⋅ (𝑔 (𝑡

𝑛
, 𝑋
𝑛
) − 𝑔 (𝑡

𝑛
, 𝑌
𝑛
)) + 𝐿

1
+ 𝐿
2
.

(21)
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Using the relation

E [𝜖
2

𝑛+1
] = E [𝜖

2

𝑛
] + E [(𝜖

𝑛+1
− 𝜖
𝑛
)
2

] + 2E [(𝜖
𝑛+1
− 𝜖
𝑛
) 𝜖
𝑛
]

(22)

we have

E [𝜖
2

𝑛+1
]

≤ E [𝜖
2

𝑛
] + 2 ⋅

𝐶
2

1
ℎ
2

𝑛+1

(1 − 𝑡
𝑛
)
2
⋅ E [𝜖
2

𝑛
] + 4E (𝐿

2

1
) + 4E (𝐿

2

2
)

+ 2 ⋅
𝐶
1
⋅ ℎ
𝑛+1

(1 − 𝑡
𝑛
)
⋅ E [𝜖
2

𝑛
] + 2E [𝜖

𝑛
⋅ 𝐿
1
] + 2E [𝜖

𝑛
⋅ 𝐿
2
] .

(23)

We have also used the inequality E(𝑋 + 𝑌)
2

≤ 2E(𝑋2) +

2E(𝑌2) and the Lipschitz condition (17) here. Since 𝐿
2
is a

martingale with respect to the natural filtration,E[𝜖
𝑛
⋅𝐿
2
] = 0.

Now we look at the second moments of the integral terms 𝐿
1

and 𝐿
2
. First we use Cauchy-Schwartz inequality twice on 𝐿

1

and the bounds imposed in (16a)–(16d)

E [𝐿
2

1
]

= E[(∫
𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

(𝐴𝑎)
𝑠
𝑑𝑠 𝑑𝑡)

2

]

≤ ℎ
𝑛+1
⋅ E[∫

𝑡
𝑛+1

𝑡
𝑛

(∫

𝑡

𝑡
𝑛

(𝐴𝑎)
𝑠
𝑑𝑠)

2

𝑑𝑡]

≤ ℎ
2

𝑛+1
⋅ [∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

E(𝐴𝑎)
2

𝑠
𝑑𝑠 𝑑𝑡]

≤ ℎ
2

𝑛+1
⋅ [∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

E[(
𝑔 (𝑠, 𝑋

𝑠
)

(1 − 𝑠)
2

+
𝑔
1
(𝑠, 𝑋
𝑠
)

(1 − 𝑠)

+
𝑔 (𝑠, 𝑋

𝑠
) 𝑔
2
(𝑠, 𝑋
𝑠
)

(1 − 𝑠)
2

+
𝜎
2

𝑔
22
(𝑠, 𝑋
𝑠
)

2(1 − 𝑠)
)

2

]𝑑𝑠 𝑑𝑡]

≤ ℎ
2

𝑛+1
⋅ [∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

(
𝐷
1

(1 − 𝑠)
4

+
𝐷
2

(1 − 𝑠)
3

+
𝐷
3

(1 − 𝑠)
2

)𝑑𝑠 𝑑𝑡]

(24)

for some 𝐷
1
, 𝐷
2
, and 𝐷

3
that do not depend on 𝑛 or ℎ

𝑛+1
. It

follows that

E [𝐿
2

1
] ≤ ℎ
4

𝑛+1
⋅

𝐷
1

(1 − 𝑡
𝑛+1
)
4

+ ℎ
4

𝑛+1
⋅

𝐷
2

(1 − 𝑡
𝑛+1
)
3

+ ℎ
4

𝑛+1
⋅

𝐷
3

(1 − 𝑡
𝑛+1
)
2
≤ 𝐷
4

ℎ
4

𝑛+1

(1 − 𝑡
𝑛+1
)
4
,

(25)

where 𝐷
4
is independent of 𝑛 and ℎ

𝑛+1
. Now for E[𝐿2

2
] term

we use the Cauchy-Schwartz inequality and the Itô isometry

E [𝐿
2

2
] = E[(∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

(𝐵𝑎)
𝑠
𝑑𝑊
𝑠
𝑑𝑡)

2

]

= E[(∫
𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

𝜎 ⋅ 𝑔
2
(𝑠, 𝑋
𝑠
)

(1 − 𝑠)
𝑑𝑊
𝑠
𝑑𝑡)

2

]

≤ ℎ
𝑛+1
⋅ [∫

𝑡
𝑛+1

𝑡
𝑛

E(∫
𝑡

𝑡
𝑛

𝜎 ⋅ 𝑔
2
(𝑠, 𝑋
𝑠
)

(1 − 𝑠)
𝑑𝑊
𝑠
)

2

𝑑𝑡]

≤ ℎ
𝑛+1
[∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

(
𝜎𝐶
1

(1 − 𝑠)
)

2

𝑑𝑠 𝑑𝑡]

≤ 𝐷
5

ℎ
3

𝑛+1

(1 − 𝑡
𝑛+1
)
2

,

(26)

where𝐷
5
is independent of 𝑛 and ℎ

𝑛+1
.

We use Cauchy-Schwartz inequality and the inequality

E[𝜖
2

𝑛
]
1/2

≤ 𝑘 + 𝑘
−1

E [𝜖
2

𝑛
] (27)

with 𝑘 = ℎ
𝑛+1
/(1 − 𝑡

𝑛+1
) to estimate E[𝜖

𝑛
⋅ 𝐿
1
]:

E [𝜖
𝑛
⋅ 𝐿
1
]

≤ E(𝐿
2

1
)
1/2

⋅ E(𝜖
2

𝑛
)
1/2

≤ √𝐷
4

ℎ
2

𝑛+1

(1 − 𝑡
𝑛+1
)
2
(
ℎ
𝑛+1

1 − 𝑡
𝑛+1

+
1 − 𝑡
𝑛+1

ℎ
𝑛+1

E [𝜖
2

𝑛
])

≤ 𝐷
6

ℎ
𝑛+1

1 − 𝑡
𝑛+1

E [𝜖
2

𝑛
] + 𝐷
7

ℎ
3

𝑛+1

(1 − 𝑡
𝑛+1
)
3
.

(28)

For simplicity, we assume 𝑌
0
= 𝑥
0
. For fixed step size,

ℎ
𝑛
= ℎ = 1/𝑁, there is no uniform control over the local

truncation error since, close to 𝑡 = 1, 1 − 𝑡
𝑁−1

= ℎ. If we
fix 𝛿 > 0 and only consider 𝑡

𝑛+1
< 1 − 𝛿, then we have the

following inequality:

E [𝜖
2

𝑛+1
] ≤ (1 + 𝑚

1

ℎ

𝛿
)E [𝜖

2

𝑛
] + 𝑚
2

ℎ
3

𝛿3
, (29)

where 𝑚
1
and 𝑚

2
are some constants which do not depend

on ℎ or 𝛿. Using Lemma 2, we have

E [𝜖
2

𝑛
] ≤ exp (𝑚1

𝛿
)(

𝑚
2
ℎ
2

𝑚
1
𝛿2
) . (30)

For fixed 𝛿 > 0, this is the original case where the coefficients
of the SDE have bounded derivatives. However, if 𝛿 ↓ 0, this
estimate shows no decrease in global error unless ℎ decays
exponentially relative to 𝛿.

To produce a better estimate and a more efficient algo-
rithm, we consider variable step sizes defined as follows. First
fix ℎ∗, 0 < ℎ∗ < 1. Then define step sizes ℎ

𝑛
and node points

𝑡
𝑛
using ℎ∗:

ℎ
𝑛
= ℎ
∗

(1 − 𝑡
𝑛−1
) , (31a)

𝑡
𝑛
= 𝑡
𝑛−1
+ ℎ
∗

(1 − 𝑡
𝑛−1
) . (31b)
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This implies that

𝑡
𝑛
= 1 − (1 − ℎ

∗

)
𝑛

, (32a)

ℎ
𝑛
= ℎ
∗

(1 − ℎ
∗

)
𝑛−1

. (32b)

This specific definition allows us to estimate the global error
using ℎ∗, and therefore we can control ℎ∗ to control the global
error. Using these step sizes, we have the error estimates

E [𝐿
2

1
] ≤ 𝐷

4
ℎ
∗4

, (33a)

E [𝐿
2

2
] ≤ 𝐷

5
ℎ
∗3

, (33b)

E [𝜖
𝑛
⋅ 𝐿
1
] ≤ 𝐷

6
ℎ
∗

E [𝜖
2

𝑛
] + 𝐷
7
ℎ
∗3

, (33c)

where𝐷
4
,𝐷
5
,𝐷
6
, and𝐷

7
are positive constants which do not

depend on 𝑛 or ℎ∗. Using these estimates in (23), we have

E [𝜖
2

𝑛+1
] ≤ (1 + 𝑚

1
ℎ
∗

)E [𝜖
2

𝑛
] + 𝑚
2
ℎ
∗3

, (34)

where𝑚
1
and𝑚

2
are constants which do not depend on 𝑛 or

ℎ
∗. Using Lemma 2, we have the following.

Theorem 3. Given that the SDE in (15a)-(15b) satisfies the
assumptions (16a)–(16d) and E[(𝑥

0
− 𝑌
0
)
2

] ≤ 𝐷
0
ℎ
∗2, then

the above constructed algorithm (20) with variable step sizes
(32b) has E[𝜖2

𝑛
] = 𝑂(ℎ

∗2

), as ℎ∗ ↓ 0, uniformly in 𝑛 for
𝑡
𝑛
< 1 − 𝛿 < 1, and thus the global pointwise error for the

above proposed algorithm is of order 𝑂(ℎ∗).

Proof. If we have𝑁 steps, (32b) gives (1 − ℎ∗)𝑁 = 𝛿, and thus

𝑁 =
ln 𝛿

ln (1 − ℎ∗)
≤
− ln 𝛿
ℎ∗

, as ℎ∗ ↓ 0. (35)

Then by using Lemma 2 on (34) and this𝑁 we have

E [𝜖
2

𝑛
] ≤ exp(−𝑚1ℎ

∗

⋅ ln 𝛿
ℎ∗

) ⋅ (
𝑚
2
ℎ
∗3

𝑚
1
ℎ∗
+ 𝐷
0
ℎ
∗2

) −
𝑚
2
ℎ
∗3

𝑚
1
ℎ∗

≤
𝐷

𝛿𝑚1
⋅ ℎ
∗2

,

(36)

where 𝐷 and 𝑚
1
are constants that do not depend on 𝑛, ℎ∗,

or 𝛿.

Corollary 4. Given a positive constant 𝑝 < 1 and the SDE
(15a)-(15b) satisfying the assumptions in Theorem 3, the above
constructed numerical algorithm has global pointwise error
𝑂(ℎ
∗𝑝

), as ℎ∗ ↓ 0, when 𝛿 = (ℎ∗)2(1−𝑝)/𝑚1 , where 𝑚
1
is the

constant in (34)which only depends on the bounds imposed on
𝑔 and the moments of the process.

Proof. Letting 𝛿 = (ℎ∗)2(1−𝑝)/𝑚1 , we have

E [𝜖
2

𝑛
] ≤ 𝐷ℎ

∗2𝑝

. (37)

With a simple example, we show that we cannot expect a
much better result. Consider the SDE:

𝑑𝑋
𝑡
=

𝑎

1 − 𝑡
𝑑𝑡 + 𝜎𝑑𝑊

𝑡
, 𝑋
0
= 0, (38)

where𝑊
0
= 0. This equation has solution

𝑋
𝑡
= −𝑎 ln (1 − 𝑡) + 𝜎𝑊

𝑡
. (39)

The variable step size algorithm generates the approximation

𝑌
𝑛
= 𝑎𝑛ℎ

∗

+ 𝜎𝑊
𝑡
𝑛

. (40)

It follows then that the maximum value of |𝑋
𝑡
𝑛

− 𝑌
𝑛
| =

𝑎𝑛(− ln(1 − ℎ∗) − ℎ∗) occurs at𝑁 where (1 − ℎ∗)𝑁 = 𝛿 and


𝑋
𝑡
𝑁

− 𝑌
𝑁


= 𝑎 (ln 𝛿) (−1 − ℎ

∗

ln (1 − ℎ∗)
) ∼

𝑎

2
ℎ
∗ ln 𝛿. (41)

Thus if 𝛿 = ℎ∗𝑞, |𝑋
𝑡
𝑁

− 𝑌
𝑁
| ∼ (𝑞𝑎/2)ℎ

∗ ln ℎ∗ as ℎ∗ → 0 and
is thus 𝑜(ℎ∗𝑝) for all 𝑝 < 1.

4. Numerical Approximation of Brownian
Bridge with Variable Step Sizes

We apply the above approximation to the Brownian bridge
introduced in (3a)-(3b). 𝑔(𝑥) = 1 − 𝑥 satisfies the Lipschitz
and linear growth conditions assumed. We also show that we
can relax the bounded moments conditions for this specific
case. We use the BB starting at 0 and converging to 1 as 𝑡 →
1. Consider the SDE:

𝑑𝑋
𝑡
=
1 − 𝑋

𝑡

1 − 𝑡
𝑑𝑡 + 𝑑𝑊

𝑡
, 0 ≤ 𝑡 < 1, (42a)

𝑋
0
= 0, (42b)

where𝑊
𝑡
is the standard Brownian motion. Then using (10)

we get

𝑋
𝑛+1
= 𝑋
𝑛
+
1 − 𝑋

𝑛

1 − 𝑡
𝑛

ℎ
𝑛+1
+ Δ𝑊

𝑛+1
+ ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

1

1 − 𝑠
𝑑𝑊
𝑠
𝑑𝑡.

(43)

Note that (𝐴𝑎)
𝑠
term is zero and that gives us the opportunity

to relax the bounded moments condition

𝐴𝑎 =
𝜕𝑎

𝜕𝑡
+ 𝑎
𝜕𝑎

𝜕𝑥
+
1

2
𝑏
2
𝜕
2

𝑎

𝜕𝑥2

=
𝑏 − 𝑥

(1 − 𝑡)
2

−
𝑏 − 𝑥

(1 − 𝑡)
2

+
1

2
𝑏
2

⋅ 0 = 0.

(44)

Using (11) we get

𝑌
𝑛+1
= 𝑌
𝑛
+
1 − 𝑌
𝑛

1 − 𝑡
𝑛

ℎ
𝑛+1
+ Δ𝑊

𝑛+1
. (45)

Now define 𝜖
𝑛+1
= 𝑋
𝑛+1
− 𝑌
𝑛+1

to get

𝜖
𝑛+1
= 𝜖
𝑛
−

𝜖
𝑛

1 − 𝑡
𝑛

ℎ
𝑛+1
+ ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑡

𝑡
𝑛

1

1 − 𝑠
𝑑𝑊
𝑠
𝑑𝑡. (46)
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Proceeding as before we have that the second moment of the
integral term is of order ℎ∗3. Now using (22) and analyzing it
in the same way as in the previous section, we get

E [𝜖
2

𝑛+1
] ≤ E [𝜖

2

𝑛
] + ℎ
∗2

E [𝜖
2

𝑛
] − 2ℎ

∗

E [𝜖
2

𝑛
] + 𝑂 (ℎ

∗3

) . (47)

For ℎ∗ < 1 we get

E [𝜖
2

𝑛+1
] ≤ (1 − ℎ

∗

)E [𝜖
2

𝑛
] + 𝑂 (ℎ

∗3

) (48)

which gives the global error𝑂(ℎ∗) using Lemma 2. Note that,
in this case,

E [𝜖
2

𝑛
] ≤ 𝐷ℎ

∗2 (49)

for all 𝑛, independent of 𝛿. However, making 𝛿 small relative
to ℎ∗ increases the number of steps significantly. For example,
if we set 𝛿 = ℎ∗2, it takes about twice as many steps to reach
1 − 𝛿 as in the case 𝛿 = ℎ∗.

For this example, we can verify the error explicitly. Using
Algorithm (45), we have

𝑌
𝑛
= 𝑡
𝑛
+

𝑛

∑

𝑘=1

(1 − ℎ
∗

)
𝑛−𝑘

Δ𝑊
𝑘
. (50)

Using this with the explicit solution (4), we calculate

E [𝜖
2

𝑛
] = (1 − ℎ

∗

)
𝑛

(1 − (1 − ℎ
∗

)
𝑛

)

× (1 +
2 ln (1 − ℎ∗)

ℎ∗
+

1

1 − ℎ∗
)

(51)

and thus the maximum value of E[𝜖2
𝑛
] ∼ ℎ
∗2

/12 as ℎ∗ → 0.
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