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ABSTRACT 

AN ABSTRACT OF THE DISSERTATION OF 
 

Yu Guo, for the Doctor of Philosophy degree in Mechanical Engineering, presented on 
06/07/2013, at Southern Illinois University Carbondale.  
 
TITLE:  BIFURCATION AND CHAOS OF NONLINEAR VIBRO-IMPACT SYSTEMS 
 
MAJOR PROFESSOR:  Dr. Albert C.J. Luo 
 
 Vibro-impact systems are extensively used in engineering and physics field, such as 

impact damper, particle accelerator, etc. These systems are most basic elements of many real 

world applications such as cars and aircrafts. Such vibro-impact systems possess both the 

continuous characteristics as continuous dynamical systems and discrete characteristics 

introduced by impacts at the same time. Thus, an appropriately developed discrete mapping 

system is required for such vibro-impact systems in order to simplify investigation on the 

complexity of motions.  

In this dissertation, a few vibro-impact oscillators will be investigated using discrete 

maps in order to understand the dynamics of vibro-impact systems. Before discussing the 

nonlinear dynamical phenomena and behaviors of these vibro-impact oscillators, the theory for 

nonlinear discrete systems will be applied to investigate a two-dimensional discrete system 

(Henon Map). And the complete dynamics of such a nonlinear discrete dynamical system will be 

presented using the inversed mapping method. Neimark bifurcations in such a discrete system 

have also drawn a lot of interest to the author. The Neimark bifurcations in such a system have 

actually formed a boundary dividing the stable solution of positive and negative maps (inversed 

mapping). For the first time, one is able to obtain a complete prediction of both stable and 

unstable solutions in such a discrete dynamical system. And a detailed parameter map will be 
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presented to illustrate how changes of parameters could affect the different solutions in such a 

system. 

Then, the theory of discontinuous dynamical systems will be adopted to investigate the 

vibro-impact dynamics in several vibro-impact systems. First, the bouncing ball dynamics will 

be analytically discussed using a single discrete map. Different types of motions (periodic and 

chaotic) will be presented to understand the complex behavior of this simple model. Analytical 

condition will be expressed using switching phase of the system in order to easily predict stick 

and grazing motion. After that, a horizontal impact damper model will be studied to show how 

complex periodic motions could be developed analytically. Complete set of symmetric and 

asymmetric periodic motions can also be easily predicted using the analytical method. Finally, a 

Fermi-Accelerator being excited at both ends will be discussed in detail for application. Different 

types of motions will be thoroughly studied for such a vibro-impact system under both same and 

different excitations.  
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CHAPTER 1  

INTRODUCTION 

In this chapter, a brief review of the discrete and discontinuous dynamical systems will 

be provided, and a brief history of researches on different vibro-impact systems will be 

introduced. The layout of this dissertation and the chapter summary will also be described. 

1.1. Objectives 

Vibro-impact systems are extensively investigated in both engineering and physics field. 

Such systems possess the continuous characteristics as continuous dynamical systems, and carry 

the discrete characteristics introduced by impacts at the same time. Thus, appropriately 

developed discrete mapping structures are required for such vibro-impact systems in order to 

investigate the complexity of motions. In this dissertation, a few vibro-oscillators will be 

investigated in order to understand the dynamics of vibro-impact systems. Before discussing the 

nonlinear dynamical phenomena and behaviors of these vibro-impact oscillators, the theory for 

nonlinear discrete systems will be applied to a two-dimensional discrete system (Henon Map), 

and the complete dynamics of such nonlinear discrete dynamical systems will be presented. 

Then, the theory of discontinuous dynamical systems will be adopted to research the vibro-

impact dynamics in several vibro-impact systems. First, bouncing ball dynamics will be 

analytically discussed using a single discrete map. And then, a horizontal impact damper will be 

presented to show how complex periodic motions could be developed and predicted analytically. 

Finally, a double excited Fermi-Accelerator under same or different excitations will be discussed 

in detail for application.  
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1.2. Henon Map 

The nonlinear discrete systems are usually obtained from the nonlinear difference 

equations of dynamical systems. These systems provide a convenient way to easily describe the 

behavior of a complex dynamical system by looking only at the initial and final states. The 

complex dynamical behaviors in such systems can be observed through the cascade of stable 

solutions.  

Among different nonlinear discrete systems, Henon map is a typical example that’s of 

great interests to researchers. In 1976, a one-dimensional discrete map was used to describe the 

dynamical processes in biological, economic, and social science (May, 1976). In the same 

period, a discrete-time dynamic system was introduced to simplify the 3-dimensional Lorenz 

equations as a Poincare map (Henon, 1976), from which one can observe chaos numerically. 

This discrete system was latter on well known as Henon map. The existence of chaotic behavior 

in Henon map was later mathematically proved (Marotto, 1979) for certain parameters. At the 

same time, the chaotic behavior of Henon map was measured using Lyapunov characteristic 

exponent and frequency spectrum (Curry, 1979). In 1988, the topologic properties and 

multifractality of Henon map was investigated (Cvitanovic, Gunaratne, & Procaccia, 1988). In 

1992, a geometric approach for the period doubling bifurcation was presented by Luo and Han 

(Luo & Han, Period Doubling and Multifractals in 1-D Iterative Maps, 1992). And they 

investigated the multifractality of a general one-dimensional iterative map. In 1993, numerical 

investigation of parameter maps was also performed (Gallas, 1993) for Henon map. Later in 

2000, Zhusubaliyev et al numerically conducted the bifurcation analysis of Henon map and 

presented a more detailed parameter map (Zhusubaliyev, Rudakov, Soukhoterin, & Mosekilde, 

2000).  
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All the aforementioned investigations were based on the numerical iterations of the 

discrete map. In 2006, Gonchenko et al (Gonchenko, Meiss, & Ovsyannikov, Chaotic Dynamics 

of Three-Dimensional Henon Maps that Originate from a Homoclinic Bifurcation, 2006) 

investigated the 3-dimensional Henon map generated from a homoclinic bifurcation. Later in 

2007 they further studied the bifurcation of periodic solution of the generalized Henon map. 

They also proved the existence of infinite cascades of periodic solutions in such a system 

(Gonchenko, Gonchenko, & Tatjer, Bifurcations of Three-Dimensional Diffeomorphisms with 

Non-Simple Quadratic Homoclinic Tangencies and Generalized Henon Maps, 2007). In 2008, 

the parameter maps of periodic windows embedded in chaotic solutions of Henon map was 

determined with a random searching procedure (Lorenz, 2008). Recently, the Ying-Yang theory 

in nonlinear discontinuous dynamics was presented (Luo, A Ying-Yang theory in Nonlinear 

Discrete Dynamical Systems, 2010). In his theory, Luo divided the solutions of nonlinear 

discrete dynamical systems into three states: “Yang”, “Ying”, and “Ying-Yang” states. Through 

his approach one can obtain the complete solution states for all the entire parameter regions. Also 

he and Guo applied the approach to Henon map and investigated the parameter characteristics of 

the stable and unstable solutions in such a nonlinear discrete system (Luo & Guo, Parameter 

characteristics for stable and unstable solutions in nonlinear discrete dynamical systems, 2010). 

Using the same theory (Luo, A Ying-Yang theory in Nonlinear Discrete Dynamical 

Systems, 2010) proposed by Luo, the complete solution states in the entire parameter space for 

Henon map will be presented in chapter 2. The stable and unstable periodic solutions of the 

Henon map will be investigated for demonstrations, and the corresponding eigenvalues analysis 

of periodic solutions will be carried out. The parameter map beyond the existing results for 

different solutions will be developed. The Poincare mapping relative to Neimark bifurcation will 
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be presented and the separatrix of solutions will be illustrated. The idea of discrete mappings will 

be further applied to dynamical systems such as bouncing ball, impact pair, and double excited 

Fermi accelerator later to help describe different types of motions easily in these systems. 

1.3. Bouncing Ball System 

The bouncing ball problem is a simple model that has been attracting the interest of many 

researchers from early days. Although the model seems simple, it contains rich motions with 

complexity that has not yet been fully understood. One of the earliest researches on bouncing 

ball problem was carried out by Schnurmann focusing on the rate of energy loss of a bouncing 

steel ball (Schnurmann, 1941). In 1982, the dynamics of repeated impacts with a sinusoidal 

vibrating table was investigated (Holmes, 1982). In 1985, the chaotic dynamics of a bouncing 

ball was studied using mapping technique and the behavior of Lyapunov exponents was 

discussed (Everson, 1986). In 1987, a near-resonant perturbation method was used to investigate 

the suppression of period doubling bifurcation in a bouncing ball system (Wiesenfeld & 

Tufillaro, 1987). In 1988, experimental evidence of the suppression of period doubling was 

observed by near-resonant perturbations (Pieranski, 1988). In 1996, the dynamics of a bouncing 

ball with a sinusoidal vibrating table was investigated (Luo & Han, The dynamics of a bouncing 

ball with a sinusoidally vibrating table revisited, 1996). Luo and Han presented an exact model 

to obtain a wider range of stable motion with more accurate stability results. In 2002, the 

dynamics of a bouncing ball under the effect of air-damping was investigated, and some 

bifurcation scenario results were provided (Naylor & Sanchez, 2002). In 2004, the asynchronous 

sampling method was used to study the dynamical behaviors of a bouncing ball system in 

reduced impact representation (Giusepponi, Marchesoni, & and Borromeio, 2005). Recently in 

2009, the dynamics of a bouncing ball system modeled with discrete maps was investigated 
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(Barroso, Carneiro, & Macau, 2009). Barroso et al also presented some periodic motion with 

stability, chaotic motion, and stick motion without analytical conditions. In 2011, the chaotic 

behavior of the bouncing ball system was studied (Matyas & Barna, 2011). Also Matyas and 

Barna tried giving a semi-analytical estimation of chaotic motions in such a system. In 2012, a 

modified Lyapunov method was presented to study the stability of periodic motions in a 

bouncing ball system (Leine & Heimsch, 2012). At the same time, the effect of phase on 

different types of motions of a bouncing ball system was studied with perturbation (Joseph, 

Marino, & Sanjuan, 2012). However, Joseph, Marino, and Sanjuan’s research did not provide an 

analytical explanation of why such effect exists. The effect of phase is very important on motion 

switching in a bouncing ball system, and thus, affects different types of motions. This will be 

analytically explained later in chapter 3. All these previous researches did not consider the 

switching of motion, and transition between impact chatter and stick. Thus, they were either not 

able to catch the complexity periodic motions caused by chatter and stick or simply took them as 

chaotic motions. 

On the other hand, in 2002, the stability and bifurcation for the asymmetric periodic 

motion in a periodically excited horizontal impact pair was investigated with generic mappings 

technique (Luo, An unsymmetrical motion in a horizontal impact oscillator, 2002). Later in 

2005, Luo investigated the mapping dynamics of periodic motions in a piecewise linear system 

(Luo, The mapping dynamics of periodic motions for a three-piecewise linear system under a 

periodic excitation, 2005); And later, he summarized the work and developed a theory to 

analytically investigate the non-smooth dynamical systems on connectable and accessible sub-

domains (Luo, A theory for non-smooth dynamic systems on the connectable domains, 2005). In 

2008, Luo further improved the theory and presented the theory for flow switchability in 
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discontinuous dynamical systems (Luo, A theory for flow switchability in discontinuous 

dynamical systems, 2008). From 2009 to 2011, Luo and Guo applied this theory on different 

systems such as Fermi-acceleration oscillator and horizontal impact pair under periodic 

excitation (Luo & Guo, Motion switching and chaos of a particle in a generalized Fermi-

acceleration oscillator, 2009; Luo & Guo, Switching mechanism and complex motions in an 

extended Fermi-acceleration oscillator, 2010; Guo & Luo, 2011; Luo & Guo, Bifurcation 

analysis of a fermi-acceleration oscillator under different excitations, 2011). In these works they 

provided complete parameter maps, prediction of periodic motions, and investigated the 

complexity caused by impact chattering and stick motion. 

In chapter 3, the flow switchability theory of discontinuous dynamical systems will be 

used to investigate the bifurcation and chaos in a bouncing ball system. The analytical conditions 

for stick and grazing motion will be developed, which provide criterions of motion switchability 

related to switching phase of the system. Switching sets and mapping structures will be 

introduced for such a system. Simulation of periodic and chaotic motions will also be illustrated 

based on the generic mappings. Complex periodic motion caused by impact chattering and stick 

will also be predicted. 

1.4. Horizontal Impact Pair 

Phenomena in the impact pair problem are extensively investigated in the field of 

mechanical engineering. i.e., a typical application that has drawn great interest of researchers is 

the impact damper. A better understanding of this vibro-impact problem is very useful to study 

vibration and noise in engineering. Early in 1983, Bapat and Popplewell studied the 

asymptotically stable periodic motions of an impact-pair consisting of two rigid masses separated 

by a clearance (Bapat & Popplewell, Stable periodic motions of an impact-pair, 1983). In this 
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work, the asymmetric period-1 motions are observed. Also Shaw and Holmes studied periodic 

motion bifurcations and chaotic motions in a single-degree of freedom non-linear oscillator 

(Shaw & Holmes, 1983). In 1987, Heiman et al used the local bifurcation theory to study the 

periodic motions and stability of an inclined impact pair (Heiman, Sherman, & Bajaj, On the 

dynamics and stability of an inclined impact pair, 1987). Later in 1988, Heiman et al further 

investigated the periodic and chaotic motions through bifurcation analysis and Poincare maps 

(Heiman, Bajaj, & Sherman, Periodic motions and bifurcations in dynamics of an inclined 

impact pair, 1988). Also the stability region of two equal-spaced impact motions of an impact-

pair was investigated (Bapat, Impact-pair under periodic excitation, 1988) using Fourier series 

and perturbation methods. In 1991, Nordmark studied grazing impacts in one-degree of freedom 

impact oscillator (Nordmark, 1991). In 1995, Bapat studied the motion of an inclined impact 

damper with friction and collisions on both sides (Bapat, The general motion of an inclined 

impact damper with friction, 1995). Han et al investigated the periodic and chaotic motion of a 

horizontal impact pair and initialized an idea of using discrete mapping structures to describe 

complex motions in an impact pair (Han, Luo, & Deng, 1995). Recently, Park et al investigated 

the resonant vibrations of a single unit impact damper experimentally and numerically (Park, 

Wang, & Crocker, 2009). For analytical investigation, Luo investigated the stability and 

bifurcation for the unsymmetrical periodic motion in a periodically excited horizontal impact 

oscillator (Luo, An unsymmetrical motion in a horizontal impact oscillator, 2002) using the 

method of generic mappings. Then in 2005, he presented the mapping dynamics of periodic 

motions in a piecewise linear system (Luo, The mapping dynamics of periodic motions for a 

three-piecewise linear system under a periodic excitation, 2005).  
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From these previous researches, the motion switchability and impact chattering was not 

considered. Thus, the dynamical behavior complexities of the impact pair systems were not 

discussed completely. In 2005, Luo developed a local singularity theory for the switchability of 

flows in discontinuous dynamical systems (Luo, A theory for non-smooth dynamic systems on 

the connectable domains, 2005) (also see (Luo, Singularity and Dynamics on Discontinuous 

Vector Fields, 2006) and (Luo, Discontinuous Dynamical Systems on Time-varying Domains, 

2009)). Then Luo and Chen applied such a theory to investigate periodic motions and grazing 

bifurcation of an idealized gear transmission system with impacts (Luo & Chen, Grazing 

bifurcation and periodic motion switching in a piecewise linear, impacting oscillator under a 

periodical excitation, 2005). However in their research, it was assumed that the locations of 

impact are fixed and the plastic impact condition was applied. Based on such assumptions, the 

model may not be very useful for real gear transmission systems because it eliminated impact 

chatters. Thus in 2007, Luo and O’Connor adopted the time-varying impact location to study the 

nonlinear dynamics of a gear transmission system described with an impact model with possible 

stick (Luo & O’Connor, Nonlinear dynamics of a gear transmission system part I: mechanism of 

impacting chatter with stick, 2007) and (Luo & O’Connor, Nonlinear dynamics of a gear 

transmission system part II: periodic impacting chatter and stick, 2007). Later, Luo and Guo 

systematically investigated the switching bifurcation and chaos in a double excited Fermi 

oscillator accelerated with periodic excitation. The achieved results seem very complicated, 

which is very difficult to explain the physical phenomena of vibro-impact problems (Luo & Guo, 

Switchability and bifurcation of motions in a double-excited Fermi-acceleration oscillator, 2010).  

Thus, to help one further understand the switching mechanism of vibro-impact problems, 

the flow switchability theory of discontinuous dynamical systems with time varying boundaries 
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will be adopted to investigate the switching bifurcation and chaos of a ball in a periodically 

shaken horizontal impact pair in chapter 4. The analytical conditions for stick and grazing 

motions will be developed. Switching sets and mapping structures will be introduced. Analytical 

prediction of complex motions in the periodically shaken impact pair will be carried out using 

the analytical conditions and discrete mapping structures. 

1.5. Dual Excited Fermi Accelerator 

 The Fermi acceleration oscillator is a very important physical model, and such impact 

phenomena extensively exist in physics and engineering field. The Fermi acceleration was first 

introduced by Fermi to explain the origin of cosmic radiation (Fermi, 1949). In 1964, Zaslavskii 

and Chirikov provided the criterion of the Fermi accelerator in one-dimensional case to explain 

the existing chaotic motion (Zaslavskii & Chirikov, 1964). In 1983, the harmonic, sub-harmonic, 

and chaotic motions of a single-degree of freedom non-linear oscillator were investigated (Shaw 

& Holmes, 1983). To further understand the nonlinear dynamical behaviors of the Fermi 

oscillator, the dynamics of the Fermi accelerator with a viscous friction were investigated (Luna-

Acosta, 1989). In 1998, Lopac and Dananic further investigated the chaotic dynamics and energy 

conservation in a gravitationally driven Fermi accelerator (Lopac & Dananic, 1998). At the same 

time, Saif et al discussed the classical and quantum dynamics of a Fermi accelerator and 

determined the existence of dynamical localization for both position and momentum in a window 

of the modulation amplitude (Saif, Bialynicki-Birula, Fortunato, & Schleich, 1998). In 2004, a 

simple stochastic system was presented to generate anomalous diffusion of both position and 

velocity in the Fermi accelerator (Bouchet, 2004). And the discrete dynamical systems formalism 

was adopted to investigate the effect of a time-dependent perturbation on a Fermi accelerator 

model (Leonel, da Silva, & Kamphorst, On the dynamical properties of a Fermi accelerator 
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model, 2004). In 2005, Leonel and McClintock studied the dynamical and chaotic properties of a 

Fermi-Ulam bouncer model (Leonel & McClintock, A hybrid Fermi-Ulam-bouncer model, 

2005). In 2006, a two-dimensional nonlinear area-contracting map was used to study the Fermi 

accelerator model with inelastic collisions (Leonel & de Carvalho, A family of crisis in a 

dissipative Fermi accelerator model, 2006). Also Leonel and Silva studied the dynamical 

properties of a bouncing ball model with a nonlinear excitation force (Leonel & Silva, A 

bouncing ball model with two nonlinearities: a prototype for Fermi acceleration, 2008). The 

aforementioned studies did not consider the motion switchability and impact chatters, which 

cause the dynamical behavior complexity. 

   On the other hands, in 2002, Luo discussed the stability and bifurcation analysis for the 

unsymmetrical periodic motion in a periodically excited horizontal impact oscillator (Luo, An 

unsymmetrical motion in a horizontal impact oscillator, 2002). In 2005, the mapping dynamics 

method was proposed to determine periodic motion in a piecewise linear system (Luo, The 

mapping dynamics of periodic motions for a three-piecewise linear system under a periodic 

excitation, 2005). For a better understanding of such dynamical systems, Luo developed a theory 

for the non-smooth dynamical systems on connectable and accessible sub-domains (Luo, A 

theory for non-smooth dynamic systems on the connectable domains, 2005). Such a theory was 

applied to investigate the flows and grazing bifurcations of an idealized gear transmission system 

with impacts (Luo & Chen, Grazing bifurcation and periodic motion switching in a piecewise 

linear, impacting oscillator under a periodical excitation, 2005). In 2006, Luo and Gegg applied 

this theory again to develop the force criteria for stick and non-stick motions in the friction-

induced oscillator (Luo & Gegg, Stick and non-stick periodic motions in periodically forced 

oscillators with dry friction, 2006). In 2007, Luo and O’Connor studied the nonlinear dynamics 
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of a gear transmission system through an impact model with possible stick (Luo & O’Connor, 

Mechanism of impacting chatter with stick in a gear transmission system, 2007) and (Luo & 

O’Connor, Periodic motion and chaos with impacting chatter and stick in a gear transmission 

system, 2007). Luo and Guo systematically investigated the switching bifurcation and chaos in a 

generalized Fermi oscillator accelerated with a simple excitation (Luo, Resonance and Chaotic 

Dynamics, 2008), (Luo & Guo, Motion switching and chaos of a particle in a generalized Fermi-

acceleration oscillator, 2009), and (Luo & Guo, Switchability and bifurcation of motions in a 

double-excited Fermi-acceleration oscillator, 2010). Under dual excitations, the complexity of 

chaos and periodic motions for the particles in the Fermi oscillators will be a lot different from 

the single excitation. The initial studies of the complex switch dynamics in such a system were 

completed considering same excitation (Luo & Guo, Switchability and bifurcation of motions in 

a double-excited Fermi-acceleration oscillator, 2010). Then in 2011, different excitation with one 

excitation proportional to the other was considered for such a dual excited Fermi oscillator (Luo 

& Guo, Bifurcation analysis of a fermi-acceleration oscillator under different excitations, 2011), 

and further analysis on bifurcation and switchability was presented 

In chapter 5, motion complexity in the Fermi oscillator with dual excitations will be 

investigated using same and different excitations. The analytical conditions for switchability of 

the motions in such a system will be developed. Generic mappings will be introduced to describe 

different types of motions in such oscillators. Analytical predictions of periodic motions will 

then be presented through the mapping structures. Finally, periodic and chaotic motions in such 

an oscillator will be simulated, and Poincare mappings for the Neimark bifurcation will be 

presented as well. 
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1.6. Conclusions 

In this chapter, a brief description of the objectives is presented for this dissertation. A 

brief history of researches on discrete dynamical systems and vibro-impact systems is provided. 

A layout of content for each chapter is included and concise introductions of each chapter are 

presented.
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CHAPTER 2  

DISCRETE DYNAMICAL SYSTEM 

 This chapter studies the complete stable and unstable periodic solutions states of Henon 

Map as a typical example for n-dimensional nonlinear discrete dynamical systems. Using Luo’s 

theory for nonlinear discrete dynamical systems (Luo, A Ying-Yang theory in Nonlinear 

Discrete Dynamical Systems, 2010), a comprehensive investigation on the Henon map is carried 

out for a better understanding of complexity in nonlinear discrete systems. First, the bifurcation 

scenario based on positive and negative mappings of the Henon map will be given. Then the 

analytical predictions of the corresponding periodic solutions are achieved, and the 

corresponding eigenvalue stability analysis is conducted for the periodic solutions. The Poincare 

mapping sections of Neimark bifurcations of periodic solutions are also presented. Finally, a 

parameter map for periodic and chaotic solutions is provided. The complete unstable and stable 

periodic solutions in such a nonlinear discrete system are presented for the first time. These 

results provide a novel view for one to rethink the existing theory.  

2.1. Problem Introduction 

Consider the Henon map given as follow 

2
1 1 1

2 1 1

( , , ) 1 0,

( , , )  0
k k k k k

k k k k

f x y ax

f y bx
 

 

     


   

x x p

x x p
    (2.1) 

where T( , )k k kx yx , T
1 2( , )f ff and T( , )a bp . Consider both positive and negative 

mapping structures as follow: 
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( )

-terms

( )

-terms

,

.

N
k N k k

N

N
k k N k N

N

P P P P

P P P P

    

     

 

 

x x x

x x x

 

 
     (2.2) 

Equations (2.1) and(2.2) give 

1

1 2

1

( , , ) 0,

( , , ) 0,

 

( , , ) 0

k k

k k

k N k N



 

  

 
 


 

f x x p

f x x p

f x x p


     (2.3) 

and 

1

2 1

1

( , , ) 0,

( , , ) 0,

 

( , , ) 0.

k N k N

k N k N

k k

  

   



 
 


 

f x x p

f x x p

f x x p



 

    (2.4) 

Eqs.(2.3) and (2.4) are identical to each other except that the order of equations in 

Eq.(2.4) is different. For periodic solutions of both the positive and negative maps, the 

periodicity requires 

k N k x x  or .k k Nx x      (2.5)   

Thus, the periodic solutions k j

x  ( 0,1, ,j N  ) for the positive and negative mapping 

structures are the same, which can be obtained by solving Eqs.(2.3) and (2.5). However the 

stability and bifurcation are different because k jx varies with 1k j x  for the jth positive 

mapping and 1k j x varies with k jx  for the jth negative mapping. Using a small perturbation, 

equation (2.1) for the positive mapping gives   

1( , )
1 1

[ ] [ ] [ ] | 0,
k j k j

k j

k j k j k j

 
  



    

 
  

   x x

xf f

x x x
    (2.6) 

where 
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1 1

1 1

1 2 2

1 1
1

*
1

( , )
1

( , )

2 1
[ ] ,

0

k j k j

k j k j

k j k j
k j k j

f f

x y
k j

f f
k j x y

ax

b

   

 
  

    
  

 
   
 

   

            
x x

x x

f

x
 

 (2.7) 

1 1

1 2 2

1

( , )

( , )

1 0
[ ] .

0 1
k j k j

k j k j

k j k j
k j k j

f f

x y

f f
k j x y

 

 
  

  
  

 
 

 
  

            
x x

x x

f

x
   (2.8) 

So one obtains 

1 1

1
1

1 1

*
1

( ) [ ] [ ] [ ]

2 1
.

0

k j k j

k j
k j

k j k j k j

k j

DP

ax

b

 
   

 
  

    

 

  
 

  

 
   

x x

x f f
x

x x x
   (2.9) 

Similarly, for the negative mapping,  

1

1

( , )
1

[ ] [ ] [ ] | 0.
k j k j

k j

k j k j k j

 
  

 

   

 
  

   x x

xf f

x x x
    (2.10) 

With Eqs.(2.7) and (2.8), the foregoing equation gives 

1 1
*

11

0 11
( ) [ ] [ ] [ ] .

2k j k j

k j
k j

k jk j k j k j

DP
b axb

 
 

  
 

    

   
         

x x

x f f
x

x x x
 (2.11) 

Thus, the resultant perturbation of the mapping structure in Eq.(2.2) gives 

( )

-terms

( )

-terms

,N
k N k k

N

N
k k N k N

N

DP DP DP DP

DP DP DP DP

 

  

    

     

    

    

x x x

x x x




 

  (2.12) 

where 

( )

1

( )
11

( ),

( ).

NN
k N jj

NN
k N jj

DP DP

DP DP


   


    

 


 




x

x
    (2.13) 
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Consider the eigenvalues   and   of ( ) ( )N
kDP 

 x  and ( ) ( )N
k NDP 

 x for positive and 

negative maps, respectively. The following statements hold. 

(i)  If 1,2| | 1   (or 1,2| | 1  ), the periodic solutions of ( ) ( )N
kP x  (or ( ) ( )N

k NP x ) are 

stable. 

(ii) If 1 or 2| | 1    (or 1 or 2| | 1  ), the periodic solutions of ( ) ( )N
kP x  (or ( ) ( )N

k NP x ) are 

unstable. 

(iii) If real eigenvalues 1 1    and 2| | 1   (or 1 1    and 2| | 1  ), the period-

doubling (PD) bifurcation of the periodic solutions of ( ) ( )N
kP x  (or ( ) ( )N

k NP x ) occurs. 

(iv) If real eigenvalues 1| | 1   and 2 1    (or 1| | 1   and 2 1   ), then the 

saddle-node (SN) bifurcation of the periodic solutions relative to ( ) ( )N
kP x  (or ( ) ( )N

k NP x ) 

occurs. 

(v) If two complex eigenvalues of 1| | 1   and 2| | 1   (or 1| | 1   and 2| | 1  ), the 

Neimark bifurcation (NB) of the periodic solutions of ( ) ( )N
kP x  (or ( ) ( )N

k NP x ) occurs. 

2.2. Bifurcations and Predictions 

A bifurcation of the periodic solutions for the Henon map is presented with varying 

parameter b for 0.85a  , as shown in Figure 2.1. This bifurcation is obtained through 

numerical iterations. The solutions for P  are presented in Figure 2.1 in black, while the 

solutions for P  are in red. The dashed vertical lines in Figure 2.1 (a) indicate the location 

where bifurcations occur. The acronyms “PD”, “SN” and “NB” correspond to period-doubling 

bifurcation, saddle-node bifurcation, and Neimark bifurcation, respectively. It is observed that 

the stable periodic solutions for positive mapping P  always lie in ( 1.0,1.0)b  . For 



17 

 
 

( 1.0,1.0)b  , the positive mapping P  would not converge. The stable period-1 solution of 

P  is in ( 1.0, 0.07).b    At 1.0,b    the Neimark bifurcation (NB) of the period-1 solution 

occurs. At 0.07b   , the period-doubling bifurcation (PD) of the period-1 solution takes place. 

This point is also the saddle-node bifurcation (SN) for the period-2 solution of P  (i.e. (2)P ). 

The periodic solution of (2)P  is in the range of ( 0.07,0.39)b  . Similarly, at 0.39b  , there 

is a period-doubling bifurcation (PD) of the period-2 solution, which corresponds to the saddle-

node bifurcation (SN) for the period-4 solution (4)P . The periodic solution of (4)P exists for 

(0.39,0.80)b . This solution ends at 0.80b  ,  where a (4)P  saddle-node bifurcation (SN) 

occurs, corresponding to the period-doubling bifurcation (PD) of another branch of (2)P  

solution. This (2)P  runs until 1b   , where another Neimark bifurcation takes place. After the 

Neimark bifurcation, the stable periodic solutions for positive mapping P  do not exist 

anymore. On the other hand, the stable solutions for negative mapping P  lie in ( , 1.0)b    

and ( 1, )b   . Similarly, for ( 1.0,1.0)b  , the negative mapping P  would not converge. 

At 1,b    the Neimark bifurcation (NB) of the periodic solution of mappings P  exists which 

overlap with the one for positive mapping P . The period-1 solution of P  is in ( , 1.0)b    

and (2.07, )b  . The period-doubling bifurcation (PD) of the period-1 solution of P  and the 

saddle-node bifurcation (SN) for the period-2 solution of P (i.e., (2)P ) occurs at 2.07b  . The 

stable periodic solution of (2)P  exists in (1.0, 2.07)b . At 1,b   the Neimark bifurcation 

(NB) of the periodic solution of (2)P  occurs. Again, this bifurcation overlaps with the one for 

the positive mapping P . Finally, a 3-dimesional view of this bifurcation scenario is also 

presented in Figure 2.1 (b) for a better imagination of the solutions. 
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The numerical iteration can only provide stable solutions of the system. In some cases, it 

even fails to provide the complete stable solution due to the sensitive dependency on initial 

conditions. Thus, to provide complete set of stable and unstable solutions, analytical predictions 

are adopted for both positive and negative mappings of the Henon maps. The analytical 

predictions are then solved numerically for both stable and unstable solutions. The predicted 

periodic solutions are presented in Figure 2.2 and Figure 2.3 for positive and negative mapping, 

respectively. The acronyms “PD”, “SN” and “NB” will be used to represent the stable period-

doubling bifurcation, stable saddle-node bifurcation and Neimark bifurcation, respectively. On 

the other hand, the acronyms “UPD”, “USN” will be used to represent the unstable period-

doubling bifurcation relative to unstable nodes and unstable saddle-node bifurcation, 

respectively. It can be observed from these figures that the positive and negative mappings 

connect with each other through the Neimark bifurcations. When looking at positive maps, the 

negative maps overlaps with part of the unstable positive mapping solutions for ( 1.0,1.0)b  , 

which cannot be provided by numerical iteration of the Henon maps. On the other hand, when 

looking at the negative maps, the positive maps overlaps with part of the unstable negative 

mapping solutions for ( 1.0,1.0)b  . Again, these unstable solutions cannot be obtained using 

the numerical iterating method. Finally, some of the unstable solutions (indicated by dotted 

curves) stay unstable for both positive and negative mappings. 

 



19 

 
 

(a)  

(b)  

Figure 2.1: Numerical predictions of periodic solutions of the Henon mapping: (a) complete 
negative and positive mappings and (b) 3-D view of the scenario. ( 0.85a  ).  

 

Parameter b

-2 -1 0 1 2

It
er

at
iv

e 
P

oi
nt

s,
 x

k

-1.5

-1.0

-.5

0.0

.5

1.0

1.5
NB

PD

P
(2)P

NB

SN

PD
SN

PD
SN

PD
SN

(4)P
(2)PP P

(2)P

-2

-1

0

1

2

-2 -1 0 1 2 3
-4

-2
0

2
4

y k

Parameter b

x k



20 

 
 

The analytical prediction of positive mapping P  for 0.85a   and ( , )b    is 

presented in Figure 2.2 (a)-(d). The periodic solutions of the positive mapping are arranged in 

Figure 2.2 (a). The real part, imaginary part, and magnitude of the eigenvalues for such periodic 

solutions are provided in Figure 2.2 (b)-(d), respectively. The stable period-1 solutions (1)P  for 

positive mapping lie in ( 1.0, 0.07)b   . For ( 0.07, ),b    the unstable (1)P  solution is 

saddle. For ( , 1.0),b    the unstable (1)P  solution is relative to the unstable focus. The 

corresponding bifurcations of the period-1 solution (1)P  are Neimark bifurcation (NB) at 

1.0b   and period-doubling bifurcation (PD) at 0.07b   . For (2.07, ),b   the (1)P  

solution is unstable node. For ( , 2.07)b   the unstable (1)P  solution is saddle. Thus, the 

unstable period-doubling bifurcation (UPD) of the (1)P  solution occurs at 2.07b  . At this 

point, the unstable periodic solution is from an unstable node to saddle. Because of the unstable 

period-doubling bifurcation, the unstable period-2 solution of (2)P  for the unstable node is 

obtained for (1.0, 2.07)b . This unstable (2)P  solution is from unstable focus to unstable node. 

At 2.07b  , the bifurcation of the unstable (2)P  solution is from the unstable node to unstable 

saddle. This is called the unstable saddle-node bifurcation, where the bifurcation for the mapping 

of (2)P  is from the stable node to saddle. The stable (2)P  solution exist for ( 0.07, 0.39)b   

and (0.8, 1.0)b . The unstable solution of (2)P  is saddle for (0.39,0.8)b . At 0.39b   and 

0.8b   , the period doubling bifurcations of the (2)P  solution exists, which are from the stable 

to unstable state. In addition, these points are the saddle-node bifurcation for the stable (4)P

solution. The stable (4)P  solution exists for (0.39,0.8)b .  
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 (a)  

 

(b)  

Figure 2.2: Analytical predictions of stable and unstable periodic solutions for positive 
mapping ( P ) of the Henon map: (a) periodic solutions, (b) Real part of eigenvalues, (c) 

Imaginary part of eigenvalues, (d) Magnitude of eigenvalues. ( 0.85a  and ( , )b   ).  
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(c)  

 

(d)  

Figure 2.2 Continue 
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In a similar pattern, the analytical prediction of stable and unstable periodic solutions of 

negative mapping P  for 0.85a   and ( , )b    is presented in Figure 2.3 (a)-(d). The 

periodic solutions of the negative mapping are plotted in Figure 2.3 (a). The real part, and 

imaginary part, and magnitude of the eigenvalues for such periodic solutions are presented in 

Figure 2.3 (b)-(d), respectively. The stable periodic solutions for negative mapping P  lie in 

( , 1.0)b    and (1.0, )b  . The stable period-1 solution (1)P  is stable focuses in 

( , 1.0)b    and stable nodes in (2.07, )b  . For ( 1.0, 0.07),b    the unstable (1)P  

solution is from the unstable focus to unstable node, which can also be determined by the 

positive mapping P . At 1b   , the bifurcation between the stable and unstable (1)P  solution  

is the Neimark bifurcation (NB). For ( 0.07, ),b    the unstable (1)P  solution is saddle. 

Thus, the bifurcation between the (1)P  solution related to the unstable node and saddle occurs at 

0.07,b    which is called the unstable period-doubling bifurcation (UPD). For ( , 2.07),b   

the unstable (1)P  solution is also saddle. At 2.07,b   the period-doubling bifurcation (PD) of 

the (1)P  solution takes place. For ( 0.07,0.39)b    and (0.8,1.0)b , the unstable period-2 

solution (2)P   exists. For (1.0, 2.07),b  the stable (2)P  solution exists from the stable focus 

to the stable nodes. Thus, the point at 0.07b    is the bifurcation of the unstable (2)P  solution 

which is the unstable saddle-node bifurcation between the unstable node and saddle (i.e., USN). 

At 0.39b   and 0.8b  , the period-doubling bifurcations of the unstable (2)P  solution occur, 

where the unstable saddle (2)P  solution exists in between the two points. The unstable (4)P

solution is in (0.39,0.8)b . Unstable saddle-node bifurcations for the unstable (4)P  solution 

occurs at 0.39b   and 0.8b  .  
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(a)  

(b)  

Figure 2.3: Analytical predictions of stable and unstable periodic solutions for negative 
mapping ( P ) of the Henon map: (a) periodic solutions, (b) Real part of eigenvalues, (c) 

Imaginary part of eigenvalues, (d) Magnitude of eigenvalues. ( 0.85a  and ( , )b   ). 
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(c)  

(d)  

Figure 2.3 Continue 
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(a)  

 

(b)  

Figure 2.5: Zoomed view of the parameter maps a  and b  : (a) periodic solution of (5)P  

and (b) periodic solution of (7)P . 
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From the analytical prediction, the parameter maps of both the positive and negative 

mappings are developed. An overall view of the parameter map is given in Figure 2.4. The 

positive and negative mappings are separated by the two Neimark bifurcations which are two 

straight lines at 1.0b   . The zoomed views of the parameter map for periodic solutions of 

(5)P  and (7)P  are presented in Figure 2.5 (a) and (b) for a clear illustration. The corresponding 

periodic solutions are labeled by mapping structures. “None” represents no any periodic 

solutions exists in the area, which means the solution goes to infinity. “Chaotic” gives the 

regions for chaotic solutions. The existing theory can only provide the periodic solutions relative 

to the positive mapping. And the unstable periodic solutions with saddle cannot be expressed. 

However, by using the positive and negative mapping technique, the co-existing of the periodic 

solutions can also be observed.  

Finally, the Neimark bifurcation between the periodic solution relative to the unstable 

and stable focuses is presented for a better understanding of the solution switching from positive 

to negative mappings. The Poincare mapping relative to the Neimark bifurcation of positive 

mapping (or negative mapping) at 0.85a   and 1b    is presented in Figure 2.6. The 

Neimark bifurcation of period-1 solution at 1.0b    is presented in Figure 2.6 (a), and the most 

inside point ( , ) (0.4237, 0.4237)k kx y     is the point for the period-1 solution of P  or P  

relative to the Neimark bifurcation. For the specific set of parameters, the initial values of 

( , )k kx y  used for simulation are tabulated in Table 2.1. The most outside curve with the initial 

condition ( , ) (1.0597, 0.4237)k kx y     is the separatrix for the strange attractors around the 

period-1 solutions with the Neimark bifurcation. The Neimark bifurcation of period-2 solution is 

presented in Figure 2.6 (b). For this case, there are two portions of the strange attractors. 

Similarly, the most inside points ( , ) ( 1.0847, 1.0847)k kx y      and (1.0847,-1.0847)  in the 
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two points of the two strange attractors are for the period-2 solution of P  and P  relative to 

the Neimark bifurcation. The initial conditions are given in Table 2.2 for simulation. The 

corresponding initial condition for the two portion separatrices of the strange attractors is 

( , ) (1.1728, 1.0847)k kx y    . 

 

Table 2.1 Input data for Poincare mappings of period-1 at the Neimark bifurcation 
( 0.85a   and 1.0b   ). 

( , )k kx y ( , )k kx y

(0.4737, 0.4737) (0.8037, 0.4237)
(0.5537, 0.4237) (0.9037, 0.4237)
(0.6237, 0.4237) (1.0597, 0.4237)
(0.7037, 0.4237)  

 

Table 2.2 Input data for Poincare mappings of period-2 at the Neimark bifurcation 
( 0.85a   and 1.0b  ). 

( , )k kx y ( , )k kx y

(1.0847, -1.0847) (1.1328, -1.0847)
(1.0939, -1.0847) (1.1542, -1.0847)
(1.1128, -1.0847) (1.1728, -1.0847)
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(a)  

(b)  
Figure 2.6: Poincare mappings at the Neimark bifurcation of period-1 solution at 1.0b    
and period-2 solution at 1.0b   of the Henon map (a) Neimark bifurcation of period-1 
solution, (b) Neimark bifurcation of period-2 solution. ( 0.85a  ). 
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2.3. Conclusions 

In this chapter, the complete bifurcation and stability of the stable and unstable periodic 

solutions relative to the positive and negative mapping structures were analyzed. The positive 

and negative iterative mappings of discrete maps were used for mapping structures of the 

periodic solutions. The periodic solutions of positive and negative mappings give a complete 

picture of the periodic solution. Both of the positive and negative mappings are a pair. A 

comprehensive investigation on the Henon map is carried out for a better understanding of 

complexity in nonlinear discrete systems. The bifurcation scenario based on positive and 

negative mappings of the Henon map was presented, and the analytical predictions of the 

corresponding periodic solutions were achieved. The eigenvalue analysis of the periodic 

solutions based on the positive and negative mappings were carried out. The Poincare mapping 

sections relative to the Neimark bifurcations of periodic solutions are presented, and the chaotic 

layers for the discrete system with the Henon map are observed. A parameter map for different 

positive and negative mapping structures was presented. For the first time, the complete unstable 

and stable periodic solutions in nonlinear discrete systems were presented.    
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CHAPTER 3  

BOUNCING BALL DYNAMICS 

 In this chapter, the theory of flow switchability for discontinuous dynamical systems is 

applied on the parametric analysis of a simple bouncing ball system. Domains and boundaries for 

such a discontinuous problem are defined and analytical conditions for motion switching are 

developed. These conditions explain the important role of switching phase on the motion 

switchability in such a system. In order to describe different motions in a simple and unified 

style, the generic mappings and mapping structures are introduced using a single discrete map. 

Bifurcation scenarios for periodic and chaotic motions are presented for a general understanding 

of different types of motion and the motion switchability. Analytical predictions of stable and 

unstable periodic motions are also presented with Eigenvalue stability analysis and switchability 

analysis. Furthermore, numerical simulation results are provided for a better image of periodic 

motions with only impacts and periodic motions with impact chatter to stick in the system. 

Finally, a detailed parameter map will be presented for a more comprehensive understanding of 

the system. 

3.1. Physical Model Descriptions 

As shown in Figure 3.1 the bouncing ball system consists of a ball impacting on a 

periodically moving table. The table of mass M  is driven under a periodic displacement ( )X t , 

and the ball of mass m  is subjected to only gravity, as shown in Figure 3.1. The restitution 

coefficient for impacts between the ball and the table is given as e .  
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( ) cosX t Q t 

M  

m

e

x

 

Figure 3.1: Physical model 
 

Then motion of the table is controlled by the excitation displacement ( )X t as 

2

cos ,

sin ,

cos .

X Q t

X Q t

X Q t

  
    
    




                  (3.1) 

If the particle does not stay on the table, the corresponding motion is called the non-stick motion. 

For this case, the equation of motion for the ball is given as 

.x g                (3.2)            

If the particle stays on the table and move together with it, this is called the stick motion. For this 

case, the equation of motion is 

2
0 cos ,x X Q t                     (3.3) 

where 0x is the acceleration for both the ball and the table. Assuming that the mass of the ball m  

is much smaller than the one of the table M , then the impact effect on the table from the ball 

can be ignored. Thus, the impact relation between the ball and the base can be described as 

;

,

( )
.

x X x X

X X

mx MX Me x X
x

m M

   

 

   


  



  




 
  

             (3.4) 
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3.2. Discontinuous Modeling 

In order to analyze the discontinuity caused by impacts in such a bouncing ball system, 

the domains and boundaries in absolute coordinate system are illustrated as in Figure 3.2, where 

Figure 3.2 (a) sketched the domain and boundary for non-stick motion, and Figure 3.2 (b) 

sketched the domains and boundaries definitions when stick motion exists. The origin of the 

absolute coordinate is set at the equilibrium position of the table. The shaded area represents the 

absolute domain 1 , which is defined as 

 1 ( , ) .x x x X        (3.5) 

The grey area highlights the absolute domain for stick motion 0 , which is defined as 

 0 ( , ) ( , ),crx x x X x X           (3.6) 

The corresponding absolute boundaries depicted by dashed curves are defined as 

 
 

1( ) 1( )

10 01 10

( , ) 0, ,

( , ) 0, ,cr cr

x x x X x X

x x x X x X





 
      


        

 

 
    (3.7) 

where in Figure 3.2 (a), the boundary of 1( )  is represented by the dashed curve with 

x X , and in Figure 3.2 (b) the stick boundary 10 01or    is represented by the dashed 

curve with and cr crx X x X   . Here crX  and crX  indicates the appearance and vanishing of 

stick motion.  

From the domains and boundaries definitions, the following state vectors for absolute 

motions can be defined 

( , ) ,
for ( 0,1),

( , ) ,

T

T

x x

x F

  

  


  

 

x

f




           (3.8) 
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where 0,1   stands for the stick or non-stick domain. Then the equation of absolute motion 

can be rewritten into state vector form 

( , )   for 0,1.t    x f x                (3.9) 

For the non-stick motion, 

1 1( , ) ,F x t g                         (3.10) 

while for the stick motion, 

2
0 0( , ) cos .F x t Q t                   (3.11) 

(a)

x  

x  
1  

1( )  

X  

 

    (b)

x  

x  

1  

10  

10  

crX  

 

 

Figure 3.2: Absolute domains and boundaries. (a) Non-Stick motion. (b) Stick motion. 
 

To simplify the time varying boundaries problem, relative coordinates are adopted for the 

system while the motion is close to the boundary. Considering the relative motion of the ball to 

the base, the relative displacement, velocity, and acceleration are given as ,z x X  ,z x X    
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and z x X   . The relative domains and boundaries for the motion of the ball are then defined 

in Figure 3.3. The stick domain and boundaries in the relative phase space becomes points, as 

shown in Figure 3.3. The relative domains 0 1and    are defined as 

 
 

0

1

( , ) 0, 0 ,

( , ) ( , ) .

z z z z

z z z h h

    


    

 


                (3.12) 

The relative boundaries 1( ) 10 01, , and     are defined as follow 

 
 

1( ) 1( )

10 01 10

( , ) 0, 0 ,

( , ) 0, 0 ,cr cr

z z z z

z z z z





 
     


       

 

 
      (3.13) 

z

z
1  

1( )  

10 0,   

01  

 

 

Figure 3.3: Relative domains and boundaries. 
 

where 1( )  is the relative impact-chatter boundaries without stick motion; 10 01,   are 

the relative stick motion boundaries. Using these definitions, the relative state vectors can be 

defined as 
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( , ) , ( , )T Tz z z g        z g z            (3.14) 

where 0,1   indicates the corresponding stick and non-stick domains. For 0,1  , the 

equations of relative motion is rewritten into the relative state vector form 

( , , ) ,t   z g z x                   (3.15) 

where ( , )t  x f x . For non-stick motion 

2
1 1 1( , , ) cos ,g t g Q t    z x                (3.16) 

For stick motion 

0 0 0( , , ) 0.g t z x                     (3.17) 

3.3. Analytical Switching Conditions 

The analytical switching conditions of stick and grazing motions will be developed in this 

section using the theory for switchability in discontinuous dynamical systems (Luo, A theory for 

flow switchability in discontinuous dynamical systems, 2008). First, the normal vector of the 

relative boundaries are given as 

 ,  
T

z z
 



 
  

    n             (3.18) 

where  ,
T

z z
 
    . Thus, the normal vectors to the relative stick boundaries 

10 01
, n n  and 

relative impact-chatter boundaries 
1( )n  are given by 

10 01

1( )

(0,1) ,

(1,0) ,

T

T



 



  


 

n n

n
             (3.19) 

The zero-order and first-order G-functions for the relative stick boundaries are 
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01 01

10 10

01 01

10 10

(0,0)
0 0 0

(0,1)
1 1 1

(1,0)
0 0 0

(1,1)
1 1 1

( , ) ( , , ),

( , ) ( , , ),

( , ) ( , , ),

( , ) ( , , ),

T
m m

T
m m

T
m m

T
m m

G t t

G t t

G t D t

G t D t

   

   

   

   




 


 
 

z n g z x

z n g z x

z n g z x

z n g z x









        (3.20) 

where mt  is the switching time of the motion on the corresponding boundary. 0m mt t    

represents the motion just off each side of the boundaries in different domains. The zero-order G-

functions are the normal components of the vector fields for the stick boundaries and the first 

order G-functions are the change rate of the normal vector fields. The G-functions for the relative 

impact-chatter boundary 1( )  are given 

1( ) 1( )

1( ) 1( )

(0,1)
1 1 1

(1,1)
1 1 1

( , ) ( , , ),

( , ) ( , , ),   

T
m m

T
m m

G t t

G t D t

 

 

   

   

 


 

z n g z x

z n g z x




      (3.21) 

With these G-functions define, the analytical switching conditions for stick motion can 

then be obtained from the passable flow condition from domain 1  to 0 , i.e., 

10 10

(0,1) (0,0)
1 0( , ) 0 and ( , ) 0.m mG t G t    z z        (3.22) 

Therefore, 

1 1 1 0 0 0( , , ) 0 and ( , , ) 0.m mg t g t  z x z x      (3.23) 

Furthermore, with the relative force function per unit mass, the onset condition of stick motion is 

given by 

2

2

2 2

2 2

If , always stick.

If ,

mod( , 2 ) (arccos , 2 arccos ) for 0

mod( , 2 ) (0, arccos ) (2 arccos , 2 ) for 0

m

m

Q g

Q g

g g
t Q

Q Q

g g
t Q

Q Q

 

  

 

 

      

   
  



 (3.24) 
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From Eqn.(3.24), if 2Q g  , the ball will always stick with the table once they come to same 

displacement and velocity; if 2Q g  , in order for the ball to stick and move together with 

the table, the switching phase mod( , 2 )mt   of the system must be within the range of 

2 2(arccos , 2 arccos )g g

Q Q


 
  for 0Q  , or for 0Q   inside the ranges 2(0, arccos )g

Q
 or 

2(2 arccos , 2 )g

Q
 


 . 

On the other hand, the criteria for vanishing of the stick motion are given for 01 by 

01 01

01 01

(0,0) (0,1)
0 1

(1,0) (1,1)
0 1

( , ) 0 and ( , ) 0,

( , ) 0 and ( , ) 0.

m m

m m

G t G t

G t G t

   

   

  


  

z z

z z
        (3.25) 

Simplifying the foregoing equations with the relative force relations for 01 , one can obtain  

0 0 0 1 1 1

0 0 0 1 1 1

( , , ) 0 and ( , , ) 0,

( , , ) 0 and ( , , ) 0.
m m

d d
m mdt dt

g t g t

g t g t
 

 

  
  

z x z x

z x z x
       (3.26) 

Further simplification of the above equation yields 

2

2

2

2

If , no vanishing exists.

If ,

when 0,mod( , 2 ) 2 arccos ,

when 0,mod( , 2 ) arccos ,

m

m

Q g

Q g

g
Q t

Q

g
Q t

Q

 



 

 

      

   
 

  (3.27) 

The above equation states: if 2Q g   the ball can never stop stick motion and have to move 

together with the table once the stick motion strats. Otherwise, when 0Q  , the stick motion 

can stop only when the switching phase mod( , 2 )mt   is equal to 22 arccos g

Q



 . When 

0Q  , the stick motion can only vanish when mod( , 2 )mt   equals to 2arccos g

Q
. 
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For grazing motion, the analytical condition can also be developed from the G-functions 

of the flow for the impact-chatter boundary 1( )  as follow 

1( ) 1( )

(0,1) (1,1)
1 1( , ) 0 and ( , ) 0  ,m mG t G t

     z z         (3.28) 

Thus, the grazing motion condition of impact-chatter boundary is given as 

1( )2

sin 0,
for 

cos

m m

m

x Q t

Q t g


     
   


      (3.29) 

Similarly, the grazing motion conditions for the stick boundaries are given as  

10 10

01 01

(0,1) (1,1)
1 1 1 1 10

(0,0) (1,0)
0 0 0 0 01

( , , ) 0 and ( , , ) 0  for ,

( , , ) 0 and ( , , ) 0  for .

m m

m m

G t G t

G t G t

   

   

   


   

z x z x

z x z x
        (3.30) 

Substitution of the relative motion relations into the above equations and simplify them yields 

2 3
10

2 3
01

cos and sin 0, for ,

cos and sin 0, for ,

Q t g Q t

Q t g Q t

       


       
   (3.31) 

3.4. Discrete Mapping Structures 

Based on the boundaries defined in Eqn.(3.7), the switching sets of bouncing ball system 

without stick can be defined as 

 
 

1( )

10 01

( , , ) ,

( , , ) ,

k k k k k

k k k k k

x x t x X x X

x x t x X x X


    


      

 

 
      (3.32) 

where the switching set 1( )  is defined on the impact chatter boundary 1( ) , 10  and 

01  are defined on the stick boundaries 10  and 01 , respectively. Thus, the generic 

mappings for such a bouncing ball system can be defined as 

1 1( ) 1( ) 01 1( ) 1( ) 10

0 10 01

:  or  or 

: .

P

P

            


   
   (3.33) 
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where the mapping of 1P  represents an impact between the ball and the table, and the mapping of 

2P  represents a stick motion of the ball on the table, as shown in Figure 3.4. From the above 

definitions, the governing equations for the generic mappings can be expressed by 

 
 
 
   

(1)
1 1 1 1

1 (1)
2 1 1 1

(0)
1 1 1 1

0 (0)
2 1 1 1 1 1 1

, , , , , 0,
:

, , , , , 0,

, , , , , 0,
:

, , 0, , 0,

k k k k k k

k k k k k k

k k k k k k

k k k k k

f x x t x x t
P

f x x t x x t

f x x t x x t
P

f x x t g t

  

  

  

    

 



 


  x

 

 

 



   (3.34)  
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Figure 3.4: Illustration of switching sets and generic mappings. 
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   (3.35) 

The notation for mapping action is introduced as 

1 1 1 1
,

k k k kj j j j j jP P P P
 

                  (3.36) 

where  1,0kj  . For a motion with m-time repeated mapping structure of 
1 2 kj j jP  , the mapping 

structure can be expressed as 

     

 

1 1 1 1 1 1

1 1

.

k k k k k k

m
k k

m
j j j j j j j j j

m

j j j

P P P P P P P

P

  











    


   (3.37) 

Consider a motion with a generalized mapping structure 

2 1 11 11 2 1 21 111 01 0 (1 0 ) (1 0 )
,k k k k k k k kl l l l

l termsl terms

P P P P


 





         (3.38) 

where {0,1}jsk   and ( 1, 2; 1, 2, ,j s l   ). Define vectors T( , , )k k k kx x tY  . The motion 

pertaining to the mapping structure in Eqn. (3.38) can be determined by 

1 11 1
1 1( ) (0 1 ) (0 1 )

.l k n k nl l
s s s

l terms

k kk k n
P P





 
 Y Y Y


      (3.39) 

From the algebraic equations for generic mappings in Eqn. (3.34) and (3.35), one can obtain a 

set of nonlinear algebraic equations for such a mapping structure, i.e., 

11 11

21 11 21 11

1 2 1 1 2 1

(0) (1)
1 1
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1
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



f Y Y f Y Y

f Y Y

f Y Y

 

    (3.40) 
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The periodic motion pertaining to such a mapping requires 

1 2 1( )l
s s s

kk k k 
Y Y                    (3.41) 

or 

1 2 1

1 2 1

1 2 1
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x x
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t t N







 
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 

 
 

   

              (3.42) 

Solving Eqn. (3.40) to (3.42) generates the switching sets of periodic motion with 

respect to the mapping structure in Eqn.(3.38). Once the switching points for a specific periodic 

motion is obtained, its local stability and bifurcation analysis can be achieved through the 

corresponding Jacobian matrix. For instance, the Jacobian matrix of the mapping structure in 

Eqn. (3.38) is given as 

2 1
1 1 21 11

( ) ( )
1 0(1 0 ) (1 0 )

1

,s s
k k k kl l
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k k

s
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       (3.43) 
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Y
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                (3.44) 

for 1 2 1, 1, , ( ) 1l
s s sk k k k k        and all the Jacobian matrix components can be 

computed through Eqn. (3.44). The equations for a set of switching points {

1 2 1

* * *
1 ( )

, , , l
s s s

k k k k k
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Y Y Y } is 

1 2 1

*
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If 
1 2 1( )l

s s s
kk k k


 

  Y Y , then the Eigenvalues can be computed by 

*( ) 0kDP  Y I                  (3.46) 
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For Eigenvalue stability: 

If all | | 1i   for ( 1, 2)i  , the periodic motion is stable.  

If one of | | 1i  for ( {1, 2}i ), the periodic motion is unstable.  

If one of 1i    and | | 1j   for ( , {1, 2}i j  and j i ), the period-doubling 

bifurcation of periodic motion occurs.  

If one of 1i   and | | 1j   for ( , {1, 2}i j  and j i ), the saddle-node bifurcation of the 

periodic motion occurs.  

If 1,2| | 1   is a pair of complex Eigenvalues, the Neimark bifurcation of the periodic 

motion occurs.  

However, the Eigenvalue analysis cannot be used to predict sticking and grazing motions. 

Both of them should be determined through the normal vector fields, where the onset and 

vanishing of stick motion is determined by Eqn. (3.24) and (3.27); the grazing motion is 

determined by Eqn. (3.29) or (3.31). 

3.5. Illustrations 

In this section bifurcation scenario will be presented for the bouncing ball system 

together with the analytical predictions and Eigenvalue stability. Simulations of periodic motions 

with only impacts and periodic motions with impact chatter to stick will also be illustrated for the 

system using the switching sets and generic mappings. Finally, a detailed parameter map will be 

presented for a better understanding of different motions in the system. 
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(a)  

(b)  

Figure 3.5: Bifurcation scenario of varying table displacement amplitude Q  . (a) 
Switching displacement of the ball. (b) Switching velocity of the ball.  (c) Switching phase 
mod( , 2 )t   . ( 4.0, 0.1, 1.0, 0.00001.e M m     ) 
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(c)  

Figure 3.5 Continue 
 

The bifurcation scenario of varying table displacement amplitude Q  for the bouncing 

ball is presented in Figure 3.5. The parameters are 4.0,  1.0,M  0.00001,m   0.1e  . 

The bifurcation of the ball’s switching displacement versus the table displacement amplitude Q  

is shown in Figure 3.5 (a), while the bifurcation of the ball’s switching velocity versus Q  is 

given in Figure 3.5 (b). The bifurcation of the switching phase versus Q  is also presented in 

Figure 3.5 (c). The acronyms “PD” and “GB” represent period-doubling bifurcation and grazing 

bifurcation, respectively. The shaded regions indicate the regions of periodic motion. This 

includes periodic motion with impact chatter and stick as well as periodic motions with only 

impacts 
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 (a)   

(b)  

Figure 3.6: Analytical prediction of varying the table displacement amplitude Q . (a) 
Switching displacement of the ball. (b) Switching velocity of the ball.  (c) Switching phase 
mod( , 2 )t  . (d) Real part of Eigenvalues. (e) Imaginary part of Eigenvalues. (f) 
Magnitude of Eigenvalues.  ( 4.0,   0.1,e   1.0,M   0.00001.m  ) 
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(c)  

(d)  

Figure 3.6 Continue 
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(e)  

 

(f)  

Figure 3.6 Continue 
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Using same parameters, the corresponding analytical predictions for impact only periodic 

motion are presented in Figure 3.6, where Figure 3.6 (a), (b), and (c) present the switching 

displacement, switching velocity, and switching phase of the ball versus the table displacement 

amplitude Q , respectively; Figure 3.6 (d), (e), and (f) illustrate the real part, imaginary part, and 

magnitude of Eigenvalues versus Q , respectively. Furthermore, the analytical predictions of 

periodic motions with impact chatter and stick are also provided in Figure 3.7, where Figure 3.7 

(a), (b), and (c) are presenting the switching displacement, switching velocity, and switching 

phase of the ball versus Q , respectively. The symbols ‘PD’, ‘SN’, and ‘GB’ represent the 

period doubling bifurcation, saddle node bifurcation, and grazing bifurcation, correspondingly. 

In Figure 3.6, the solid curves indicate stable periodic motions while the dashed curves indicate 

the unstable periodic motions; and 1, 2, ...n   indicate the order of the periodic motion 

according to table displacement period. As presented in Figure 3.6, for (1.55, 1.57)Q  , the 

period-2 21
P  motion with only impacts exists. To the left, this motion ends at the saddle node 

bifurcation where 1.55Q  ; To the right, this motion becomes unstable at 1.57Q   due to a 

period doubling bifurcation which corresponds to the saddle node bifurcation of the period-4 41
P  

motion. And the period-4 41
P  motion exists in the range (1.57, 1.58)Q  . This motion 

eventually becomes unstable at the period doubling bifurcation at 1.58Q  . For 

(1.57, 1.87)Q  , there is another branch of periodic motion existing, the period-1 1P  motion, 

similarly this motion ends at 1.57Q   because of a saddle node bifurcation and becomes 

unstable after 1.87Q   due to a period doubling bifurcation. After the period doubling another 

branch of period-2 21
P  motion starts. This motion continues until 2.01Q  , where a period 

doubling bifurcation cause it to go unstable. The new started period-4 41
P  motion continues 
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until it reaches the period doubling bifurcation at 2.04Q  . In a similar pattern, the period-2 1P  

motion with only impact runs from 3.15Q   to 3.31Q  . To the left, this motion disappears at 

the saddle node bifurcation at 3.15Q  ; to the right the motion becomes unstable after a period 

doubling bifurcation at 3.31Q  . After the period doubling, the period-4 21
P  motion exist for 

(3.31, 3.39)Q  . This motion becomes unstable at 3.39Q   after the period doubling 

bifurcation. All these periodic motions consist of only impacts between the ball and the table. 

They are relatively simple comparing to the periodic motions consist of impact chatter and stick 

which will be presented latter. 

 (a)  

Figure 3.7: Analytical prediction for impact chatter and stick motion varying the table 
displacement amplitude Q . (a) Switching displacement of the ball. (b) Switching velocity 
of the ball.  (c) Switching phase mod( , 2 )t  . (d) Real part of Eigenvalues. (e) Imaginary 
part of Eigenvalues. (f) Magnitude of Eigenvalues.  ( 4.0,   0.1,e   1.0,M   

0.00001.m  ) 
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(b)  

 (c)  

Figure 3.7 Continues 
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(a)  

(b)  

Figure 3.8: Simulation of period-4 motion with a mapping structure of 21
P . ( 3.36,Q 

4.0,  0.1,e  1.0,M  0.00001m  ). (a) Displacement time history. (b) Velocity time 
history. (c) Phase portrait of the ball with moving boundaries. The initial conditions are: 

0 1.21297116,t  0 0.467186746,x  0 16.1746312x  . 
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(c)  

Figure 3.8 Continue 
 

With the same set of parameters and same range for the excitation amplitude Q , the 

analytical prediction for impact chatter with stick periodic motions are presented in Figure 3.7. In 

a similar fashion with Figure 3.6, Figure 3.7(a), (b), and (c) presented the switching 

displacement, switching velocity, and switching phase, respectively. The symbol “GB” stands 

for grazing bifurcations, where one of the impact chatters disappears after the bifurcation. The 

grazing bifurcation cannot be seen from the Eigenvalue stability analysis, and can only be 

predicted by the analytical conditions presented in Eqn. (3.29) and (3.31). As can be observed 

from the figure, the impact chatter and stick motions can cause some very complex periodic 

motion. These motions were sometimes recognized as chaos by mistakes. 
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 (a)  

(b)  

Figure 3.9: Simulation of impact chatter with stick periodic motion of mapping structure 
101 0

P  . ( 2.5,Q  3.0,  0.1,e  1.0,M   0.00001m  ). (a) Displacement time history. (b) 

Velocity time history. (c) Phase portrait of the ball with moving boundaries. The initial 
conditions are: 0 0 01.25019058, 0.710982795, 11.3269665t x x   . 

 

Time (s)

0 3 6 9 12 15

P
ha

se
  M

od
( 

t,2


0

pi/2

pi

3pi/2

2pi
D

is
pl

ac
em

en
ts

 x
, X

-4

-1

2

5

8 Periodic

1P 1P

0P

1P

x

X

1P

0P

1P

1P

1P

1P 1PImpact Chatter

mod( , 2 )t 

Time (s)

0 3 6 9 12 15

P
ha

se
  M

od
( 

t,2


0

pi/2

pi

3pi/2

2pi

V
el

oc
it

ie
s 

y,
 Y

-15

-10

-5

0

5

10

15
Periodic

1P 1P

0P

1P

x 1P

0P

1P

1P

1P

1P 1P

Impact Chatter

mod( , 2 )t 

X



56 

 
 

(c)  

Figure 3.9 Continue 

 

Figure 3.10: Parameter map of restitution coefficient e  versus table displacement 
frequency   . ( 2.0,Q  1.0,M  0.00001m  ) 
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Figure 3.11: Parameter map of restitution coefficient e  versus table displacement 
amplitude Q  . ( 4.0,  1.0,M  0.00001m  ) 

 

A simulation of a period-4 motion with only impacts is presented in Figure 3.8 under the 

same set of parameters with 3.36Q  . The mapping structure of this periodic motion is 21
P , 

And the initial conditions are given as: 0 1.21297116,t  0 0.467186746,x  0 16.1746312x  . 

The time histories of displacement and velocity are presented in Figure 3.8 (a) and (b), 

respectively. The black solid curves represent the motion of the table, while the smaller black 

hollow circles represent the motion of the ball. The bigger black hollow circles shows the 

switching points of the table, while the smaller black solid circles represent the switching points 

of the ball. The red dashed curves indicate the change of phase with respect to time, which 

provides the analytical condition of motion switching such as stick and grazing. The 

corresponding phase portrait of the ball’s motion with its moving boundaries is presented in 

Figure 3.8 (c), where the black solid curves indicate the moving boundaries and the small hollow 
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circles highlight the motion of the ball. Again, the red dashed curves present the change of 

switching phase, which is an indicator of analytical conditions. 

Furthermore, simulation results of a relatively complex periodic motion with impact 

chatter and stick is also illustrated in Figure 3.9 under the same parameters with 2.5Q  . This is 

a period-4 motion and the mapping structure of this motion is given as 101 0
P . The initial 

conditions are chosen as: 0 0 01.25019058, 0.710982795, 11.3269665t x x   . In a similar 

pattern, the time histories of displacements, velocities, and the motion of the ball in phase 

portrait are presented in Figure 3.9 (a), (b), and (c), respectively. Since 4.0  and 2Q g  , 

the onset condition of stick motion is provided from Eqn. (3.24) as 

mod( , 2 ) (0.42 , 1.58 )t     . On the other hand, the vanishing condition of stick motion is 

obtained from Eqn. (3.27) as mod( , 2 )t   equal to about 1.58 . From Figure 3.9, the 

fulfillment of onset stick motion condition can be observed right after the impact chattering at 

3.84t s , where the switching phase mod( , 2 ) 0.88t    . Thus, the stick motion starts until 

4.41t s . At this moment, the switching phase of the system mod( , 2 ) 1.58t     which 

predicts that the ball should separate with the table. And the stick motion must vanish. Thus the 

ball starts doing impacts with the table again. 

For a more thorough understanding of the dynamics of this bouncing ball system, 

parameter maps are provided. The parameter map of restitution coefficient e  versus the table 

displacement frequency   is presented in Figure 3.10, while the parameter map of restitution 

coefficient e  versus the table displacement amplitude Q  was presented in Figure 3.11. In 

these figures, the white area indicates the area of simple motions, where the ball will eventually 

stick together with the table and never separate; the light grey region indicates the identified 
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periodic motion with chatter and stick; the chaotic region is indicated by dark grey region; the 

region of complex motion consisting with complex periodic motion and chaos is presented in 

light blue. The periodic motions of only impacts with different orders are also presented in 

Figure 3.10 and Figure 3.11, using different color coded areas: the yellow, orange, and red areas 

represent the period-1, period-2, and period-4 1P  motions, respectively. Similarly, the period-2, 

period-4, and period-8 21
P  motions are also illustrated using different colors. 

3.6. Conclusions 

In this chapter, a simple bouncing ball system was investigated using the theory of flow 

switchability for discontinuous dynamical systems. Discontinuous model was constructed using 

domains and boundaries and analytical conditions for motion switching were developed. These 

conditions were closely related to the switching phase of the system. Different types of motions 

were described in a simple and unified style by introducing the generic mappings and mapping 

structures. Bifurcation scenarios for periodic and chaotic motions were presented. Analytical 

predictions of stable and unstable periodic motions were also presented with Eigenvalue 

stability. Furthermore, numerical simulation results are provided for a better image of periodic 

motions with only impacts and periodic motions with impact chatter to stick in the system. 

Finally, parameter maps were provided for a more comprehensive understanding of the motions 

affected by different parameters. 
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CHAPTER 4  

HORIZONTAL IMPACT PAIR 

 In this chapter, complex motions of a ball in the horizontal impact pair with a periodic 

excitation is studied using the theory of discontinuous dynamical system. Analytical conditions 

for motion switching such as stick and grazing are developed, and generic mapping structures are 

introduced to describe different periodic and chaotic motion. Analytical prediction of complex 

periodic motion of the ball in the periodically shaken impact pair is completed and the 

corresponding stability and bifurcation analysis is also carried out. Parameter map and numerical 

illustrations of periodic and chaotic motions are also given. 

4.1. Physical Model Descriptions 

Consider a horizontal impact pair consisting of a ball moving inside a base with two 

vertical walls. The distance between the walls is d . The base of mass M  possesses a periodic 

shaken displacement ( )X t , and the ball of mass m  is free to move between the two walls of the 

base, as shown in Figure 4.1. The restitution coefficient for impacts between the ball and the 

base is e .  

 

( ) cosX t Q t   

M  

m

/ 2d   e

x  

X  

/ 2d  

 

Figure 4.1: Mechanical model 
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The motion of the base possesses a sinusoidal displacement. Thus, 

2
0 0 0cos ,  sin , cosX Q t X Q t X Q t                      (4.1) 

where /X dX dt . If the ball does not move together with the base, the corresponding motion is 

called the non-stick motion or free-flight motion. For this case, the equation of motion for the ball 

is given as 

 0x        (4.2) 

If the ball moves together with the base, such a motion is called the stick motion. The 

equation of motion is given as  

 ( ) 2
0( ) cos ,im M x MX MQ t         (4.3) 

where ( )ix ( 2, 3i  ) is the acceleration for both the ball and the base. The impact relation 

between the ball and the base can be described as 

 
( )

;  , .
mx MX Me x X

x X x X X X x
m M

   
      

  
    



      (4.4) 

If M m , the impact effect of base velocity can be ignored. 

4.2. Discontinuous Modeling 

Since the motion discontinuity of the ball is caused by impacts, the domains and 

boundaries in absolute coordinate system are sketched in Figure 4.2. The origin of the absolute 

coordinate is set at the equilibrium position of the base. The absolute domain 1  for the ball 

without stick is defined as 

  1 ( , ) ( , )x y x X d X d        (4.5) 

where y x   .The corresponding boundaries are defined as 
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 
 

1( ) 1( )

1( ) 1( )

( , ) / 2 0, ,

( , ) / 2 0, .

x y x X d x X

x y x X d x X





 

 

       


       




  (4.6) 

The domain is represented by a hatched area, and the boundaries are depicted by dashed 

curves in Figure 4.2. The boundary of 1( ) is given by a dashed curve with / 2x X d   

and the boundary of 1( )  is depicted by a dashed curve with / 2x X d  . The absolute 

domains 2 ,  3  and 1  with stick motion for the ball are defined as 

 

 
 

  

2

3

1

( , ) ( , / 2), ,

( , ) ( / 2, ), ,

( , ) / 2, / 2 , ,

cr

cr

cr cr

x x x X d x X

x x x X d x X

x x x X d X d x X

     

      

      

 

 

 

  (4.7) 

where crX  is for appearance and vanishing of stick motion. The domain of 1  is represented 

by the hatched area. Domains 2  and 3  are represented by shaded regions in Figure 4.2 (b). 

The absolute boundaries are given by dashed curves. The stick boundaries are defined as 

 
 
 

12 12

13 13

( , ) / 2 0, ,

( , ) / 2 0, .

cr cr

cr cr

x x x X d x X

x x x X d x X





      

      

 

 
  (4.8) 

From the defined domains, the vectors for absolute motions can be introduced by 

 ( ) ( ) ( ) T ( ) ( ) ( ) T( , ) , ( , ) for 1, 2,3x y y F        x F   (4.9) 

where 1   gives non-stick domain and 2,3   give the stick motions at the left and right 

walls of the base, respectively. The equation of absolute motion is rewritten in the vector form of  

 ( ) ( ) ( )( , )   for 1, 2,3t    x F x    (4.10) 

For the non-stick motion, 

 (1) (1)( , ) 0,F t x     (4.11) 
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 (a)

x  

x  
1  

1( )  1( )  

/ 2X d  / 2X d  

 (b)

x  

x  
1  

12  

2  

/ 2crX d  

13  

/ 2crX d  

3  

 

Figure 4.2: Absolute domain and boundaries. (a) Absolute domain and boundaries without 
stick. (b) Absolute domains and boundaries with stick. 
 

while for the stick motion, 

 ( ) ( ) 2
0( , ) cos

M
F t Q t

m M
     


x  for 2,3.    (4.12) 

For simplicity, analytical conditions based on the time varying boundaries can be 

obtained through the relative coordinates for such a horizontal impact pair. The relative 

displacement, velocity, and acceleration of the ball to the periodically shaken base are 

  ,z x X  ,z x X    and z x X   .    (4.13) 

The relative domains and boundaries for the motion of the ball are sketched in Figure 4.3. The 

stick domain and boundaries in relative phase space becomes points. The relative domains 1,

2 ,  and 3  for the ball are defined as 

 
 
 

2

3

1

( , ) / 2, 0 ,

( , ) / 2, 0 ,

( , ) ( / 2, / 2) .

z z z d z

z z z d z

z z z d d

    
    


    

 

 



    (4.14) 
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z

z

1  

3  

1( )  1( )  

13  

h  h  
2  

12  

 

Figure 4.3: Relative domains and boundaries. 
  

  

The relative boundaries 1( ) , 1( ) ,  12  and 13  for the ball are defined as  

 

 
 

 
 

1( ) 1( )

1( ) 1( )

12 21 12

13 31 13

( , ) 0, 0 ,

( , ) 0, 0 ,

( , ) 0, / 2 ,

( , ) 0, / 2 ,

cr cr

cr cr

z z z z

z z z z

z z z z d

z z z z d









 

 

    

     

       


       

 

 

 

 

   (4.15) 

where 1( ) 1( ),    are the relative impact-chatter boundaries for the ball. 12  and 13  

are the relative stick motion boundaries for the ball. The relative vectors in the relative 

coordinate are defined as 

 ( ) ( ) ( ) T ( ) ( ) ( ) ( ) T( , ) , ( , )z z z g        z g z      (4.16) 

where 1, 2,3   give the corresponding stick and non-stick domains. For 1, 2,3  , equations 

of relative motion is rewritten in the vector form of 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( , , ) and  ( , )t t       z g z X X F X    (4.17) 

For non-stick motion 
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 (1) (1) (1) 2
0( , , ) cos .g t Q t  z X     (4.18) 

For stick motion 

( ) ( ) ( )( , , ) 0 for 2,3.i i ig t i z X                    (4.19) 

4.3. Analytical Switching Conditions 

The switching conditions of stick and grazing motions will be developed using the theory 

of flow switchability for discontinuous dynamical systems (Luo, A theory for flow switchability 

in discontinuous dynamical systems, 2008). First, the normal vector of the relative boundary is 

defined 

 
T

,  
z z

 


 


  
      

n


    (4.20) 

where  T
/ , /z z      . The normal vectors to the relative stick boundaries 

12 13
, n n and 

relative impact-chatter boundaries 
1( ) 1( )

,
  n n  are given by 

 
12 13 1( ) 1( )

T T(0,1)   and (1,0) .
       n n n n   (4.21) 

The zero-order and first-order G-functions for the relative stick boundaries are then 

defined as  

 

1 1

1 1

1 1

1

(0, ) ( ) ( ) T ( ) ( ) ( )

(0,1) (1) (1) T (1) (1) (1)

(1, ) ( ) ( ) T ( ) ( ) ( )

(1,1) (1) (1)

( , , ) ( , , ),

( , , ) ( , , ),

( , , ) ( , , ),

( , , )

i i

i i

i i

i

i i i i i i
m m m m m m

m m m m m m

i i i i i i
m m m m

m m m

G t t

G t t

G t D t

G t

   

   

   

  

 

 

 



z X n g z X

z X n g z X

z X n g z X

z X n
1

T (1) (1) (1)

 

( , , ),
i m m mD t 






 g z X

       (4.22) 

where mt  is the switching time of the motion on the corresponding boundary and 0m mt t    

represents the motion in domains instead of the boundary. The G-functions for the relative 

impact-chatter boundaries are given as 
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1( ) 1( )

1( ) 1( )

1( ) 1( )

1( )

(0,1) (1) (1) T (1) (1) (1)

(1,1) (1) (1) T (1) (1) (1)

(0,1) (1) (1) T (1) (1) (1)

(1

( , , ) ( , , ),

( , , ) ( , , ),
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   
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 

 

 

z X n g z X

z X n g z X
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1( )

,1) (1) (1) T (1) (1) (1)( , , ) ( , , ).m m m m m mt D t
  








  z X n g z X

    (4.23) 

Using these G-functions, the switching conditions for stick motion can be obtained from 

the passable flow condition (Luo, Discontinuous Dynamical Systems on Time-varying Domains, 

2009) from domain 1  to i  ( 2, 3i  ), i.e., 

 
1 1

(0,1) (1) (1) (0, ) (1) (1)( 1) ( , , ) 0 and ( 1) ( , , ) 0.
i i

i i i
m m m m m mG t G t      z X z X    (4.24) 

Thus, 

 (1) (1) (1) ( ) ( ) ( )( 1) ( , , ) 0 and ( 1) ( , , ) 0.i i i i i
m m m m m mg t g t    z X z X   (4.25) 

where 2, 3i   indicates when the ball stick with the base on the left or right walls of the base, 

respectively. With the relative force function per unit mass, the onset conditions of stick motion 

on the left or right walls is given by 

 
12

13

3
mod( , 2 ) ( , ) for ,

2 2
3

mod( , 2 ) ( , 2 ) (0, ) for ,
2 2

m

m

t

t

 

  

   

   


   (4.26) 

From Eq.(4.26), the phase angle mod( , 2 )mt   lies in the second or third quadrant for the ball 

sticking with the base at the left wall. For the ball sticking at the right wall, the phase angle 

mod( , 2 )mt   should be in first or fourth quadrant. 

Similarly, the criteria for vanishing of the stick motion can be given for 1i  by 
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i i

i i

i i
m m m m m m

i i i i i
m m m m m m

G t G t

G t G t

  
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  


    

z X z X

z X z X
 (4.27) 
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From the foregoing equations, the relative force relations for 1i  are obtained, i.e.,  

 

( ) ( ) ( ) (1) (1) (1)

( ) ( ) ( )

(1) (1) (1)

( , , ) 0 and ( , , ) 0,

( 1) ( , , ) 0 

and ( 1) ( , , ) 0.

i i i
m m m m m m

i i i id
m m mdt

i
m m m

g t g t

g t

g t

 





 


  
  

z X z X

z X

z X

  (4.28) 

Further simplify the above equation yields 

 12 13

3
mod( , 2 ) for , mod( , 2 ) for .

2 2m mt t
          (4.29) 

From the above equation, the ball leaves from the left wall of the base at mod( , 2 ) 3 / 2mt     

and from the right wall at mod( , 2 ) / 2mt    . 

From the G-functions of the flow to each boundary, the grazing motion conditions can 

also be developed, i.e.,   

1( ) 1( )

1( ) 1( )

(0,1) (1) (1) (1,1) (1) (1)
1( )

(0,1) (1) (1) (1,1) (1) (1)
1( )

( , , ) 0  and ( , , ) 0   for ,

( , , ) 0  and ( , , ) 0   for .

m m m m m m

m m m m m m

G t G t

G t G t

 

 

    

    

   


   

z X z X

z X z X
 (4.30) 

So the grazing motion conditions at the left or right impact-chatter boundaries are 

 1( )

1( )

sin 0 and

3
mod( , 2 ) ( , 2 ) (0, ) for ,

2 2
3

mod( , 2 ) ( , ) for .
2 2

m m

m

m

x Q t

t

t

  

 





   

    

  




  (4.31) 

From the above equations, when the velocity of ball equals to the velocity of base, 

mod( , 2 )mt  should be in the first or fourth quadrant for the ball to graze on the left impact-

chatter boundary. If mod( , 2 )mt  is in the second or third quadrant, then the ball will graze to 

the right impact-chatter boundary.  

Similarly, the grazing motion conditions for the stick boundaries are provided as 
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1 1

1 1

(0,1) (1) (1) (1,1) (1) (1)
1

(0, ) ( ) ( ) (1, ) ( ) ( )
1

( , , ) 0 and ( 1) ( , , ) 0  for ,

( , , ) 0 and ( 1) ( , , ) 0  for .

i i

i i

i
m m m m m m i

i i i i i i i
m m m m m m i

G t G t

G t G t

   

   

   

   

z X z X

z X z X
    (4.32) 

Substitution of the relative motion relations into the above equations and simplification of the 

above equations gives 

 

12 1

12 2

13 1

13 3

3
mod( , 2 ) for  in ,

2
mod( , 2 ) (0, ) for  in ;

mod( , 2 ) for  in ,
2

mod( , 2 ) ( , 2 ) for  in .

m

m

m

m

t

t

t

t



 


  

   

   

   

   

    (4.33) 

From the forgoing equations, when the ball reaches the stick boundaries from 1 , the 

condition of mod( , 2 ) 3 / 2mt     is for the ball to graze on the left stick boundary. The 

condition of mod( , 2 ) / 2mt     is for the ball to graze on the right stick boundary. When the 

ball reaches the stick boundaries from domain 2 , if mod( , 2 )mt  is in first or second 

quadrant, then the ball will graze to the left stick boundary. If mod( , 2 )mt  is in the third or 

fourth quadrant, then the ball will graze to the right stick boundary. And the stick motion will 

continue. 

4.4. Discrete Mapping Structures 

Using the boundaries in Eq.(4.6), the switching sets of the horizontal impact pair without 

stick can be defined as 

 
 

1( )

1( )

( , , ) / 2,

( , , ) / 2,

k k k k k k k

k k k k k k k

x x t x X d x X

x x t x X d x X





     


     

 

 
  (4.34) 
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where the switching sets 1( )  and 1( )  are defined on the boundary 1( )  and 1( ) , 

respectively. Thus, the generic mappings for motions without stick are defined as 

 
1 1( ) 1( ) 2 1( ) 1( )

3 1( ) 1( ) 4 1( ) 1( )

: , : ,

: , : .

P P

P P

   

   

    

   
   (4.35) 

From the above definitions, the switching sets and mappings are sketched in Figure 4.4 

(a) for the ball. Based on the boundaries in Eq.(4.6) and (4.8), the switching sets of the 

horizontal impact pair with stick motion are also defined as 

 

 
 
 
 

12

13

1( )

1( )

( , , ) / 2, ,

( , , ) / 2, ,

( , , ) / 2, ,

( , , ) / 2,

k k k k k k k

k k k k k k k

k k k k k k k

k k k k k k k

x x t x X d x X

x x t x X d x X

x x t x X d x X

x x t x X d x X





    

     


     

     

 

 

 

 

  (4.36) 

where the switching sets 1i  ( 2, 3i  ) are defined on the boundaries 1i . Thus, the generic 

mappings for the stick motion are defined as 

 

1 12 1( ) 1( ) 13

2 1( ) 12 13 1( )

3 1( ) 12 4 13 1( )

5 12 12 6 13 13

: , or ,

: , or ,

: , : ,

: , : .

P

P

P P

P

 

 

 

   

   

   

    

    (4.37) 

where the global mappings of 1 2 and P P  will map from one switching set to another, and the 

local mappings of 3 4 5, ,P P P  and 6P  map from one switching set to itself, as shown in Figure 

4.4 (b). From the above definitions, the governing equations for generic mapping jP  (

1, 2, 3, 4j  ) can be expressed by 

 
 

( )
1 1 1 1

( )
2 1 1 1

, , , , , 0,
:

, , , , , 0,

j
k k k k k k

j j
k k k k k k

f x x t x x t
P

f x x t x x t

  

  

 




 

 
     (4.38) 
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(a)

x  

x  
1  

1( )  1( )  

/ 2X d  / 2X d

1P  

2P  

3P  

4P  

 (b)

x  

x  

1  

12  

2  

13  

3  

6P  

2P  

3P  

1P  

4P  5P  

 

Figure 4.4: Switching sets and generic mappings in absolute coordinates. (a) Non-stick 
motion. (b) stick motion.  
   

with 

 

1 1 1

1 1 2

1 1 3

1 1 4

/ 2  and / 2  for ,

/ 2  and / 2  for ,

/ 2  and / 2  for ,

/ 2  and / 2  for .

k k k k

k k k k

k k k k

k k k k

x X d x X d P

x X d x X d P

x X d x X d P

x X d x X d P

 

 

 

 

    
    
    
    

   (4.39) 

The governing equations of stick motion mappings 5P  and 6P  can be expressed as 

 
( )

1 1 1 1

( ) (1)
2 1 1 1 1 1

( , , , , , ) 0,
:

( , , ) ( , , ) 0,

k k k k k k

k k k k k

f x x t x x t
P

f x x t g t



 

  

    

 


  0 X

 


    (4.40) 

with 5, 6  , where 

 
1 1 1

5

1

/ 2 and ,

 and ,
for mapping ,3

mod( , 2 ) ( , ),
2 2

and mod( , 2 ) ( , 2 ),

k k k k

k k k k

k

k

x X d x X

x X h x X
P

t

t

 

  

  



  


   


  


  




    (4.41) 

and 
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1 1

6

1

 and ,

 and ,
for mapping .3

mod( , 2 ) ( , 2 ) (0, ),
2 2

and mod( , 2 ) (0, ),

k k

k k

k

k

x X h x X

x X h x X
P

t

t

  

 

 



  


   


  


  





 (4.42)   

The notation for mapping action is introduced as 

 
1 1 1 1

,
k k k kj j j j j jP P P P

 
        (4.43) 

where  1, 2,3, 4,5,6kj   is a positive integer. For a motion with m-time repeated mapping 

structure of
1 2 kj j jP  , the mapping structure can be expressed as 

 
1 1 1 1 1 1

1 1

( )

( )

( ) ( )

.

k k k k k k

m
k k

m
j j j j j j j j j

m

j j j

P P P P P P P

P

  











    


   (4.44) 

Consider a motion with a generalized mapping structure 

 

4 3 2 1 3141 1 21 11 1

4 3 2 1 3141 1 21 11 1

2 6 4 1 5 3 2 6 4 1 5 3

(2 6 4 1 5 3 ) (2 6 4 1 5 3 )
,

k k m k k n kk m k k nl l l l l l

k k m k k n kk m k k nl l l l l l

l terms

l terms

P P P

P












   (4.45) 

where {0,1}jsk   and ,s sm n   ( 1, 2, ,s l  ). Define vectors T( , )k k kx tY  . The motion 

pertaining to the mapping structure in Eq.(45) can be determined by 

4 3 2 1 3141 1 21 11 1
1 4 3 2 1( ) (2 6 4 1 5 3 ) (2 6 4 1 5 3 )

.l k k m k k n kk m k k nl l l l l l
s s s s s s s

l terms

k kk k k m k k n
P P





     
 Y Y Y


       (4.46) 

From the algebraic equations of generic mappings in Eqs.(4.38)-(4.42), one can obtain a 

set of nonlinear algebraic equations as follow 

 
1 1

11 1 11 1

1 4 3 2 1 1 4 3 2 1

(3) (5)
1 1

(1)
1

(2)

( ) 1 ( )

( , ) 0, , ( , ) 0, ,

( , ) 0, ,

( , ) 0.l l
s s s s s s s s s s s s s s

k k k n k n

k k n k k n

k k k m k k n k k k m k k n 

   

    

            

 
 


 

f Y Y f Y Y

f Y Y

f Y Y

 

   (4.47) 
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The periodic motion pertaining to such a mapping requires 

 
1 4 3 2 1( )l

s s s s s s s
kk k k m k k n     

Y Y       (4.48) 

or 

 

1 4 3 2 1

1 4 3 2 1

1 4 3 2 1

( )

( )

( )

,

2 .

l
s s s s s s s

l
s s s s s s s

l
s s s s s s s

kk k k m k k n

kk k k m k k n

kk k k m k k n

x x

x x

t t N







     

     

     

 
 

   

     (4.49) 

Solving Eqs.(4.47)-(4.49) generates the switching sets of periodic motion with respect to the 

mapping structure in Eq.(4.45). Once the switching points for a specific periodic motion is 

obtained, its local stability and bifurcation analysis can be achieved through the corresponding 

Jacobian matrix. For instance, the Jacobian matrix of the mapping structure in Eq.(4.45) is given 

as 

  

4 3 2 1 3141 1 21 11 1

4 3 2 1

(2 6 4 1 5 3 ) (2 6 4 1 5 3 )

( ) ( ) ( ) ( ) ( ) ( )
2 6 4 1 5 3

1

,

k k m k k n kk m k k nl l l l l l

l terms

s s s s s s

l
k k m k k n

s

DP DP

DP DP DP DP DP DP







     



  (4.50) 

where 

 ( 1)1

2 2 2 2

.i

j

Y
DP

X



 



 

  
         

Y

X
     (4.51) 

for 1 3 2 1, 1, , ( ) 1l
s s s s s sk k k m k k n k           and all the Jacobian matrix components 

can be computed through Eq.(4.49). The variational equation for a set of switching points {

1 3 2 1

* *

( )
, , Y l

s s s s s s
k k m k k n k    

Y  }  is 

 
1 3 2 1

*

( )
( )l

s s s s s s
k kk m k k n k

DP
    

  Y Y Y     (4.52) 

If 
1 3 2 1( )l

s s s s s s
kk m k k n k


    

  Y Y , then the eigenvalues is computed by 
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 *( ) 0kDP  Y I       (4.53) 

If all | | 1i   for ( 1, 2)i  , the periodic motion is stable. If one of | | 1i   for ( {1, 2}i ), 

the periodic motion is unstable.  

If one of 1i    and | | 1j   for ( , {1, 2}i j  and j i ), the period-doubling 

bifurcation of periodic motion occurs.  

If one of 1i   and | | 1j   for ( , {1, 2}i j  and j i ), the saddle-node bifurcation of 

the periodic motion occurs.  

If 1,2| | 1   is a pair of complex eigenvalues, the Neimark bifurcation of the periodic 

motion occurs.  

However, the eigenvalue analysis cannot be used to predict sticking and grazing motions. 

Both of them should be determined through the G-functions, where the stick motion is 

determined by Eq.(4.25) or (4.26) and the grazing bifurcation is determined by Eq.(4.32) or 

(4.33).  

4.5. Illustrations 

Consider the system parameters as 0 0.4,Q  0.5,   1.0,M  0.001m  , and 

0.15d  . The bifurcation scenario of varying the coefficient of restitution e  is presented in 

Figure 4.5 for the horizontal impact pair. The bifurcation scenario of the ball’s switching 

displacement versus the coefficient of restitution e  is shown in Figure 4.5 (a), while the 

bifurcation of the ball’s switching velocity versus the restitution coefficient e  is given in Figure 

4.5 (b). The bifurcation of the switching phase versus e  is also presented in Figure 4.5 (c). The 

symbol ‘PD’ and ‘GB’ indicate period-doubling bifurcation and grazing bifurcation, 
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respectively; the shaded regions indicate the regions of periodic motion (includes periodic 

motions with impact only and periodic motion with impact chatter to stick). Furthermore, for

(0.514,0.597)e , the yellow colored region indicates the region of complex periodic motion 

with four different branches of periodic solutions coexisting, which belong to two different pairs 

of asymmetric coexisting solutions. This will be further discussed in detail later using the 

analytical prediction and eigenvalue stability. Toward the end, for 1.0e  , there is a Neimark 

bifurcation existing. However, it could not be obtained through simulation. Thus, this Neimark 

bifurcation will be illustrated through analytical predictions later. 

  

(a)  

Figure 4.5: Bifurcation scenario of varying the restitution coefficient e . (a) Switching 
displacement of the ball. (b) Switching velocity of the ball.  (c) Switching phase 
mod( , 2 )t  . ( 0 0.4,Q   0.5,   1.0,M   0.001,m   0.15.d  ) 
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(b)  

 

(c)  

Figure 4.5 Continue 
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 (a)  

(b)  

Figure 4.6: Analytical prediction of varying the coefficient of restitution e . (a) Switching 
displacement of the ball. (b) Switching velocity of the ball.  (c) Switching phase 
mod( , 2 )t  . (d) Real parts of eignevalues. (e) Imaginary parts of eigenvalues. (f) 

Magnitudes of eigenvalues. ( 0 0.4,Q   0.5,   1.0,M   0.001,m   0.15.d  ) 
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(c)  

 

(d)  

Figure 4.6 Continue 
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(e)  

 

(f)  

Figure 4.6 Continue 
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Using the mapping structure and analytical conditions, the switching displacement, 

switching velocity, and switching phase of the ball versus restitution coefficient e  are predicted 

analytically, as presented in Figure 4.6 (a)-(c), respectively. The acronyms ‘PD’, ‘SN’, ‘GB’, and 

‘NB’ represent the period doubling bifurcation, saddle node bifurcation, grazing bifurcation, and 

Neimark bifurcation, respectively. The solid and dotted curves indicate stable and unstable 

solutions, respectively. The red and black color indicate different branches of periodic motion 

coexisting. For (0.0, 0.162)e , the periodic motion of impact chattering with stick exists, the 

mapping structure is given as
264 153i iP  ( 1, 2, ...,i n ). For (0.073, 0.162)e , there is a coexisting 

motion of 2413P . The periodic motion of 3(21) 3
P  and its asymmetric coexisting solution of 3(12) 4

P  

occur for (0.292, 0.302)e . The two solutions are symmetric to each other, with same 

eigenvalues and same stability properties. The period doubling bifurcation for both 3(21) 3
P  and 

3(12) 4
P  periodic motion takes place at 0.292e  , and the saddle node bifurcation occurs at 

0.302e  . The periodic motion of 2 2((21) 3)
P  occurs in the range of (0.349, 0.364)e  and 

(0.545, 0.636)e , and its asymmetric solution of 2 2((12) 4)
P coexists in the same regions. At 

0.349e  and 0.636e  , the period doubling bifurcations of 2 2((21) 3)
P and 2 2((12) 4)

P motions occur, 

and the corresponding saddle node bifurcations take place at 0.364e   and 0.545e  which 

are also corresponding to the period doubling bifurcations of the 2(21) 3
P  and 2(12) 4

P  motions. 

The motion of 2(21) 3
P  and its asymmetric coexisting motion of 2(12) 4

P  lay in the region of 

(0.364, 0.545)e . For (0.522, 0.532)e and (0.587, 0.646)e , The motion of 4(213)
P  coexists 

asymmetrically with the motion of 4(124)
P . These periodic motions in two different regions with 
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same mapping structure are connected to each other through the unstable solutions after period 

doubling bifurcations at 0.532e   and 0.587e  . At 0.522e  , there is a period doubling 

bifurcation, and the original stable motion becomes unstable. At 0.646e  , the saddle node 

bifurcations of the motions of 4(213)
P and 4(124)

P  exist, which correspond to the period doubling 

bifurcations of 2(213)
P and 2(124)

P motions. The 2(213)
P and 2(124)

P motions coexist in the range of 

(0.646, 0.764)e , and the saddle node bifurcations occur at 0.764e  , which correspond to the 

period doubling bifurcation of 213P  and 124P  motions, respectively. Finally, the 213P  and 124P  

motions coexist in the region of (0.764,1.0)e  with Neimark bifurcations existing at 1.0e  . 

Similarly, other complicated periodic motions can be predicted analytically. 

Using the same set of parameters, choose 0.08e   to demonstrate a periodic motion 

with the mapping structure of 5 5264 153
P  in Figure 4.7. The initial conditions are 0 8.44183604t  , 

0 -0.488769302x  , 0 0.178074511x  . The time histories of displacement and velocity are 

presented in Figure 4.7 (a) and (b), respectively. The thin black curves represent the motion of 

the base. The thick red curves indicate the motion of the ball, and the shaded area gives one 

period of the motion. The black circles represent the switching points of the motion. 

Discontinuity of the velocities can be observed from Figure 4.7 (b). The corresponding phase 

portrait of the ball’s motion with its moving boundaries is presented in Figure 4.7 (c). Also, the 

switching phase mod( , 2 )t   which is closely related to the analytical conditions is presented 

in Figure 4.7 (d). At 8.5t  , the ball is at boundary 12  and the switching phase 

mod( , 2 ) 4.3t   , which satisfy the stick motion condition. Thus the ball starts to move 

together with the base on the left wall. At 9.4t  , the ball is at boundary 21  and the 

switching phase 3
2mod( , 2 )t   , which satisfy the vanishing condition of stick motion. Thus, 
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the ball separates from the left wall and start moving freely in the base. Similarly, the analytical 

conditions for onset and vanishing of stick motion satisfy at 14.8t   and 15.7t  , respectively 

for the right wall. As a result, the stick motion on the right wall occurs and stops within this time 

span. The thin black curves give the moving boundaries and the thick red curves represent the 

motion of the ball. Again discontinuity of velocity caused by impacts can be observed in Figure 

4.7 (c).  

Furthermore, the simulation of a chaotic motion is also illustrated in Figure 4.8 under the 

same parameters with 0.2e  . The initial conditions are chosen to be 0 1.33468433t  ,

0 0.61418775x  , 0 0.204449281x  . Similarly, the time histories of displacements and velocities 

are presented in Figure 4.8 (a) and (b), respectively. The thin black curves indicate the motion of 

the left and right walls of the base and thick red curves represent the motion of the ball. Also the 

Poincare section mappings of switching displacement and velocity are presented in Figure 4.8 (c) 

and (d), respectively. 

Finally, a parameter map of different types of motions was presented in Figure 4.9. In this 

figure, the regions with different color indicate different types of motion as the parameters 

change. The grey regions represent the chaotic motion and the cyan region indicates the periodic 

region with impact chatter and stick. All other regions depict the different periodic motions with 

impacts. As predicted before, it can be observed that most of these periodic regions with impacts 

contain a pair of asymmetric coexisting solutions. 
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(a)  

(b)  

Figure 4.7: Periodic motion with a mapping structure of 5 5264 153
P :  (a) Displacement time 

history. (b) Velocity time history. (c) Phase portrait of the ball with moving boundaries. (d) 
Corresponding change of switching phase mod( , 2 )t  . ( 0 0.4,Q  0.5,  1.0,M 

0.001,m  0.08,e  0.15d  ). The initial conditions are 0 8.44183604t  , 

0 -0.488769302x  , 0 0.178074511x  . 
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(c)  

(d)  

Figure 4.7 Continue 
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(a)  

(b)  

Figure 4.8: Chaotic motion: (a) displacement time history, (b) velocity time history, (c) 
Poincare map of switching displacement, (d) Poincare map of switching velocity. ( 0 0.4,Q   

0.5,   1.0,M   0.001,m   0.2,e   0.15d  ). The initial conditions are 

0 1.33468433t  ,  0 0.61418775x  , 0 0.204449281x  . 

 

Time t

0 20 40 60 80 100

D
is

pl
ac

m
en

ts
   

x,
 X

-0.8

-0.4

0.0

0.4

0.8

Time t

0 20 40 60 80 100

V
el

oc
iti

es
  y

, Y

-0.2

-0.1

0.0

0.1

0.2



85 

 
 

(c)  

(d)  

Figure 4.8 Continue 
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Figure 4.9: Parameter map of base displacement amplitude 0Q  vs. restitution coefficient 

e . 

4.6. Conclusions 

In this chapter, complex periodic motions and bifurcation in a horizontal impact pair with 

periodic excitation were investigated using the theory of flow switchability for discontinuous 

dynamical systems. Analytical conditions for stick and grazing motions to the corresponding 

boundaries were developed to explain motion complexity. The analytical predictions of complex 

motions were completed through the mapping structure. Periodic and chaotic motions in such a 

system were illustrated. The parameter maps for all possible complex motions were also 

presented in detail using color maps. 
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CHAPTER 5  

DUAL EXCITED FERMI ACCELERATOR 

 In this chapter, the stability and bifurcation of motions in a Fermi oscillator under dual 

excitations are presented using the theory of discontinuous dynamical systems. The analytical 

conditions for motion switching in such a Fermi-oscillator are obtained, and the generic 

mappings are introduced to describe the periodic and chaotic motions for such oscillator. 

Considering the case when the two excitations are same with each other, the bifurcation 

scenarios for periodic and chaotic motions are presented, and analytical predictions of periodic 

motions are also presented. In addition, numerical illustrations of periodic and chaotic motions in 

such an oscillator are given. The flutter oscillations of such an oscillator are presented through 

the switching section of Neimark bifurcation. Finally, a detailed parameter map for such an 

oscillator will be presented for the case when the same excitations are applied. Similarly, 

investigations on bifurcation, prediction, and simulation are presented considering different 

excitations. More complexity can be observed from this case. 

5.1. Physical Model Descriptions 

The investigated Fermi accelerator with dual excitations consists of a particle moving 

vertically between two periodically excited oscillators (Luo & Guo, Switchability and bifurcation 

of motions in a double-excited Fermi-acceleration oscillator, 2010). The mass in each oscillator 

( )m   ( {1, 2}  ) is connected with a spring of constant ( )k   and a damper of coefficient ( )c   

to the fixed wall. Both oscillators are driven with periodic excitation force ( ) ( )F t , as shown in 

Figure 5.1. The mass of particle is (3)m  and the restitution coefficients of impact for the bottom 

and top oscillators are (1) (2) and e e , respectively. The gap between the equilibrium positions of 



88 

 
 

the two oscillators is h . If the particle does not move together with any of the oscillators, the 

corresponding motion is called the non-stick motion. For this case, the equations of motion are 

given by the Newton’s law, i.e., 

 

(3)

( )
( ) ( ) ( ) ( ) 2 ( ) ( )

( )

,

2 ( ) cos ,

x g

Q
x x x t

m


     

 

 



    



 
             (5.1) 

where ( ) ( ) ( ) ( ) ( ) ( )2 ,c m k m        . ( )ix  is the acceleration, ( )ix  is the velocity, and 

( )ix is the displacement ( 1, 2, 3i  ).  

h  

(1)k  

(3)x  

(1)x  

 (1) (1) (1)cosF t Q t   

(3)m  

(1)m  

(1)e

(2)e

(1)c  

 (2) (2) (2)cosF t Q t   (2)k  
(2)m

(2)c  

(2)x  

 
 

 

Figure 5.1: Mechanical model 
 

If the particle stays on one of the two oscillators and moves together, this motion is called 

a stick motion. For this case, the equations of motion are given as 
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         

( )
( ) ( ) ( ) ( ) 2 ( ) ( )

( )

( )
0 0 0 0 02 ( )

(3) ( )

2 ( ) cos ,

2 ( ) cos ,

Q
x x x t

m

Q
x d x x t

m m


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






 




    


     

 

 
  (5.2) 

where  0x  is the acceleration,  0x is the velocity, and  0x is the displacement for both the ball 

and oscillator. Also    0 0( ) (3) ( ) ( ) (3) ( )2( ) ,d c m m k m m       where 

2, if 1;

1, if 2.







  
     (5.3) 

The impact relation among the particle and the oscillators are 

 

 

(3) ( ) (3) ( )
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(3)
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,

.

x x x x

m x m x m e x x
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m m

m x m x m e x x
x

m m

 
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  




   

   


   


  

  



  




   


   


  (5.4) 

5.2. Discontinuous Modeling 

Due to the discontinuity of the system, the domains and boundaries in absolute coordinate 

system are introduced as sketched in Figure 5.2. The origin of the absolute coordinate is set at 

the equilibrium position of the bottom oscillator. The absolute domains (1)
1  and (2)

1  for the 

bottom and top oscillators and domain (3)
1 for the particle without stick are defined as  

 
 
 

(1) (1) (1) (1) (3)
1

(2) (2) (2) (2) (3)
1

(3) (3) (3) (3) (1) (2)
1

( , ) ( , ) ,

( , ) ( , ) ,

( , ) ( , ) .

x x x x

x x x x

x x x x x

   

    

   







    (5.5) 

The corresponding absolute boundaries are defined as 
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where 2,3 and 3,2i i  with ( 1,3 and  3,1j j  ). The domains are represented by a shaded 

area and the boundaries are depicted by dashed and solid curves in Figure 5.2. The boundaries of 

(2)
1( )  and (3)

1( ) are the curves at (2) (3)x x  and the boundaries of (1)
1( )  and (3)

1( )  

are the curves at (1) (2)x x . For stick motion, the absolute domains ( )
0
i  and ( )

1
i  ( 1, 2,3i  ) 

for the two oscillators and particle are defined as 
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   (5.7) 

where ( )i
crx  is for appearance and vanishing of stick motion with (3) ( )

cr crx x    and (3) ( )a
cr crx x , and 

1, 2   are for stick on the bottom and top, respectively. The domains of ( )
1
i  and ( )

0
i  are 

presented by shaded and filled regions in Figure 5.1. The corresponding absolute boundaries are 

given by dashed curves, and the stick boundaries are defined as 

 
 

(1) (1) (1) (1) (1) (3) (1) (3)
10 10

(2) (2) (2) (2) (2) (3) (2) (3)
10 10

(3) (3) (1) (3) (1)
10(3) (3) (3)

10 (3) (3) (2) (3) (2
10

( , ) 0, ,

( , ) 0, ,

0,
( , )

or 0,

cr cr

cr cr

cr cr

cr cr

x x x x x x

x x x x x x

x x x x
x x

x x x x









     

     

   
 

   

  

  

 


  )
.





    
   

  (5.8) 
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The vectors for absolute motions can be defined as follow 

( ) ( ) ( ) T

( ) ( ) ( ) T

( , ) ,
for ( 1, 2,3 and 0,1),

( , ) ,

i i i

i i i

x x
i

x F

  

  


   

 

x

f




  (5.9) 

where 1, 2,3i   represents the bottom, top oscillators, and the particle, respectively; 0,1   

stands for the stick or non-stick domains. Then equation of absolute motion is 

( ) ( ) ( )( , )   for 1,2,3 and 0,1.i i i t i     x f x    (5.10) 

For non-stick motion,  

( )
( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

1 1 ( )

(3) (3)
1 1

( , ) 2 ( ) cos , ( 1,2),

( , ) .

i
i i i i i i i

i

Q
F x t x x t i

m

F x t g

 


      

  


 (5.11) 

For the stick motion, 

( )
( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

1 1 ( )

( )
( ) ( ) (0) (0) (0) 2 (0) ( )

0 0 (3) ( )

( , ) 2 ( ) cos
( ,3).

( , ) 2 ( ) cosi i

Q
F x t x x t

m i
Q

F x t d x x t
m m


      








 





      

      




 (5.12) 

For simplicity, the relative displacement, velocity, and acceleration between the particle 

and the bottom or top oscillators are defined as ( ) ( ) ( ) ,i i iz x x   ( ) ( ) ( )i i iz x x   , and 

( ) ( ) ( )i i iz x x   , where ,3i   and 3,i  represent the particle and one of the two oscillators, 

accordingly. The relative domains and boundaries for the particle and oscillators are then defined 

as sketched in Figure 5.2 and Figure 5.3 for the motion relative to bottom or top oscillators. The 

stick domain and boundaries in the relative phase space becomes a point in Figure 5.4 and Figure 

5.5 (a) and (c). The stick domains and boundaries in the relative velocity and acceleration (i.e., 

( ) ( )( , )i iz z  ) plane is illustrated in Figure 5.4 and Figure 5.5 (b) and (d). The filled regions indicate 

the stick domains while the shaded regions indicate the non-stick domains.  
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(a)

(1)x  

(1)x
(1)
1  

(1)
1( )  

(3)
1( )  

(1)x  
(2)x  

 

 (b)

(2)x  

(2)x  

(2)
1  

(3)
1( )  

(2)
1( )  

(1)x  
(2)x  

 

(c) 

(3)x  

(3)x
(3)
1  

(3)
1( )  

(3)
1( )  

(1)x  (2)x  

 

Figure 5.2: Absolute domains and boundaries without stick: (a) Bottom oscillator, (b) top 
oscillator, and (c) particle. 
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(a)

(1)x  

(1)x

(1)
10  

(1)
0  

(1)
crx  

(3)
1( )  

(2)x  

(1)
1  

 (b)

(3)
1( )  

(2)x  

(2)x

(2)
1  

(2)
10  

(1)x  

(2)
crx  

(2)
0  

 
 
 

(c) 

(3)x  

(3)x

(3)
1  

(3)
10  

(3)
0  

(1)
crx  

(3)
10  

(2)
crx  

(3)
0  

 

Figure 5.3: Absolute domains and boundaries with stick: (a) bottom oscillator, (b) top 
oscillator, and (c) particle. 
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  The domains ( )
0
i  and ( )

1
i  for the relative motions for the particle and the two 

oscillators are 

 
 
 

( ) ( ) ( ) ( ) ( )
0

(1) (1) (1) (1)
1

(2) (2) (2) (2)
1

(3) (1) (3)
(3) (3) (3)
1 (3) (2) (3)

( , ) 0, 0 ,

( , ) ( ,0) ,

( , ) (0, ) ,

( ,0),
( , ) .

or (0, )

i i i i iz z z z

z z z

z z z

z x x
z z

z x x

   

    

   

       
    

 







    (5.13) 

The boundaries ( )
1( ) ,
i
  ( )

1( ) ,
i
  ( )

10 ,i and ( )
01
i  for the particle associated with the bottom 

or top oscillators are 

 
 

 

( ) ( ) ( ) ( ) ( ) ( )
1( ) 1( )

( ) ( ) ( ) ( ) ( ) ( )
1( ) 1( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
10 01 10

( , ) 0, 0 ,

( , ) 0, 0 ,

( , ) 0, 0 ,

i i i i i i

j j j j j j

l l l l l l l
cr cr

z z z z

z z z z

z z z z







 

 

    

     

       

 

 

 

   (5.14) 

where 1, 3i  , 2,3j  , 1, 2, 3.l   (3)
1( )  and (3)

1( )  are the impact chatter boundaries for 

the particle relative to the bottom or top oscillators, respectively. (3)
10  and  (3)

01  are the 

stick motion boundaries for the particle. (1)
1( )  and  (2)

1( )  are the impact-chatter 

boundaries for the bottom or top oscillators, respectively. (1)
10  and (1)

01  are the stick motion 

boundaries for the bottom oscillator. (2)
10  and (2)

01  are the stick motion boundaries for the 

top oscillator. The relative vectors in the relative coordinates are 

( ) ( ) ( ) T ( ) ( ) ( ) ( ) T( , ) , ( , )i i i i i i iz z z g        z g z     (5.15) 

where 1, 2i   are the bottom and top oscillators, respectively; 3i   are for the particle. 

0,1   gives the corresponding stick and non-stick domains. For 1, 2,3i   and 0,1  , the 

equations of relative motion are in the relative vector form of 
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 (a) 

(1)z  

(1)z

(1)
1  

(1) (1)
10 0,   

(1)
1( )  

(1)
01  

(3)
1( )  

 

   (b)

(1)z  

(1)z(1)
0  

(1)
01  

(1)
1  

(1)
10  

 

 

 

(c)

(3)z  

(3)z

(3)
1  

(3) (3)
10 0,   

(3)
1( )  

(3)
1( )  

(3)
01  

 

(d) 

(3)z  

(3)z(3)
1  

(3)
10  

(3)
0  

(3)
01  

 

Figure 5.4: Domains and boundaries definition relative to the bottom oscillator: (a) ( , )z z -
plane for bottom oscillator, (b) ( , )z z  -plane for bottom oscillator, (c) ( , )z z -plane for 
particle, and (d) ( , )z z  -plane for particle. 
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(a) 

(2)z  

(2)z

(2)
1  

(2) (2)
10 0,   

(3)
1( )  

(2)
01  

(2)
1( )  

(b) 

(2)z  

(2)z(2)
0  

(2)
01  

(2)
1  

(2)
10  

 

 

(c)  

(3)z  

(3)z

(3)
1  

(3) (3)
10 0,   

(3)
1( )  

(3)
01  

(3)
1( )  

 

(d) 

(3)z  

(3)z(3)
1  

(3)
10  

(3)
0  

(3)
01  

 

Figure 5.5: Domains and boundaries definition relative to the top oscillator: (a) ( , )z z -
plane for top oscillator, (b) ( , )z z  -plane for top oscillator, (c) ( , )z z -plane for particle, and 
(d) ( , )z z  -plane for particle. 

 



97 

 
 

( ) ( ) ( )

( ) ( ) ( ) (3)

(3) (3) (3) ( )

( , ) ,

( , , ) ,

( , , ) ,

t

t

t

  
  

  
   


   




 
 

z g x

z g z x

z g z x





     (5.16) 

where ( ) ( ) ( )( , ).i i i t  x f x   

(i) For non-stick motion, the relative forces per unit mass are 

 

( )
( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )
1 1 1 1 1 ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )
1 1 1 1 1 ( )

( )
(3) (3) ( ) ( ) ( ) ( ) 2 ( ) ( )
1 1 1 1 1 ( )

( , , ) 2 ( ) cos ,

( , , ) 2 ( ) cos ,

, , 2 ( ) cos ,

Q
g t x x t

m

Q
g t x x t g

m

Q
g t g x x t

m


       




       




     



 

 

 


     




      

     


z x

z x

z x










  (5.17) 

(ii) For stick motion, the relative velocities and the relative forces per unit mass are 

(3) ( )
0 0

( )
( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )
1 1 1 1 1 ( )

( ) ( ) ( ) (3) (3) ( )
0 1 1 0 1 1

0

( , , ) 2 ( ) cos ,

( , , ) ( , , ) 0,

z z

Q
g t x x t

m

g t g t




       



   

 

 

     

  

z x

z x z x

 

   (5.18) 

5.3. Analytical Switching Conditions 

To develop the analytical conditions for stick and grazing motions of the Fermi oscillator, 

the normal vector of the boundary relative to the bottom or top oscillator is 

T( , )  
z z

 


 


 
  

 
n


   (5.19) 

where  T
,z z      . (3)

10
n  and  (3)

01
n  are the normal vectors of the stick boundaries, 

and the normal vectors of (3)
1( )

n  and (3)
1( )

n  are for impact chatter boundaries. Thus, 
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(3) (3)
10 01

(3) (3)
1( ) 1( )

T

T

(0,1) ,

(1,0) .
 

 

 

  


  

n n

n n
    (5.20) 

The zero-order and first-order G-functions for the stick boundaries relative to the bottom 

or top oscillators are introduced by Luo (Luo, Discontinuous Dynamical Systems on Time-

varying Domains, 2009; Luo, A theory for flow switchability in discontinuous dynamical 

systems, 2008), 

( ) ( )
01 01

( ) ( )
10 10

( ) ( )
01 01

( )
10

(0,0) ( ) (3) ( ) ( ) (3)
0 0 0 0

(1,0) ( ) (3) ( ) ( ) (3)
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0 0 0 0
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 

 

 
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  
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 

 
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z x n g z x
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0 0 0 0
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z x n g z x
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   (5.21) 

Notice that mt  is the switching time of the motion on the corresponding boundary and 

0m mt t    which represents the motion on each side of the boundary in different domains. The 

G-functions for the impact chatter boundaries are 

   
(3) (3)
1( ) 1( )

(3) (3)
1( ) 1( )

(3) (3)
1( ) 1( )
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1 1 1 1
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1 1 1 1
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1 1 1 1
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 

 
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( , , ) ( , , ).

m

T
m mG t D t

 



  





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


  


z x n g z x

   (5.22) 

Using the G-functions, the analytical conditions for stick motion on bottom or top 

oscillators can be obtained for the passable flow condition from domain ( )
1
i  to ( )

0
i  (Luo, A 
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theory for flow switchability in discontinuous dynamical systems, 2008; Luo, Discontinuous 

Dynamical Systems on Time-varying Domains, 2009), 
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    (5.23) 

Therefore, 
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





  


  
  


  

z x

z x

z x

z x

     (5.24) 

Simplification of the foregoing conditions gives the onset conditions of stick motion on bottom 

or top oscillators, i.e., 

(1) (3)

(2) (3)

( ) ( ) , for the bottom

( ) ( ) , for the top

m m

m m

x t x t g

x t x t g

 

 

   


   

 
 

   (5.25) 

which means that the acceleration of the bottom oscillator (1) ( )mx t   should be larger than the 

particle’s acceleration of (3) ( )mx t g    in order for the particle to stick on the bottom 

oscillator. However, the acceleration of the top oscillator (2) ( )mx t   should be less than the 

particle acceleration in order for the particle to stick on the top oscillator. Similarly, the criteria 

for vanishing of the stick motion (Luo, A theory for flow switchability in discontinuous 

dynamical systems, 2008; Luo, Discontinuous Dynamical Systems on Time-varying Domains, 

2009) from the bottom or top oscillator at ( )
01
 are, 
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( ) ( )
01 01

( ) ( )
01 01

(3) ( )
01 01

(0,0) ( ) (3) (0,1) ( ) (3)
0 0 0 0

(1,0) ( ) (3) (1,1) (3) ( )
1 1 1 1

(0,0) (3) ( ) (0,1
0 0

( , , ) 0,  ( 1) ( , , ) 0;

( , , ) 0,  ( 1) ( , , ) 0.

( , , ) 0,  ( 1)

m m

m m

m

G t G t

G t G t

G t G

 

 



  

  

 

  

  

 

   


   

 

z x z x

z x z x

z x

(3) (3)
01 01

) (3) ( )
0 0

(1,0) (3) ( ) (1,1) (3) ( )
1 1 1 1

( , , ) 0;

( , , ) 0,  ( 1) ( , , ) 0.

m

m m

t

G t G t



  



  

 


   

z x

z x z x

  (5.26) 

From the foregoing equations, the relative force relations for ( )
01
  are 

( ) ( ) (3) ( ) ( ) (3)
0 0 0 0 0 0

( ) ( ) (3) ( ) ( ) (3)
1 1 1 1 1 1

(3) (3) ( ) (3) (3) ( )
0 0 0 0 0 0

(3) (3) ( )
1 1 1

( , , ) 0, ( 1) ( , , ) 0;

( , , ) 0, ( 1) ( , , ) 0.

( , , ) 0, ( 1) ( , , ) 0;

( , ,

m m

m m

m m

d
g t g t

dt
d

g t g t
dt

d
g t g t

dt

g t

    

    

  



 

 

 

   

  


  

z x z x

z x z x

z x z x

z x (3) (3) ( )
1 1 1) 0, ( 1) ( , , ) 0.m m

d
g t

dt
 

 




  


z x

  (5.27) 

With the relative acceleration and jerk, one gets 

(1) (3)

(1) (3)

(2) (3)

(2) (3)

( ) ( ) ,
for the bottom,

0,

( ) ( ) ,
 for the top.

0,

m m

m m

m m

m m

x t x t g

x x

x t x t g

x x

 

 

 

 

   


   


   
    

 
 

 
 

    (5.28) 

Using the G-functions of the flow to each boundary, the conditions of grazing motions 

are as follows,  

( ) ( )
1( ) 1( )

( ) ( )
1( ) 1( )

(1,0) ( ) (3) (1,1) ( ) (3) ( )
1 1 1 1 1( )

(1,0) ( ) (3) (1,1) ( ) (3)
1 1 1 1 1( )

( 1) ( , , ) 0, and( 1) ( , , ) 0   for ;

( 1) ( , , ) 0,  and ( 1) ( , , ) 0   for 

m m

m m

G t G t

G t G t

 

 

    

   

 

 

   

   

    

    

z x z x

z x z x

(3) (3)
1( ) 1( )

(3) (3)
1( ) 1( )

( )

(1,0) (3) ( ) (1,1) ( ) ( ) ( )
1 1 1 1 1( )

(1,0) (3) ( ) (1,1) (3) ( )
1 1 1 1

.

( 1) ( , , ) 0,  and ( 1) ( , , ) 0   for ,

( 1) ( , , ) 0,  and ( 1) ( , ) 0   f

m m

m m

G t G t

G t G t



     

   

 

 

   

  






    

   

z x z x

z x z x ( )
1( )or .






 

 (5.29) 

So the grazing motion conditions on the bottom and top for the non-stick motion boundaries are 
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(3) (1) (1) (3) (1) (3)

1( ) 1( )

(3) (2) (2) (3) (2) (3)
1( ) 1( )

 and    for , ;

 and    for , .

x x x x g

x x x x g

 

 

      


      

   

   
   (5.30) 

Similarly, the grazing conditions for stick motion boundaries are given as 

( ) ( )
10 10

( ) ( )
01 01

(3)
10

(1,0) ( ) (3) (1,1) ( ) (3) ( )
1 1 1 1 10

(0,0) ( ) (3) (0,1) ( ) (3) ( )
0 0 0 0 01

(1,0) (3)
1

( , , ) 0, and ( 1) ( , , ) 0  for ,

( , , ) 0, and ( 1) ( , , ) 0  for .

(

im m

m m

G t G t

G t G t

G



 

   

   

  

  



    


    

z x z x

z x z x

z ( )
10

( ) ( )
01 01

( ) (1,1) (3) ( ) ( )
1 1 1 10

(0,0) (3) ( ) (0,1) (3) ( ) ( )
0 0 0 0 01

, , ) 0, and ( 1) ( , , ) 0  for ,

( , , ) 0, and ( 1) ( , , ) 0  for .

im m

m m

t G t

G t G t 

   

   

 

  

    


    

x z x

z x z x

 (5.31) 

The corresponding accelerations and jerks should satisfy the following relations. 

(1) (3) (1) (3) (1) (3)
10 10

(1) (3) (1) (3) (1) (3)
01 01

(2) (3) (2) (3) (2) (3)
10 10

(2)

 and 0 for ,  ,
for bottom;

 and 0 for , ,

 and 0 for , ,

x x g x x

x x g x x

x x g x x

x

       


       

      

   
   

   
 (3) (2) (3) (2) (3)

01 10

for top.
 and 0 for , ,x g x x






 
           

  (5.32) 

5.4. Discrete Mapping Structures 

Using the previously defined discontinuous domains and boundaries, the switching sets 

of the Fermi oscillator without stick are introduced as 

 
(1) (2) (3)

1( ) 1( ) 1( ) 1( )

(1) (1) (2) (2) (3) (3) (3) (1) (3) (1)

(1) (2) (3)
1( ) 1( ) 1( ) 1( )

(1) (1) (2) (2) (3) (3) (3) (2)

( , , , , , , ) ,

( , , , , , , ) ,

k k k k k k k k k k k

k k k k k k k k k

x x x x x x t x x x x

x x x x x x t x x

   



   



    

  

    

 

    

    (3) (2)
k kx x








 

  (5.33) 

where the switching sets ( )
1( )
i
  and ( )

1( )
i
  are defined on boundary ( )

1( )
i
  and ( )

1( )
i
 , 

respectively. The corresponding definitions for the top and bottom oscillators plus the particle 

are given as 
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  
  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1( ) 1( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1( ) 1( )

, , , , 1,3,

, , , , 2,3.

i i i i
k k k k k k k

i i i i
k k k k k k k

x x t x x x x

x x t x x x x

   

   





 

 

       


       

  

  
  (5.34) 

Thus, the generic mappings for motions without stick motion are 

1 1( ) 1( ) 2 1( ) 1( )

3 1( ) 1( ) 4 1( ) 1( )

: , : ,

: , : .

P P

P P

   

   

     

     
   (5.35) 

From the above definitions, the switching subsets and the sub-mappings without stick motion are 

sketched in Figure 5.6 (a) and (b) for the bottom and top oscillators, respectively. In Figure 5.6 

(c), the sub-mappings without stick motion for the particle are presented.  

(1) (2) (3) (1) (2) (3)
1 1 1 1 2 2 2 2

(1) (2) (3) (1) (2) (3)
3 3 3 3 4 4 4 4

( , , ), ( , , ),  

( , , ), ( , , ),

P P P P P P P P

P P P P P P P P

 

 
   (5.36) 

 
( ) ( ) ( ) ( ) ( ) ( )

1 1( ) 1( ) 2 1( ) 1( )

( ) ( ) ( ) ( ) ( ) ( )
3 1( ) 1( ) 4 1( ) 1( )

: , : ,

: , : .

i i i i i i

i i i i i i

P P

P P

   

   

     

     
   (5.37) 

motion for the particle are sketched in Figure 5.7 (c). Base on the previously defined boundaries, 

the switching sets of the Fermi oscillator with stick motion are defined as  

 
(1) (2) (3)

10 10 10 10

( ) ( ) ( ) ( ) (3) (3) (3) ( ) (3) ( )

(1) (2) (3)
1( ) 1( ) 1( ) 1( )

(1) (1) (2) (2) (3) (3) (3) (1) (3)

( , , , , , , ) , ,

( , , , , , , ) ,

k k k k k k k k k k k

k k k k k k k k k k k

x x x x x x t x x x x

x x x x x x t x x x x

   

     

   

      

  

    

  

    

     

 

(1)

(1) (2) (3)
1( ) 1( ) 1( ) 1( )

(1) (1) (2) (2) (3) (3) (3) (2) (3) (2)

,

( , , , , , , ) , ,k k k k k k k k k k kx x x x x x t x x x x

   








     


   
    

  (5.38) 

where 1, 2   with 2,1  . The switching set 10   is defined on the boundary 10 . 
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(a)

(1)x  

(1)x

(1)
2P  

(1)
1  

(1)
3P  

(1)
1P  

(1)
4P  

 
(3)
1( )  

(1)
1( )  

(1)
1( )  

 (b)

(2)x  

(2)x

(2)
1  

(2)
1P  

(2)
2P  

(2)
4P  

(2)
3P  

(2)
1( )  

(3)
1( )  

(2)
1( )  

 

 

(c) 

(3)x  

(3)x  

(3)
1  

 

(3)
1( )  

(3)
1( )  

(3)
1P  

(3)
4P  

(3)
2P  

(3)
3P  

 

Figure 5.6: Switching sets and generic mappings for non-stick motion in absolute 
coordinates: (a) bottom oscillator, (b) top oscillator, and (c) particle. 
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(a) 

(1)x  

(1)x  

(1)
0  

(1)
1  

(1)
2P  

(1)
4P  

(1)
1P  

(1)
3P  

 

(1)
5P  

(1)
10  

(1)
1( )  

(3)
1( )  

 

(b) 

(2)x  

(2)x  

(2)
1  (2)

0  
(2)

1P  

(2)
4P  

(2)
3P  

(2)
5P  

(2)
2P  

(2)
1( )  

(2)
10  

(3)
1( )  

 

Figure 5.7: Switching sets and generic mappings for stick motion in absolute coordinates: 
(a) bottom oscillator, (b) top oscillator, and (c) particle. 
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(c) 

(3)x  

(3)x

(3)
1  (3)

0  
(3)
0  

(3)
6P  

(3)
5P  

(3)
2P  

(3)
3P  

(3)
4P  

(3)
1P  

 

Figure 5.7: Continue 
 

Similarly, the switching subsets and the sub-mappings with stick motion are presented in Figure 

5.7 (a) and (b) for the bottom and top oscillators, respectively. The sub-mappings with stick are 

(3) ( )
( ) ( ) ( ) ( )
10 10(3) ( )

(3) (1)
( ) ( ) ( ) ( )
1( ) 1( )(3) (1)

( ) ( ) ( )
1( )

,
( , , ) , for 1,2;  1,2,3;

,

,
( , , ) , for 1,3;

,

( , ,

k ki i i i
k k k

k k

k ki i i i
k k i

k k

i i i
k k i

x x
x x t i

x x

x x
x x t i

x x

x x t



 


 



        
  

       
  

 


 


 


(3) (2)

( )
1( )(3) (2)

,
) , for 2,3.

,

k k i

k k

x x
i

x x


      
   

 (5.39) 

Thus, the generic mappings for the stick motion are defined as 
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(1) (2)
1 10 1( ) 1( ) 10

(1) (2)
2 1( ) 10 10 1( )

(1) (2)
3 1( ) 10 4 10 1( )

(1) (1) (2) (2)
5 10 10 6 10 10

: , or ,

: , or ,

: , : ,

: ,  and : .

P

P

P P

P P

 

 

 

    

   

   

   

    (5.40) 

where the global mappings of 1 2 and P P  will map from one switching set to another. The local 

mappings of ( 3,P  4P , 5 ,P  and 6P ) map from one switching set to itself, as shown in Figure 5.6 

and Figure 5.7. From the above definitions, the governing equations for a given generic mapping 

jP  ( 1, 2, 3, 4j  ) can be expressed by 

  ( )
1, 0 for .j

k k jP f Y Y     (5.41)  

with 

 
 
 

(3) (1) (3) (2)T( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 11 2 3 4 5 6

T(1) (1) (2) (2) (3) (3)

T(1) (1) (2) (2) (3) (3)
1 1 1 1 1 1 1 1

 and   for ,, , , , , ,

, , , , , , , ,

, , , , , , ;
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k k k k k k k k

k k k k k k k k
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x x x x x x t

 

       

  

 




f

Y

Y

  

  

(3) (2) (3) (1)
1 1 2

(3) (1) (3) (1)
1 1 3

(3) (2) (3) (2)
1 1 4

 and   for ,

 and   for ,

 and   for .

k k k k

k k k k

k k k k

x x x P

x x x x P

x x x x P

 

 

 
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  
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 (5.42) 

The governing equations for the stick mapping ( )
5P   and ( )

6P   can be expressed as 

 ( ) ( ) ( ) ( )
1( , ) 0  for  ( 5,6)j j j

k k jP j
  f Z Z     (5.43) 

and 
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 
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T( ) ( ) ( ) (3) (3)
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( ) (0) (0) (0) (0) (0)
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0 ( ) ( )
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  

 
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     

 
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( ) 1 ( ) 1
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( 1) ( 1) , and ( 1) ( 1) ,

 with 5,6 for ( , ) (1, 2)and(2,1).
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x x
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  (5.44) 
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The notation for mapping action is introduced as 

1 1 1 1
,

k k k kj j j j j jP P P P
 

        (5.45) 

where  1,2,3,4,5,6kj   is a positive integer. For a motion with m -time repeated mapping 

structure of 
1 2 kj j jP  , the total mapping structure can be expressed as 

       1 1 1 1 1 1 1 1

.m
k k k k k k k k

m
j j j j j j j j j j j j

m

P P P P P P P P
   

  
    


  (5.46) 

Consider a motion with a generalized map, 

3 2 1 31 3 2 1 311 21 1 11 1 21 1 114 0 2 3 1 4 0 2 3 1 (4 0 2 3 1 ) (4 0 2 3 1 )
,m k k n k k m k k n k km k n k m k n kl l l l l l l l l l

l termsl terms

P P P P


 





  (5.47) 

where {0,1}jsk   and ,s sm n   ( 1, 2, ,s l  ). Define vectors 1 2 3 4 5( , , , , ,k k k k k kX X X X XX  

6 )T
kX ( (1) (1) (2) (2) (3) (3){ , , , , , , }kr k k k k k k kX x x x x x x t    ) and 1 2 3 4 5 6( , , , , , )T

k k k k k k kY Y Y Y Y YY  ( krY  

(1) (1) (2) (2) (3) (3){ , , , , , , }k k k k k k kx x x x x x t   ). The motion pertaining to the mapping structure in Eq.(5.47) can 

be determined by 

3 2 1 311 21 1 11
1 3 2 1( ) (4 0 2 3 1 ) (4 0 2 3 1 )

.l m k k n k km k n kl l l l l
s s s s s s

l terms

k kk m k k n k
P P





    
 Y X X


  (5.48) 

From the algebraic equations for generic mappings in Eqs. (5.41) - (5.44), one can obtain a set 

of nonlinear algebraic equations for such a mapping structure, i.e., 

     

1 1

1 1

1 3 2 1 1 3 2 1

(1) (3)
1 1

(2)
1
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( ) 1 ( )
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f X Y f X Y

f X Y

f X Y

Y X

 


   (5.49) 

where 1 3 2 11, , ( ) 1l
s s s s s sm k k n k        . The periodic motion pertaining to such a mapping 

requires 
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1 3 2 1( )l
s s s s s s

kk n k m k k    
Y X      (5.50) 

or 

1 3 2 1

1 3 2 1

1 3 2 1

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

,
for 1, 2,3

2 .

l
s s s s s s

l
s s s s s s

l
s s s s s s

i i
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i i
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i i
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x x
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x x

t t N
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    

    

    

  
 

   

     (5.51) 

Solving Eqs. (5.49) - (5.51) generates the switching sets of periodic motion relative to 

the mapping structure in Eq. (5.47). Once the switching points for a specific periodic motion is 

obtained, its local stability and bifurcation analysis can be completed through the corresponding 

Jacobian matrix. For instance, the Jacobian matrix of the mapping structure in Eq. (5.47) is 

computed, i.e., 

  

3 2 1 311 21 1 11

3 2 1

(4 0 2 3 1 ) (4 0 2 3 1 )

( ) ( ) ( ) ( ) ( )
4 0 2 3 1

1

,

m k k n k km k n kl l l l l

l terms

s s s s s

l
m k k m k
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DP DP

DP DP DP DP DP
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

    
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   (5.52) 

where 

 ( 1)1

6 6 6 6
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 
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Y
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    (5.53) 

for 1 3 2 1, 1, , ( ) 1l
s s s s s sk k k m k k n k           and all the Jacobian matrix components can 

be computed through Eq. (5.53). The variational equation for a set of switching points {

1 3 2 1

* * *
1 ( )

, , , l
s s s s s s

k k k m k k n k
     

X Y X } is 

1 3 2 1

*

( )
( )l

s s s s s s
k kk m k k n k

DP
    

  Y X X     (5.54) 

If 
1 3 2 1( )l

s s s s s s
kk m k k n k


    

  Y X , the Eigenvalues are computed by 

*( ) 0kDP  X I      (5.55) 
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If all | | 1i   for ( 1, 2, , 6)i   , the periodic motion is stable. If one of | | 1i   for (

{1, 2, , 6}i  ), the periodic motion is unstable. If one of 1i    and | | 1j   for (

, {1, 2, 3, 4, 5, 6}i j  and j i ), the period-doubling bifurcation of periodic motion occurs. If one 

of 1i   and | | 1j   for ( , {1, 2, 3, 4, 5, 6}i j  and j i ), the saddle-node bifurcation of the 

periodic motion occurs. If 1,2,3,4| | 1   with the complex Eigenvalues of 5,6| | 1  , the Neimark 

bifurcation of the periodic motion occurs. However, the Eigenvalue analysis cannot be used to 

predict sticking and grazing motions. Both of them should be determined through the normal 

vector fields, the stick motion is determined by Eq. (5.25) and the grazing bifurcation is 

determined by Eq. (5.30) or (5.32). 

5.5. Illustrations of Same Excitations 

Setting (1) (2)e e e  , the bifurcation scenario of varying e  for the Fermi oscillator  is 

presented in Figure 5.8. The parameters are (1) (2) 20.0,Q Q   (1) (2) 10.0,    

(1) (2) 1.0,m m   (3) 0.01,m   0.5,h   (1) (2) 80.0,k k   (1) (2) 0.1c c  . The switching 

displacement, velocity, and phase of the particle versus the restitution coefficient e  are shown 

in Figure 5.8 (a)-(c), respectively. The acronyms ‘PD’ and ‘GB’ indicate the period-doubling 

bifurcation and grazing bifurcation respectively. The shaded areas are for regions of periodic 

motion. For (0, 0.5)e , the impact charter with stick motion exists. In other words, the particle 

is undergoing the periodic motion where stick motion with top or bottom oscillator occurs after 

impact chattering. At 0.323, 0.336, 0.371,e  and 0.5 , grazing bifurcations occur  and the 

current periodic motion disappears, and another different periodic motion starts. 
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(a)  

 (b)  

Figure 5.8: Bifurcation scenario of varying restitution coefficiente : (a) displacement of 

particle, (b) velocity of particle, and (c) switching phase. ( (1) (2) 20.0,Q Q   
(1) (2) 10.0,    (1) (2) 1.0,m m   (3) 0.01,m   0.5,h   (1) (2) 80.0,k k   (1) (2) 0.1c c  ). 
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(c)  

Figure 5.8 Continue 
 

With the same parameters the analytical prediction of periodic motions with varying the 

restitution coefficient e  is presented in Figure 5.9. The displacement, velocity, and switching 

phase of the particle versus the coefficient of restitution e  are shown in Figure 5.9 (a), (b), and 

(c), respectively. The solid and dotted curves represent the stable and unstable solutions, 

respectively. The acronyms ‘PD’, ‘SN’, ‘NB’, and ‘GB’ represent the period doubling 

bifurcation, saddle node bifurcation, Neimark bifurcation, and grazing bifurcation, respectively. 

For (0.0, 0.5)e , the periodic motion of impact chatter with stick exists. At 

0.323, 0.336, 0.371,e  and 0.5 , the grazing bifurcations occur. For (0.5396, 0.5522)e , the 

stable periodic motion of 3 2(3 241)
P  exists. At 0.5396e  , a period doubling bifurcation occurs. 

At 0.5522e  , a saddle-node bifurcation of periodic motion of 3 2(3 241)
P  occurs and this periodic 

motion disappears. Such a value of 0.5522e   is also for period-doubling of periodic motion of 
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33 241
P . The stable periodic motion of 33 241

P  exists in the region of (0.5522, 0.5626)e . At 

0.5626e  , the saddle-node bifurcation of periodic motion of 33 241
P  occurs, and such a periodic 

motion disappears. For (0.6688, 0.6960)e , the stable periodic motion of 2 2(413 2)
P  exists. At 

0.6688e  , a period doubling bifurcation occurs, and the periodic motion of 2 2(413 2)
P  becomes 

unstable. At 0.6960e  , a saddle node bifurcation of periodic motion of 2 2(413 2)
P  takes place, 

and the periodic motion of 2 2(413 2)
P  vanishes. However, the periodic motion of 2413 2

P  starts; this 

corresponds to the period doubling bifurcation of 2413 2
P motion, where the motion becomes 

unstable. The stable periodic motion of 2413 2
P  lies in (0.6960, 0.7668)e . At 0.7668e   the 

stable periodic motion of 2413 2
P  disappears because of the saddle-node bifurcation. Finally, for 

(0.9042,1.0),e  the stable periodic motion of 21324
P  is observed. At 0.9042 and 1e  , the 

Neimark bifurcation of the periodic motion of 21324
P  takes place. The prediction stops at 

1.0e  because the restitution coefficient cannot be greater than one. The real parts, imaginary 

parts, and magnitudes of the Eigenvalues are also illustrated in Figure 5.9 (d)-(f), respectively. 
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(a)  

(b)  

Figure 5.9: Analytical prediction of varying the excitation amplitude Q : (a) switching 
displacement of particle, (b) switching velocity of particle; (c) switching phase; (d) real part 
of eigenvalues, (e) imaginary part of eigenvalues, and (f) magnitude of eigenvalues. 
( (1) (2) 0.6,e e   (1) (2) 10.0,    (1) (2) 1.0,m m   (3) 0.01,m   0.5,h   (1) (2) 80.0,k k   

(1) (2) 0.1c c  ). 
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(c)  

(d)  

Figure 5.9 Continue 
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(e)  

(f)  

Figure 5.9 Continue 
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Using the same parameters, a periodic motion of 7 7153 264
P  is illustrated with 0.2e   in 

Figure 5.10. The initial conditions are (1)
0 0.79534917x  , (1)

0 5.49025226x   , (2)
0 1.30373854x 

, (2)
0 5.51085936x   ,  (3)

0 1.30373854x  ,   (3)
0 5.57828916x   for 0 0.368919034t  . The 

time histories of displacement and velocity are presented in Figure 5.10 (a) and (b), respectively. 

The thin solid curves give the motion of the bottom and top oscillators. The thick solid curve 

depicts the motion of the particle. The shaded area indicates the region of stick motion, and the 

black circles represent the switching points of the motion. The particle with the top oscillator 

impact seven times ( 7
4P ), and then the stick motion is formed with the top oscillator ( 6P ). After 

that, the particle will free flight. The particle with the bottom oscillator impacts seven times ( 7
3P

). After that, the stick motion with the bottom oscillator ( 5P ) is formed. This forms a complete 

periodic motion. Discontinuity of the velocities can be observed from Figure 5.10 (b). The 

velocities of the bottom and top oscillators are very close to each other, and they do not change 

much after impact because the mass of the particle is chosen to be much smaller than the two 

oscillators. The corresponding phase portrait of the particle with moving boundaries is presented 

in Figure 5.10 (c), where the thin solid curves indicates the moving boundaries, and the thick 

solid curve represents the motion of the particle. The discontinuity due to impacts is also 

observed from Figure 5.10 (c) for both of the moving boundaries and the motion of the particle. 

For illustration of the onset and vanishing condition of stick motion, the time histories of 

acceleration and jerk are presented in Figure 5.10 (d) and (e), respectively. After impacting seven 

times with the top oscillator, the velocities of particle and top oscillator becomes equal, and the 

acceleration of the top oscillator is less than the acceleration of the particle ( g ), thus the onset 

condition of stick motion with the top oscillator ( 6P ) are satisfied. Thus, the particle starts to 
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move together with the top oscillator. This motion will continue until the forces per unit mass (or 

acceleration) equal to g  again. At the same time, the jerks of the two become greater than 

zero, which satisfies the vanishing condition of stick motion on top. Thus, the motion relative to 

6P  switches into the motion relative to 2P . And then the particle impacts seven times with the 

bottom oscillator, until the velocity of the particle equal to that of the bottom oscillator, while at 

the same time, the acceleration of the bottom oscillator is greater than the one of the particle ( g

); the onset condition of the stick motion on the bottom ( 5P ) satisfies. Thus, the particle starts 

moving together with the bottom oscillator until their acceleration equals to g again; 

meanwhile, their jerk is less than zero, which satisfies the vanishing condition of the stick motion 

on bottom. Thus the particle separates with the bottom oscillator and switches into the free flight 

motion in domain 1  until the particle impacts with the top oscillator again. 

 (a)  
Figure 5.10: Periodic motion 7 7253 164

P :  (a) displacement time history, (b) velocity time 

history, (c) trajectory of particle with moving boundaries. ( (1) (2) 20.0,Q Q  0.5,h 
(1) (2) (1) (2) (3)10.0, 1.0, 0.01,m m m      (1) (2) 0.2,e e  (1) (2) 80.0,k k  (1) (2) 0.1c c  ). 

Initial conditions (1) (1) (2) (2)
0 0 0 00.79534917, 5.49025226, 1.30373854, 5.51085936, x x x x        

(3) (3)
0 0 01.30373854, 5.57828916, 0.368919034x x t    . 
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(b)  

 

(c)  

Figure 5.10 Continue 
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(d)  

 

(e)  

Figure 5.10 Continue 
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The simulation of a chaotic motion is given in Figure 5.11 under the same parameters 

with 0.9.e  The initial conditions are (1)
0 0.941968193x  , (1)

0 1.86109613x  , 

(2)
0 1.45709118x  , (2)

0 1.82722043x  , (3)
0 1.45709118x  , and (3)

0 10.7134817x   for 

0 0.289711605t  . The time histories of displacements and velocities are presented in Figure 

5.11 (a) and (b), respectively. The thin solid curves depict the motions of the bottom and top 

oscillators, and the thick solid curve represents the motion of particle. The switching sections for 

the particle, bottom and top oscillators in phase plane are also shown in Figure 5.11 (c) and (d), 

respectively. Furthermore, the switching sections for particle’s displacement and velocity versus 

switching phase are presented in Figure 5.11 (e) and (f), respectively. The invariant set of such a 

chaotic motion is presented. 

Two Neimark bifurcations with 0.9067e   and 1.0e   coexist with chaotic motions. 

The two Neimark bifurcations have five strange attractors with a very small scale of 310 . To 

illustrate the Neimark bifurcations, a switching sections of the Neimark bifurcation with 

0.9067e   is carried out as shown in Figure 5.12. The input data for initial conditions of the 

simulation are listed in Table 5.1, and the center location of each of the five strange attractors are 

listed in Table 5.2. The overall view of the five strange attractors of the Neimark bifurcation is 

presented in Figure 5.12 (a). The acronyms iSA  indicates the thi  strange attractor with 

1, 2..., 5i  . A zoomed view of each strange attractor in Poincare mapping sections is then 

presented in Figure 5.12 (b)-(f), respectively. The flutter oscillation zone can be observed from 

each of the zoomed plots. 
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Table 5.1: Input data for switching sections of the Neimark bifurcation 
 

( , )k kx y  ( , )k kx y  

( 0.812857, 13.0542)  ( 0.813146, 13.0542) 

( 0.812946, 13.0542)  ( 0.813217, 13.0542) 

( 0.813038, 13.0542)   

 

 

 

Table 5.2: Center location of each strange attractor 
 

Strange Attractors Center Locations ( , )k kx y  

1SA  (1.1098, 11.7877)

2SA  (1.4663, 2.8409)

3SA  (0.7860, 6.6410)

4SA  ( 0.6566, 0.4242)

5SA  ( 0.8129, 13.0542) 
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(a)  

(b)  

Figure 5.11: Chaotic motion: (a) time history of displacement, (b) time history of velocity, 
(c) switching sections of (3) (3)( , )k kx y , (d) switching sections of ( ) ( )( , )k kx y  , (e) switching 

section of (3)( ,mod( ,2 ))k kx t  , and (f) switching section of (3)( ,mod( ,2 ))k ky t  . 

( (1) (2) 20.0,Q Q   (1) (2) 10.0,   (1) (2) 1.0,m m  (3) 0.01,m  0.9,e    0.5,h   
(1) (2) 80.0,k k   (1) (2) 0.1c c  ). The initial conditions are (1)

0 0.941968193,x   
(1)
0 1.86109613,x   (2)

0 1.45709118,x    (2)
0 1.82722043,x  (3)

0 1.45709118,x  and 
(3)
0 10.7134817x   for 0 0.289711605t  . 

Time t

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
is

pl
ac

m
en

t x
(i

)

-1.0

-0.5

0.0

0.5

1.0

1.5

(1)x

(2)x
(3)x

Time t

0.0 0.5 1.0 1.5 2.0 2.5 3.0

V
el

oc
ity

 y
(i

)

-16

-8

0

8

16

(3)y

( )y 



123 

 
 

(c)  

(d)  

Figure 5.11 Continue 
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(e)  

(f)  

Figure 5.11 Continue 
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(a)  

(b)  

Figure 5.12: Switching sections for the Neimark bifurcation of particle at 0.9067e  : (a) 

global view and (b)-(f) local view ( 1SA , 2SA , 3SA , 4SA , and 5SA ) ( (1) (2) 20.0,Q Q   
(1) (2) 10.0,    (1) (2) 1.0,m m    (3) 0.01,m   0.5,h   (1) (2) 80.0,k k    

(1) (2) 0.1c c  ). 
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(c)  

 

(d)  

Figure 5.12 Continue 

Switching Displacement of Particle  xk
(3)

1.4660 1.4661 1.4662 1.4663 1.4664 1.4665 1.4666

S
w

itc
hi

ng
 V

el
oc

ity
 o

f 
P

ar
tic

le
  y

k(3
)

2.830

2.835

2.840

2.845

2.850

Flutter Oscillation Zone

2SA

Switching Displacement of Particle  xk
(3)

0.780 0.782 0.784 0.786 0.788 0.790 0.792

S
w

itc
hi

ng
 V

el
oc

ity
 o

f 
P

ar
ti

cl
e 

 y
k(3

)

-6.66

-6.65

-6.64

-6.63

-6.62 3SA

Flutter Oscillation Zone



127 

 
 

(e)  

 

(f)  

Figure 5.12 Continue
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5.6. Illustration of Different Excitations 

When the two excitations of the Fermi Oscillator are different with each other, the 

behavior of such system will become more complicated comparing to when the excitations are 

the same. Consider a relatively simpler case, where the two excitations are proportional to each 

other. Illustrations of the motions in such a system are presented in this section. 

With e  representing the value of both (1)e  and (2)e , the bifurcation scenario of varying 

restitution coefficient e is presented in Fig.2. The parameters are given as (1) (2) 20.0,Q Q   

(1) 28.0,   (2) 14.0,   (1) 1.0,m   (2) 2.0,m    
(3) 0.01,m   0.5,h   

(1) (2) 20.0,k k   

(1) 0.8,c   
(2) 1.2c  . The switching displacement, velocity, and phase of the particle versus 

restitution coefficient e  are shown in Fig.2 (a)-(c), respectively. The switching phase is 

calculated base on (1) (2)min( , )    . The symbol ‘PD’, ‘SN’, and ‘GB’ means period-

doubling bifurcation, saddle node bifurcation, and grazing bifurcation, respectively. The shaded 

areas indicate the regions of periodic motion. For (0,0.25)e , the complex periodic motion with 

impact chatter and stick exists. Also for (0, 0.75)e , there are no interactions between the 

particle and the top oscillator, which means that the particle only impact or stick with the bottom 

oscillator. Thus for (0.32, 0.36)e , the periodic motion of 23
P  exists, where the particle only 

impact with the bottom oscillator. And when 0.9e   the periodic motion where the particle 

interacts with both top and bottom oscillators exists. Mapping structure is observed as 2(21)
P  for 

(0.9,0.94)e , and 4(21)
P  for (0.94,1.0)e . 
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(a)  

(b)  

Figure 5.13: Bifurcation scenario of varying the restitution coefficient e : (a) Displacement 

of the particle. (b) Velocity of the particle. (c) Switching phase. ( (1) (2) 20.0,Q Q 
(1) 28.0,   (2) 14.0,  (1) 1.0,m  (2) 2.0,m  (3) 0.01,m  0.5,h  (1) (2) 20.0,k k 

(1) (2)0.8, 1.2c c  ). 
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(c)  

Figure 5.13 Continue 
 

Using the same parameters, the corresponding analytical predictions are presented in 

Figure 5.14 with eigenvalue stability analysis. The switching displacement of the particle, 

switching velocity of the particle, and switching phase are presented in Figure 5.14 (a)-(c), 
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eigenvalues are presented in Figure 5.14 (d)-(f), respectively. The solid curves indicate stable 
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bifurcation, and Neimark bifurcation, respectively. For (0, 0.271)e , the periodic motion with 
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bifurcation the asymmetric 23
P periodic motion exists for (0.312, 0.358)e , which becomes 

unstable after the period doubling bifurcation at 0.358e  . Furthermore, the 43
P  periodic 

motion exits in the range of (0.358, 0.373)e , and it becomes unstable after the period doubling 

bifurcation at 0.373e  . The asymmetric coexisting motions of 23
P and 43

P are cause by the 

motion of the top oscillator, and can be observed only from the switching phase presented in 

Figure 5.14 (c), where the asymmetric coexisting motion is highlighted by red color. For 

(0.329, 0.421)e , more complex periodic motion with impact chatters and stick exists; this 

motion disappears with Neimark bifurcations at both 0.329e   and 0.421e  . The symmetric 

63
P  periodic motion exists for (0.571, 0.583)e , which disappears at the saddle node 

bifurcation at 0.571e   and becomes unstable after the saddle node bifurcation at 0.583e  . 

Furthermore, The periodic motion of mapping structure 2(21)
P exists in the range (0.86, 0.94)e

. This motion stops at the saddle node bifurcation at 0.86e  , and becomes unstable at the 

period doubling bifurcation at 0.94e  . After the period doubling, the 4(21)
P starts and continue 

existing until 1.0e  . 

Choosing 0.2e   from the prediction above, a periodic motion with impact chatter and 

stick is simulated. The mapping structure is 8 2(3 5)
P  as shown in Fig. 4. The initial conditions are 

0 0.267608808t  , (1)
0 -0.0127506415x  , (1)

0 0.684250836x  , (2)
0 0.542754638x  ,

(2)
0 -0.455089481x  , (3)

0 -0.0127506415x  , (3)
0 0.733437531x  . The time histories of 

displacement and velocity are presented in Fig. 4 (a) and (b), respectively. The thin solid black 

curves represent the motion of the bottom and top oscillators, and the thick solid red curve 

indicates the motion of the particle. The shaded area indicates the stick motion, and the black 
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circles represent the switching points. For this periodic motion, the particle is not interacting with 

the top oscillator, and the particle has formed a local periodic motion with the bottom oscillator 

before 0.5t  . However, since the periodicity of the whole system is considered, the global 

periodic motion goes until 0.716t   to form a complete period. Discontinuity of the velocities 

can be observed from Fig. 4 (b). The corresponding phase portrait of the particle with moving 

boundaries is presented in Fig. 4 (c), where the dashed curves indicates the moving boundaries 

and the solid curve represents the motion of the particle. The discontinuity due to impacts is 

observed from Fig. 4 (c) for both of the moving boundaries and the motion of the particle.  

Furthermore, with 0.95e   from the analytical prediction, the simulation of another 

periodic motion without stick is given in Fig. 5 similarly. The initial conditions are given as 

0 0.0870359397t  ,
(1)
0 -3.65132893e-3x  ,

(1)
0 0.400570796x  , 

(2)
0 0.50227033x  ,

(2)
0 0.760171041x  , 

(3)
0 0.50227033x  ,  

(3)
0 -4.03349807x  . The time histories of displacements 

and velocities are presented in Fig. 5 (a) and (b), respectively, where the dashed curves indicate 

the motion of the bottom and top oscillators and solid curve represents the motion of the 

particles. The mapping structure of this periodic motion is given as 4(21)
P . This time, the particle 

is interacting with both the top and bottom oscillators. Furthermore, the phase portrait for the 

motion of the particle and moving boundaries are also illustrated in Fig. 5 (c), where again 

discontinuity of the system caused by impacts can be observed. 
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(a)  

(b)  

Figure 5.14: Analytical prediction of varying the restitution coefficient e : (a) Displacement 
of the particle. (b) Velocity of the particle. (c) Switching phase. (d) Real part of eigenvalues. 
(e) Imaginary part of eigenvalues. (f) Magnitude of eigenvalues. ( (1) (2) 20.0,Q Q 

(1) 28.0,  (2) 14.0,  (1) 1.0,m  (2) 2.0,m  (3) 0.01,m  0.5,h  (1) (2) 20.0,k k  (1) 0.8,c 
(2) 1.2c  ). 
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(c)  

 (d)  

Figure 5.14 Continue 
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(e)  

 

(f)  

Figure 5.14 Continue 
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(a)  

(b)  

Figure 5.15: Periodic motion with a mapping structure of 8 2(3 5)
P :  (a) displacement time 

history. (b) Velocity time history. (c) Phase portrait of the motion of the particle with 
moving boundaries. ( (1) (2) 20.0,Q Q  0.5,h  (1) (2)1.0, 2.0,m m  (3) 0.01,m 

(1) (2) 0.2,e e  (1) (2) (1) (2) (1) (2)20.0, 0.8, 1.2, 28.0, 14.0k k c c        ). The initial 

conditions are: 0 0.267608808t  , (1)
0 -0.0127506415x  , (1)

0 0.684250836x  , 
(2)
0 0.542754638x  , (2)

0 -0.455089481x  ,  (3)
0 -0.0127506415x  , (3)

0 0.733437531x  .  
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(c)  
Figure 5.15 Continue 

(a)  

Figure 5.16: Periodic motion of the mapping structure 4(21)
P : (a) Displacement time history. 

(b) Velocity time history. (c) Phase portrait of the motion of the particle and the moving 
boundaries. ( (1) (2) 20.0,Q Q   (1) 1.0,m   (2) 2.0,m   (3) 0.01,m    

(1) (2) (1) (2) (1) (2) (1) (2)0.95, 0.5, 20.0, 0.8, 1.2, 28.0, 14.0e e h k k c c           ).  The 

initial conditions are 0 0.0870359397t  , (1)
0 -3.65132893e-3x  , (1)

0 0.400570796x  ,
(2)
0 0.50227033x  , (2)

0 0.760171041x  ,  (3)
0 0.50227033x  , (3)

0 -4.03349807x  . 
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(b)  

(c)  

Figure 5.16 Continue 
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5.7. Conclusions 

In this chapter, the switchability and bifurcation of motions in a dual-excited Fermi 

acceleration oscillator with same and different oscillation was investigated. Bifurcation scenarios 

are presented numerically for both same and different excitations. Corresponding analytical 

predictions of the stable and unstable periodic motions with a given mapping structures were 

provided with eigenvalues stability analysis. Then, simulations of periodic and chaotic motions 

in such oscillators were illustrated for both same and different excitations. For same excitations, 

the switching sections of existing Neimark bifurcations were illustrated; and a detailed parameter 

map was presented to demonstrate the effect of parameter change on different types of motions. 
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APPENDIX A 

--G-Functions and Switching Conditions 

As described in the theory of switchability (Luo, Discontinuous Dynamical Systems on 

Time-varying Domains, 2009), for a dynamic system consists of N sub-dynamic systems, a 

universal domain can be divided into N accessible sub-domains i  plus the inaccessible sub-

domains 0 . On the thi  sub-domain i , there is a irC -continuous system ( 1ir  ) in the form of 

( ) ( ) ( ) ( ) ( ) ( ) ( ) T
1 2( , , ) , ( , ,..., ) ,i i i n i i i i

i nt x x x   x F x p x    (A1) 

where the time is t , and ( ) ( ) /i id dtx x . ( ) ( )( , , )i i
itF x p is the irC -continuous ( 1ir  ) vector 

field with (1) (2) ( ) T( , ,..., ) Rl l
i i ip p p p as the parameter vector. The boundary between the two 

domains i  and j  can be defined as 

1{ ( , , ) 0,  is -continuous ( 1)} .r n
ij i j ij ijt C r        x x λ    (A2) 

Base on this boundary definition, ij ji   . And the dynamical system on the boundary ij is 

(0) (0) (0)( , , ).tx F x λ       (A3) 

The normal vector of the boundary ij  at point (0) ( )tx is given as 

(0) (0)( , , ) ( , , ).
ij ijt t  n x λ x λ     (A4) 

The G-functions of the zero-order can be define as 

(0) ( )

( ) T (0) (0) ( ) (0) (0)

( , , )
( , , , ) ( , , ) [ ( , , ) ( , , )] .

ij ij m m m
m m t

G t t t t 
 

 


    
x x

x p λ n x λ F x p F x λ  (A5) 

And the thk order G-functions are defined as 

(0) (0) ( )(0)

( , ) (0) ( )

1
1 T 1 1 (0) (0)

1 ( , , )
1

( , , , , )

[ ( , , ) ( , , )] .

ij

ijt m m m

k
t t

k
s k s s s
k t

s

G t

C D D t D t 

 






 

 


   

 


   xx x x x

x x p λ

n F x p F x λ
     (A6) 
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Thus, the flow ( ) ( )i tx and ( ) ( )j tx to the boundary ij is semi-passable from i  to j  

as shown in Figure. A1 is given by Eq. (A7) (Luo, Discontinuous Dynamical Systems on Time-

varying Domains, 2009). As illustrated in Figure A1, when the flow ( ) ( )i tx  in domain i  goes 

onto the boundary ij , if ( ) 0
ij

iG   and ( ) 0
ij

jG   for 
ij i n , then the flow will pass the 

boundary and become ( ) ( )j tx  in domain j , which forms a semi-passable flow from domain 

i  to j . 

( )

( )

( )

( )

( , , , ) 0
for ,

( , , , ) 0

( , , , ) 0
for .

( , , , ) 0

ij

ij

ij

ij

ij

ij

i
m m i

jj
m m i

i
m m i

ij
m m i

G t

G t

G t

G t

 



 

 



 

  
  


   
  

x p λ
n

x p λ

x p λ
n

x p λ

                    (A7) 

Again, from the non-passable flow of the first kind (Luo, Discontinuous Dynamical 

Systems on Time-varying Domains, 2009), the sliding flow ( ) ( )i tx and ( ) ( )j tx  on the boundary 

ij is given by 

( )

( )

( )

( )

( , , , ) 0
for ,

( , , , ) 0

( , , , ) 0
for .

( , , , ) 0

ij

ij

ij

ij

ij

ij

i
m m i

jj
m m i

i
m m i

ij
m m i

G t

G t

G t

G t

 



 

 



 

  
  


   
  

x p λ
n

x p λ

x p λ
n

x p λ

                   (A8) 

This is also the onset condition for sliding motion on the boundary ij . On the other hand, the 

condition for sliding motion on the boundary ij to vanish into domain i  is given as
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Figure A1: Semi-passable flow from i to j  
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                  (A9) 

Figure A2 illustrates the onset, ongoing, and vanishing of a sliding motion. When the 

flow ( ) ( )i tx  in domain i  comes onto the boundary ij , if (0, ) 0
ij

iG   and (0, ) 0
ij

jG   for

ij i n , then the onset condition of sliding motion satisfies. And the flow turns into (0) ( )tx  

which moves on the boundary, until (0, ) 0
ij

jG  , (0, ) 0
ij

iG  , and (0, ) 0
ij

jG  , which means the 

vanishing condition of sliding motion satisfy. And the flow will leave the boundary ( ( ) ( )j tx ) and 

goes into domain j as shown in Figure A2. 

Finally, the tangential flow (Luo, Discontinuous Dynamical Systems on Time-varying 

Domains, 2009) gives the grazing motion to the boundary ij in domain i as follows: 
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Figure A2: Sliding motion on the boundary ij . 

 

x  

x  

i  

j  
ij

n  

ij  

( ) ( )i tx  (1, )

ij

iG  

(0, )

ij

iG  

 

Figure A3: Grazing motion in domain i  

 

Eq. (A10) also provides the grazing bifurcation conditions of the system as is illustrated 

in Figure 3: when the flow ( ) ( )i tx  in domain i  goes onto the boundary ij , if (0, ) 0
ij

iG   

and (1, ) 0
ij

iG   for 
ij i n , then the grazing motion condition satisfies. In this case, the flow 
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will tangentially touch the boundary and then goes back into domain i  without passing the 

boundary. 
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