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Preface
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Mikkel Meyer Andersen

Aalborg, Denmark

iii



Preface

This thesis summarises research work carried out during my employment as

a PhD student at Department of Mathematical Sciences, Aalborg University,

Denmark. The research was carried out in very close collaboration with Section

of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and

Medical Sciences, University of Copenhagen, Denmark. A part of the work

was carried out while based at Institute of Medical Informatics and Statistics,

University of Kiel, Kiel, Germany.

The thesis is about statistical modelling of lineage DNA markers. The thesis

consists of nine papers. Three of the papers have been published in widely

recognised peer-reviewed journals, one in a journal’s supplement series, one is a

letter to the editor of a journal, one is submitted to a peer-reviewed journal, two

are publically available preprints and one is in preparation for publication.

Each paper is self-contained with separate numbering of sections, figures,

equations and bibliographies. At the very end of the thesis, the complete

bibliography is provided.

In addition to the papers included in the thesis, four freely available open

source packages for the statistical software, R, have been developed as part of

the PhD work. Those packages are mentioned in the thesis as they implement

some of the statistical methods described.

The first chapter is an introduction to the basic terminology and a brief recap

of the role of lineage DNA markers in population and forensic genetics. Then, an

outline of the remainder of the thesis is given. The outline gives a description of

each paper that is less technical than the more concise abstracts that accompany

the papers. In the last chapter of the thesis, topics for future research are briefly

described.
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Summary

Forensic genetics utilising DNA information has shown to be invaluable in

forensic investigations such as criminal, paternity and immigration cases.

DNA information is great to exclude a suspect in a crime case: If the DNA

profile found at the crime scene does not match that of the suspect, the suspect is

immediately exonerated. On the other hand, if the suspect’s DNA profile matches

that found at the crime scene, this evidence must be weighted to interpret the

match correctly. This evidential weight is essential as a forensic genetic DNA

profile is usually only a subset of the entire genome, hence people can have

identical DNA profiles without having identical genomes. If the DNA profile

found at the crime scene is very common in the population of interest, the

evidential weight is not as large as if the DNA profile is very rare.

Lineage DNA profiles are DNA profiles that consist of markers on the Y

chromosome (inherited as a unit through the paternal lineage) and on the

mitochondrial DNA (inherited as a unit through the maternal lineage). In a

number of crime cases, lineage DNA profiles are particularly helpful. DNA

markers on the Y chromosome can help resolve cases when there is male/female

cell admixture as for example in sexual assault cases. In such cases, it is possible

to type only the Y chromosomal DNA profile and compare it to that of a male

suspect.

Traditional DNA profiles are obtained from markers on the chromosomes in

the cell nucleus. In some cases, the cell nucleus is destroyed or so deteriorated

that a DNA profile cannot be made. This is for example often the case for hair

shafts and very old biological samples. In such cases, it is often possible to obtain

a DNA profile from the mitochondrial DNA as mitochondrial are more hardy

and numerous than the cell nucleus.

Because lineage DNA markers have unique inheritance properties, these

are also very interesting in population genetics because Y chromosome and

mitochondrial DNA reflect male and female inheritance, respectively.

If a suspect’s DNA profile matches that found at the crime scene, the weight

of the evidence must be evaluated. To evaluate a match, statistical models for

forensic genetics must be used. A lot of work on statistical models for interpreting

traditional (non-lineage) DNA profiles have already been done and evaluation of

the weight of such evidence is now routine work.

That is not the case for lineage DNA markers as the inheritance pattern

means that the statistical methods for traditional DNA markers do not hold. In

this thesis, the focus is on developing statistical models for lineage DNA markers

as they are very different from traditional (non-lineage) DNA markers due to

the inheritance patterns.

The main focus of this thesis is on estimating population frequencies of DNA

profiles based on lineage DNA markers because this is essential in evaluating

the evidential weight of a match. The main theories I have used for this part

are that of Fisher-Wright populations, coalescent theory and finite mixtures

of exponential families (a certain class of probability distributions). Cluster

analysis methods have also been developed based on properties of the finite
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mixture models.

A minor part of this thesis is on how to model errors that may arise during

the process of obtaining a DNA profile from a biological trace. This process

involves both chemicals and apparatus that can introduce errors and it is very

important to understand the nature of such errors.

The main results of the thesis is that modelling of Y chromosomal short

tandem repeat (Y-STR) DNA profiles is done well by a finite mixture of discrete

Laplace distributions (’the discrete Laplace method’). Both inference of DNA

profile frequencies and cluster analysis using this method (which has been

implemented in publicly available open source software) yield state of the art

results.

The thesis mainly deals with modelling the distribution of Y chromosomal

short tandem repeat (Y-STR) DNA profiles, but as many of the statistical

considerations are similar for other types of lineage DNA markers, I will refer

to lineage DNA markers as a whole, especially in the introduction and epilogue.

Concluding the thesis, I discuss how the obtained knowledge can be used

in modelling other lineage DNA markers such as mitochondrial DNA and Y

chromosomal single nucleotide polymorphism (Y-SNP).
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Dansk resumé (Summary in Danish)

Retsgenetik, der udnytter DNA-information, har vist sig at være uvurderlig i

retsmedicinske undersøgelser som eksempelvis straffe-, faderskabs- og immigra-

tionssager.

DNA-information er fantastisk til at ekskludere en mistænkt i en straffesag:

Hvis DNA-profilen fundet på gerningsstedet ikke matcher den mistænktes

DNA-profil, kan DNA’et ikke stamme fra den mistænkte. Omvendt, hvis en

mistænkts DNA-profil matcher den, der er fundet på gerningsstedet, skal dette

bevismateriale vægtes for at kunne fortolke matchet korrekt. Den bevismæssige

vægt er essentiel, da en retsgenetisk DNA-profil normalt kun er en delmængde

af hele genomet, og dermed kan personer have identiske DNA-profiler uden at

have identiske genomer. Hvis gerningsstedets DNA-profil er ofte forekommende

i den relevante befolkning, er den bevismæssige vægt ikke så stor, som hvis

DNA-profilen er meget sjælden.

DNA-slægtsprofiler er DNA-profiler, der består af slægtsmarkører, hvilket er

DNA-markører på Y-kromosomet (der nedarves som en samlet enhed gennem

faderslægten) og på det mitokondrielle DNA (der nedarves som en samlet enhed

gennem moderslægten). I nogle straffesager er slægtsmarkører specielt brugbare.

Slægtsmarkører på Y-kromosomet kan anvendes i sager, hvor der er blanding af

celler fra mænd og kvinder som for eksempel i voldtægtssager. I sådanne sager

er det muligt at lave en DNA-profil baseret udelukkende på DNA-markører på

Y-kromosomet og sammenholde den med en tilsvarende fra den mistænkte.

Traditionelle DNA-profiler er baseret på DNA-markører på autosomale

kromosomer i cellekernen. I nogle sager er cellekernerne ødelagt eller så

nedbrudte, at det ikke er muligt at lave en traditionel DNA-profil. Dette er

ofte tilfældet ved hårskafter (den del af håret, der er tilbage, når man fjerner

hårroden) eller meget gamle biologiske prøver. I sådanne sager er det ofte muligt

at lave en DNA-profil baseret på det mitokondrielle DNA, da mitokondrier er

mere hårdføre og talrige end cellekerner.

Idet slægtsmarkører har unikke nedarvningsegenskaber, er de også meget

interessante i populationsgenetik, da de afspejler faderslægten (Y-kromosom) og

moderslægten (mitokondrie).

Hvis en mistænkts DNA-profil matcher DNA-profilen fra gerningsstedet,

skal den bevismæssige vægt findes. For at gøre dette, anvender man statistiske

modeller. Der er allerede forsket meget i statistiske modeller til tolkning af

traditionelle DNA-profiler, og i dag er disse metoder blevet modnet tilstrækkeligt

til at de kan anvendes rutinemæssigt i sagsarbejde.

Det er dog ikke tilfældet for DNA-slægtsprofiler: Nedarvningsegenskaberne

betyder, at antagelserne i de statistiske modeller til tolkning af traditionelle

DNA-profiler ikke længere er opfyldt. Derfor skal der anvendes anderledes

statistiske modeller. Afhandlingens fokus er udvikling af sådanne statistiske

modeller til tolkning af DNA-slægtsprofiler.

Et centralt punkt i dette er at estimere DNA-slægtsprofilers populations-

frekvenser. I afhandlingen er følgende teorier bl.a. anvendt: Fisher-Wright-

populationer, coalescent-teori og endelige miksturer af eksponentielle familier
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(en bestemt klasse af sandsynlighedsfordelinger). Metoder til at udføre kluster-

analyse baseret på egenskaber for endelige miksturer er også blevet udviklet.

En mindre del af afhandlingen er modellering af fejl, der kan opstå under

udvindingen af en DNA-profil fra biologisk materiale. Denne udvinding består

både af kemikalier og apparatur, der kan forårsage fejl. Det er essentielt at

forstå sådanne fejl for at kunne anvende DNA-profiler korrekt.

Hovedresultatet i denne afhandling er, at modelling af Y-kromosomale DNA-

profiler baseret på short tandem repeat (STR) markører kan ske ved hjælp af en

endelig mikstur af diskrete Laplace sandsynlighedsfordelinger. Både inferens af

populationsfrekvenser og klusteranalyse ved hjælp af denne metode giver state

of the art resultater. Metoden er blevet implementeret i offentligt tilgængeligt

open source-software.

Afhandlingen drejer sig hovedsageligt om Y-kromosomale STR DNA-profiler,

men mange af de statistiske overvejelser er tilsvarende for andre typer af

slægtsmarkører. Derfor vil jeg omtale DNA-slægtsprofiler mere generelt, specielt

i introduktionen og afslutningen.

I slutningen af afhandlingen er der en kort diskussion af, hvordan den

opnåede viden kan bruges til at modellere andre typer slægtsmarkører baseret

eksempelvis på mitokondrielt DNA og Y-kromosomal single nucleotide poly-

mophism (Y-SNP).
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Introduction

This introduction consists of three parts: (1) A recap of the basic terminology, (2)

description of the role of lineage DNA markers in genetics and (3) descriptions

of each chapter that are less technical than the more concise abstracts that

accompany the papers.

1. Terminology

First, a recap of the basic terminology is given. Please, refer to the books by

Butler (2001, 2005, 2010, 2012) for details.

The DNA markers most often discussed in the thesis are short tandem repeat

(STR) markers. An STR is a repeated sequence of 2-6 nucleotides where the

number of repeats is called the allele. The allele is the quantity of interest for

identification as it varies between individuals. A DNA marker is then the allele

(the number of repeats) at a particular position in the genome. The position in

the genome is called the locus (the plural of locus is loci).

Lineage DNA markers are DNA markers on either the Y chromosome or the

mitochondrial DNA. Because both the Y chromosome and the mitochondrion

is inherited as a unit from the father and mother, respectively, lineage DNA

markers constitute a DNA profile that is called a haplotype (after the Greek

word for onefold and was first used by Piazza et al. (1969)). This is in

contrast to traditional DNA markers on the autosomes (the 22 pairs of non-

sex chromosomes). Here, two values (e.g. two alleles) for each locus are obtained

(one from the mother and one from the father), and the source of the values

cannot be infered from just the DNA profile. Also, the loci in a traditional DNA

profile are assumed statistically independently because they are taken from

various chromosome pairs and due to recombination between loci on the same

chromosome pair. This is not the case for lineage DNA profiles because all loci are

inherited as a haplotype, i.e. as a unit. This means that the statistical properties

for lineage DNA markers are widely different from those of traditional DNA

markers on the autosomes.

2. Lineage DNA markers in genetics

Lineage DNA markers on the Y chromosome or mitochondrial DNA (mtDNA) are

of great interest to both forensic and population genetics due to the patrilineal

inheritance of the Y chromosome and matrilineal inheritance of the mtDNA.

In forensic genetics, Y chromosomal markers can be used when the interest

is in analysing male DNA that is masked by large amounts of female DNA

as described by Gill et al. (1985); Sibille et al. (2002); Roewer (2009). In some

forensic settings, the biological material is in poor condition such that no or only

a few cell nuclei are present making the DNA from the chromosomes impossible

to extract. This is e.g. the case with very old samples and hair shaft samples. In

such cases, mtDNA can sometimes be extracted as described by Sullivan et al.

(1991) and sequenced. Hence, lineage DNA markers are important in forensic

1



2 Introduction

genetics as they help to solve cases that are otherwise difficult or even impossible

to investigate using traditional methods.

Because lineage DNA markers have unique inheritance properties, these

are also very interesting in population genetics because Y chromosome and

mtDNA reflect male and female inheritance, respectively. Cann et al. (1987)

demonstrated how mtDNA could be used for population genetic studies and

Roewer et al. (2005) demonstrated how Y-STR markers could be used to infer

recent historical events in the European Y-STR haplotype distribution.

3. Outline

3.1. Error modelling

The process of obtaining a DNA profile from biological material involves both

chemicals and apparatus that can introduce errors. To interpret the resulting

DNA profile correctly, it is essential to understand the error phenomena.

One of the very important biochemical techniques in constructing a DNA

profile is the polymerase chain reaction (PCR). The PCR method amplifies a few

copies of DNA to thousands or even millions of copies. It is described in more

detail by Butler (2001, 2005, 2010, 2012). The Nobel Prize in Chemistry in 1993

was awarded to Kary B. Mullis and Michael Smith for inventing the PCR method.

Please, refer to http://www.nobelprize.org/nobel_prizes/chemistry/

laureates/1993/ for more details.

Paper I & II. ’Estimating stutter rates of Y-STR alleles’

This chapter is based on Andersen et al. (2011); Olofsson et al. (2012).

During the PCR process, amplification DNA products that are one repeat

unit shorter than the original allele arise. Less commonly, it also happens that

longer products and even products with more than one repeat unit in difference

are produced. These incorrect products are called stutters and are described in

more detail by Butler (2001, 2005, 2010, 2012). Stutters will be amplified later

in the process. This means that the end result will typically consist of a majority

of the allele of the original DNA material and stutter artefacts. Because the

errors are stochastic, the fraction of stutters in the end result is stochastic. To

get an impression of the fraction that is normally observed – so that the result

can be correctly interpreted – a statistical model must be used.

In this compilation of paper I, ’Estimating stutter rates for Y-STR alleles’,

and paper II, ’Sequence variants of allele 22 and 23 of DYS635 causing different

stutter rates’, a linear regression model was used. In this way, it was possible

to obtain knowledge about the fraction of stutters. This can for example be

used to detect mixtures of biological material (from e.g. two males) as only the

sum of their DNA profiles can be observed and what looks like two alleles of an

unbalanced mixture may actually be a stutter and an allele. This is important

as mixtures call for distinct interpretation.

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1993/
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1993/
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Paper III. ’Estimating Y-STR allelic drop-out rates and adjusting for

interlocus balances’

This chapter is based on Andersen et al. (2013d).

Some alleles are not detected because they have a mutation in what is called

the primer binding site (a DNA anchor located next to the repeated sequence of

2-6 nucleotides). These alleles are called null alleles or silent alleles.

Another reason for alleles not showing up in the end product is so-called

allelic drop-out. During the PCR process, amplification of the allele at a locus

can fail such that the end product contains no allele. This can happen if the

amount of input DNA is low or if the DNA is damaged, e.g. due to degradation.

It can also happen with a large amount of healthy DNA, but the probability is

much lower because the PCR process must fail simultaneous at several DNA

fragments. This is opposed to null alleles, as they occur independently of the

amount of DNA.

Again, the errors causing drop-outs are stochastic and a statistical model

must be used to estimate the probability of a drop-out. To model this drop-out

phenomenon, a logistic regression model was used together with inference in

truncated normal distributions.

The drop-out probability is essential, especially in samples with low amounts

of DNA.

3.2. Haplotype distribution modelling

In forensic genetics, it is often necessary to compare the plausibility of two

case-relevant hypotheses on the basis of genetic data. The most consistent

(and therefore generally recommended) way of doing so is to quantify the

evidential weight by means of the likelihood ratio (e.g. Evett and Weir (1998)).

Calculating the likelihood ratio in forensic case work is usually tantamount

to quantifying the match probability between two genetic profiles under two

different assumptions. One particularly important match probability in this

context is the probability that a certain individual (e.g. the donor of a trace found

at a crime scene) has the same DNA profile as another individual (usually a

suspect) chosen randomly from the same population. If the trace haplotype is

very common in the population, the evidential weight is not as large as if the

trace haplotype is very rare in the population.

Let E be the evidence. The likelihood ratio quantifying the weight of the

evidence can be written mathematically as

LR =
P

(

E | Hp

)

P (E | Hd )
,

where

• Hp is ’the suspect is the donor of the genetic data’ (prosecutor’s hypothesis),

• Hd is ’the suspect is unconnected to the crime’ (defence attorney’s hypothe-

sis),
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• P (E | Hp ) is often assumed to be 1 and

• P (E | Hd ) is the match probability.

The match probability is the probability that the suspect matches the

haplotype found at the crime scene given that the suspect is unconnected to the

crime, often translated to how probable it is that some random man’s haplotype

matches the haplotype found at the crime scene.

Methods to estimate the match probability are well established for traditional

DNA profiles (based on autosomal STRs), see e.g. Balding and Nichols (1994),

with most of them assuming statistical independence between the markers

included in the profile. Due to the lack of recombination and, therefore, lack

of statistical independence, the calculation of match probabilities is more

challenging for lineage than for autosomal markers as described e.g. by

Buckleton et al. (2011); Andersen et al. (2013a,c). In particular, when considering

Y-STR haplotypes comprising up to 17 loci as Willuweit and Roewer (2009), the

proportion of cases involving singletons, defined as haplotypes observed only

once in a reference database augmented by the suspect profile, may become

so large that use of traditional count estimates of the corresponding match

probabilities becomes unsatisfactory. Therefore, better methods for modelling

the haplotype distribution are needed such that satisfactory match probabilities

can be calculated.

To detail the inference problem arising with singleton haplotypes, assume

that a reference database of size n is given, and that a trace and suspect carry a

new haplotype not yet observed in the database. Initially, the count estimator

1/(n + 1) was used to derive match probabilities in such cases. However, this

estimator is rather conservative because it is limited from below by the inverse

of the database size. This is also demonstrated in simulation studies in this

thesis. Therefore, a more advanced method referred to as ’haplotype surveying’

was proposed (Roewer et al., 2000; Krawczak, 2001) that tried to exploit the

information about evolutionary relatedness inherent in a given database of

Y-STR haplotypes. In view of the criticisms raised against it (Andersen, 2010;

Brenner, 2010), the surveying method was later refined by Willuweit et al. (2011)

and a new version is now implemented at the YHRD website (Roewer et al., 2001;

Willuweit and Roewer, 2009) (see http://www.yhrd.org). Brenner (2010)

suggested an alternative, comparatively simple method of estimating the match

probability for singletons for any kind of markers, the so-called ’κ correction’ of

the count estimator inspired by Robbins (1968). In short, the κ correction entails

estimating a match probability by (1−κ)/(n+1), where κ=α/(n+1) and α denotes

the total number of singletons in the database.

In this part, two methods for calculating match probabilities are presented

and compared to existing estimators like the κ correction by Brenner (2010).

Paper IV. ’Estimating trace-suspect match probabilities for singleton

Y-STR haplotypes using coalescent theory’

This chapter is based on Andersen et al. (2013a).

http://www.yhrd.org
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In this paper, a theory called coalescent theory was used to estimate haplotype

frequencies. Coalescent theory tries to infer the genealogy or gene history of a

population by using a database of haplotypes from the population. The analysis

is done by assuming that the individuals in the population have a most recent

common ancestor (MRCA) that can be inferred.

In principle, the genealogy that is most likely could be used, but because so

many almost equally likely genealogies exist, a huge sample of these are often

taken instead and each is weighted by its probability of occurring.

As might be speculated from the description, the method is rather computa-

tional intensive, which is why only relatively small datasets were analysed with

this method in this study.

The method was implemented by modifying existing software (BATWING by

Wilson et al. (2003)). Later, the method was implemented as an R (R Development

Core Team, 2013) package called rforensicbatwing (Andersen and Wilson,

2013) (freely available open source software).

Paper V. ’Efficient forward simulation of Fisher-Wright populations

with stochastic population size and neutral single step mutations’

This chapter is based on Andersen and Eriksen (2012a).

When developing a statistical model, model control is of great importance. A

model for the distribution of Y-STR haplotypes can be tested on real databases

and compared to the results of other models, but the true population frequency

of a haplotype is unknown. Hence, it is difficult to identify the errors.

One way to circumvent this problem is to simulate an entire population. Then,

all the frequencies of all haplotypes are known. From this population, databases

can be drawn and used by the models to estimate haplotype frequencies. These

estimated frequencies can then be compared to the known ones such that the

size of the errors can be estimated.

In this paper, a well known population model, the Fisher-Wright model

of evolution by Fisher (1922, 1930, 1958); Wright (1931) with a single step

mutation process by Ohta and Kimura (1973), was reformulated to facilitate

computationally efficient simulations of even large populations. The method was

implemented as an R (R Development Core Team, 2013) package called fwsim

(Andersen and Eriksen, 2012b) (freely available open source software).

Paper VI. ’The discrete Laplace exponential family and estimation of

Y-STR haplotype frequencies’

This chapter is based on Andersen et al. (2013c).

An exponential family is a class of probability distributions that is well

understood in probability theory such that inference can easily be made.

In this paper, an exponential family called the ’discrete Laplace distribution’

was described. Its simple usage was exemplified by showing that it approximates

a more complicated distribution by Caliebe et al. (2010) that arises in the Fisher-

Wright model of evolution (Fisher, 1922, 1930, 1958; Wright, 1931) with a single

step mutation process (Ohta and Kimura, 1973).
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The theory for making inference in a mixture of multivariate, marginally

independent, discrete Laplace distributions was then described. The model was

used for estimating haplotype frequencies with lower prediction errors than

those of other existing estimators like that of Brenner (2010).

Due to the known properties of exponential families, the calculations could

be implemented and performed on a normal computer.

The method was implemented as an R (R Development Core Team, 2013)

package called disclapmix (Andersen and Eriksen, 2013) (freely available open

source software).

Paper VII. ’A gentle introduction to the discrete Laplace method for

estimating Y-STR haplotype frequencies’

This chapter is based on Andersen et al. (2013b).

Following the ’gentle introduction’ genre for software, this paper is a gentle

introduction to the discrete Laplace method. The method was described in a

less technical manner than the original paper and the use of the software was

demonstrated.

Paper VIII. ’Cluster analysis of European Y-chromosomal STR haplo-

types using discrete Laplace distributions’

This chapter is based on a preprint that has been submitted to Forensic Science

International: Genetics (2013).

As already mentioned above in this introduction, lineage DNA markers can

be used for population genetic analyses. Roewer et al. (2005) demonstrated how

Y-STR markers could be used to infer recent historical events in the European

Y-STR haplotype distribution. In this paper, using a completely different cluster

analysis based on the discrete Laplace method that could be performed on a

normal computer, we obtained similar results.

Because the discrete Laplace method is a probability model, other analyses

than those similar to those of Roewer et al. (2005) were possible. For example,

pairwise distances (between geographically separated samples) were also

compared with those obtained using the AMOVA method by Excoffier et al. (1992)

and good agreement was found. Furthermore, we investigated the homogeneity

(uniformity of individuals in a population) in two different ways and found that

the Y-STR haplotypes from e.g. Finland were relatively homogeneous as opposed

to the relatively heterogeneous Y-STR haplotypes from e.g. Lublin, Eastern

Poland and Berlin, Germany.

Paper IX. ’Efficient iteratively reweighted least squares for weighted

two-way analysis of variance’

This chapter is based on a paper that is in preparation for submission.

The implementation of the method described in paper VI used traditional

inference techniques and worked well for moderately sized datasets (e.g. 13,000

haplotypes and 7 loci as analysed in paper VIII). For larger datasets as obtained

from a yet unpublished collaborative YHRD study of 23 Y-STRs in various
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populations (personal communication with Lutz Roewer and Michael Nothnagel)

containing more than 18,000 haplotypes, the method can be greatly optimised by

exploiting known model structure. In this paper, this optimisation is described

in a slightly more general setup than actually needed for the method described

in paper VI. This method was implemented in version 1.0 of the R package

disclapmix and gives major speed-up compared to the original implementation.
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Summary Stutter peaks are artefacts that arise during PCR amplification of short

tandem repeats. Stutter peaks are especially important in forensic

case work with DNA mixtures. The aim of the study was primarily to
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1. Introduction

Stutter peaks are artefacts that arise during PCR amplification of short tandem

repeats that are highly polymorphic genetic markers commonly used in forensic

genetics (Butler, 2006). Stutter peaks are especially important in forensic case

work when DNA mixtures are analysed. To analyse mixtures properly, good

estimates of stutter rates – stutter peak height divided with the parental peak

height (Brookes et al., 2012) – must be available. The aim of the study was (1)

to estimate the stutter rates of the AmpFlSTR Yfiler kit (Applied Biosystems –

AB), (2) to investigate the stutter rates at the allelic level, and (3) to test if the

stutter rate changed with the parental peak height.

2. Material and methods

Two 1.2 mm punches of FTA® cards (Whatman) with buccal samples from each

of 360 persons were amplified in 10 µl reaction volume with AmpFlSTR® Yfiler®

kit with 27 cycles. PCR products were separated on an AB3130xl (AB) and

fragments analysed using GeneScan 3.7 and Genotyper 3.7 (AB) with 5 RFU

threshold. For each sample, the highest peak at each locus was taken as the

parental peak if the height was between 50 and 7,000 RFU. The heights of the

parental and −1 repeat stutter peaks were further analysed.

2.1. Simple linear regression

The data was first analysed using weighted linear regression for each locus with

stutter peak height as the response variable and parental peak height as the

explanatory variable. The inverse parental peak height was used as weight to

incorporate that the variance increases with the signal strength. The model

included an intercept to reflect the fact that the stutter rate – defined as the

stutter height divided by the parental peak height – changed with the height of

the parental peak height.

This model can be written as

StutterHeight=β0 +β1 ·ParentHeight.

Note, that with this model, the stutter rate has the form

StutterHeight

ParentHeight
=

β0

ParentHeight
+β1.

This results in the following interpretation when assuming β1 > 0 and

ParentHeight> 1: For a positive intercept (β0), the stutter rate decreases when

ParentHeight increases.

2.2. Multiple linear regression

Later the data was analysed using a weighted multiple linear regression for each

locus with stutter peak height as the response variable and parental peak height
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together with allele lengths and their interaction as the explanatory variables,

namely

StutterHeight=β0 +β0 ·Allele+β2 ·ParentHeight+β3 ·Allele ·ParentHeight.

Note, that with this model, the stutter rate has the form

StutterHeight

ParentHeight
=

β0

ParentHeight
+β1

Allele

ParentHeight
+β2 +β3 ·Allele

=ParentHeight−1 · (β0 +β1 ·Allele)+β2 +β3 ·Allele.

Results obtained with the multiple regression model was compared to those

obtained with the Kazam stutter rates supplied by AB.

3. Results and discussion

For the weighted multiple linear regression, the adjusted R2 values varied

between 82.5% (DYS438) and 98.9% (DYS390). Besides DYS438, only two

additional loci had an adjusted R2 value below 90% (DYS635 had an adjusted R2

value of 85.8% and DYS448 had an adjusted R2 value of 89.7%).

In Figure 1, a simple linear regression for DYS390 is shown.
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Figure 1. Stutter peak heights for DYS390 allele 23. As seen, the linear dependence is large.

DYS635 yielded a poor fit, especially for allele 23. This was investigated

by looking at the simple linear regression shown in Figure 2, where two

groups of stutter rates were identified. Sequencing of 14 samples using BigDye

Termination v1.1 Cycle Sequencing Kit showed that 9 samples had sequences

with longest uninterrupted stretch (LUS) of 9 repetitive units and 5 samples
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had sequences with LUS equal to 13 repetitive units. This discrepancy is due to

a complex structure with several repetitive sequences of varying length together

with intervening sequences (as defined by Urquhart et al. (1994)). The sequence

variants were in accordance with the previously published sequences of DYS635

(Gusmao et al., 2002). All samples with LUS 13 were in the group with high

stutter rates and all samples with LUS 9 were in the group with lower stutter

rates.
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Figure 2. Stutter peak heights for DYS635 allele 23. As seen, there are two groupings. Sequencing

of 14 samples revealed that the grouping is due to differing longest uninterrupted stretch (LUS)

between the groups. All 5 samples with LUS 13 were in the group with high stutter rates and all 9

samples with LUS 9 were in the group with lower stutter rates.

DYS438 and DYS448 seem to fit poorly due to a greater spread of the stutter

rates given the parental peak heights. The relationships are still linear. The

reason for this is not known; DYS438 has a simple structure (as opposed to e.g.

DYS635), whereas DYS448 has a more complex structure although with no LUS

variants like DYS635.

Table 1 compares the predicted stutter heights for DYS389I allele 12-14

using the weighted multiple linear regression model with the Kazam constant

stutter rate for various parental peak heights. The Kazam stutter rates are

upper bounds whereas the estimates given in the present paper are means.

These are two conceptually different approaches. We have taken the approach

of using the mean because an upper bound is not consistently conservative, it

depends on the situation.
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Parental peak height

50 RFU 500 RFU 2000 RFU

Stutter height/rate Stutter height/rate Stutter height/rate
Allele RFU % RFU % RFU %

12 2.8 5.5 % 23.6 4.7 % 93.2 4.7 %
13 4.5 9.0 % 29.7 5.9 % 113.8 5.7 %
14 6.2 12.5 % 35.8 7.2 % 134.3 6.7 %

Kazam 5.9 11.79 % 59.0 11.79 % 235.8 11.79 %

Table 1. Stutter height and rate predictions for DYS389I by allele and

parental heights using weighted multiple linear regression. Kazam

refers to Applied Biosystems’ recommended stutter filter.

4. Conclusion

Stutter rates differ on the allelic level, hence one stutter rate per locus is not

optimal. Stutter rates seem to increase with the numbers of Y-STR repeats as

seen in Table 1. Applied Biosystems’ recommended stutter filter rates seem to

be too high in general, which can cause problems in analysing DNA mixtures.

Table 1 also show, remembering that stutter rate is stutter peak height divided

by parental peak height, that intercepts need to be included in the model because

the stutter rate actually does change with the parental peak height.

The constructed weighted multiple linear regression models seem to predict

stutter heights quite well on almost all loci using allele and parental peak

height as explanatory variables. This gives an easy way of predicting stutter

heights. Intra-allelic problems exist, especially among DYS635 alleles that have

a complex structure with several repetitive sequences of varying lengths together

with intervening sequences that causes different stutter rates among alleles

with the same length; this complicates mixture analysis greatly.
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Summary Y chromosome short tandem repeats (Y-STRs) are valuable genetic

markers in certain areas of forensic case-work. However, when the

Y-STR DNA profile is weak, the observed Y-STR profile may not be

complete – i.e. locus drop-out may have occurred. Another explanation

could be that the stain DNA did not have a Y-STR allele that was

detectable with the method used (the allele is a ’null allele’). If the

Y-STR profile of a stain is strong, one would be reluctant to consider

drop-out as a reasonable explanation of lack of a Y-STR allele and

would maybe consider ’null allele’ as an explanation. On the other

hand, if the signal strengths are weak, one would most likely accept

drop-out as a possible explanation. We created a logistic regression

model to estimate the probability of allele drop-out with the Life

Technologies/Applied Biosystems AmpFlSTR® Yfiler® kit such that

the trade-off between drop-outs and null alleles could be quantified

using a statistical model. The model to estimate the probability of

drop-out uses information about locus imbalances, signal strength, the

number of PCR cycles, and the fragment size of Yfiler. We made two

temporarily separated experiments and found no evidence of temporal

variation in the probability of drop-out. Using our model, we found

that for 30 PCR cycles with a 150 bp allele, the probability of drop-out

was 1:5,000 corresponding to the average estimate of the probability of

Y-STR null alleles at a signal strength of 1,249 RFU. This means that

the probability of a null allele is higher than that of an allele drop-out

at e.g. 4,000 RFU and the probability of drop-out is higher than that

of a null allele at e.g. 75 RFU.
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1. Introduction

Y chromosome short tandem repeats (Y-STRs) are valuable genetic markers in

forensic case-work, especially in sexual assault cases where only small amounts

of DNA from a male perpetrator is found in combination with a large amount of

DNA from a female victim (Gill et al., 2001; Gusmao et al., 2006; Roewer, 2009).

The reason for this is that the routine investigation of autosomal STRs, in such

cases, will result in a DNA profile of the female victim, while investigations of

Y-chromosome markers will result in a male Y-STR profile even if the amount of

female DNA is more that 1,000 times larger than that of male DNA (Prinz et al.,

1997). The weight of the evidence of matching Y-STR DNA profiles from e.g. a

scene of crime and a suspect may be estimated by likelihood principles (Morling

et al., 2002; Gill et al., 2006). The weight of the evidence is usually presented as

a likelihood ratio (LR) of

Pr (Y-STR profile | the DNA comes from the suspect)

Pr

(

Y-STR profile

∣
∣
∣
∣

the DNA comes from a random

person not related to the suspect

) .

To be able to calculate this, one must have a sound estimate of the probability

of observing the Y-STR profile among random individuals in the relevant

population. This is a problem in itself (Roewer et al., 2000; Krawczak, 2001;

Brenner, 2010; Buckleton et al., 2011; Andersen et al., 2013). The other part

of the LR is the probability of the Y-STR profile under the assumption that it

comes from the suspect. This is easy if the Y-STR profiles of the crime scene

sample and the suspect are identical – the probability is 1. However, when the

amount of Y-STR DNA is small and the Y-STR DNA profile is weak, the observed

Y-STR profile may not be complete – i.e. locus drop-out may have occurred. This

phenomenon is often considered of minor importance, and the lack of result

from a locus is often ignored under the assumption that the phenomenon was

due to locus drop-out. However, another explanation could be that the stain

DNA did not have a Y-STR allele that was detectable with the method used

– typically due to a SNP in the primer binding regions of around the Y-STR

(Butler, 2005; Budowle et al., 2008). The average frequency of such ’null alleles’

is approximately 1:5,000 = 0.02% (in release 39 of http://www.yhrd.org

(Roewer et al., 2001; Willuweit and Roewer, 2009) there were 219 null alleles

amount 1,111,984 alleles in total). If the Y-STR profile of a stain is strong with

signal strength of e.g. 4,000 RFU on an AB3130xl, drop-out is highly unlikely

(Tvedebrink et al., 2009, own unpublished observations). However, if the signal

strength is e.g. 75 RFU, the probability of drop-out is approximately 20% (cf.

Figure 10), and drop-out must be included as a possible explanation.

Although the risk of drop-out may not seem so important for Y-STRs

as for autosomal STRs (Tvedebrink et al., 2009, 2011a), it should still be

considered. We have investigated the drop-out risk of the AmpFlSTR® Yfiler®

(Life Technologies/Applied Biosystems) when using the kit with 28, 29, and 30

PCR cycles. We offer an easy method based on logistic regression analysis to

estimate the drop-out risk of Y-STRs.

http://www.yhrd.org
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Figure 1. An example that motivates to estimate the probability of allele drop-out. Assume that the

topmost electropherogram (EPG) denoted by ’T ’ was obtained from the evidence found at the crime

scene and the two ones below are from two reference samples, ’S1 ’ and ’S2 ’. Now, which reference

sample is most consistent with ’T ’? ’S1 ’ can explain ’T ’ by a null allele and ’S2 ’ can explain ’T ’ by an

allele drop-out. If the peaks in ’T ’ are around e.g. 75 RFU, then we might suspect allele drop-out

that would make ’S2 ’ consistent with ’T ’. On the other hand, if the peaks in ’T ’ are around e.g. 4,000

RFU, we would not suspect an allele drop-out, but instead suspect a null allele. Thus, in order to

make a better analysis, we need a model to estimate the probability of allele drop-out compared to

that of a null allele.

1.1. Motivating example

A simple example that motivates the evolution of the probability of allele drop-

out is given in Figure 1. A more complicated example is as follows: For the

sake of argument, assume that the probability of a null allele at a locus is 1

: 5,000 = 0.02% (which correspond to the number of null alleles in release 39

of http://www.yhrd.org (Roewer et al., 2001; Willuweit and Roewer, 2009)).

Assume a two person mixture, where all but one locus has two peaks, each of

height 4,000 RFU. The last locus only has one peak of height 4,000 RFU. The

profile is well-balanced and there is no evidence of two shared alleles at this

locus as this in theory would result in a peak of 8,000 RFU. At 4,000 RFU, the

probability of drop-out is approximately 1:100,000 (cf. Table 1). This should be

compared to the probability of a null allele (1:5,000), which gives odds of 20 for a

null allele compared to a drop-out.

Now, assume a two person mixture where all but one loci have two peaks,

each of height 75 RFU. The last locus only has one peak of height 75 RFU. Again,

http://www.yhrd.org


22 Estimating Y-STR allelic drop-out rates and adjusting for interlocus balances

we have a well-balanced profile where there is no evidence of two shared alleles

at this locus. At 75 RFU, the probability of drop-out is approximately 1:5 (cf.

Figure 10). This should be compared to the probability of a null allele (1:5,000),

which gives odds of 1,000 for a drop-out compared to a null allele.

2. Materials and methods

2.1. Experiments

Two sets of controlled experiments were conducted at The Section of Forensic

Genetics, Department of Forensic Medicine, Faculty of Health and Medical

Sciences, University of Copenhagen, Denmark. For estimating the drop-out

probability, eight different male DNA samples were diluted into 14 different

concentrations and amplified in triplicates at 28, 29 and 30 thermocycles using

the AmpFlSTR® Yfiler® (Life Technologies/Applied Biosystems) amplification

kit. The first set of experiments were conducted with DNA from four males. In

the second set of experiments, DNA from four other males was investigated. In

the first experiment, only data from 28 and 30 thermocycles were available.

For dilution series, blood samples were taken from eight males. Genomic

DNA was extracted with the EZ1 Investigator kit (Qiagen) using a BioRobot

EZ1 (Qiagen) or with PrepFiler™ Express Forensic DNA Extraction Kit (AB)

using an Automate Express™ robot (AB). Each DNA sample was quantified

in triplicate using the Quantifiler® Y Human Male DNA Quantification Kit

(AB) with Human Genomic DNA Male (G147A, Promega) as the quantification

standard on an ABIPrism 7000 (AB) or an ABIPrism 7500 (AB). The median

DNA concentration was used. Each sample was diluted with water to DNA

concentrations of 100 pg/µl or 1,000 pg/µl. Dilution series were performed with

serial dilutions to give 14 different DNA concentrations in the range 0.75-150

pg/µl.

A total of 5 or 10 µl of the diluted samples was added to the PCR mixture

and each sample was amplified in triplicate with the AmpFlSTR® Yfiler® PCR

Amplification Kit (AB) as recommended by the manufacturer in an 96-Well

GeneAmp® PCR System 9700 (AB) amplifying with 28, 29 and 30 thermocycles.

The resulting amount of DNA in the PCR reactions ranged from 7.5-1,000 pg.

One µl of the amplificate together with 15 µl HiDi Formamide (AB) was

analysed on an ABI Prism 3130xl Genetic Analyzer (AB) using POP4 (AB) as the

polymer and 3 kV injection voltage for 10 seconds. DNA fragments were detected,

fragment sizes were estimated, and alleles were assigned using GeneMapper 3.2

(AB) or GeneScan 3.7 with GenoTyper 3.7 (both AB) with a detection threshold

of 15 RFU and no filter applied. A detection threshold of 50 RFU was used,

which is also the detection threshold for drop-out. Peaks between 15 RFU and

50 RFU were included for improving statistical modelling.

The DNA profiles included only one allele per locus except for the DYS385a/b

locus. Seven profiles had two alleles, and a single profile had one allele at the

DYS385a/b locus.

The protocols were approved by the Danish ethical committee (KF-01-037/93
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and H-1-2011-081).

2.2. Data

All data analysis was performed using the statistical software R (R Development

Core Team, 2013).

In Figure 2, the proportion of dropped out Y-STR loci given the expected

DNA concentration and the number of PCR cycles for the sample is shown. In

Figure 3, the experiment is also included as a dependent variable.

No drop-out occured when the expected DNA concentration was greater than

100 pg/µl, which is why concentrations higher than 100 pg/µl are not shown in

the Figure 2 and Figure 3.
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Figure 2. The proportion of dropped out Y-STR loci depending on the amount of DNA. No drop-out

occurred when the amount of DNA was greater than 100 pg.

2.3. Estimating interlocus balances

The AmpFlSTR Yfiler amplification kit is not well balanced between loci, which

is depicted in Figure 4. This means that locus balances need to be considered in

the drop-out model. In this section, a model for estimating interlocus balances is

described.

Due to the lack of accuracy and reproducibility in quantification, we could

not use the quantified DNA amount in the model of the signal strength. Instead,

we introduced an individual signal strength for each sample denoted by Si for

samples i = 1,2, . . . ,n. The signal strength can be described as the mean peak

height weighted by the interlocus balances. We will now discuss the modelling

of this in detail.
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Figure 3. The proportion of dropped out Y-STR loci given the amount of DNA, cycles and experiment.

No drop-out occurred when the amount of DNA was greater than 100 pg.

Let xi j be the peak height at the j th locus for the i th sample for j = 1,2, . . . ,r

and i = 1,2, . . . ,n, where r is the number of loci and n is the number of samples.

Then, we assume that log xi j is normally distributed with a mean value

depending on the sample and locus. In a statistical notation, where N (µ,σ2)

denotes a normal distribution with a mean value µ and the variance σ2, we

assume that

log xi j ∼ N
(

θ j + logSi ,σ2
)

,(1)

where θ j is the locus balance for the j th locus and Si is the signal strength for

the i th sample.

We impose constraints on the θ j ’s such that

r∑

j=1

θ j = 0.

As the linear model stated in Equation (1) assuming Equation (2) is a linear

regression model, we checked it on samples with full profiles (samples with no

drop-out) using the linear model fit function lm in the statistical software R (R

Development Core Team, 2013). The adjusted R2 value was 93.7% with both locus

and sample as statistically significant factors. The resulting interlocus balances,

θ j , are depicted in Figure 5.

For locus DYS385a/b, only one locus balance is estimated based on the sum of

the peak heights of 2 alleles (7 profiles) and the peak height for 1 allele (1 profile).

Later, for signal strength estimation, DYS385 was treated as two loci, ’DYS385a’

and ’DYS385b’, each with locus balance θ′ = θ/2, where θ is this estimated locus

balance for the sum of the DYS385a/b peak heights.
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Figure 4. Interlocus balances of the peak heights at the Y-STR loci. To explain the box-and-whiskers

plot, let qp be the p% quantile. The box contains the middle 50% of the observations (from the 25%

quantile, q25, to the 75% quantile, q75). The horizontal line in the box displays the median (50%

quantile, q50). The end of the lower whisker is the lowest datapoint greater than q25 −1.5× IQR,

where IQR is the interquartile range given by q75 −q25 (the height of the box). The end of the upper

whisker is the greatest datapoint lower than q75 +1.5× IQR. The points are outliers that are either

lower than q25 −1.5× IQR or greater than q75 +1.5× IQR.

2.4. Estimating signal strength

Other studies on drop-outs, e.g. those of Tvedebrink et al. (2009, 2011a), use the

signal strength as a predictor of the drop-out probability. We investigate the

same predictor here. Due to the lack of balance of the Yfiler kit as described in

Section 2.3, the signal strength must be modelled somewhat differently. Another

difference in the modelling is that we incorporate the knowledge that some of

the peaks may have dropped out by using a truncated probability distribution.

When we estimated interlocus balances on full profiles, we used the model

in Equation (1), Section 2.3. Now, when we have drop-outs, a slightly different

model for the peak heights was used instead, namely

log xi j ∼ Nlog t

(

θ j + logSi ,σ2
i

)

,(2)

where Nlog t (·, ·) denotes a normal distribution truncated below log t (meaning that

there is no observation less than log t , where t is known and we have information

about the number of observations being truncated). In forensic genetics, t is the

detection threshold. Often the value t = 50 RFU is used, which we also used. As

before, xi j is the peak height at the j th locus and the i th sample, θ j is the locus

balance for the j th locus and Si is the signal strength for the i th sample.

Now, assume that the interlocus balances estimated using Equation (1) are

known. This is a reasonable assumption and it makes inference about the signal

strength, Si , easier.
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Figure 5. Interlocus balances, θ j , from the model log xi j ∼ N (θ j + logSi ,σ2) with 95% confidence

intervals. Note, that all interlocus balance estimates have the same variance due to the balanced

design (all samples are full profiles).

The goal is to estimate Si and use it as a proxy for the signal strength by

using the peaks above 50 RFU, their heights and implicitly peaks that have

dropped out.

If we assume that the interlocus balances, θ j , are known, then the model for

one sample is

log x j ∼ Nlog t

(

θ j + logS,σ2
)

.(3)

Let J ⊆ {1,2, . . . ,r } denote the set of loci that did not drop out and JC = {1,2, . . . ,r }\

J , where \ means set difference, the set of loci that dropped out. The likelihood

of the model in Equation (3) for one sample {x j } j∈J is then given by

L
(

logS,σ2; {x j } j∈J

)

=
r∏

j=1

L j(4)

=
∏

j∈JC

Φ

(
log t − (θ j + logS)

σ

)

×
∏

j∈J

σ−1φ

(
log x j − (θ j + logS)

σ

)

,

where L j is the likelihood contribution from the j th locus, Φ is the cumulative

distribution function for the standard normal distribution and φ is the proba-

bility density function of the standard normal distribution. The first product

sign,
∏

j∈JC , collects the likelihood contribution of the loci that dropped out

because Φ

(
log t−(θ j +logS)

σ

)

is the probability of observing a value less than log t in a

N
(

θ j + logS,σ2
)

distribution. The second product sign,
∏

j∈J , collects the likelihood
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contribution from the loci that did not drop out because σ−1φ
(

log x j −(θ j +logS)

σ

)

is

the probability of observing the value log x j in a N
(

θ j + logS,σ2
)

distribution.

For a sample {x j } j∈J , the likelihood in Equation (4) can be optimised

numerically using the optim functionality in R (R Development Core Team,

2013) to obtain the estimate log Ŝ. Note, that if we have a full profile, (JC =;),

then the optimum of Equation (4) is log Ŝ = r−1 ∑r
j=1

(log x j −θ j ) = r−1 ∑r
j=1

log x j . In

other words, for a full profile, the log of the signal strength is the average of the

log peak heights because the sum of the locus balances is 0. Also, note that at

least two loci are required because both logS and σ2 must be estimated.

If the information about truncation is ignored, then the crude estimator

log Ŝcrude =
1

r −k

∑

j∈J

(log x j −θ j )(5)

can be used, where k =
∣
∣JC

∣
∣ is the number of loci dropped out. The crude estimator

is expected to be greater than the likelihood estimator because it does not

incorporate knowledge of the loci dropped-out and the estimate is decreased

because the peaks dropped-out are known to be smaller than 50 RFU. In Figure 6,

the signal strength estimator based on optimising the likelihood in Equation (4)

is compared to the crude estimator in 5 using all the data from profiles with at

least two loci not dropped out. This figure shows that the crude estimator in

Equation (5) is greater than the likelihood based estimator in Equation (4).
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Figure 6. Comparison of the signal strength estimator based on the likelihood Equation (4) and

the crude estimator Equation (5) based on all data with at least two loci not dropped out. The line

has slope 1 and intercept 0 corresponding to a 1:1 correlation. The crude estimator is expected to be

greater than the likelihood estimator (see the text for the arguments), which is supported by this

figure (because the points are above the line).

Estimators of truncated normal distributions are treated by Persson and

Rootzen (1977), but locus imbalances make things complicated, which is why we

use the numerical optimisation.
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Optimising Equation (4) makes it possible to estimate the signal strengths,

Ŝ, for all samples with at least two loci not dropped out. Only these samples

with at least two loci not dropped out are used. In principle, the crude estimator

Equation (5) could be used, but as described previously and shown in Figure 6,

this would result in too large signal strengths for samples with only one locus.

Another option would be to estimate the overall variance σ2 such that only one

observation would be needed to estimate the one parameter S. As shown in

Figure 7, the variance for low signal strengths is probably too large to obtain a

reasonable overall estimate.
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Figure 7. The variance, σ2
i
, for each sample given the signal strength, Si , based on optimising

Equation (4). The variance, σ2
i
, decreased with the signal strength.

In Figure 8, the correlation between the DNA concentration and the signal

strength given the number of PCR cycles is shown. In Figure 9, the correlation

between signal strength and the propotion of loci dropped out is depicted.

2.5. Modelling drop-out probability

As done in other studies, e.g. those of Tvedebrink et al. (2009, 2011a), logistic

regression (Hosmer and Lemeshow, 2000; Agresti, 2002) of the probability

of drop-out was performed. Possible explanatory variables considered were

Experiment, LogSignalStrength (logSi ), Cycles (28, 29, or 30 PCR cycles),

Locus, Dye and FragmentSize.

We performed backwards model selection using the Bayesian Information

Criterion (Schwarz, 1978) (BIC) to select the best model. The initial model

consisted of all first order effects and second order interactions (for example to

allow the effect of signal strength to depend on the number of PCR cycles).
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Figure 8. The correlation between the DNA amount and the estimated signal strength (as explained

in Section 2.4) given the number of PCR cycles. The lines are linear regression lines for each of the

PCR cycles.

3. Results

3.1. Model for drop-out probability

As described in Section 2.5, a logistic regression was used to estimate the proba-

bility of drop-out. The resulting model was that the drop-out probability is best

described by an effect of LogSignalStrength (logSi ), Cycles, FragmentSize

and an interaction effect between LogSignalStrength and Cycles such that

the effect of signal strength varies with the number of PCR cycles.

The drop-out probability given signal strength for fragment size 150 bp is

shown in Figure 10.

The corresponding signal strength given a drop-out probability for fragment

sizes 150 and 300 bp is shown in Figure 11. Table 1 shows the figures.

3.2. Model validation

To validate the model, an Hosmer-Lemeshow’s test (Hosmer and Lemeshow,

2000) and a bootstrap validation (Breiman, 1996) of the receiver operating

characteristic (ROC) were performed.

In total, the dataset contained 6,565 rows (one row per peak). Because of this

relatively high number of observations, 50 groups were chosen for the Hosmer-

Lemeshow’s test. The resulting test statistic was X 2 = 38.7, resulting in a non-

significant result (p = 0.83), meaning that it could not be rejected that the data

could be explained by the model.

For a dataset with n samples, the bootstrap procedure was as follows: n
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Figure 9. The proportion of dropped out Y-STR loci given signal strength θ j + logSi .

samples were randomly chosen with replacement and used to fit the model.

The samples from the dataset that were not chosen were then used to validate

the model. This was repeated 1,000 times calculating the receiver operating

characteristic (ROC). More specifically, the area under the ROC curve (AUC),

the sensitivity, and specificity were used as validation statistics. The value of

sensitivity and specificity were taken at the cutoff, which was the point, where

both were highest with equal weight (meaning that both are treated as equally

important, which may not always be the case).

Figure 12 shows the results of the receiver operating characteristic (ROC)

analyses of the 1,000 bootstrap realisations. As seen, the results of the ROC

analyses did not contradict the proposed model being sufficient to describe the

data.

4. Discussion

The result of our investigations indicated that the drop-out probability can be

sufficiently described by log Ŝ (where Ŝ is an estimate of the signal strength in

a profile), the number of PCR cycles, and fragment size. Note, that the locus

balances are incorporated in the calculation of log Ŝ.

The effects of experiments were not sufficiently strong to be included as a

covariate at the model selection, meaning that no significant day-to-day effect

was observed. It would be interesting to investigate whether differences in kit-

lot number have effect on the parameters under study. Unfortunately, the lot

numbers were not recorded.

Going back to the motivating example in Section 1.1, our analysis showed,

based on Table 1, that for 30 PCR cycles with a 150 bp allele, the probability of
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Figure 10. Drop-out probabilities given signal strengths for a fixed fragment size of 150 bp.

drop-out was 1:5,000 corresponding to a rough estimate of the probability of null

alleles at a signal strength of S = 1,249 RFU. This means that the probability of a

null allele is higher than that of drop-out at 4,000 RFU and that the probability

of drop-out is higher than that of a null allele at 75 RFU.

We have developed a model suitable for pristine DNA without degradation.

The model can be extended to encompass degraded Y chromosomal DNA similar

to the way Tvedebrink et al. (2011b) models degraded autosomale DNA.

4.1. Locus balances

As already shown in Figure 4, the Yfiler kit is not well balanced. The imbalance

seems to be independent of the DNA concentration (not shown). This makes it

difficult to make a good model for estimating signal strength.

In Section 2.3, we described a model to estimate the locus balances shown

in Figure 5. We will now describe a more advanced model for estimating the

signal strength. The idea is that loci with smaller variance contribute with more

information to the estimation of the signal strength.

Going back to Figure 4, not all loci have the same variance meaning that they

each contribute with a different amount of information. Let φ2
j

be the variance

of the j th locus’ proportion of the sum of peaks heights (resembles the width of

the boxes in Figure 4). As in Equation (1), the full profiles are used to estimate

the θ j ’s and φ2
j
’s by using the model

log xi j ∼ N
(

θ j + logSi ,φ2
j

)

.(6)

The estimated φ2
j
’s are depicted in Figure 13. The estimated θ j ’s and φ2

j
’s are
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150 bp 300 bp

PCR cycles PCR cycles

P(Drop-out) 28 29 30 28 29 30

0.001% 1:100,000 1,050 1,843 4,060 1,296 2,357 5,457

0.002% 1:50,000 865 1,469 3,091 1,067 1,878 4,154

0.01% 1:10,000 551 867 1,640 680 1,109 2,205

0.02% 1:5,000 453 691 1,249 560 884 1,678

0.1% 1:1,000 289 408 663 356 522 891

50% 1:2 42 43 44 51 54 59

Table 1. The signal strength to obtain a given drop-out probability at fragment sizes

of 150 bp and 300 bp using a given number of PCR cycles. See Figure 11 for a plot of

this table.

then assumed known when used in the model for estimating signal strength,

such that

log xi j ∼ Nlog t

(

θ j + logSi ,φ2
jσ

2
i

)

,(7)

where xi j is the peak height at the j th locus for the i th sample, θ j is the locus

balance for the j th locus and Si is the signal strength for the i th sample. As

seen, Equation (7) is an extension of Equation (2). The likelihood, which for

Equation (2) was Equation (4), to be optimised is then

L
(

logS,σ2; {x j } j∈J

)

=
∏

j∈JC

Φ

(
log t − (θ j + logS)

φ jσ

)

×
∏

j∈J

(φ jσ)−1φ

(
log x j − (θ j + logS)

φ jσ

)

.

The results for the two different ways of estimating signal strength are shown

in Figure 14. As seen, the results obtained using the advanced model are quite

similar to the results obtained using the simpler model. This does not mean

that the variance of the interlocus balances is not important, merely that it is

probably difficult to model.
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Figure 11. Plot of signal strength given a drop-out probability for fixed fragment sizes 150 and 300

bp. See Table 1 for a table of values used to construct this plot.
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Figure 14. Comparison of the signal strength estimation using the advanced model Equation (7)

and the simple model Equation (2). Each point represents the estimated signal strength of a sample

using both the advanced and simple model.
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Summary Estimation of match probabilities for singleton haplotypes of lineage

markers, i.e. for haplotypes observed only once in a reference database

augmented by a suspect profile, is an important problem in forensic

genetics. We compared the performance of four estimators of singleton

match probabilities for Y-STRs, namely the count estimate, both with

and without Brenner’s so-called ’kappa correction’, the surveying

estimate, and a previously proposed, but rarely used, coalescent-

based approach implemented in the BATWING software. Extensive

simulation with BATWING of the underlying population history,

haplotype evolution and subsequent database sampling revealed that

the coalescent-based approach is characterized by lower bias and lower

mean squared error than the uncorrected count estimator and the

surveying estimator. Moreover, in contrast to the two count estimators,

both the surveying and the coalescent-based approach exhibited a

good correlation between the estimated and true match probabilities.

However, although its overall performance is thus better than that

of any other recognized method, the coalescent-based estimator is

still computation-intense on the verge of general impracticability. Its

application in forensic practice therefore will have to be limited to

small reference databases, or to isolated cases of particular interest,

until more powerful algorithms for coalescent simulation have become

available.
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corrections and a note about that the modified BATWING program that

was made available as the R package rforensicbatwing (Andersen

and Wilson, 2013).
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1. Introduction

In forensic genetics, it is often necessary to compare the plausibility of two case-

relevant hypotheses on the basis of some genetic data, and the most consistent

(and therefore generally recommended) way of doing so is by means of the

likelihood ratio (Evett and Weir, 1998). Calculating the likelihood ratio in

forensic case work is usually tantamount to quantifying the match probability

between two genetic profiles under different assumptions about their degree of

relatedness. One particularly important match probability in this context is the

probability that a certain individual (e.g. the donor of a trace found at a crime

scene) has the same DNA profile as another individual (usually a suspect) drawn

randomly from the same population. Methods to estimate this so-called ’trace-

suspect’ match probability are well established for autosomal STRs (Balding and

Nichols, 1994), with most of them assuming statistical independence between

the markers included in the profile.

Lineage markers, such as Y-chromosomal short tandem repeats (Y-STRs)

or mtDNA polymorphisms, have several advantages over autosomal markers

(Gill et al., 1985; Roewer, 2009), for example, when solving cases of sexual

assault (Sibille et al., 2002). However, due to the lack of recombination and,

therefore, lack of statistical independence, the calculation of match probabilities

is more challenging for lineage than for autosomal markers (Buckleton et al.,

2011). In particular, when considering Y-STR haplotypes comprising up to 17

loci (Willuweit and Roewer, 2009), the proportion of cases involving singletons,

defined as haplotypes observed only once in a reference database augmented by

the suspect profile, may become so large that use of traditional count estimates

of the corresponding match probabilities becomes unsatisfactory.

To detail the inference problem arising with singleton haplotypes, let us

assume that a reference database of size n is given, and that a trace and

suspect carry a new haplotype not yet observed in the database. Initially, the

count estimator 1/(n +1) was used to derive match probabilities in such cases.

However, this estimator is rather conservative because it is limited from below

by the inverse of the database size. Therefore, a more advanced method referred

to as ’haplotype surveying’ was proposed by Roewer et al. (2000); Krawczak

(2001) that tried to exploit the information about evolutionary relatedness

inherent in a given database of Y-STR haplotypes. In view of the criticisms

raised against it by Andersen (2010); Brenner (2010), the surveying method was

later refined by Willuweit et al. (2011) and a new version is now implemented,

for example, at the YHRD website (Roewer et al., 2001; Willuweit and Roewer,

2009) (see http://www.yhrd.org). Recently, Charles Brenner suggested an

alternative, comparatively simple method of estimating the match probability

for singletons for any kind of markers (Brenner, 2010), the so-called ’κ correction’

of the count estimator inspired by Robbins (1968). In short, the κ correction

entails estimating a match probability by (1−κ)/(n+1), where κ=α/(n+1) and α

denotes the total number of singletons in the database.

Interestingly, there is yet another estimator of forensic match probabilities

that unfortunately never got much attention, most probably due to its computa-

tional demands. The approach was first described by Ian Wilson and colleagues in

http://www.yhrd.org
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2003 (Wilson et al., 2003) and involves the refinement of a previously published

Markov Chain Monte Carlo method to sample coalescent trees (Kingman, 1982;

Wilson and Balding, 1998; Hein et al., 2005). In the present paper, we will

briefly recall the original work by Wilson et al. (2003) before comparing it to the

other three estimators mentioned above. Using both simulated and real data,

we will highlight the power and limits of coalescent-based estimation of match

probabilities for singleton Y-STR haplotypes.

2. Coalescent-based estimation of match probabili-
ties

The main idea of the coalescent-based approach is as follows (Kingman, 1982;

Hein et al., 2005): Adopting a sensible population history and an appropriate

mutation model, a large number of coalescent trees is simulated linking the

haplotypes in the reference database H = (h1,h2, . . . ,hn) to one another and to the

suspect haplotype hS . Then, the unknown trace donor X is linked randomly to

each tree assuming the same population history as in the simulation of the tree.

After the tree-specific probabilities have been calculated that the trace donor

possesses the same DNA profile as the suspect, the average of these probabilities,

taken over all simulated trees, serves as an estimate of the sought-after match

probability.

Wilson and Balding (1998) introduced a Bayesian Markov Chain Monte

Carlo model to generate random coalescent trees according to their probability

of occurrence. This model was expanded in 2003 to include population growth,

among other generalizations (Wilson et al., 2003). To our knowledge, the 2003

paper was also the first one to put the calculation of forensic match probabilities

into a coalescent theory context: ”In addition to the genealogical tree underlying

the n +1 observed [haplotypes], we introduce a branch connecting the unobserved

[haplotype] of [a random individual] X with the tree, writing Z for the new

node thus introduced“. In our terminology, individual Z is the most recent

common ancestor of trace donor X and the most closely related individual(s)

in the database, including the suspect. In the Bayesian approach taken by

Wilson and Balding (1998); Wilson et al. (2003), the haplotypes are assumed to

be known at all internal nodes of the tree, including hZ . This implies that the

match probability for a given tree equals the probability that hZ mutates to the

suspect haplotype hS during the time span separating Z and X (Figure 1).

The approach proposed by Wilson et al. (2003) is implemented in the

computer program ’Bayesian Analysis of Trees With Internal Node Gen-

eration’ (BATWING), which is publicly available at http://www.mas.ncl.

ac.uk/~nijw/. However, the BATWING program does not explicitly sup-

port the calculation of forensic match probabilities but had to be adapted

to this task for the present study. The modified BATWING program with

the forensic match probability module included can be downloaded from

the ’Software’ page at http://people.math.aau.dk/~mikl/?p=software.

Note, that after publication, the modified BATWING program was also made

available as the R package rforensicbatwing (Andersen and Wilson, 2013)

http://www.mas.ncl.ac.uk/~nijw/
http://www.mas.ncl.ac.uk/~nijw/
http://people.math.aau.dk/~mikl/?p=software
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h h h

h

h h h h h1 h2 3 4 5 6 7 S

Z

X

Figure 1. Calculation of forensic match probabilities using coalescent theory (after Wilson et al.

(2003)). h1,h2, . . . ,h7: haplotypes in a reference database H of size n = 7; hS : suspect haplotype; hX :

haplotype of trace donor X ; hZ : haplotype of the most recent common ancestor Z of trace donor X

and the most closely related individual(s) in the database, including suspect S. The contribution to

the match probability of this particular tree would be the probability that hZ mutates to hS during

the time span indicated by the dotted line, thereby creating a match between the suspect and trace

haplotype.

at http://cran.r-project.org/package=rforensicbatwing.

2.1. Branch-wise contribution to the tree probability

Calculating match probabilities with BATWING is based upon use of the

probabilities that a given haplotype mutates to another given haplotype within

a specified period of time. In principle, any realistic mutation model can be

employed to quantify these probabilities but, in the case of Y-STRs, it appears

reasonable to draw upon a single-step mutation model. Under the single-

step mutation model used here, the marker-specific numbers of upward and

downward mutations (by one repeat unit) in a given number of generations,

Mu and Md , follow independent Poisson distributions with parameters λu and

λd . For the consequent allelic change, only the net effect of the two opposite

mutation processes is important, and this difference, ∆ = Mu − Md , follows a

Skellam distribution (Skellam, 1946) with probability function

f (δ;λu ,λd ) = e−(λu+λd )

(
λu

λd

)δ/2

I|δ|(2
√

λuλd ).

Here, I|δ| is the modified |δ|th order Bessel function of the first kind. For the sake

of simplicity, we will henceforth assume that upward and downward mutations

occur at the same rate. In this case, λ = λu = λd and the Skellam probability

function simplifies to

f (δ;λ) = e−2λI|δ|(2λ).

http://cran.r-project.org/package=rforensicbatwing
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Now, let N be the effective population size appropriate for a given forensic

context, and let θ = 2Nµ where µ denotes the total mutation rate per generation

per marker. Then, the expected number of (upward plus downward) mutations

occurring on a tree branch of length t equals tθ/2 = t Nµ. Assuming equal rates

for upward and downward mutation, the mutation process can be thought of as

creating two independent random variables, each with a Poisson distribution

with parameter (tθ/2)/2 = tθ/4. In summary, the net allelic change ∆t = Mu,t −Md ,t

along a tree branch of length t generations thus follows a Skellam distribution

with probability function

f (δ; t ,θ) = e−tθ/2I|δ|(tθ/2).(1)

2.2. Estimation of the match probability

For a given tree, let t denote the time (in generations) between (i) trace donor

X and (ii) the most recent common ancestor Z of X and the most closely

related individual(s) in the database, including the suspect (Figure 1). As was

noted above, the conditional match probability P (hX = hS | H ,hS ,hZ , t ) equals the

probability that hZ mutates into hS when passed down from Z to X . Since all

trees are simulated (approximately) independently according to their conditional

probability of occurrence, given reference database H and suspect haplotype hS ,

the sought-after match probability P (hX = hS | H ,hS ) can be estimated by

p̂H ,hS ,m = m−1
m∑

i=1

P (hX = hS | H ,hS ,hZ (i ), t (i )) ,(2)

where m equals the number of simulated trees, and where hZ (i ) and t (i ) refer to

the ith tree.

Under the single-step mutation model used here, the conditional probability

P (hX = hS | H ,hS ,hZ , t ) can be quantified using the Skellam probability function

given in Equation (1). Let δ( j ) = hS ( j )−hZ ( j ) be the allelic change required at

the j th out of r markers. Then

P
(

hX ( j ) = hS ( j ) | H ,hS ,hZ , t
)

= f (δ( j ); t ,θ)

and, because of independence between mutations,

P (hX = hS | H ,hS ,hZ , t ) =
r∏

j=1

f (δ( j ); t ,θ).

It is worthy of note that coalescent trees are simulated (approximately)

independently and according to the same distribution. Therefore, the average of

the resulting conditional probabilities P (hX = hS | H ,hS ,hZ (i ), t (i )), taken over all

m simulations, automatically constitutes a maximum likelihood estimate of the

sought-after match probability P (hX = hS | H ,hS ) under the employed coalescent

and mutation model.
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2.3. Convergence issues

The simulation of coalescent trees as described above entails (at least) two

different types of convergence of the ensuing match probability estimates:

(i) For a given reference database H and a given suspect haplotype hS ,

estimates p̂H ,hS ,m from Equation (2) converge to P (hX = hS | H ,hS ) when the

number of simulations m increases.

(ii) P (hX = hS | H ,hS ) converges to the true match probability P (hX = hS ) when

the reference database H expands towards the whole population.

This means that, in a given case and with a given reference database,

increasing the number of simulations ensures that the coalescent-based estimate

of the match probability converges to P (hX = hS | H ,hS ). The latter is an estimate

of P (hX = hS ) and has sampling variance that can only be reduced by increasing

the size of the reference database. However, the larger the database, the

more simulations would be required for p̂H ,hS ,m to approximate P (hX = hS | H ,hS )

sufficiently well, owing to the larger space of coalescent trees to sample from.

3. Methods

The performance of the coalescent-based estimator of singleton match probabili-

ties was compared to that of three other methods, namely (i) the count estimator

1/(n+1), where n denotes the database size, (ii) the surveying method in its most

recent form (Willuweit et al., 2011), and (iii) Brenner’s κ correction of the count

estimator (Robbins, 1968; Brenner, 2010).

Each estimator was evaluated on singleton haplotypes from both simulated

and real Y-STR data. Simulated data allow a comparison to be made between

estimated and true match probabilities by first simulating a big population

from which realistically sized databases are then drawn for estimation. As

performance measures, we employed the bias and mean squared error (MSE) of

each estimator as well as the correlation between the estimated and the truly

underlying match probabilities.

Let p̂H j ,hS j
be any estimate of the match probability (coalescent-based, count

or surveying) assuming that the j th singleton hS j
, out of v singletons considered,

belongs to the suspect. Thus, H j is the database with the j th singleton excluded.

Let phS j
be the population frequency of hS j

which, for the sake of simplicity, was

taken to coincide with the match probability in our study (i.e. the underlying

population was assumed to be panmictic). Then the bias of the estimator was

estimated by

1

v

v∑

j=1

(

p̂H j ,hS j
−phS j

)

.

Similarly, the mean squared error was estimated by

1

v

v∑

j=1

(

p̂H j ,hS j
−phS j

)2
.
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Finally, we also calculated the Spearman rank correlation coefficient between

p̂H j ,hS j
and phS j

. All analyses were carried out with R (R Development Core Team,

2013).

3.1. Generation and analysis of simulated data

BATWING by Wilson and Balding (1998); Wilson et al. (2003) was not only

used for the estimation of match probabilities but also for simulating a large

population from which small databases of size n = 100 and n = 200 were

repeatedly sampled for the evaluation of the different estimators. In principle,

BATWING supports three different types of population dynamics, namely a

constant population size and two exponential growth models (one with constant

growth and one with growth after some point in time (Wilson et al., 2003)). Here,

we simulated a single source population of 50 million haplotypes that resulted

from the constant exponential expansion, over 2,000 generations, of an initial

population of 20,000 haplotypes. The two-sided (single-step) mutation rate µ was

set equal to 0.003 per generation per marker. The number of markers was set

equal to 7 as a compromise between computational feasibility and the possibility

to obtain realistic data. As can be inferred from Figure A.1 in Appendix A, the

computation time required for coalescent-based match probability estimation

for a fixed number of simulations increased dramatically with both the marker

number and the database size.

Sample n = 100 n = 200

1 84 (84.0 %) 148 (74.0 %)

2 85 (85.0 %) 135 (67.5 %)

3 82 (82.0 %) 133 (66.5 %)

4 82 (82.0 %) 131 (65.5 %)

5 92 (92.0 %) 152 (76.0 %)

Table 1. Number and percentage (in brackets) of singletons observed in ten databases of

different size n, sampled from a large simulated source population. Sample numbers are

consistent across Tables 1, 2 and 3.

For each database size (i.e. n = 100 or n = 200), five databases were drawn

randomly from the simulated source population. Next, the forensic match

probability was estimated for each singleton haplotype in the database (for the

respective proportions of singletons, see Table 1) assuming that the haplotype

came from a suspect and was not included in the reference database itself.

Estimation was based upon either 500,000 (n = 100) or 200,000 (n = 200)

simulated coalescent trees per singleton. The larger the database, the larger is

the space of coalescent trees to sample from. This means that, in principle, more

simulations should be performed for larger databases. Due to computational

constraints, however, a substantial increase of the simulation number was not

feasible in our study. We therefore conducted a partial in-depth analysis for the

five databases of size n = 200 by randomly selecting 10 singletons from each

database and simulating one million trees for each of these.
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In the coalescent-based estimation of the match probabilities with BATWING,

we used the same distributions of population size, growth rate and mutation

rates as employed in the simulation of the source population. This was done

in order to verify whether coalescent-based estimation was feasible at all. In

practice, such population and mutation parameters may not be known. However,

BATWING (Wilson et al., 2003) allows the specification of locus-specific prior

distributions that would enable meaningful application of the coalescent-based

approach even in cases of uncertainty about the parameters (see subsection

”Real data” below).

BATWING’s thinning parameters Nbetsamp and treebetN were both set

equal to 15 after minor initial calibration (see the BATWING documentation for

further details).

3.2. Real data

We analysed the 1,774 German 17-loci haplotypes from release 37 of the YHRD

(http://www.yhrd.org) (Willuweit and Roewer, 2009). To render the data

amenable to both coalescent-based estimation and frequency surveying, some

markers and haplotypes had to be excluded. Thus, DYS385a/b was ignored

because of its inherent genotype ambiguity (Roewer et al., 2000), leaving 15

markers for further analysis. Next, four haplotypes with two alleles reported

at DYS19 and 13 haplotypes with intermediate alleles were excluded, leaving

n = 1,757 haplotypes in the data set. Finally, alleles at DYS389II were replaced

by DYS389II minus DYS389I (Butler, 2005). Of the 1,757 haplotypes analysed,

1,469 were singletons (83.6 %).

When restricting the genotype information to the 7-loci so-called ’minimal

haplotype’ comprising DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392,

and DYS393, a total of 392 singletons (22.3 %) were observed in the German

data. Ten singletons were drawn randomly from the database and the match

probability estimates obtained with the different estimators were compared.

Coalescent-based match probabilities were estimated from 5 million sim-

ulations per singleton, after a 50,000 simulations burn-in of the Monte Carlo

Markov Chain. All estimations were carried out assuming exponential growth

with a Gamma(1,1) prior on the growth rate (Wilson et al., 2003), no migration, a

Gamma(3,0.0001) prior on the effective population size, and fixed mutation rates

from http://www.yhrd.org as of September 26th, 2012 (DYS19: 0.002299,

DYS389I: 0.002523, DYS389II: 0.003644, DYS390: 0.002102, DYS391: 0.002599,

DYS392: 0.004123, DYS393: 0.001045).

The same thinning parameters as for the simulated data were used (i.e. both

Nbetsamp and treebetN were set equal to 15).

3.3. Frequency surveying

Let ni be the number of times the ith haplotype has been observed in the

database including the suspect profile, with n =
∑

i ni equal to the size of this

augmented database and let di j be the minimum number of mutational steps

http://www.yhrd.org
http://www.yhrd.org
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separating the ith from the jth haplotype. In its revised form, haplotype

surveying (Willuweit et al., 2011) is based upon an exponential regression model

µi = exp(r1Wi + r2),

σi = exp(s1Wi + s2),

that links mean µi and standard deviation σi of the population frequency of

the ith haplotype to the weighted inverse molecular distance, Wi = n−1 ∑

j 6=i
n j

di j
,

between this haplotype and all other haplotypes in the database. Once the

regression parameters r1,r2, s1 and s2 have been determined, the model serves

to define a prior Beta distribution for the frequency of any haplotype h0 with

inverse distance value W0. The parameters for this prior distribution are

α0 =
µ2

0(1−µ0)

σ2
0

−µ0,

β0 =α0

(
1−µ0

µ0

)

.

Maximum likelihood estimates of the regression parameters were obtained

in our study by numerical optimization (Willuweit et al., 2011) using the Nelder-

Mead simplex algorithm with up to 1,500 iterations, as implemented in R (R

Development Core Team, 2013). Several different starting values of (r1,r2, s1, s2)

were tried, and the vector resulting in the highest likelihood was chosen. For the

simulated data, starting values were taken from the Cartesian product {15,20}×
{−10,−15}×{15,20}×{−10,−15}, resulting in 16 possible vectors to choose from. For

the real data, starting values were taken from {15,20,30.82}× {−10,−15,−13.17}×
{15,20,28.95}×{−10,−15,−11.71}. The additional elements for the real data are the

respective binning estimates for the Western-European population adopted from

Table 3 of Willuweit et al. (2011).

For comparison to the other estimators, we used the mean of the posterior

Beta(αi +ni −1,βi +n −ni ), given by

αi +ni −1

αi −1+βi +n
,

as the haplotype surveying estimate of the sought-after match probability for hi .

Note that ni = 1 as far as singletons were concerned.

4. Results

4.1. Comprehensive analysis of all singletons

Figure 2 illustrates a comparison of the different singleton match probability

estimators for database size n = 100. Obviously, both the uncorrected count

estimator 1/(n +1) and the surveying estimator are rather conservative in that

almost all estimates were larger than the corresponding true match probability.

Brenner’s and the coalescent-based estimator, on the other hand, yielded
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Figure 2. Singleton match probability estimates for five sample databases of size n = 100. The

uncorrected count estimate (dotted line) was 1/(99+1) = 0.01 throughout whereas Brenner’s estimate

varied between 0.0008 and 0.0018, with a mean of 0.0015 (dashed lines). Crosses: surveying

estimates; dots: coalescent-based estimates. Each point corresponds to one singleton haplotype. The

solid line equates the estimated with the true match probability (i.e. the underlying population

frequency).

consistently lower estimates and were found to have small and comparable

bias. However, whereas the coalescent-based and surveying estimates were

moderately correlated with the true match probabilities, by definition, no such

relationship exists for the two count estimators (uncorrected and Brenner’s).

Inspection of Figure 2 also reveals that, for singletons with a true match

probability smaller than the average of Brenner’s estimates, this probability

may be difficult to assess by the coalescent-based method in general. On the

other hand, singletons with a true match probability above Brenner’s average

appear to contain sufficient evolutionary information to allow much more precise

estimation.

For databases of size n = 100 and n = 200, Brenner’s and the coalescent-based

estimator are obviously less biased and have smaller MSE than the surveying

estimator (Table 2). In fact, the latter was consistenly found to overestimate the

true match probability. Also, for n = 100, the coalescent-based estimator had lower

MSE than Brenner’s. This relationship became reverted for n = 200 (Table 2),

but there is good reason to believe that this observation essentially reflects

insufficient convergence of the coalescent-based estimator because MSE is also

a function of the variance of an estimator. As was mentioned above, inspection

of the Spearman rank correlation coefficients revealed a moderate correlation

with the true match probability for both the surveying and the coalescent-based

estimates (Table 2). The correlation between the coalescent-based estimates



Results 49

Bias MSE Spearman

Brenner Surveying Coalescent Brenner Surveying Coalescent Brenner Surveying Coalescent

n = 100

Sample 1 −9.4 ·10−5 9.1 ·10−3 2.9 ·10−4 4.3 ·10−6 1.5 ·10−4 2.7 ·10−6 0 0.528 0.446

2 −3.3 ·10−4 8.9 ·10−3 2.7 ·10−4 4.7 ·10−6 8.3 ·10−5 2.4 ·10−6 0 0.566 0.509

3 4.3 ·10−4 9.6 ·10−3 4.2 ·10−4 2.4 ·10−6 9.5 ·10−5 2.0 ·10−6 0 0.413 0.327

4 5.4 ·10−5 8.8 ·10−3 −4.0 ·10−5 3.4 ·10−6 9.8 ·10−5 2.3 ·10−6 0 0.401 0.274

5 −6.4 ·10−4 8.1 ·10−3 2.5 ·10−4 2.5 ·10−6 9.6 ·10−5 1.9 ·10−6 0 0.389 0.266

n = 200

Sample 1 7.7 ·10−5 4.1 ·10−3 5.6 ·10−5 1.8 ·10−6 2.7 ·10−5 2.3 ·10−6 0 0.309 0.154

2 3.5 ·10−4 4.9 ·10−3 3.3 ·10−4 2.6 ·10−6 2.6 ·10−5 3.8 ·10−6 0 0.490 0.267

3 6.1 ·10−4 4.2 ·10−3 1.4 ·10−4 1.8 ·10−6 2.5 ·10−5 1.9 ·10−6 0 0.283 0.343

4 4.9 ·10−4 4.7 ·10−3 1.2 ·10−4 1.7 ·10−6 2.7 ·10−5 3.3 ·10−6 0 0.381 0.184

5 −8.4 ·10−5 4.3 ·10−3 9.8 ·10−5 2.0 ·10−6 2.2 ·10−5 2.8 ·10−6 0 0.389 0.250

Table 2. Comparative analysis of singleton match probability estimators. MSE: mean squared error;

Spearman: Spearman rank correlation coefficient between estimated and true match probabilities.

Sample database numbers are consistent across Tables 1, 2 and 3.

Bias MSE

2×105 106 Brenner 2×105 106 Brenner

n = 200

Sample 1 −4.1 ·10−4 −1.8 ·10−4 −4.7 ·10−4 6.0 ·10−6 6.0 ·10−6 8.9 ·10−6

2 −6.7 ·10−4 −4.6 ·10−4 −2.0 ·10−4 3.5 ·10−6 2.3 ·10−6 4.8 ·10−6

3 −6.9 ·10−4 −5.6 ·10−4 1.9 ·10−5 1.3 ·10−6 1.3 ·10−6 1.7 ·10−6

4 1.4 ·10−3 4.6 ·10−4 6.7 ·10−4 6.4 ·10−6 1.8 ·10−6 1.1 ·10−6

5 −3.6 ·10−4 −3.2 ·10−4 −2.8 ·10−4 1.2 ·10−6 1.2 ·10−6 2.5 ·10−6

Table 3. In-depth analysis for 10 selected singletons per sample database of the coalescent-based

estimator of match probabilities, using different numbers of simulations (2×105 and 106 per

singleton). Sample database numbers are consistent across Tables 1, 2 and 3.

and the true match probabilities was also found to increase with the number

of simulations performed (Figure 3). The same was true for the bias and MSE,

both of which converged when the number of simulations increased (Figures A.2

and A.3 in Appendix A).

4.2. In-depth analysis of coalescent-based estimates for selected single-

tons

Table 3 summarizes an in-depth analysis of the coalescent-based match

probability estimates obtained for 10 randomly selected singletons per sample

database of size n = 200, using a much larger number of simulations than before.

In general, a substantial increase in simulation number from 200,000 to one

million reduced both bias and MSE. We also generated two individual trace plots

of one million simulations and included these into Appendix A. For one singleton

(Figure A.4) convergence of the match probability estimate was lacking while,

for the other singleton (Figure A.5), the match probability estimate converged

quite rapidly.
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Figure 3. Trace plots of the Spearman rank correlation coefficient between true match probabilities

and coalescent-based estimates, after a given number of simulations. Each line corresponds to one of

five databases per database size n, sampled at random from a large simulated source population.

Solid lines: n = 100; dashed lines: n = 200.
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Figure 4. Trace plots of selected match probability estimates from the real German 7-loci Y-STR

data. Match probabilities were estimated for 10 singletons using the coalescent-based approach with

5 million simulations (solid lines), Brenner’s κ correction (dotted lines) and the surveying estimator

(dash-dotted lines). Note: Brenner’s estimate equaled 4.0×10−4 while the surveying estimate ranged

from 2.3×10−4 to 2.7×10−4 for the 10 haplotypes. Since the vertical axis has a logarithmic scale, the

less than two-fold difference between the two types of estimates implied that they were depicted in

close proximity. Trace plots of a subsample study of H01675 can be found in Figure A.8 in Appendix

A.

4.3. Real data

Trace plots for the 7-loci match probabilities of ten singletons randomly chosen

from the real German Y-STR data are given in Figure 4. In some instances,

but not all, the coalescent-based estimates seem to have converged to a value

near Brenner’s and the surveying estimates. A singleton that does not seem to

have converged at all is H01675. Inspired by Felsenstein (2006), we drew 10

random subsamples of 50 haplotypes each from the original database to see if

the subsample estimates for H01675 approximated the other estimates. The

trace plots can be found in Figure A.8 in Appendix A. Since the true match

probabilities were unknown for the real data, a comparison of the different

estimators in terms of their accuracy was not possible. However, the mean

subsample estimates for H01675 were in the range of 10−2 to 10−3, indicating

that the original coalescent-based estimate had indeed not converged, despite

the large number of simulations performed.
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5. Discussion

5.1. General appraisal of coalescent-based match probability estimation

Our simulation study revealed that, overall, the coalescent-based estimator of

trace-suspect match probabilities performs better for Y-STR singleton haplotypes

than any other previously proposed estimator, at least under the conditions

of our simulation study. In terms of both its bias and mean squared error

(MSE), the coalescent-based approach was found to be clearly superior to the

surveying method by Roewer et al. (2000); Krawczak (2001); Willuweit et al.

(2011). Moreover, it also outperformed the κ correction by Brenner (2010)

regarding the correlation between estimated and true match probability which,

by definition, equals zero for Brenner’s estimator. The said correlation also

indirectly corroborated the claim, made in connection with the first introduction

of the surveying method (Roewer et al., 2000), that the allelic spectrum of a given

database contains valuable information about the evolutionary relatedness of

its constituent haplotypes, and therefore about match probabilities.

This view is further supported by the observation that, for all the singletons

analysed in our simulation study combined (Table 1), the correlation between

the true match probabilities and their coalescent-based estimates increases with

the key parameter of the surveying method (Willuweit et al., 2011), namely the

weighted inverse molecular distance W between a singleton and the rest of the

corresponding reference database (Table 4).

Wi range No. singletons Spearman

(0.05, 0.10] 138 0.077

(0.10, 0.15] 451 0.082

(0.15, 0.20] 331 0.130

(0.20, 0.25] 154 0.155

(0.25, 0.40] 50 0.442

Table 4. For each range of Wi values, the Spearman rank correlation coefficient between

the coalescent-based estimates and the true match probabilities is given together with the

number of singletons in each range.

The major downside of the coalescent-based approach consists in its enormous

computational demands. These render any wide-spread practical application

of the method difficult, at least until more powerful algorithms to sample

coalescent trees have been developed and implemented in suitable software

packages. Moreover, because of the large number of singletons assessed in our

study, the number of simulations performed for each individual estimate had

to be comparatively low. Therefore, the resulting biases and MSEs still have

to be interpreted with some caution. This notwithstanding, if applied to derive

only one or a few match probability estimates, and with a greater number of

simulations thus possible, our in-depth analysis of selected singletons suggests

that the accuracy of the coalescent-based method will surpass that of the other

approaches tested.

As has been mentioned in Section 3, the Bayesian framework of BATWING
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(Wilson et al., 2003) allows the specification of prior distributions for the

coalescent parameters, including the effective population size, (locus-specific)

mutation rates and population growth. This way, any uncertainty about the

respective quantities (as would arise in practical casework) can be incorporated

into the population model and the posterior distributions derived. Here, we used

fixed mutation rates and standard prior distributions for the other parameter

values because our main interest was to determine if and how the coalescent-

based method would work in principle. Along the same vein, we employed a

simplified mutation model in our study for which the upward and downward

mutation rates were assumed to be equal. In practice, if the coalescent-based

approach was to be used to estimate real match probabilities, this assumption

can be abandoned in favor of allele- and direction-specific mutation rates for

the Y-STRs of interest, although such modifications may require substantial

alteration of the software used.

To assess the robustness of the coalescent-based estimate, we also varied the

mutation rate and the prior distribution of the effective population size. The

resulting trace-plots can be found in Figure A.6 and Figure A.7 in Appendix A.

With all the different values and priors tested, the coalescent-based estimator

turned out to be quite robust.

5.2. Match probabilities for non-singletons

In our study, we focused upon singleton haplotypes, i.e. haplotypes for which

the estimation of match probabilities appears to be most problematic because

the commonly used count estimator 1/(n +1) is rather conservative. Moreover,

singleton proportions are bound to increase with the number of markers

included in a genetic profile, and particularly so when rapidly mutating Y-STRs

(Ballantyne et al., 2010) are involved. However, one important advantage of the

coalescent-based (and the surveying) estimator over Brenner’s κ correction of

the count estimate is that singletons are not treated differently from other, more

frequent haplotypes. Therefore, the coalescent-based method can be expected to

work as reliably for non-singletons as for singletons, although this supposition

still needs to be confirmed systematically.

5.3. Computational recommendations

The coalescent-based method is still on the verge of being too slow for practical

application, at least with the software used here. This is because the computation

time required grows exponentially with both the database size and the number of

loci involved (Figure A.1). In addition, the more markers are included in a genetic

profile, and the larger the database used to quantify the evidential weight of a

match, the more simulations are required to guarantee proper convergence of

the coalescent-based estimate of the match probability. Therefore, the practical

application of the coalescent-based approach would currently be limited to rather

small databases and to small numbers of markers.

The above notwithstanding, some recommendations can still be made to
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facilitate efficient and sensible use of the existing simulation software. First,

when using Metropolis-Hastings sampling (Metropolis et al., 1953; Hastings,

1970) as done in BATWING (Wilson et al., 2003), it is important to carefully

choose the acceptance rates so as to ensure that the algorithm visits a sufficiently

large proportion of the parameter space. There are guidelines regarding the best

choice of proposal functions and acceptance rates (Gelman et al., 1996) and these

should be adopted if and when meaningful. Second, thinning parameters such as

Nbetsamp and treebetN should be calibrated to individual cases, for example,

by consulting autocorrelation plots and statistics, so that the simulations are

made approximately independent. Third, the rate and quality of the convergence

of individual estimates should be assessed by trace plots similar to those of

Figure 4. Finally, like with other Markov Chain Monte Carlo methods, a burn-in

is recommended for the use of BATWING.
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Appendix A. Supplementary figures
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Figure A.1. Computational demand of coalescent-based estimation of singleton match probabilities

as a function of database size n and number of loci included in a genetic profile. Calculations were run

on an Intel Xeon CPU E5420 at 2.50GHz. Computation times are averages per singleton haplotype.

Parameters used were: 10,000 simulations per coalescent tree, a starting population size of 20,000,

no population growth, no migration, and a mutation rate of 0.003 per locus per generation. Red dots:

5 loci; green dots: 10 loci; blue dots: 15 loci; black dots: 20 loci.
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Figure A.2. Bias (see Equation 3 of the main text) of the coalescent-based estimator of singleton

match probabilities. Calculation of the bias was based upon all singletons in each of five databases

per database size. Solid lines: database size n = 100; dashed lines: database size n = 200.
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Figure A.3. Mean squared error (see Equation 4 of the main text) of the coalescent-based estimator

of singleton match probabilities. Calculation of the MSE was based upon all singletons in each of 5

databases per database size. Solid lines: database size n = 100; dashed lines: database size n = 200.
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Figure A.4. Trace plot of the coalescent-based match probability estimate (solid line) for a selected

singleton from sample database no. 1 of size n = 200. Dotted line: uncorrected count estimate;

dash-dotted line: Brenner’s κ-corrected count estimate, dashed line: true match probability (i.e. the

underlying population frequency).
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Figure A.5. Trace plot of the coalescent-based match probability estimate (solid line) for a selected

singleton from sample database no. 1 of size n = 200. Dotted line: uncorrected count estimate;

dash-dotted line: Brenner’s κ-corrected count estimate; dashed line: true match probability (i.e. the

underlying population frequency).
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Figure A.6. Trace plots from a robustness study. For each of two randomly selected singletons

(columns), five subsamples (rows) of size 20 were drawn from the original database of size 100

(database 1 in Tables 1 and 2 of the main text). Match probabilities were then estimated from each

of these subsamples alone, using the coalescent approach. Mutation rates were fixed at either 0.001

(red lines) or 0.003 (blue lines). The effective population size was assumed to be normally distributed

with a mean of either 10,000 (solid lines) or 20,000 (dashed lines) and a standard deviation of

3,000. See Figure A.7 for a magnified traceplot where the first 20,000 simulations were discarded as

burn-in.
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Figure A.7. Same as Figure A.6 but with the first 20,000 simulations discarded as burn-in.
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Figure A.8. Subsampling study on singleton haplotype H01675 from the German 7-loci database

(1,757 haplotypes). Ten subsamples of 50 haplotypes each were randomly drawn from the database.

With each of these subsamples, a coalescent-based estimate was calculated using 20,000 simulations.

All estimations were carried out assuming exponential population growth with a Gamma(1,1) prior

on the growth rate, no migration, a Gamma(3,0.0001) prior on the effective population size, and

the following mutation rates from http://www.yhrd.org as of September 26th, 2012: DYS19,

0.002299; DYS389I, 0.002523; DYS389II, 0.003644; DYS390, 0.002102; DYS391, 0.002599; DYS392,

0.004123; DYS393, 0.001045. The black solid lines depict the individual coalescent-based estimation

processes. The red solid line depicts the mean of individual runs. The dashed black line corresponds

to Brenner’s estimate.
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population dynamics helps facilitating research on the distribution

of haplotypes. In forensic genetics, the haplotypes can for example

consist of lineage markers such as short tandem repeat loci on the Y

chromosome (Y-STR). A dominating model for describing population

dynamics is the simple, yet powerful, Fisher-Wright model. We describe

an efficient algorithm for exact forward simulation of exact Fisher-

Wright populations (and not approximative such as the coalescent

model). The efficiency comes from convenient data structures by

changing the traditional view from individuals to haplotypes. The

algorithm is implemented in the open source R package fwsim and
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1. Introduction

Simulation of population dynamics is an important tool when studying genetic

traits. In both population genetics and forensic genetics it is important to

know how haplotypes are distributed in a population. In forensic genetics, the

haplotypes can for example consist of lineage markers such as short tandem

repeat loci on the Y chromosome (Y-STR). Simulation of population dynamics

helps facilitating research on the distribution of haplotypes. A dominating

model for describing population dynamics is the simple, yet powerful, Fisher-

Wright model (or process) (Fisher, 1922, 1930, 1958; Wright, 1931; Ewens, 2004).

In population genetics, the model also forms the basis for coalescent theory

(Kingman, 1982; Hudson, 2001; Hein et al., 2005).

Because the Fisher-Wright model is widely used in population genetics,

efficient simulation algorithms and tools are needed. In this paper we describe

the model implemented in the R (R Development Core Team, 2013) package

fwsim (Andersen and Eriksen, 2012), which provides an efficient tool for

simulating certain kinds of Fisher-Wright populations. The simulation scheme

described in this paper is exact (from the Fisher-Wright model) and not

approximative like the simulation scheme from the coalescent model (Kingman,

1982; Hudson, 2001; Hein et al., 2005).

Ewens (2004) is a good reference on different models in population genetics

as it explains several models and also gives theoretical results.

First some nomenclature must be introduced. Let a locus (loci in plural) be a

specific location on the chromosome. The content of a locus is called an allele,

which consists of DNA sequences. Here, we assume that the alleles are short

tandem repeats (STRs) (Butler, 2005) with values in Z (in genes, an allele could

also just be either of two states, A or B , say). A haplotype is a ordered collection

of alleles at loci that are transmitted together.

We focus on a haploid model, where each individual is a gamete with a

haplotype consisting of r loci. Hence, a haplotype can in this context be thought

of as a vector in Z
r . It may for example be an Y-STR haplotype. We assume no

selection and the individuals are self-reproducing.

First, the traditional Fisher-Wright model without mutations is described in

order to introduce the notation and to make it possible to compare it with our

model.

Throughout this paper, whenever there is a mutation process, we assume it

to be a neutral (in the sense of no selection) single step mutation process with

infinitely many possible allelic states. This model was introduced by Ohta and

Kimura (1973) and some mathematical properties were recently discussed in

(Caliebe et al., 2010).

1.1. Fisher-Wright model without mutation

Traditionally, a simple Fisher-Wright model, for example as formulated by

Ewens (2004), assumes constant population size and no mutations. A Fisher-

Wright model is often characterised by a binomial sampling scheme focusing

on individuals (or a multinomial sampling scheme focusing on the entire
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population), such that a new generation of children is sampled by letting each

child choose its parent (and thus its haplotype) uniformly at random.

Because our interest is aimed at the sampling of populations and not at the

genealogy, the focus is now changed from individuals to haplotypes, where

identical haplotypes are treated similarly, as we are not interested in the

genealogical tree itself, but only in the haplotypes and their counts in the

resulting population (and possibly in the intermediate populations, too).

Let N be the constant, known population size and H the set of haplotypes.

Denote by ni (x) the number of haplotypes in the i ’th generation of haplotype

x ∈ H and zi+1(x) the number of children from haplotype x ∈ H in generation i +1.

Because there are no mutations, we have that ni+1(x) = zi+1(x).

The simple Fisher-Wright model arises by assuming that

P ({ni+1(x)}x∈H | {ni (x)}x∈H )

is given by

{ni+1(x)}x∈H | {ni (x)}x∈H ∼Multinomial

(

N ,

{
ni (x)

N

}

x∈H

)

.(1)

A property of the multinomial distribution is that

E [ni+1(x) | ni (x)] = ni (x)

as expected.

We note that the process is a Markov chain with |H | absorbing states, one for

each haplotype.

2. Model

As mentioned in Section 1.1, the model is formulated on the basis of haplotypes

instead of individuals, because it is much more efficient when we are interested in

the resulting population after a number of generations rather than the genealogy.

The notation from Section 1.1 is adopted, such that Hi is the set of haplotypes

in the i ’th generation (Hi depends on i due to mutations, which will be introduced

below), ni (x) is the number of haplotypes in the i ’th generation of haplotype

x ∈ Hi , and zi+1(x) the number of children from haplotype x ∈ Hi . Now let Ni =
∑

x∈Hi
ni (x) be the population size in the i ’th generation (instead of a constant

population size N as in the simple Fisher-Wright model in Equation (1)).

Our model is then a specification of how

{zi+1(x)}x∈Hi
| {ni (x)}x∈Hi

is distributed, that is, how the haplotypes in the next generation are conditionally

distributed given the previous generation.

Two important features of our model is, that it assumes stochastic population

size – which we believe is a more realistic model – and allows flexible population

growth specification. We believe that the Fisher-Wright model that will be
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introduced below with stochastic population size also incorporating flexible

population growth has not yet been defined like we do in the following. First the

modelling of the population size and growth will be described. Afterwards the

mutational model will be explained.

2.1. Population size and growth

Let N0 be the known initial population size. Note that in the traditional Fisher-

Wright model, this is assumed to be a constant.

Then we assume that

Ni | Ni−1 ∼Poisson(αi Ni−1)(2)

for αi > 0 (αi > 1 gives growth and 0 <αi < 1 gives decline). For example, if αi =α

for all i , then

E[Ni ] =αi N0,

that is exponential population growth. One could also choose

αi =
{

β, for i É t ,

α, else,

yielding

E[Ni ] =
{

βi N0, for i É t ,

βtαi−t N0, else,

which for example can be used to get exponential growth up to generation t and

afterwards an expected constant population size by setting α= 1.

A possibly more realistic example is logistic population growth, which can be

obtained by specifying a maximum population size Nmax , αÊ 1, and then setting

αi =α−
(α−1)Ni−1

Nmax

as the growth rates. A closed form expression for E[Ni ] in this case seems difficult

to obtain.

One could alternatively also create a (possibly decreasing) rate αi = f (i ) for

some function f . Hence, the specification of growth is rather flexible.

2.2. Number of children

As mentioned previously, the conditional distribution {zi+1(x)}x∈Hi
| {xi (x)}x∈Hi

must be specified. We assume that the number of children zi+1(x0) of a certain

haplotype x0 ∈ Hi is conditionally independent of the number of children of

other haplotypes, given the entire previous generation {xi (x)}x∈Hi
. Thus, only the

marginal distribution zi+1(x0) | {xi (x)}x∈Hi
must be specified.
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For each haplotype x0 ∈ Hi in the i ’th generation occuring ni (x0) times, we

then assume that the number of children zi+1(x0) is distributed independently of

other haplotypes as

zi+1(x0) | {ni (x)}x∈Hi
∼Poisson(αi+1ni (x0)).(3)

As can be seen, zi+1(x0) actually only depends on ni (x0) and not on the number

of all the other haplotypes.

It then follows that Ni+1 =
∑

x∈Hi
zi+1(x) (the sum of the number of haplotypes

in the (i +1)’th generation) conditionally on {ni (x)}x∈Hi
follows a Poisson(αi+1Ni )

distribution, and that

zi+1(x0) | {ni (x)}x∈Hi
, Ni+1 ∼Binomial

(

Ni+1,
ni (x0)

Ni

)

,

as expected, which is also true for the simple Fisher-Wright model in Equa-

tion (1).

2.3. Mutation model

As mentioned in the introduction, we assume a neutral (in the sense of no

selection) single step mutation process on Z. Instead of just one locus we extend

it to r loci, where mutations on loci happen independently. We assume per locus

and direction mutation rates. Let

Q = {−1,0,1}r = {−1,0,1}×·· ·× {−1,0,1}
︸ ︷︷ ︸

r factors

,

where × denotes the Cartesian product, be the lattice of possible mutations. Let

p j (q) =







δ j q =−1

1−δ j −ω j q = 0

ω j q = 1

0 else

(4)

denote the mutation probabilities for the j ’th locus and

p(q) =
r∏

j=1

p j (q j )

for a mutation configuration q = (q1, q2, . . . , qr ) ∈Q from the fact that mutations

are assumed to happen independently across loci.

Let

Ci+1 =
⋃

q∈Q
x1∈Hi

{x1 +q}

be all possible candidate haplotypes for the (i +1)’th generation.
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Our model with mutations is then

ni+1(y0) | {ni (x)}x∈Hi
∼Poisson

(

αi+1

∑

q∈Q

p(q)ni (y0 −q)

)

for all y0 ∈Ci+1,(5)

resulting in Ni+1 | Ni ∼Poisson(αi+1Ni ) as assumed in Equation (2) because
∑

y0∈Ci+1

αi+1

∑

q∈Q

p(q)ni (y0 −q) =αi+1

∑

q∈Q

p(q)
∑

y0∈Ci+1

ni (y0 −q)

=αi+1

∑

q∈Q

p(q)Ni

=αi+1Ni .

Another way to formulate an equivalent model, which will be used in the

implementation, is as follows. Let mi+1(x, x +q) denote the number of mutants

mutating from x to x+q in the transition from the i ’th generation to the (i +1)’th

generation and

Mi+1(x) = {mi+1(x, x +q)}q∈Q

the number of mutants for all possible configurations in Q.

Then assume that {Mi+1(x)}x∈Hi
are conditionally independent given {zi+1(x)}x∈Hi

,

thus only the marginal distribution is to be specified. If we model this conditional

marginal distribution as

Mi+1(x0) | {zi+1(x)}x∈Hi
∼Multinomial

(

zi+1(x0), {p(q)}q∈Q

)

,(6)

and set

ni+1(x) =
∑

q∈Q

mi+1(x −q, x),

we get a model equivalent to the one specified in Equation (5).

2.4. Absorbing state

The model in Equation (5) (or the equivalent model in Equation (6)) has positive

probability of dying out, because the Poisson distribution has probability mass

in 0 for every parameter value. This means that population size 0 is an absorbing

state. Also note that this absorbing state is independent of the mutation rate, as

the population size is independent of the mutation rate.

3. Implementation

In this section, some implementation details are discussed. As already men-

tioned, the described model is implemented in the R (R Development Core Team,

2013) package fwsim (Andersen and Eriksen, 2012) using the C programming

language. The package fwsim is released under the BSD license.

First some implementation details are explained and then a few examples

are given.
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3.1. Haplotype container

Each generation consists of a number of haplotypes, each with a count of the

number of times it is present in the generation. These haplotypes are saved

in a data container. This data container is a so-called k-d tree (Bentley, 1975)

(this abbrivation stands for k dimensional tree), which is a generalisation of a

binary search tree. Whereas binary search trees are for one dimensional points

(numbers), k-d trees are for k dimensional points (vectors). Like binary search

trees, the time complexity for insertion and searching in a k-d tree is O(logn) for

a tree with n nodes.

For each generation, a new k-d tree is created and nodes inserted or updated

as the haplotypes are evolved one at a time. A node in the tree contains both the

point (haplotype) and additional information, which here is only a count (of the

number of individuals having this particular haplotype).

The implementation of k-d trees is based on http://code.google.com/

kdtree released under the BSD license, but has been heavily modified for

example by changing some data structures and adding node searching and

updating functionality.

3.2. Mutation model

In this section, the implementation of the mutation model defined in Section 2.3

is described.

The mutation model is implemented by dividing the number of children

Equation (3) into categories depending on the number of times they mutate.

There are r+1 categories, namely for d = 0,1, . . . ,r mutations on the r loci. Because

this is the stepwise mutation model, only one mutation can happen per locus at

a time.

As before, zi+1(x) is the number of children from haplotype x ∈ H . Let zd
i+1

(x)

be the number of children in the d ’th category such that zi+1(x) =
∑r

d=0
zd

i+1
(x). If

we assume that

zd
i+1(x0) | {ni (x)}x∈Hi

∼Poisson(αiηd ni (x0)),(7)

where ηd is the probability for d mutations with
∑

d ηd = 1, then Equation (3) still

holds. Naturally, each of the zd
i+1

(x) children have to choose their d mutations

independently of the others.

To see the analogue between mi+1(x, x +q) and zi+1(x), first let

Qd =
{

q ∈Q

∣
∣
∣
∣ ‖q‖1 = d

}

,

where ‖·‖1 denotes the L1 norm such that ‖q‖1 = ‖(q1, q2, . . . , qr )‖1 =
∑r

j=1
|q j |. That

is, Qd is the mutation configurations resulting in precisely d mutations. Then

zd
i+1(x) =

∑

q∈Qd

mi+1(x, x +q).

http://code.google.com/kdtree
http://code.google.com/kdtree
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First the probability of not mutating is treated. Let µ j = δ j +ω j be the

mutation rate for the j ’th locus for j = 1,2, . . . ,r with δ j denoting the downwards

mutation rate and ω j denoting the upwards mutation rate. Then

η0 =
r∏

j=1

(1−µ j )

is the probability of not mutating.

Now the model of choosing the mutating loci is discussed. There are
(r

d

)

ways

to choose the d loci that should mutate. Each of these loci configurations has

2d possible mutation configurations (the size of the cartesian product {−1,1}d ).

This means that there is a total of 2d
(r

d

)

possible ways to mutate d times. The

probability for mutating to a specific haplotype is determined by the d locus

specific upwards and downwards mutation rates.

For mutation category d , let

Sd =
{

s ⊆ {1,2, . . . ,r }

∣
∣
∣
∣ |s| = d

}

be a so-called simple table with
(r

d

)

rows. Then the probability that it is exactly

the loci s ∈ Sd that should mutate, is

p(s) =
∏

j∈s

µ j

∏

j∈sC

(1−µ j ),

where sC = {1,2, . . . ,r, } \ s. Further, the probability of exactly d mutations is

ηd =
∑

s∈Sd

p(s).

Hence, Equation (7) is now fully specified. To decide the direction of the

mutations, let

Ed =
{

(s, q) | s ∈ Sd , q : s → {−1,1}d
}

be a so-called extended table with 2d
(r

d

)

rows. The function q maps a locus to a

mutation direction. Then each row e = (s, q) ∈ Ed and has probability

p(e) =
∏

j∈s

p j (q( j ))
∏

j∈sC

(1−p j (q( j ))),

where p j (q( j )) is defined in Equation (4). We still have that the sum of the rows

in the extended table is ηd .

Then for generation i , haplotype x, and mutation category d , we assume that

{mi+1(x0, x0 +q)}q∈Qd
| {ni (x)}x∈Hi

∼Multinomial

(

zd
i+1(x0),

{
p(e)

∑

e∈Ed
p(e)

}

e∈Ed

)

.

Both the simple and extended table for mutation category d = 1,2, . . . ,r (d = 0

does not require this step) are created before the actual simulation starts as
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the probabilities are constant during the evolution. They are constant because

the mutation rates are assumed constant. This is what is done in the fwsim

package for all mutation categories, although this may be changed in future

releases if the following theoretical limitations turn out to occur in practise, too.

Note that 2d
(r

d

)

, the size of the extended table, is exponentially growing and

may become really large for even relatively small r and that the corresponding

extended tables take some time to generate. For example, for r = 16 and d = 11

the size of the extended table is 8,945,664 (the maximal for that choice of r ),

however, it is still possible to be created and used for simulation. Once the tables

are created, the simulations run rather smoothly because they are just stored in

memory.

On the other hand, the mutation rate would normally be so low that

mutations in the categories for even small d may rarely or never happen

depending on the population size, which means that these mutation categories

are probably better delt with manually as follows. Recall that ηd only depends on

the simple table, which is small compared to the extended table – namely a factor

of 2d smaller – and so the simple table can still be calculated to a rather large r .

When the simple tables are generated, then draw n from Poisson(αi+1ηd ni (x))

and mutate each of the haplotypes manually one at a time by choosing the d loci

and their directions randomly according to their probabilities.

4. Computation time

The simulation method described above is developed with efficiency in mind.

To illustrate that efficiency is achieved, the computation time for different

parameters have been investigated using a laptop with a 2.40GHz Intel(R)

Core(TM) i5 CPU (model M 520). For these computations, fwsim (Andersen and

Eriksen, 2012) version 0.2-5 was used.

In Figure 1, the absolute computation time for simulating a population with a

varying number of loci is shown. In Figure 1, the computation time for simulating

a population with a varying initial population size is shown. Both figures show

that the algorithm is quite fast.

In Table 1, the computation time using fwsim compared to a naïve im-

plementation (focusing on individuals rather than haplotypes) of simulating

under a Fisher-Wright model is shown. As seen, fwsim is magnitudes faster

than a naïve implementation: On average, fwsim is almost 2,000 times faster

when simulating a population with an initial size of 5,000, no expected growth

(by using the growth parameter α = 1), and a mutation rate of 0.003 in 100

generations than the naïve implementation (focusing on individuals rather than

haplotypes). Further, the memory consumption is smaller for fwsim as it uses

haplotypes instead of individuals, which means that it is possible to simulate

much larger populations than with a naïve implementation.
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Figure 1. The computation time depending on the number of loci. The initial population size is set

to 10,000, the number of generations to 500, the mutation rate to 0.003, the growth parameter to 1

(meaning constant expected population size). The computation time for each number of loci is the

median computation time of 10 simulations.

5. Examples

In this section, some examples are presented. Please refer to ?fwsim in R for

more information about usage of the package fwsim. These examples were made

using version 0.2-5 of fwsim (Andersen and Eriksen, 2012).

5.1. Simple usage

Lauching an R session and typing the code below will show a short example of

the model implemented in the package fwsim (k is the number of individuals in

the initial population, g is the number of generations to evolve, r number of loci,

mu mutation rate per loci, alpha is the population size growth rate and trace

is whether to display trace information):

1 > library(fwsim)

2 > set.seed(1)

3 > pop <- fwsim(k = 10000, g = 1000, r = 3, mu = 0.003,

4 > alpha = 1.001, trace = TRUE)

To obtain a contingency table of the first two loci, use the following:

1 > sum(pop$haplotypes$N)

2 > [1] 27672

3 > xtabs(N ~ Locus1 + Locus2, pop$haplotypes)

4 Locus2

5 Locus1 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

6 -6 0 0 0 0 5 2 0 0 0 0 0 0
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Figure 2. The computation time depending on the initial population size. The number of loci is

set to 5, the number of generations to 500, the mutation rate to 0.003, the growth parameter to 1

(meaning constant expected population size). The computation time for each number of loci is the

median computation time of 10 simulations.

7 -5 0 0 0 10 85 75 10 0 2 0 0 0

8 -4 0 0 0 23 46 301 37 118 1 0 0 0

9 -3 0 0 15 394 591 474 266 122 110 5 1 0

10 -2 0 11 144 723 717 1302 542 526 17 9 26 0

11 -1 0 108 148 1018 1048 1816 1039 453 517 197 138 101

12 0 1 30 347 879 1713 901 1038 509 448 184 27 11

13 1 34 198 647 552 324 715 810 421 300 90 11 0

14 2 0 63 37 659 349 492 314 306 105 10 0 0

15 3 0 73 420 540 290 50 30 160 0 0 0 0

16 4 0 20 58 94 63 4 41 2 0 0 0 0

17 5 0 0 9 0 0 0 0 0 0 0 0 0

This table is plotted in Figure 3. A slight drift from the initial (0,0) has occured.

We can also see the 10 most frequent haplotypes compared to the initial

(0,0,0) haplotype:

1 > pop$haplotypes[order(pop$haplotypes$N, decreasing = TRUE)[1:10], ]

2 Locus1 Locus2 Locus3 N

3 279 -1 0 0 665

4 105 -1 -2 -2 539

5 270 -1 0 -1 517

6 269 -2 0 -1 509

7 173 0 -1 -1 482

8 160 0 -1 -2 423

9 179 0 -1 0 423

10 341 -1 1 -1 385

11 274 -2 0 0 378

12 241 -1 0 -2 358

13 > pop$haplotypes[which(apply(apply(pop$haplotypes[, 1:3], 1, abs),

14 > 2, sum) == 0), ]
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Computation time speed-up

k g µ Speed-up

1,000 100 0.001 145.9

1,000 100 0.003 127.2

1,000 200 0.001 307.9

1,000 200 0.003 372.5

5,000 100 0.001 2,972.1

5,000 100 0.003 1,957.0

5,000 200 0.001 6,848.4

5,000 200 0.003 4,887.1

Table 1. A comparison of the computation time for fwsim and a naïve implementation

(focusing on individuals rather than haplotypes). A growth parameter α = 1 is used

meaning no expected population growth. k is the initial population size, g is the number

of generations to evolve, and µ is the mutation rate. 10 replications for each parameter

combination (corresponding to a row in the table) were performed. The speed-up column

is the computation time for the naïve implementation divided by the computation time

for fwsim. This means that fwsim on average is roughly 2,000 times faster to simulate a

population with an initial size of 5,000 and a mutation rate of 0.003 in 100 generations

than the naïve implementation.

15 Locus1 Locus2 Locus3 N

16 280 0 0 0 255

In Figure 4, the actual population sizes are compared to expected population

sizes. This figure was made with following code:

1 > plot(pop$sizes, type = "l", xlab = "Generation",

2 > ylab = "Population size", lty = 1)

3 > lines(pop$expected.sizes, lty = 2)

4 > legend("topleft", legend = c("Actual", "Expected"), lty = 1:2)

5.2. Genetic drift of alleles

To illustrate how genetic drift in terms of changed allele frequencies occurs,

the allele frequencies after a different number of generations are recorded. The

fwsim package also has the possibility of saving the intermediate populations,

which is used to show how allele frequencies change during the evolution. Thus,

genetic drift can be investigated as follows (k is the number of individuals in

the initial population, alim is the limit of which alleles to plot and gs is which

generations to sample allele frequencies from):

1 > library(fwsim)

2 > set.seed(1)

3 > alim <- 2

4 > k <- 100000000

5 > g <- 10000

6 > gs <- seq(100, g - 1, by = 100)

7 > pop <- fwsim(g = g, k = k, r = 1, alpha = 1,

8 > mu = 0.003, gs = gs, trace = FALSE)

9 > interhapfreq <- lapply(pop$intermediate.haplotypes[gs], function(hap) {

10 > tab <- prop.table(xtabs(N ~ Locus1, hap))
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Figure 3. A contour plot of the contingency table of the first two loci. A slight drift from the initial

(0,0) has occured.

11 > as.vector(tab[which(abs(as.numeric(names(tab))) <= alim)])

12 > })

13 > freq <- data.frame(do.call("rbind", interhapfreq))

14 > colnames(freq) <- (-alim):alim

15 > plot(gs, freq[, alim+1], type = "l",

16 > xlab = "Number of generations",

17 > ylab = "Frequency", ylim = range(freq))

18 > for (a in 1:alim) {

19 > i1 <- (alim+1)-a

20 > i2 <- (alim+1)+a

21 > lines(gs, freq[, i1], type = "l", lty = a + 1)

22 > lines(gs, freq[, i2], type = "l", lty = a + 1)

23 > }

24 > others <- 1-apply(freq, 1, sum)

25 > lines(gs, others, type = "l", lty = alim + 2)

26 > legend("topright",

27 > legend = c(paste("Allele", c(0, paste("+/-", 1:alim))),

28 > "Other alleles"),

29 > lty = 1:(alim+2))

Note that we only simulate one locus and set the population size quite large

to get the asymptotic behaviour. The resulting plot can be seen in Figure 5.
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Figure 4. The actual population sizes compared to expected population sizes

5.3. Genetic drift of alleles depending on mutation rate

To illustrate how genetic drift in terms of changed allele frequencies for

the 0 allele occurs depending on the mutation rate, the allele frequencies

after a different number of generations are recorded for populations with

different mutation rates. Thus, genetic drift depending on mutation rate may be

investigated as follows (k is the number of individuals in the initial population

and gs is which generations to sample allele frequencies from):

1 > library("fwsim")

2 > mus <- c(0.001, 0.002, 0.003)

3 > k <- 100000000

4 > g <- 10000

5 > gs <- seq(100, g - 1, by = 100)

6 > set.seed(1)

7 > freqs <- lapply(mus, function(mu) {

8 > pop <- fwsim(g = g, k = k, r = 1, alpha = 1, mu = mu, save.gs = gs,

9 > trace = FALSE)

10 > sapply(pop$intermediate.haplotypes[gs],

11 > function(hap) hap$N[which(hap[, 1] == 0)] / sum(hap))

12 > })

13 > plot(gs, freqs[[1]], type = "l",

14 > xlab = "Number of generations", ylab = "Frequency for allele 0",

15 > ylim = range(unlist(lapply(freqs, range))), lty = 1)

16 > for (i in 2:length(mus)) lines(gs, freqs[[i]], type = "l", lty = i)

17 > legend("topright", legend = paste("mu = ", mus, sep = ""),

18 > lty = 1:length(mus))

Note that we only simulate one locus and set the population size quite large

to get the asymptotic behaviour. The resulting plot can be seen in Figure 6.



Bibliography 75

0 2000 4000 6000 8000 10000

0
.0

0
.2

0
.4

0
.6

Number of generations

F
re

q
u
e
n
c
y

Allele 0

Allele +/− 1

Allele +/− 2

Other alleles

Figure 5. Simulated genetic drift using an initial population of size 100,000,000, a growth of 1

(meaning no expected growth), and a mutation rate of 0.003.
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Summary Estimating haplotype frequencies is important in e.g. forensic genetics,

where the frequencies are needed to calculate the likelihood ratio

for the evidential weight of a DNA profile found at a crime scene.

Estimation is naturally based on a population model, motivating

the investigation of the Fisher-Wright model of evolution for haploid

lineage DNA markers.

An exponential family (a class of probability distributions that is well

understood in probability theory such that inference is easily made

by using existing software) called the ’discrete Laplace distribution’

is described. We illustrate how well the discrete Laplace distribution

approximates a more complicated distribution that arises by inves-

tigating the well-known population genetic Fisher-Wright model of

evolution by a single-step mutation process.

It was shown how the discrete Laplace distribution can be used to

estimate haplotype frequencies for haploid lineage DNA markers (such

as Y-chromosomal short tandem repeats), which in turn can be used

to assess the evidential weight of a DNA profile found at a crime

scene. This was done by making inference in a mixture of multivariate,

marginally independent, discrete Laplace distributions using the EM

algorithm to estimate the probabilities of membership of a set of

unobserved subpopulations. The discrete Laplace distribution can

be used to estimate haplotype frequencies with lower prediction error

than other existing estimators. Furthermore, the calculations could be

performed on a normal computer.

This method was implemented in the freely available open source

software R that is supported on Linux, MacOS and MS Windows.
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1. Introduction

The use of haploid lineage DNA markers such as Y-chromosomal short tandem

repeats (Y-STRs) or mitochondrial DNA (mtDNA) polymorphisms have impor-

tant advantages in certain types of forensic genetic casework (Gill et al., 1985;

Sibille et al., 2002; Roewer, 2009). If e.g. only a small amount of male DNA is

found in combination with a large amount of female DNA, Y-STR typing may

be very valuable. If e.g. only a hair shaft is found, mtDNA typing may assist

in solving the case. We focus on Y-STR in this paper and note that many of the

properties of Y-STR are true for mtDNA as well, because they are both lineage

markers.

A very important task in forensic genetics is to evaluate the evidential weight

of the evidence by means of likelihood principles (Evett and Weir, 1998; Gill

et al., 2001). The likelihood ratio used is

LR =
P (E |Hp )

P (E |Hd )
,

where Hp is the prosecutor’s hypothesis (e.g. ’The suspect is the donor of the

genetic data’) and Hd is the defense attorney’s hypothesis (e.g. ’The suspect is

not connected to the crime’).

In most single doner cases where it is assumed that errors do not happen, it

is often assumed that P (E |Hp ) = 1. Then P (E |Hd ) is called the ’match probability’

and is often interpreted as the probability that an individual drawn randomly

from the population has the same DNA profile as the trace found at a crime scene.

Note, that if we knew the haplotypes of the entire population, the population

frequency of the haplotype in question would be the match probability (in

an idealised population without e.g. population structure). Thus, assuming

a simple population model, the match probability is the haplotype frequency of

the haplotype found at the crime scene.

Due to the lack of recombination, there is statistical dependence between loci,

making calculations of match probabilities of lineage markers more challenging

than that of autosomal markers (Buckleton et al., 2011). Naïve counts/estimates

of match probabilities in a reference database of size n and a haplotype observed

x times like x/n, (x + 1)/(n + 1) or similar seem to be rather conservative and

not generally satisfactory (Brenner, 2010; Buckleton et al., 2011). The method

of Roewer et al. (2000); Krawczak (2001); Willuweit et al. (2011) takes the

evolutionary aspect of Y-STRs into consideration (see http://www.yhrd.org).

Unfortunately, it seems to have some draw backs as indicated by e.g. Andersen

(2010). Brenner (2010) suggested a method that takes the rarity of Y-STR

haplotypes into consideration. In particular, when considering Y-STR haplotypes

comprising a large number of genetic loci, the proportion of haplotypes observed

only once – singletons – will be high. Brenner (2010) suggested to adjust/correct

the match probability of singletons with a factor, κ, that reflects the ratio

between singletons and non-singletons (Robbins, 1968). The κ correction method

estimates the match probability by (1−κ)/(n +1), where κ= (α+1)/(n +1) and α

denotes the total number of singletons in the reference database. This method

was discussed by Buckleton et al. (2011) and Andersen et al. (2013a).
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We have developed a model based on assumptions of primarily neutral,

single-step mutations of STRs (Ohta and Kimura, 1973) that are following the

Fisher-Wright model of evolution (Fisher, 1922, 1930, 1958; Wright, 1931; Ewens,

2004). Caliebe et al. (2010) discussed certain properties of a Fisher-Wright model

with neutral single-step mutations. They found the distribution of a quantity

that they refer to as the normalised allele process. In this paper, we describe

this process and suggest an approximation to its distribution that turn out to

be an exponential family called the ’discrete Laplace distribution’ due to its

similarities to the Laplace distribution of real numbers. This distribution has

been described by Inusah and Kozubowski (2006), although they do not note

that it is actually an exponential family.

Finally, examples of the use of the discrete Laplace distribution for the

estimation of haplotype frequencies for Y-STRs are presented and compared to

the results obtained with other methods. The discrete Laplace distribution was

used as a family function in a generalized linear model (GLM). The EM algorithm

(Dempster et al., 1977) was used to estimate the probability of membership of

a set of unobserved subpopulations. The calculations could be performed on

a normal computer: Haplotype frequencies of a database with 1,000 Y-STR

haplotypes consisting of 7 loci could be estimated in around 0.025 seconds

assuming 1 subpopulation, in around 0.6 seconds assuming 2 subpopulations

and in around 2.9 seconds assuming 5 subpopulations using a Lenovo T410s

laptop with 6 GB RAM and an Intel® Core™ i5 CPU model M520 running at

2.40GHz.

Thus, this paper consists of two parts: (1) an introduction to an exponential

family – the discrete Laplace distribution — and (2) an analysis of the application

of it in the analyses of lineage markers in population and forensic genetics.

Three R (R Development Core Team, 2013) packages ’fwsim’ (Andersen and

Eriksen, 2012b) (submitted, see Andersen and Eriksen (2012a) for a preprint),

’disclap’ (Andersen and Eriksen, 2013a), and ’disclapmix’ (Andersen and Eriksen,

2013b) were produced. ’fwsim’ (http://cran.r-project.org/package=

fwsim) simulates populations under the Fisher-Wright model, ’disclap’ (http://

cran.r-project.org/package=disclap) implements the exponential fam-

ily and ’disclapmix’ (http://cran.r-project.org/package=disclapmix)

uses the EM algorithm (Dempster et al., 1977) to perform inference for a mixture

of distributions. Please, refer to Andersen et al. (2013b) for an introduction on

how to use these software packages.

2. Discrete Laplace distribution

In this section, the normalised allele process of Caliebe et al. (2010) is described.

The discrete Laplace distribution (or double geometric distribution) is introduced

as a simple probability distribution. An approximation of the distribution of

the normalised allele process in terms of the discrete Laplace distribution is

discussed and introduced as an exponential family.

http://cran.r-project.org/package=fwsim
http://cran.r-project.org/package=fwsim
http://cran.r-project.org/package=disclap
http://cran.r-project.org/package=disclap
http://cran.r-project.org/package=disclapmix
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2.1. Motivation

Let N be a constant population size and let Xg (i ) ∈Z denote the STR allele (num-

ber of repeats) of the i ’th individual in the g ’th generation. Thus, it is assumed

that alleles are integers. This immediately rules out ’null alleles’ (typically a

SNP in the primer binding regions of around the Y-STR), intermediate alleles

and duplications (Butler, 2005; Budowle et al., 2008). This is a well-known

limitation to mathematical STR models that for example coalescent theory also

suffers from (Hein et al., 2005; Andersen et al., 2013a). The normalised allele

process is

Vg (i ) := Xg (i )−Xg (N ) for i 6= N .(1)

The normalised allele process has a mean value of zero. It is a positively

recurrent, irreducible, and aperiodic Markov chain that converges exponentially

fast to the unique unimodal invariant distribution (Caliebe et al., 2010).

Motivated by the results by Caliebe et al. (2010) – especially the simulation

results shown in (Caliebe et al., 2010, Figure 1) for certain choices of N , mutation

rate, and number of generations – the distribution of the normalised allele

process can be approximated by a distribution similar to that of the geometric

distribution, but with Z as support instead of just {0,1, . . .}. We refer to this

distribution as the ’discrete Laplace distribution’.

2.2. A simple probability distribution

The random variable D follows a discrete Laplace distribution with parameter

0 < p < 1 if its probability mass function is such that P (D = d) ∝ p |d |.
The normalisation constant is found by considering the double geometric

series

∑

d∈Z
p |d | =

1+p

1−p
,

such that

P (D = d) =
(

1−p

1+p

)

p |d |

for 0 < p < 1 and d ∈Z. Later, in Section 2.5, it is shown that

E[|D|] =
2p

1−p2
.(2)

2.3. Approximating the normalised allele process

The interesting quantity is the distribution of Equation (1), where Caliebe et al.

(2010) refers to the probability mass function as η, such that

ηg (d) = P (Vg (i ) = d)(3)
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for d ∈Z. Let Z j (i ) ∈ {−1,0,1} be the mutation event preceding the inheritance of

the i ’th individual in the j ’th generation. For easier notation, first let

Q j (i ) = Z j (i )−Z j (N )+2.

If µ is the mutation probability, then

q(d) := P (Q j (i ) = d) =







µ2/4 if d = 0,

µ−µ2 if d = 1,

1−2µ+3µ2/2 if d = 2,

µ−µ2 if d = 3,

µ2/4 if d = 4,

0 else.

Thus, q(d) = r (d −2) in the notation of Caliebe et al. (2010) (but as we use r as

the number of loci, this function will not be used any further). Let

γg (d) = ηg (d +2g ).(4)

Two expressions of Equation (3) and Equation (4) were derived in (Caliebe

et al., 2010). The first is a recurrence relation (Caliebe et al., 2010, Lemma 8).

The second is a sum of probability mass function convolutions (Caliebe et al.,

2010, Theorem 13), which reformulated in terms of γg instead of ηg can be

expressed as

γg =
1

N
q ∗

(
g−2∑

i=0

[
N −1

N

]i

q i

)

+
(

N −1

N

)g−1

q g

for g ∈ {2,3, . . .}, where ∗ means the convolution and q i = q i−1 ∗q means the i ’th

convolution of q.

Using the recurrence relation, Caliebe et al. (2010) plotted this density, which

we will compare to an approximation by the discrete Laplace distribution. First,

an alternative way of calculating ηg (d), and thus γg (d) numerically, will be

described. This method exploits how to do convolutions quickly using a discrete

Fourier transformation (Cooley et al., 1969; Brigham, 1988).

By definition

E
(

θQ j
)

=
4∑

d=0

P (Q j = d)θd =
4∑

d=0

q(d)θd

for some θ ∈C, which results in

E

(

θ
∑g

j=1
Q j

)

=
(

4∑

d=0

q(d)θd

)g

=
4g∑

d=0

q g (d)θd

due to independence.

Let

θa = e−2πia/(4g+1)
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for a = 0,1, . . . ,4g , where i is the imaginary unit satisfying i
2 =−1, and define

Xa =
(

4∑

d=0

q(d)θd
a

)g

.

Then by Fourier inversion,

q g (d) =
4g∑

a=0

Xae2πid a/(4g+1).

Hence, q g (d) can be found by a fast Fourier transformation (FFT) algorithm, e.g.

by using the fft function in R (R Development Core Team, 2013). When the

convolutions are calculated, the value of ηg (d) is also quickly calculated.

We suggest that the discrete Laplace distribution approximates the distri-

bution of the normalised allele process, ηg (d) = P (Vg (i ) = d), in (Caliebe et al.,

2010). We compared the figures (Caliebe et al., 2010, Figure 1 and Figure 2), see

Figure 1 and Figure 2 with the approximating discrete Laplace distribution. For

each set of parameters, the corresponding parameter, p, of the discrete Laplace

distribution was found by calculating the mean,

µ= E[|Vg (i )|] = 2
2g∑

d=1

dηg (d),

and solving Equation (2) for p to obtain this parameter.

In Figure 3, a probably more realistic mutation rate for Y-STR of µ= 0.003

(Ballantyne et al., 2010) was used.

2.4. Approximation properties

To investigate the approximation properties, the Kullback-Leibler distance

(Kullback and Leibler, 1951; Kullback, 1959) between the exact distribution,

ηg , given in Equation (3) (or γg given in Equation (4)) and the discrete Laplace

distribution was calculated. Assume that D is distributed according to a discrete

Laplace distribution and let f (d) = P (D = d). Let

KL(ηg , f ) =
∑

d∈Z
ηg (d) log

(
ηg (d)

f (d)

)

=
g∑

d=−g

ηg (d) log

(
ηg (d)

f (d)

)

as 0log0 = 0.

The Kullback-Leibler distances for different mutation rates, number of

generations and number of individuals are shown in Figure 4. As seen, the

error increases with the mutation rate (to some asymptotic value, it seems).

Given a fixed number of generations, the error also increases with the number

of individuals. On the other hand, given a fixed number of individuals, there are

some points where the lines cross and the number of generations causing the

largest error depend on the mutation rate.
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Figure 1. Exact probability, ηg (d) = P (Vg (i ) = d), for various values of generations, g , with population

size N = 100 and mutation rate µ= 0.01 and the corresponding approximation by the discrete Laplace

distribution (DiscLap).

2.5. An exponential family

Assume that the signed allele distance, d ∈ Z, from an ancestor is distributed

according to the probability mass function given by

f (d ; p) =
(

1−p

1+p

)

p |d |,(5)

where 0 < p < 1 is the parameter of the model and (1−p)/(1+p) is the normalising

constant. A reparameterisation with

θ = log p,

such that θ < 0 shows that this is an exponential family, because

f (d ;θ) = exp

(

log

(

1−eθ

1+eθ

)

+θ|d |
)

= exp(θ|d |− A(θ))

with

A(θ) = log

(

1+eθ

1−eθ

)

.

The probability mass function ddisclap, cumulative distribution function

pdisclap, random deviates generation function rdisclap and family object

generation function DiscreteLaplace for this exponential family were imple-

mented in the R (R Development Core Team, 2013) package disclap (Andersen

and Eriksen, 2013a).
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Figure 2. Exact probability, ηg (d) = P (Vg (i ) = d), for various values of generations, g , with population

size N = 1,000 and mutation rate µ = 0.01 and the corresponding approximation by the discrete

Laplace distribution (DiscLap).

Cumulants

We now proceed with the cumulants to easily obtain the mean value and the

variance function of the distribution. Let D have the probability mass function,

f (d ; p), as defined in Equation (5). Then,

µ= E[|D|] =
∂A(θ)

∂θ
=

∂p

∂θ

∂A

∂p
=

2p

1−p2
.

Furthermore, we obtain the variance function as

v(µ) = Var[|D|] =
∂µ

∂θ
=

∂p

∂θ

∂µ

∂p
=µ

(
1+p2

1−p2

)

.

Solving µ= 2p/(1−p2) for p, yields

p =µ−1(

√

µ2 +1−1),(6)

making it possible to obtain the variance function as a function of the mean, i.e.

v(µ) =µ

√

1+µ2.

For practical purposes, in the implementation of the generalized linear model

family in R (R Development Core Team, 2013), it is useful to also have the

probability mass function as a function of the mean, which is obtained by

f (d ; p) =
(

µ−
√

1+µ2 +1

µ+
√

1+µ2 −1

)

×
(√

1+µ2 −1

)|d |
µ−|d |.
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Figure 3. Exact probability, ηg (d) = P (Vg (i ) = d), for various values of generations, g , with population

size N = 1,000 and mutation rate µ = 0.003 and the corresponding approximation by the discrete

Laplace distribution (DiscLap).

Link function

The canonical link function, g , is found as g (µ) = θ = log p, which is equivalent to

θ = g (µ) = log

(√

1+µ2 −1

µ

)

.

Deviance

Let

L(p;d) = f (d ; p) =
(

1−p

1+p

)

p |d |.

From Equation (6),

p = p(µ) =µ−1(

√

µ2 +1−1),

yielding

l (µ;d) = logL(p(µ);d)

= log

(
1−p(µ)

1+p(µ)

)

+|d | log
(

p(µ)
)

= log

(

1−µ−1(
√

µ2 +1−1)

1+µ−1(
√

µ2 +1−1)

)

+
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Figure 4. Kullback-Leibler distance between the exact distribution, ηg , and the approximating

discrete Laplace distribution.

|d | log

(

µ−1(

√

µ2 +1−1)

)

.

The deviance for one observation, d , is

D1(d , p) =−2log
L(p(µ);d)

L(p(d);d)
=−2(l (µ;d)− l (d ;d)) = 2(l (d ;d)− l (µ;d)).

In the special case, where d = 0, we use L’Hôpital’s rule (also called Bernoulli’s

rule) to find the limit using the derivatives of the numerator and denominator

and obtain

lim
d→0

p
d 2 +1−1

d
= lim

d→0

d 1p
d 2+1

1
= lim

d→0

1
√

1+ 1
d 2

= 0

such that for d = 0,

l (d ;0) = log1+0log0− log1 = 0

and

l (µ;0) = log

(

1−µ−1(
√

µ2 +1−1)

1+µ−1(
√

µ2 +1−1)

)

.

To summarise,

D1(d , p) =







2log

(

1+µ−1(
p

µ2+1−1)

1−µ−1(
p

µ2+1−1)

)

if d = 0,

2(l (d ;d)− l (µ;d)) if d 6= 0.
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The null deviance for each observation is

D0(d) =







2log

(

1+µ−1(
p

µ2+1−1)

1−µ−1(
p

µ2+1−1)

)

if d = 0,

2(l (d ;d)− l (µ̂;d)) if d 6= 0,

where µ̂ is the mean of the |d |’s.

Parameter estimation

From the theory of exponential families (Azzalini, 1996), for a sample {di }n
i=1

of

independent and identically distributed variables following the probability mass

function f (d ; p) as defined in Equation (5), the maximum likelihood estimator of

µ= E[|D|] is

µ̂= n−1
n∑

i=1

|di |,

resulting in the maximum likelihood estimator of p

p̂ = µ̂−1(

√

µ̂2 +1−1)

by using Equation (6).

A generalized linear model

With these tools, we can easily define a generalised linear model. This is quite

useful, e.g. in R (R Development Core Team, 2013), where we can create a family

and use the functionality of the glm function and its cousins like the prediction

function predict.

3. Estimation of Y-STR haplotype frequencies

In this section, we show how the discrete Laplace family introduced in Section 2.5

can be applied within the field of forensic genetics.

As introduced in Section 2, the normalised allele process Vg (i ) = Xg (i )−Xg (N )

is the allele difference between any individual n and a fixed individual N . It was

empirically validated that the discrete Laplace distribution is an approximation

to the distribution of the normalised allele process.

Caliebe et al. (2010) uses Xg (N ), the allele of the N ’th individual, as a

reference in the normalised allele process. Note that any other person’s allele can

be used instead. We choose the reference as the median of all the alleles for one-

locus haplotypes (for more loci, it is a bit more complicated and will be treated

below). Thus, using the discrete Laplace distribution is merely a qualified guess

as the results in (Caliebe et al., 2010) will probably not hold when using the

median instead of a fixed individual because the median is expected to have

lower variance. Below, in Section 3.7, we investigate how qualified the guess

actually is.
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3.1. Statistical model

Let DL(p,m) be a discrete Laplace model with dispersion parameter 0 < p < 1,

where we now introduce a location parameter m ∈ Z. The probability mass

function is then

f (d ; p,m) =
(

1−p

1+p

)

p |d−m|.

Inference for a sample, {di }n
i=1

, can be made by noticing that the MLE’s

(maximum likelihood estimates) are

m̂ =median{di }n
i=1,

µ̂=
1

n

n∑

i=1

|di −m̂| and

p̂ = µ̂−1

(√

µ̂2 +1−1

)

,

where the equation of p̂ stems from Equation (6).

We will now introduce a model to perform inference in a mixture of

multivariate, marginally independent, discrete Laplace distributions.

3.2. Statistical model for multivariate mixtures

Remember that we have r loci instead of just one (mutations across loci are

assumed to happen independently). We assume that we have a mixture of c

unobserved subpopulations centered at y j = (y j 1, y j 2, . . . , y j r ) for j = 1,2, . . . ,c. We

then assume that given a subpopulation, the signed allele distances to the

subpopulation center follow independent discrete Laplace distributions.

As before, let f (d ; p) be the probability mass function of a DL(p,0) distribution.

We define an observation X = (X1, X2, . . . , Xr ) to be a mixture of multivariate,

marginally independent, discrete Laplace distributions when the probability of

observing X = x is

c∑

j=1

τ j

r∏

k=1

f
(

|xk − y j k |; p j k

)

,

where τ j is the priori probability for originating from the j ’th subpopulation.

Thus, the parameters of this mixture model are {y j }c
j=1

, {τ j }c
j=1

and {p j k } j∈{1,2,...,c}
k∈{1,2,...,r }

.

Let MMDL

(

c,r, {y j }c
j=1

, {τ j }c
j=1

, {p j k } j∈{1,2,...,c}
k∈{1,2,...,r }

)

denote such a mixture of multi-

variate, marginally independent, discrete Laplace distributions.

More theory on finite mixture distributions is given in (Titterington et al.,

1987).

3.3. Likelihood

In this section, the likelihood of the model is introduced. Let xi = (xi 1, xi 2, . . . , xi r )

for i = 1,2, . . . ,n denote the n observed haplotypes from a MMDL distribution. For
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individual i and subpopulation j , let

di j k = |xi k − y j k |

be the distance at the k ’th locus to the unknown location y j k .

Let zi denote the (unobserved) subpopulation from which the i ’th haplotype

originated such that zi = j when the i ’th haplotype descents from the j ’th

subpopulation. Let

vi j =
{

1 if zi = j ,

0 otherwise,

such that vi+ =
∑c

j=1
vi j = 1.

Let τ j = P (zi = j ) denote the a priori probability of originating from the j ’th

subpopulation yielding the constraint
∑

j τ j = 1. We will soon see that τ j can be

estimated by τ̂ j = v̂+ j /n =
∑n

i=1
v̂i j /n, where v̂i j is an estimate of P (vi j = 1 | xi ).

The full likelihood of individual i is given by

P (xi , zi ) =
c∏

j=1

(

P (zi = j )P (xi | zi = j )
)vi j

=
c∏

j=1

(

P (zi = j )
r∏

k=1

f (di j k ; p j k )

)vi j

=
c∏

j=1

τ
vi j

j

r∏

k=1

f (di j k ; p j k )vi j ,

where f (di j k ; p j k ) is the probability mass function of the discrete Laplace

distribution. Note, that p j k in this case is assumed to depend on locus and

subpopulation. We will assume that log p j k = θ j k = ω j +λk . This means that

there is an additive effect of locus and an additive effect of subpopulation and

that they do not depend on each other as there is no interaction term. This

can be interpreted as ω j representing the age of the j ’th subpopulation and λk

representing the mutation rate at the k ’th locus.

Hence, the full likelihood of the n independent observations {xi }n
i=1

is

L f = L f

(

{p j k } j ,k , {y j } j , {τ j } j , {vi j }i , j ; {xi }i

)

=
n∏

i=1

P (xi , zi )

=
n∏

i=1

c∏

j=1

τ
vi j

j

r∏

k=1

f (di j k ; p j k )vi j

=
n∏

i=1

c∏

j=1

r∏

k=1

(

τ1/r
j f (di j k ; p j k )

)vi j
,

where di j k = |xi k − y j k | and log p j k =ω j +λk .

The marginal likelihood of the observed data is

Lm = Lm

(

{p j k } j ,k , {y j } j , {τ j } j ; {xi }i

)

(7)
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=
n∏

i=1

P (xi )

=
n∏

i=1

c∑

j=1

P (xi | zi = j )P (zi = j )

=
n∏

i=1

c∑

j=1

τ j

r∏

k=1

f (di j k ; p j k ).

It is a problem that the value of vi j is not known. To deal with this problem,

we consider the vi j ’s as unobserved variables and use the EM algorithm

(Dempster et al., 1977) to estimate the vi j ’s.

3.4. Choose subpopulation centers

The simplest way to determine the subpopulation centers, {y j }c
j=1

, is to choose c

subpopulation centers and keep these fixed. A more flexible approach is to first

choose the initial subpopulation centers, and then allow for the subpopulation

centers to be moved around later on if that makes the model better.

Due to the single step mutation model, clustering minimising the L1 norm is

an obvious choice for initial subpopulation centers as the same mutation rate is

assumed for all alleles. This type of clustering is also sometimes referred to as

k-medians (the method called k-means is minimising the L2 norm). One of the

possible methods doing this is the Partitioning Around Medoids (PAM) algorithm

(Kaufman and Rousseeuw, 1990), which is supplied by the R (R Development

Core Team, 2013) library cluster (Maechler et al., 2005).

A disadvantage of PAM is that the number of subpopulations must be

specified beforehand, but one can use BIC (Schwarz, 1978) (Bayesian Information

Criteria) to select the best number of subpopulations.

When initial subpopulation centers are chosen, the parameters of the model

are estimated using the EM algorithm (Dempster et al., 1977) as described in

Section 3.5.

When the EM algorithm has converged, one can try to move the subpopula-

tion centers. Let v̂i j denote the estimate of P (vi j = 1 | xi ) after the EM algorithm

has converged. Because loci are independent in terms of the mutation process,

the total likelihood consists of a product of likelihoods for each locus. This means

that we can look at each locus at a time. Let k ∈ {1,2, . . . ,r } be the locus that should

be considered.

The MLE of the subpopulation center location assuming all other information

is known is then given by

ŷ j k =
maxi {xi k }}

argmin
y=mini {xi k }

n∑

i=1

c∑

j=1

v̂i j |xi k − y |,

as g (y) =
∑n

i=1

∑c
j=1

v̂i j |xi k − y | is a convex, piecewise linear function that only

needs to be evaluated in the ends of each line segment in order to find its

minimum.
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3.5. EM algorithm

Recall that

E[vi j | xi ] = P (zi = j | xi ) and

τ j = P (zi = j )

and that p depends on locus and subpopulation with no interaction such that

log p j k = θ j k =ω j +λk .

In the following equation, let

Ev := E{vi j }i , j | {xi }i ,{y j } j ,{τ j } j ,{p j k } j ,k

such that

Ev

[

logL f

]

=Ev

[

log

(
n∏

i=1

c∏

j=1

r∏

k=1

(

τ
1
r

j
f (di j k ; p j k )

)vi j
)]

=Ev

[
n∑

i=1

c∑

j=1

vi j

r∑

k=1

log

(

τ
1
r

j
f (di j k ; p j k )

)]

=
n∑

i=1

c∑

j=1

E
[

vi j | {xi }n
i=1

]

×

r∑

k=1

log

(

τ
1
r

j
f (di j k ; p j k )

)

.

To obtain an estimate of vi j , note that

E[vi j | xi ] = P (zi = j | xi )

=
P (zi = j )P (xi | zi = j )

∑c
l=1

P (zi = l )P (xi | zi = l ))

=
τ j

∏

k f (di j k ; p j k )
∑

l τl
∏

k f (di lk ; pl k )
,

which gives

v̂i j =
τ̂ j

∏

k f (di j k ; p̂ j k )
∑

l τ̂l
∏

k f (di lk ; p̂lk )

by using the estimates τ̂ j and p̂ j k of τ j and p j k , respectively. For easier notation,

let

ŵi j = τ̂ j

∏

k

f (di j k ; p̂ j k ) and

v̂i j =
ŵi j

∑

l ŵi l
.(8)

And similar to earlier

τ̂ j =
v̂+ j

n
,(9)

where v̂+ j =
∑n

i=1
v̂i j .

Now, the EM algorithm used can be described:
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• E-step: Calculate v̂i j using Equation (8) using the current estimates of τ̂ j

and p̂ j k (obtained from the previous E-step and M-step). Now, τ̂ j can be

updated using Equation (9).

• M-step: Maximise

L f =
n∏

i=1

c∏

j=1

r∏

k=1

(

τ1/r
j f (di j k ; p j k )

)vi j

for {p j k } j ,k using the current estimates for the other parameters:

{p̂ j k } j ,k = argmax
{p j k } j ,k

L f

= argmax
{p j k } j ,k

n∏

i=1

c∏

j=1

r∏

k=1

(

τ̂1/r
j f (di j k ; p j k )

)v̂i j

= argmax
{p j k } j ,k

n∏

i=1

c∏

j=1

r∏

k=1

(

f (di j k ; p j k )
)v̂i j .

This can be done by assuming the GLM model di j k ∼ ω j + λk (other

possibilities do exist) with weights v̂i j , where p j k = exp(ω j + λk ) (ω j

is a subpopulation effect corresponding to age and λk a locus effect

corresponding to mutation rate), thus obtaining p̂ j k .

The assumption that the power v̂i j is equivalent to fixed, known weights in a

GLM likelihood is shown in more detail in (Wedel and DeSarbo, 1995). The R

(R Development Core Team, 2013) package FlexMix (Leisch, 2004; Grün and

Leisch, 2008) also uses the same strategy to fit mixtures of GLMs.

According to (Dempster et al., 1977, Theorem 1, p. 7), the marginal likelihood

Equation (7) increases with each step of the EM algorithm. Starting values can

be chosen as

τ̂ j = 1/c and µ̂i j k = di j k +0.1,

where µ̂i j k is chosen such that the boundary is avoided.

This EM algorithm making inference in a MMDL distribution (mixture

of multivariate, marginally independent, discrete Laplace distributions) was

implemented in the R (R Development Core Team, 2013) package disclapmix

(Andersen and Eriksen, 2013b).

Note, that there are cr +(r +c−1)+(c−1) parameters in a MMDL distribution:

cr for the subpopulation centers,

{y j }c
j=1;

(r +c−1) for the parameters in the multivariate, marginally independent, discrete

Laplace distributions,

{p j k } j∈{1,2,...,c}
k∈{1,2,...,r }

,
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as there are only main effects of subpopulation and locus; and c −1 for the prior

probabilities,

{τ j }c
j=1,

of originating from each of the c subpopulations, with the reduction of 1

parameter as they sum to 1.

3.6. Haplotype frequency prediction

Given subpopulation centers {ŷ j } j , parameters {p̂ j k } j ,k and prior probabilities

{τ̂ j } j , e.g. from a converged run of the EM algorithm described in Section 3.5, the

haplotype frequency of a haplotype h = (h1,h2, . . . ,hr ) with hk ∈Z for k ∈ {1,2, . . . ,r }

can be estimated as

c∑

j=1

τ̂ j

r∏

k=1

f
(

|hk − ŷ j k |; p̂ j k

)

.

3.7. Simulation study

To assess the model described in Section 3 for estimating Y-STR (a haploid

lineage DNA marker) haplotype frequencies, a simulation study was performed.

A population under the Fisher-Wright model (Fisher, 1922, 1930, 1958;

Wright, 1931; Ewens, 2004) with a neutral (in terms of no selection), single

step mutation process (Ohta and Kimura, 1973) was simulated using the R

(R Development Core Team, 2013) package fwsim (submitted, see Andersen

and Eriksen (2012a) for a preprint). The datasets from this population were

sampled and used for estimating haplotype frequencies that were compared to

the population frequency.

We simulated 12 different population types by taking all possible combina-

tions of

• Loci: r = 7

• Mutation rate: µ= 0.01, 0.003 or 0.001

• Generations: g = 500 or 1,000

• Initial population size: k = 10,000 or 50,000.

For all types, the resulting expected population size after g generations was

20,000,000 due to a constant population growth, ρ, that was determined using

the number of generations and initial population size as follows. Let Ni denote

the population size at the i ’th generation. The model from fwsim assumes that

Ni+1 | Ni ∼ Poisson(ρNi ). Thus, if g denotes the number of generations (500 or

1,000) and N0 the initial population size (10,000 or 50,000), then E[Ng ] = ρg N0.

For each combination of the parameters, five realisations of the population

were simulated. For each of these populations, 50 datasets of size 500, 1,000 and
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5,000 were drawn. In total, 12 ·5 ·3 ·50 = 9,000 datasets were sampled and used

as basis for comparison.

Note, that the simulated populations are idealised in the sense that the

match probability is the haplotype frequency. For all singletons in the dataset,

the discrete Laplace distribution approach described in Section 3 was compared

to the naïve 1/(n +1) estimator and to Brenner’s (1−κ)/(n +1) estimate, where

κ= (α+1)/(n +1) and α+1 is the number of singletons (haplotypes observed only

once) in the dataset as inspired by Robbins (1968). As previously mentioned, the

discrete Laplace distribution approach described in Section 3 is implemented in

the R package disclapmix (Andersen and Eriksen, 2013b) that can be used as

follows:

1 library(disclapmix)

2

3 # Load the dataset danes

4 data(danes)

5

6 # The dataset consists of the haplotype and

7 # the number of times it has been observed

8 head(danes)

9

10 # Make a dataset consisting of one observation per row

11 db <- as.matrix(danes[rep(1:nrow(danes), danes$n), 1:(ncol(danes)-1)])

12

13 # Fit the model with up to 5 subpopulations

14 clusters <- 1L:5L # L to force integer

15 res <- lapply(clusters, function(clusters)

16 disclapmix(db, clusters = clusters))

17

18 # See the most important information

19 marginalBICs <- sapply(res, function(fit) fit$BIC_marginal)

20 bestfit <- res[[which.min(marginalBICs)]]

21

22 # Predict haplotype frequencies

23 disclap.estimates <- predict(bestfit, newdata = as.matrix(danes[, 1:10]))

For futher information on functionality and usage, please run demo(danes)

and refer to the documentation ?disclapmix.

As performance measures, the observed bias and the Kullback-Leibler diver-

gence (Kullback and Leibler, 1951; Kullback, 1959) were calculated. Because

it is most problematic to estimate the frequency of singletons (haplotypes only

observed once), we only focus on these. For a haplotype dataset H = {hi }n
i=1

with

singletons {hi }i∈S and population frequencies {pi }i∈S estimated as {PE(H)(hi )}i∈S

by an estimator E , the bias is

BH ,S (E) =
1

|S|
∑

i∈S

(PE(H)(hi )−pi ).(10)

The Kullback-Leibler divergence is a measure in information theory about

the distance between two probability distributions (we used this distance in

Section 2.4) and can also be interpreted as a prediction error. In this case, we only

have binary probability distributions. If a haplotype has population frequency p
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and is estimated to p̂, then the Kullback-Leibler divergence is

DK L(p̂; p) = p̂ log

(
p̂

p

)

+ (1− p̂) log

(
1− p̂

1−p

)

.

The distribution of Kullback-Leibler divergences for singletons {hi }i∈S is

DH ,S (E) = {DK L(PE(H)(hi ); pi )}i∈S .(11)

The mean and upper 95% quantile of the distribution of Kullback-Leibler

divergences for the naïve 1/(n + 1) estimator, Brenner’s κ estimator, and the

discrete Laplace based estimator were compared together with the bias.

Note, that the lowest possible prediction error in terms of the Kullback-

Leibler divergence is 0, which occurs when p̂ = p. If this happens for all singletons

– that is, all singletons’ frequencies were perfectly estimated – then the mean of

the Kullback-Leibler divergences would be 0 and so would the bias be. Hence, if

the mean of Kullback-Leibler divergence is 0, then so is the bias.

On the other hand, if the bias is 0, then we do not know anything about the

Kullback-Leibler divergences. The bias could be 0 if either all the singletons’

frequencies were perfectly estimated or if some frequencies were somehow

overestimated and others were equally underestimated such that they cancelled

each other out.

Thus, the prediction error is telling us about the size of the error, whereas

the bias is telling us about the direction of the error.

Because migration was not included in the simulation of the populations,

only one subpopulation for the discrete Laplace based estimator was used.

Results

As naming convension, DiscLap refers to the model described in Section 3.

For all population types in our simulation study and the performance

measures mentioned, the naïve 1/(n +1) estimator performed much worse than

Brenner’s κ estimator and the DiscLap estimator.

Figure 5 shows estimation in a single dataset (one out of the 9,000 datasets

analysed in total). Figure 6 shows the singleton proportions for the simulated

datasets.

The bias as defined in Equation (10) is shown in Figure 7. Both the naïve

estimator and Brenner’s κ estimator seem, in general, to be conservative, which

is also what Brenner (2010) states. For dataset size 500, DiscLap seems almost

unbiased.

This tendency seems stronger for dataset sizes of 1,000 and 5,000. For the

low mutation rate of 0.001, DiscLap seems slightly anti-conservative, whereas

for the higher mutation rate of 0.003, it almost seems to be unbiased.

When it comes to the distribution of Kullback-Leibler divergences as defined

in Equation (11), Figure 8 (the mean) and Figure 9 (the upper 95% quantile) show

the same picture, namely that DiscLap overall seems better than Brenner’s κ

estimator. Table 1 shows a summary of the average proportion between Brenner’s

κ and DiscLap of the mean of the Kullback-Leibler divergences for each mutation

rate and database size.



96 The discrete Laplace distribution and estimation of Y-STR haplotype frequencies

1e−05

1e−03

1e−01

1e−05 1e−03 1e−01

Population frequency

D
is

c
re

te
 L

a
p
la

c
e
 e

s
ti
m

a
te

Figure 5. Haplotype singleton frequency estimation in a single dataset of size 500 from a population

with an initial size of 10,000 evolved in 500 generations, a mutation rate of 0.001 and a population

growth leading to an expected population size of 20,000,000 after 500 generations. The actual end

population size was 19,397,385 consisting of 34,180 different haplotypes.

µ= 0.001 µ= 0.003 µ= 0.01

n = 500 23.60 4.88 34.22

n = 1,000 18.67 3.72 5.71

n = 5,000 9.54 4.01 0.86

Table 1. The average proportion between Brenner’s κ and DiscLap of the mean of the Kullback-

Leibler divergences for database summarised by mutation rate µ and database size n. A proportion

greater than 1 means that the mean of the Kullback-Leibler divergences for Brenner’s κ was higher

than that of DiscLap. And opposite for a proportion lower than 1.

Discussion

In summary, the prediction error of the estimator using the discrete Laplace

distribution (DiscLap) was lower than those of both the κ model by Brenner

(2010) and the naïve 1/(n+1) estimator. For all population types in our simulation

study and the performance measures mentioned (bias and Kullback-Leibler

divergence), the naïve 1/(n +1) estimator performed much worse than Brenner’s

κ estimator and the DiscLap estimator.

It seems as if Brenner’s κ model estimates haplotype frequencies rather well

although it does not incorporate genetic information. One major drawback of

this method is that all unobserved haplotypes are assigned the same frequency

estimate. Hence, it is doubtful if Brenner’s κ model for example is suitable to

separate a mixture based on calculating the likelihood ratio (LR) as a measure

of the weight of evidence.

Another really important difference between Brenner’s κ model and DiscLap

is that DiscLap is also able to estimate frequencies for non-singleton haplotypes.

Thus, DiscLap can be used no matter if the haplotype has been observed before

or not.

In the population types that we studied, we did not observe situations where
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Figure 6. Singleton proportions of the 9,000 simulated datasets.

the estimator based on the discrete Laplace distribution performed worse than

the estimator based on Brenner’s κ model.

We encourage research on how different population models and migration

affects Brenner’s κ model and the discrete Laplace distribution.

3.8. Real data example

We analysed the 1,774 German 17-marker haplotypes from release 37 of the

YHRD http://www.yhrd.org (Roewer et al., 2001; Willuweit and Roewer,

2009). To render the data usable for both discrete Laplace estimation and the

frequency surveying method (Roewer et al., 2000; Krawczak, 2001; Willuweit

et al., 2011), some markers and haplotypes were excluded. First, DYS385a/b was

ignored because of its inherent genotype ambiguity (Roewer et al., 2000) leaving

15 markers for further analysis. Next, four haplotypes with two alleles reported

at DYS19 and 13 haplotypes with incomplete repeats were excluded, leaving n =

1,757 haplotypes in the data set. Finally, alleles at DYS389II were replaced by

DYS389II minus DYS389I (Butler, 2005). Out of the 1,757 haplotypes analysed,

1,469 were singletons.

When restricting the genotype information to the so-called ’minimal haplo-

type’ comprising the seven loci DYS19, DYS389I, DYS389II, DYS390, DYS391,

DYS392, and DYS393, a total of 392 singletons were observed among the

haplotypes of the German data.

http://www.yhrd.org
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Figure 7. Bias for the different estimators as defined in Equation (10).

Frequency surveying

In its revised form, the surveying method (Willuweit et al., 2011) was based

upon an exponential regression model

µi = exp(r1Wi + r2) and σi = exp(s1Wi + s2)

that links the mean, µi , and the standard deviation, σi , of the population

frequency of the i ’th haplotype to its weighted inverse molecular distance, Wi ,

from all other haplotypes in the database. Once the regression parameters,

r1,r2, s1, s2, were determined, the model could serve to define a prior beta

distribution of the frequency of any haplotype, h0, with molecular distance W0.

The parameters of this prior distribution were calculated as

α0 =
µ2

0(1−µ0)

σ2
0

−µ0 and β0 =α0

(
1−µ0

µ0

)

.

Maximum likelihood estimates of the regression parameters were obtained

in our study by numerical optimisation (Willuweit et al., 2011) using the

Nelder-Mead simplex algorithm with up to 1,500 iterations as implemented

in R (R Development Core Team, 2013). Several different starting values

of (r1,r2, s1, s2) were tried, and the vector resulting in the highest likelihood
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Figure 8. Mean of the Kullback-Leibler divergences defined in Equation (11) for each population

type. Note, that the ordinate is on a log scale.

was chosen. The starting values were taken from the Cartesian product

{15,20,30.82}× {−10,−15,−13.17}× {15,20,28.95}× {−10,−15,−11.71}, where the last

elements in the sets are the respective binning estimates of the Western

European population given in Table 3 of (Willuweit et al., 2011).

Let ni be the number of times that the i ’th haplotype was observed in the

database with n =
∑

i ni being equal to the database size. For comparison with

the other estimators, we used the mean of the posterior Beta(αi +ni −1,βi +n−ni )

given by

αi +ni −1

αi −1+βi +n

as the haplotype surveying estimate of the population frequency of haplotype,

hi .

Results

For both the full and the minimal haplotype, only the singletons were used to

compare the haplotype frequency estimates provided by the different estimators.

Figure 10 shows the results of the 7-loci-database. Figure 11 shows the

results of the 15-loci-database. It is impossible to make any sensible conclusion

from this as we do not know the true haplotype frequencies.
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Figure 9. Upper 95% quantile of the Kullback-Leibler divergences defined in Equation (11) for each

population type. Note, that the ordinate is on a log scale.

4. Discussion

The first part of this paper describes an exponential family called the discrete

Laplace distribution. The fact that the discrete Laplace distribution is an

exponential family makes inference somewhat easier as theory on exponential

families already exists and can be exploited. This also means simpler and faster

computer software because existing implementations that have been optimised

can be used.

The second part of this paper consists of an application of the discrete Laplace

distribution, namely how to estimate Y-STR haplotype frequencies. An estimate

of the frequency of a Y-STR haplotype can be used as an estimate of the match

probability (assuming an idealised population without population substructure),

which is an essential part in forensic genetics when evaluating the evidential

weight of the evidence by means of likelihood principles. The calculations could

be performed on a normal computer. We demonstrate that for our simulation

study on 12 different population types (varying mutation rate, population growth

and generations) resulting in 9,000 datasets (of size 500, 1,000 and 1,500),

the haplotype frequency estimation based on the discrete Laplace distribution

performs overall better than the κ model by Brenner (2010). The mean of the

Kullback-Leibler divergences is in general lower for the estimation based on the



Acknowledgements 101

1e−08

1e−05

1e−02

0 100 200 300 400

Singleton number

E
s
ti
m

a
te

d
 m

a
tc

h
 p

ro
b
a
b
ili

ty

Variable estimators
DiscLap
E[DiscLap]
E[Surveying]
Surveying

Constant estimators
Naïve 1/(n+1)
Brenner’s κ

Figure 10. Comparison of the haplotype frequency estimators for the 7 loci German database

consisting of 1,757 haplotypes of which 392 were singletons. Thus, Brenner’s κ= 4.4 ·10−4. Note, that

the ordinate with the estimated haplotype frequency is on a log scale. 11 subpopulations were used (1

through 15 subpopulations were tried, 11 subpopulations had the lowest BIC score (Schwarz, 1978)).

The line ’E[DiscLap]’ refers to the average of the DiscLap estimates and the line ’E[Surveying]’

refers to the average of the surveying estimates.

discrete Laplace distribution than that based on Brenner’s κ cf. Table 1.

Furthermore and very importantly, Brenner’s κ can only be used for single-

tons whereas estimation based on the discrete Laplace distribution can be used

for all haplotypes.

We encourage research on how different population models and migration

affects Brenner’s κ model and the discrete Laplace distribution.
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1. Introduction

This tutorial introduces the discrete Laplace method for estimating Y-STR

haplotype frequencies as described by Andersen et al. (2013).

To accomplish this, we demonstrate a number of examples using R (R

Development Core Team, 2013). The code examples look like the following

that loads the disclap package (Andersen and Eriksen, 2013a) which is needed

for the following examples:

1 > library(disclap)

If you do not have installed the disclap package, please visit http://cran.

r-project.org/package=disclap.

2. The discrete Laplace distribution

The discrete Laplace distribution is a probability distribution like e.g. the

binomial distribution or the normal/Gaussian distribution.

The discrete Laplace distribution has two parameters: a dispersion parame-

ter 0 < p < 1 and a location parameter y ∈Z= {. . . ,−2,−1,0,1,2, . . .}.

Let X ∼ DL(p, y) denote that the random variable X follows a discrete Laplace

distribution with dispersion parameter 0 < p < 1 and location parameter y . Then

a realisation of the random variable, X = x, can be any integer in Z. The random

variable X has the probability mass function given by

f (X = x; p, y) =
1−p

1+p
·p |x−y | for x ∈Z.

As seen, only the absolute value of x − y is used. This means that the

probability mass function is symmetric around y .

Let us try to plot the probability mass function f (X = x; p, y) for p = 0.3 and

y = 13 from x = 8 to x = 18:

1 > p <- 0.3

2 > y <- 13

3 > x <- seq(8, 18, by = 1)

4 > barplot(ddisclap(x - y, p), names = x, xlab = "x, e.g. Y-STR allele",

5 ylab = paste("Probability mass, f(X = x; ", p, ", ", y, ")", sep = ""))

http://cran.r-project.org/package=disclap
http://cran.r-project.org/package=disclap
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Figure 1. The probability mass function, f (X = x; p, y), for the discrete Laplace distribution with

dispersion parameter p = 0.3 and location parameter y = 13 from x = 8 to x = 18.

We plot the distribution for values of x from 8 to 18 as there is almost

no probability mass outside these values. We can find out how much of the

probability mass that we have plotted:

1 > sum(ddisclap(abs(x - y), p))

2 [1] 0.9989

Thus, only 0.0011 of the probability mass is outside {8,9, . . . ,17,18}.

If we have a sample of realisations from X ∼ DL(p, y) denoted by {xi }n
i=1

, then

maximum likelihood estimates are given by the following quantities (Andersen

et al., 2013):

ŷ =median{xi }n
i=1,

µ̂=
1

n

n∑

i=1

|xi − ŷ |and

p̂ = µ̂−1

(√

µ̂2 +1−1

)

.

Example:

1 > set.seed(1) # Makes it possible to reproduce the results

2 > p <- 0.3 # Dispersion parameter

3 > y <- 13 # Location parameter

4 > x <- rdisclap(100, p) + y # Generate a sample using the rdisclap

5 > y.hat <- median(x)

6 > y.hat

7 [1] 13

8 > mu.hat <- mean(abs(x - y.hat))

9 > mu.hat

10 [1] 0.57

11 > p.hat <- mu.hat^(-1) * (sqrt(mu.hat^2 + 1) - 1)

12 > p.hat # We expect 0.3
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13 [1] 0.265

14 > # The observed distribution of d’s

15 > tab <- prop.table(table(x))

16 > tab

17 x

18 10 11 12 13 14 15 16

19 0.01 0.03 0.15 0.55 0.20 0.05 0.01

This can be plotted against the expected counts as follows:

1 > plot(1:length(tab), ddisclap(as.integer(names(tab)) - y.hat, p.hat),

2 > type = "h", col = "#999999", lend = "butt", lwd = 50,

3 > xlab = "x, e.g. Y-STR allele", ylab = "Probability mass", axes = FALSE)

4 > axis(1, at = 1:length(tab), labels = names(tab))

5 > axis(2)

6 > points(1:length(tab), tab, type = "h", col = "#000000",

7 > lend = "butt", lwd = 25)

8 > legend("topright", c("Estimated distribution", "Observations"),

9 > pch = 15, col = c("#999999", "#000000"))
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Figure 2. Observed frequencies of the x ’s compared to a discrete Laplace distribution with

parameters estimated from the sample.

3. Mixtures of multivariate discrete Laplace distri-
butions

Assume a very simple ’haplotype’ with only one locus. Also assume a simple and

isolated population. Then, it is reasonable to assume that there is a modal/central

Y-STR allele, y , and that all the alleles are distributed around this allele.

If we go back to Figure 2, this can be illustrated by y = 13 as the central

Y-STR allele and a distribution around y = 13 with shorter and longer alleles.

To begin with, it might seem a bit overwhelming that Y-STR alleles should

follow a simple probabiity distribution such as the discrete Laplace distribution.
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But surprisingly, it is actually a good approximation as demonstrated by

Andersen et al. (2013).

We have haplotypes with several loci. When we assess multiple loci

haplotypes, we assume that mutations happen independently across loci. Each

locus has its own discrete Laplace distribution of allele probabilities, and the

probability of a haplotype is the product of probabilities across loci. This gives a

multivariate discrete Laplace distribution, where the marginals (that is, at each

locus) are independent, discrete Laplace distributions.

Just as before, for a one locus haplotype, we can assume that there is a

modal/central Y-STR profile with r loci, y = (y1, y2, . . . , yr ), and all the alleles

are distributed around this profile. We also assume that the discrete Laplace

distribution at each locus has its own parameter, where pk is the parameter at

the kth locus. Normally, the central Y-STR profile, y , would also be regarded as

parameters.

As before, let f (x; p, y) be the probability mass function of a discrete Laplace

distribution. We define an observation X = (X1, X2, . . . , Xr ) to be from a multi-

variate distribution of independent, discrete Laplace distributions when the

probability of observing X = x is

r∏

k=1

f
(

xk ; pk , yk

)

.(1)

This corresponds to that the individual X has mutated away from y indepen-

dently at each locus.

Now, we have one more generalisation. A population may have several

subpopulations, e.g. introduced by migration or by evolution. This means

that we need to have a mixture of multivariate distributions with marginally

independent, discrete Laplace distributions. Each component in the mixture

represents a subpopulation. We define an observation X = (X1, X2, . . . , Xr ) to

be from a mixture of multivariate, marginally independent, discrete Laplace

distributions, when the probability of observing X = x is

c∑

j=1

τ j

r∏

k=1

f
(

xk ; p j k , y j k

)

,(2)

where τ j is the a priori probability for originating from the j ’th subpopulation.

Thus, the parameters of this mixture model are {y j }c
j=1

with y j = (y j 1, y j 2, . . . , y j r )

as the central haplotype of the j th subpopulation, {τ j }c
j=1

and {p j k } j∈{1,2,...,c}
k∈{1,2,...,r }

(the

parameters for each discrete Laplace distribution).

We assume that p j k depends on locus and subpopulation, such that log p j k =
ω j +λk . This means that there is an additive effect of locus, λk , and an additive

effect of subpopulation, ω j .

More theory on finite mixture distributions is given by Titterington et al.

(1987).
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3.1. Haplotype frequency prediction

When we have estimated the parameters of a mixture of multivariate, marginally

independent, discrete Laplace distributions (this will be shown in the next

section), we can use these to estimate haplotype frequencies.

Given estimates of subpopulation central haplotypes {ŷ j } j , dispersion param-

eters {p̂ j k } j ,k and prior probabilities {τ̂ j } j , the haplotype frequency of a haplotype

x = (x1, x2, . . . , xr ) with xk ∈Z for k ∈ {1,2, . . . ,r } can be estimated as

p̂(x) =
c∑

j=1

τ̂ j

r∏

k=1

f
(

xk ; p̂ j k , ŷ j k

)

.(3)

Thus, we simply use the estimated parameters in Equation (2) to obtain

Equation (3).

4. Estimating parameters

In this section we demonstrate how to estimate the parameters in a mixture of

multivariate, independent, discrete Laplace distributions. This can for example

be used to estimate Y-STR haplotype frequencies.

First, the R package disclapmix (Andersen and Eriksen, 2013b; Andersen

et al., 2013) for analysing a mixture of multivariate, independent, discrete

Laplace distributions must be loaded:

1 > library(disclapmix)

If you do not have the disclapmix package installed, please visit http://

cran.r-project.org/package=disclapmix.

This package supplies the function disclapmix for estimating the param-

eters in a mixture of multivariate, marginally independent, discrete Laplace

distributions with probability mass function given in Equation (2). We will refer

to this as ’the discrete Laplace method’.

4.1. Data from marginally independent, discrete Laplace distributions

Now, we revisit the example leading to Figure 2 and add two more loci with

different dispersion and location parameters. We then analyse the randomly

generated values from independent, discrete Laplace distributions with a

probability mass function as given in Equation (1).

1 > set.seed(1)

2 > n <- 100 # number of individuals

3 >

4 > # Locus 1

5 > p1 <- 0.3 # Dispersion parameter

6 > m1 <- 13 # Location parameter

7 > d1 <- rdisclap(n, p1) + m1 # Generate a sample

8 >

9 > # Locus 2

10 > p2 <- 0.4

http://cran.r-project.org/package=disclapmix
http://cran.r-project.org/package=disclapmix
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11 > m2 <- 14

12 > d2 <- rdisclap(n, p2) + m2

13 >

14 > # Locus 3

15 > p3 <- 0.5

16 > m3 <- 15

17 > d3 <- rdisclap(n, p3) + m3

18 >

19 > db <- cbind(d1, d2, d3)

20 > db <- as.matrix(apply(db, 2, as.integer)) # Coerce to integer matrix

21 > head(db)

22 d1 d2 d3

23 [1,] 14 15 16

24 [2,] 12 12 17

25 [3,] 13 13 15

26 [4,] 13 13 15

27 [5,] 14 12 15

28 [6,] 13 15 15

29 >

30 > # Fit the model (L means integer type)

31 > fit <- disclapmix(db, clusters = 1L)

We can then look at the estimated location parameters, y = (y1, y2, y3):

1 > fit$y

2 d1 d2 d3

3 [1,] 13 14 15

And the estimated dispersion parameters, (p1, p2, p3):

1 > fit$disclap_parameters

2 d1 d2 d3

3 [1,] 0.265 0.4369 0.5167

As seen, the estimated dispersion location parameters are well estimated.

The dispersion parameters are also quite close to the ones used to generate the

data.

4.2. Data from a Fisher-Wright population

Andersen et al. (2013) simulated populations following the Fisher-Wright

model of evolution (Fisher, 1922, 1930, 1958; Wright, 1931; Ewens, 2004) with

assumptions of primarily neutral, single-step mutations of STRs (Ohta and

Kimura, 1973). From these populations, data sets were sampled. Using the

discrete Laplace method for estimating haplotype frequencies, the method

worked rather well.

This is worth highlighting: Data was simulated under a completely different

model than that used for inference afterwards. The data was simulated under a

population model (Fisher-Wright model of evolution) with a certain mutation

model (single-step mutation model). Inference was made assuming that the data

was from a mixture of multivariate, marginally independent, discrete Laplace

distributions.

One of the reasons that the discrete Laplace distribution predicts data from

a Fisher-Wright model of evolution with a single-step mutation model is due to
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the fact that it approximates certain properties of this population and mutation

model (Caliebe et al., 2010). This is also explained by Andersen et al. (2013).

Now, let us try simulating a Fisher-Wright population and analyse it with

the discrete Laplace method. To simulate the population, the R package fwsim

(Andersen and Eriksen, 2012b,a) is loaded:

1 > library(fwsim)

If you do not have the fwsim package installed, please visit http://cran.

r-project.org/package=fwsim.

We then simulate a population consisting of Y-STR profiles:

1 > set.seed(1)

2 > generations <- 100

3 > population.size <- 1e+05

4 > number.of.loci <- 7

5 > mutation.rates <- seq(0.001, 0.01, length.out = number.of.loci)

6 > mutation.rates

7 [1] 0.0010 0.0025 0.0040 0.0055 0.0070 0.0085 0.0100

8 > sim <- fwsim(g = generations, k = population.size, r = number.of.loci,

9 > mu = mutation.rates, trace = FALSE)

10 > pop <- sim$haplotypes

Note, that the mutation rates are different for each locus (ranging from 0.001

to 0.01). The location parameter is 0 for all loci by default. This can be changed

afterwards without loosing or adding any information. Below, we change it to be

y = (14,12,28,22,10,11,13):

1 > y <- c(14, 12, 28, 22, 10, 11, 13)

2 > for (i in 1:number.of.loci) {

3 > pop[, i] <- pop[, i] + y[i]

4 > }

5 > head(pop)

6 Locus1 Locus2 Locus3 Locus4 Locus5 Locus6 Locus7 N

7 1 12 12 28 22 10 11 13 3

8 2 14 11 26 20 9 11 13 1

9 3 13 11 26 22 10 10 13 4

10 4 14 11 26 22 8 10 13 2

11 5 14 11 26 22 9 10 12 2

12 6 14 11 26 23 10 10 11 2

Then, y is the most frequent 10 locus Y-STR haplotype in Denmark according

to http://www.yhrd.org (on March 26, 2013) restricted to the 7 loci minimal

haplotype.

The column N is the number of individuals in the population with that Y-STR

haplotype. Summing column N reveals that there is not exactly population.size

individuals due to that the population size is stochastic (refer to Andersen and

Eriksen (2012a) for the details).

We can then calculate the population frequency for each haplotype:

1 > pop$PopFreq <- pop$N/sum(pop$N)

Let us draw a data set where each haplotype is drawn relatively to its

population frequency:

http://cran.r-project.org/package=fwsim
http://cran.r-project.org/package=fwsim
http://www.yhrd.org
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1 > set.seed(1)

2 > n <- 500 # Data set size

3 > types <- sample(x = 1:nrow(pop), size = n, replace = TRUE, prob = pop$N)

4 > types.table <- table(types)

5 >

6 > alpha <- sum(types.table == 1)

7 > alpha/n # Singleton proportion

8 [1] 0.492

9 > dataset <- pop[as.integer(names(types.table)), ]

10 > dataset$Ndb <- types.table

11 > head(dataset)

12 Locus1 Locus2 Locus3 Locus4 Locus5 Locus6 Locus7 N PopFreq Ndb

13 9 14 11 26 23 10 8 12 2 1.924e-05 1

14 103 14 11 28 19 9 10 12 1 9.619e-06 1

15 146 14 11 28 21 10 11 13 187 1.799e-03 3

16 229 14 11 27 21 11 12 12 6 5.771e-05 1

17 271 14 11 28 22 7 11 12 14 1.347e-04 1

18 273 14 11 28 22 8 11 12 6 5.771e-05 1

19 >

20 > db <- pop[types, 1:number.of.loci]

21 > db <- as.matrix(apply(db, 2, as.integer)) # Force integer matrix

22 > head(db)

23 Locus1 Locus2 Locus3 Locus4 Locus5 Locus6 Locus7

24 [1,] 13 12 30 22 8 11 11

25 [2,] 14 12 28 22 10 11 14

26 [3,] 14 13 28 21 10 10 14

27 [4,] 14 12 28 22 9 11 14

28 [5,] 14 12 28 22 11 11 14

29 [6,] 14 12 28 22 9 10 14

Then, analyse it:

1 > fit <- disclapmix(db, clusters = 1L)

2 >

3 > # Estimated location parameters

4 > fit$y

5 Locus1 Locus2 Locus3 Locus4 Locus5 Locus6 Locus7

6 [1,] 14 12 28 22 10 11 13

7 >

8 > # Estimated dispersion parameters

9 > fit$disclap_parameters

10 Locus1 Locus2 Locus3 Locus4 Locus5 Locus6 Locus7

11 [1,] 0.0469 0.126 0.1589 0.1827 0.2453 0.2817 0.316

Let us compare the mutation rates with the dispersion parameters in the

discrete Laplace distributions:

1 > plot(mutation.rates, fit$disclap_parameters, xlab = "Mutation rate",

2 > ylab = "Estimated dispersion parameter")
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Figure 3. The relationship between the mutation rate in a Fisher-Wright population and the

estimated dispersion parameters using the discrete Laplace method.

As expected, there is a connection between the mutation rate and the dispersion

parameter (the exact connection is not known).

It is possible to predict a population frequency with the predict function

as shown in Equation (3). This can be used to see how well the population

frequency is predicted for each unique haplotype in the dataset (obtained by

using dataset instead of db):

1 > pred.popfreqs <- predict(fit,

2 > newdata = as.matrix(apply(dataset[, 1:number.of.loci], 2, as.integer)))

3 > plot(dataset$PopFreq, pred.popfreqs, log = "xy",

4 > xlab = "True population frequency",

5 > ylab = "Estimated population frequency")

6 > abline(a = 0, b = 1, lty = 1)

7 > legend("bottomright", "y = x (predicted = true)", lty = 1)
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Figure 4. The relationship between the true population frequency and the predicted population

frequency using the discrete Laplace method.

4.3. Data from a mixture of two Fisher-Wright populations

Here, we show how to analyse a dataset from a mixture of two populations. First,

we simulate two populations (note the different mutation rates and location

parameters, where the location parameters again are changed afterwards

without loosing or adding any information):

1 > set.seed(1)

2 >

3 > # Common parameters

4 > generations <- 100

5 > population.size <- 1e+05

6 > number.of.loci <- 7

7 >

8 > mu1 <- seq(0.001, 0.005, length.out = number.of.loci)

9 > sim1 <- fwsim(g = generations, k = population.size, r = number.of.loci,

10 > mu = mu1, trace = FALSE)

11 > pop1 <- sim1$haplotypes

12 > y1 <- c(14, 12, 28, 22, 10, 11, 13)

13 > for (i in 1:number.of.loci) pop1[, i] <- pop1[, i] + y1[i]

14 >

15 > mu2 <- seq(0.005, 0.01, length.out = number.of.loci)

16 > sim2 <- fwsim(g = generations, k = population.size, r = number.of.loci,

17 > mu = mu2, trace = FALSE)

18 > pop2 <- sim2$haplotypes

19 > y2 <- c(14, 13, 29, 23, 11, 13, 13)

20 > for (i in 1:number.of.loci) pop2[, i] <- pop2[, i] + y2[i]
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Here, just as y1 = (14,12,28,22,10,11,13) are the alleles from most frequent

haplotype, then y2 = (14,13,29,23,11,13,13) are the alleles from the second most

frequent haplotype.

Then we sample a data set with an expected proportion of 20% from the first

population and 80% from the second population:

1 > set.seed(1)

2 > n <- 500 # Data set size

3 >

4 > n1 <- rbinom(1, n, 0.2)

5 > c(n1, n1/n)

6 [1] 102.000 0.204

7 >

8 > n2 <- n - n1

9 > c(n2, n2/n)

10 [1] 398.000 0.796

11 >

12 > types1 <- sample(x = 1:nrow(pop1), size = n1,

13 > replace = TRUE, prob = pop1$N)

14 > db1 <- pop1[types1, 1:number.of.loci]

15 >

16 > types2 <- sample(x = 1:nrow(pop2), size = n2,

17 > replace = TRUE, prob = pop2$N)

18 > db2 <- pop2[types2, 1:number.of.loci]

19 >

20 > db <- rbind(db1, db2)

21 > db <- as.matrix(apply(db, 2, as.integer)) # Force integer matrix

22 >

23 > # Singleton proportion

24 > sum(table(apply(db, 1, paste, collapse = ";")) == 1)/n

25 [1] 0.672

Now, we analyse the data set trying 1 to 5 subpopulations. Afterwards,

we analyse the optimal number of subpopulations using the BIC (Bayesian

Information Criteria) by Schwarz (1978):

1 > fits <- lapply(1L:5L,

2 > function(clusters) disclapmix(db, clusters = clusters))

The BIC values are:

1 > BIC <- sapply(fits, function(fit) fit$BIC_marginal)

2 > BIC

3 [1] 9487 8600 8646 8700 8748

The estimated parameters for this optimal number of subpopulations can be

made available in best.fit as follows:

1 > best.fit <- fits[[which.min(BIC)]]

2 > best.fit

3 disclapmixfit from 500 observations on 7 loci with 2 clusters.

4 >

5 > # Estimated a priori probability of originating from each

6 > # subpopulation

7 > best.fit$tau

8 [1] 0.2126 0.7874

9 >

10 > # Estimated location parameters
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11 > best.fit$y

12 Locus1 Locus2 Locus3 Locus4 Locus5 Locus6 Locus7

13 [1,] 14 12 28 22 10 11 13

14 [2,] 14 13 29 23 11 13 13

15 >

16 > # Estimated dispersion parameters for each subpopulation

17 > best.fit$disclap_parameters

18 Locus1 Locus2 Locus3 Locus4 Locus5 Locus6 Locus7

19 cluster1 0.1029 0.1083 0.1213 0.1353 0.1458 0.1587 0.1595

20 cluster2 0.1896 0.1997 0.2234 0.2494 0.2686 0.2924 0.2938

The estimated location parameters are the same as those used for generating

the data. Also, the values of τ j , the a priori probability of originating from the j th

subpopulation, are consistent with the mixture proportions of 0.204 and 0.796.

We can also calculate the predicted population frequencies (using the mixture

proportions 0.204 and 0.796):

1 > pop1$PopFreq <- pop1$N/sum(pop1$N)

2 > pop2$PopFreq <- pop2$N/sum(pop2$N)

3 >

4 > types1.table <- table(types1)

5 > types2.table <- table(types2)

6 >

7 > dataset1 <- pop1[as.integer(names(types1.table)), ]

8 > dataset1$Ndb <- types1.table

9 > sum(dataset1$Ndb)

10 [1] 102

11 >

12 > dataset2 <- pop2[as.integer(names(types2.table)), ]

13 > dataset2$Ndb <- types2.table

14 > sum(dataset2$Ndb)

15 [1] 398

16 >

17 > dataset <- merge(x = dataset1, y = dataset2,

18 > by = colnames(db), all = TRUE)

19 > dataset[is.na(dataset)] <- 0

20 >

21 > dataset$MixPopFreq <- (n1/n)*dataset$PopFreq.x + (n2/n)*dataset$PopFreq.y

22 >

23 > dataset$Type <- "Only from pop1"

24 > dataset$Type[dataset$Ndb.y > 0] <- "Only from pop2"

25 > dataset$Type[dataset$Ndb.x > 0 & dataset$Ndb.y > 0] <- "Occurred in both"

26 > dataset$Type <- factor(dataset$Type)
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We can now compare the predicted frequencies with the population frequency:

1 > pred.popfreqs <- predict(best.fit,

2 > newdata = as.matrix(apply(dataset[, 1:number.of.loci], 2, as.integer)))

3 > plot(dataset$MixPopFreq, pred.popfreqs, log = "xy", col = dataset$Type,

4 > xlab = "True population frequency",

5 > ylab = "Estimated population frequency")

6 > abline(a = 0, b = 1, lty = 1)

7 > legend("bottomright",

8 > c("y = x (predicted = true)", levels(dataset$Type)),

9 > lty = c(1, rep(-1, 3)),

10 > col = c("black", 1:length(levels(dataset$Type))),

11 > pch = c(-1, rep(1, 3)))
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Figure 5. The relationship between the true population frequency and the predicted population

frequency using the discrete Laplace method.

5. Concluding remarks

We have shown how to analyse Y-STR population data using the discrete Laplace

method described by Andersen et al. (2013). This was done using the freely

available and open source R packages disclap, fwsim and disclapmix that

are supported on Linux, MacOS and MS Windows.

One key point made is worth repeating: Data simulated under a population

model (e.g. the Fisher-Wright model of evolution) with a certain mutation model

(e.g. the single-step mutation model) can be successfully analysed using the

discrete Laplace method making inference assuming that the data is from a

mixture of multivariate, independent, discrete Laplace distributions.
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Summary The European Y-chromosomal short tandem repeat (STR) haplotype

distribution has previously been analysed in various ways. Here, we

introduce a new way of analysing population substructure using a new

method based on clustering within the discrete Laplace exponential

family that models the probability distribution of the Y-STR haplo-

types. Creating a consistent statistical model of the haplotypes in a

probability distribution framework enables us to perform a wide range

of analyses. A very important practical fact is that the calculations can

be performed on a normal computer.

We identified two sub-clusters of the Eastern and Western Euro-

pean Y-STR haplotypes similar to results of previous studies. We

also compared pairwise distances (between geographically separated

samples) with those obtained using the AMOVA method and found

good agreement. Furthermore, we investigated the homogeneity in

two different ways and found that the Y-STR haplotypes from e.g.

Finland were relatively homogeneous as opposed to the relatively

heterogeneous Y-STR haplotypes from e.g. Lublin, Eastern Poland and

Berlin, Germany. We demonstrated that the observed distributions of

alleles at each locus were similar to the expected ones.

Publication info This paper has been submitted to Forensic Science International:

Genetics (2013).
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1. Introduction

Recent historical events in the European Y-chromosomal short tandem repeat

(Y-STR) haplotype distribution were analysed by Roewer et al. (2005) based upon

a database with approximately 12,700 Y-STR profiles from 91 different locations

in Europe. The analysis was performed by means of AMOVA (Excoffier et al.,

1992), which is a cluster analysis method based upon molecular variance. In this

paper, we analysed the same data using a new method based on a combination

of multivariate, marginally independent, discrete Laplace distributions (called

’discrete Laplace method’) as described by Andersen et al. (2013b) and practically

introduced by Andersen et al. (2013a). We demonstrate how to use the discrete

Laplace method for making inference in Y-STR haplotype databases.

The AMOVA method (Excoffier et al., 1992) is widely used in population

and forensic genetics. The AMOVA method introduced the molecular variance

measure ΦST that is an analogue to Wright’s FST . ΦST is based on the minimum

detectable evolutionary distances between individual haplotypes. When a

population consists of different strata (for example geographically separated

sampling locations), AMOVA can be used to infer stratification through non-

parametric cluster analysis of the ΦST distances.

Whereas the AMOVA method performs non-parametric cluster analysis of

the ΦST distances, the discrete Laplace method by Andersen et al. (2013b) models

the probability distribution of the Y-STR haplotypes. This makes it possible to

perform much more detailed inference, e.g. estimating haplotype frequencies,

model based cluster analysis, analysis of population homogeneity and comparing

the observed distribution of alleles at each locus to the expected one. We note

that the calculations can be performed on a normal computer.

2. Method

Assume that we have S different strata (for example sample locations), each

with ns individuals for s ∈ {1,2, . . . ,S}, and that there are n =
∑S

s=1 ns individuals in

total. Let xi = (xi 1, xi 2, . . . , xi r ) be the r loci Y-STR haplotype for the i ’th individual

for i ∈ {1,2, . . . ,n}. Let Is be the indices for the individuals in the s’th stratum.

We now assume that the parameters in the discrete Laplace method (Ander-

sen et al., 2013b) are estimated, for example by using the R (R Development Core

Team, 2013) library disclapmix version 1.2 (Andersen and Eriksen, 2013) that

are described and demonstrated with both simple and more advanced examples

in Andersen et al. (2013a). The estimated parameters are:

• The number of components in the mixture that can be interpreted as the

number of estimated (genetic) subpopulations, ĉ (from now on just c for

easier notation).

• The central haplotype, ŷ j = (ŷ j 1, ŷ j 2, . . . , ŷ j r ), of the subpopulations for j ∈
{1,2, . . . ,c}. Subpopulations are constructed such that the individuals are

close to the central haplotype.
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• The prior probabilities, τ̂ j for j ∈ {1,2, . . . ,c}, of belonging to the j ’th

subpopulation.

• The parameters of the multivariate, marginally independent, discrete

Laplace distributions, p̂ j k = exp(ω̂ j + λ̂k ) for j ∈ {1,2, . . . ,c} and k ∈ {1,2, . . . ,r }.

This means that there is an additive effect of locus, λ̂k , and an additive

effect of subpopulation, ω̂ j , as described by Andersen et al. (2013b).

The subpopulation membership can be formulated as

vi j =
{

1 if the i ’th individual originates from the j ’th subpopulation,

0 otherwise.

Thus, an individual can originate from only one subpopulation. Because the

membership is not observed, the probability of each outcome is instead estimated

using the EM algorithm by Dempster et al. (1977) as described by Andersen

et al. (2013b). Thus, given xi , let v̂i j be the estimated probability that the i ’th

individual originates from the j ’th subpopulation. Thus, v̂i+ =
∑c

j=1
v̂i j = 1 for all

i . The estimation procedure described by Andersen et al. (2013b) results in

v̂+ j =
n∑

i=1

v̂i j = τ̂ j

being the prior probability of belonging to the j ’th subpopulation.

The estimate of the parameter, c, the number of subpopulations, can be

obtained by using e.g. the Bayesian information criteria (BIC) (Schwarz, 1978)

for various choices of c.

3. Analysis

The dataset analysed is a European 7-loci Y-STR database from 2004 consisting

of 12,727 individuals in 91 strata (European sample locations). This dataset was

first analysed by Roewer et al. (2005) using AMOVA (Excoffier et al., 1992) among

other analysis methods. The 7 Y-STR loci were DYS19, DYS389I, DYS389II,

DYS390, DYS391, DYS392 and DYS393. The alleles at DYS389II were replaced

by DYS389II minus DYS389I (Butler, 2005).

For parameter estimation using the discrete Laplace method, 40 subpopula-

tions were found to be optimal among the subpopulation counts that we used

(which were from 5 to 60 at intervals of 5). This was done using the disclapmix

library version 1.2 for the statistical software R (R Development Core Team,

2013) as shown below:

1 > library(disclapmix)

2 > str(db) # Note, the db must be an integer matrix

3 int [1:12727, 1:7] 12 12 13 13 13 13 13 13 13 13 ...

4 - attr(*, "dimnames")=List of 2

5 ..$ : NULL

6 ..$ : chr [1:7] "DYS19" "DYS389I" "DYS389II" "DYS390" ...

7 > head(db)
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8 DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393

9 [1,] 12 13 17 24 10 11 13

10 [2,] 12 13 17 24 10 11 14

11 [3,] 13 12 18 24 10 11 13

12 [4,] 13 13 16 23 10 11 13

13 [5,] 13 13 16 24 10 11 14

14 [6,] 13 13 16 24 11 13 13

15 > head(popnames)

16 [1] Albania Albania Albania Albania Albania Albania

17 91 Levels: Albania Anatolia,Turkey Andalusia,Southern_Spain ... Zeeland,

South-Western_Netherlands

18 > fits <- lapply(seq(5L, 60L, 5), function(clusters) disclapmix(db,

clusters = clusters))

19 > fits_BIC <- sapply(fits, function(fit) fit$BIC_marginal)

20 > bestfit <- fits[[which.min(fits_BIC)]]

21 > summary(bestfit)

Please, see the values of the marginal BICs in Table 1. From now on, we

focus on the results from the model with 40 subpopulations as this subset gave

the best BIC score.

Subpopulations BIC value

5 196,524.9
10 187,973.4
15 183,594.7
20 182,215.6
25 181,407.6
30 180,645.7
35 180,531.6
40 180,524.8
45 180,582.8
50 180,555.7
55 180,551.9
60 180,735.2

Table 1. The values of the marginal BICs at subpopulation counts from 5 to 60 at intervals

of 5.

In Figure 1, the number of times that a haplotype was observed was

compared to the estimated haplotype frequency using the discrete Laplace

method. Haplotype frequency estimation using the discrete Laplace method

was performed as follows: Given the central haplotype of the subpopulations,

ŷ j for j ∈ {1,2, . . . ,c}, parameters p̂ j k for j ∈ {1,2, . . . ,c} and k ∈ {1,2, . . . ,r } and

prior probabilities τ̂ j for j ∈ {1,2, . . . ,c} (here from the fitted model with 40

subpopulations), the haplotype frequency of a haplotype h = (h1,h2, . . . ,hr ) with

hk ∈Z for k ∈ {1,2, . . . ,r } was estimated as

c∑

j=1

τ̂ j

r∏

k=1

f
(

|hk − ŷ j k |; p̂ j k

)

,

where

f (d ; p) =
(

1−p

1+p

)

p |d |
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is the probability mass function of a discrete Laplace distribution with parameter

0 < p < 1 evaluated at d ∈Z.

This can be done using the disclapmix library for all haplotypes in the

dataset:

1 > estimates <- predict(bestfit, newdata = db)
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Figure 1. Comparison of (1) the relative frequency of a haplotype (number of times it has been

observed dividided by database size) (2) the estimated haplotype frequency using the discrete

Laplace method. Note, that for frequently observed haplotypes, the estimated haplotype frequency

using the discrete Laplace method is close to the relative frequency.

3.1. Model based cluster analysis

As already mentioned, given the i ’th individual’s haplotype, xi , let v̂i j denote

the estimated probability that the i ’th individual originates from the j ’th

subpopulation. In this section, we analyse the v̂i j values in a number of different

ways.

To measure a distance between two subpopulations, a naïve approach of

taking the minimum number of mutations between the central haplotype of the

subpopulations, ŷ j , was initially tried. Because this resulted in a large number

of ties, a more sophisticated method based on the symmetrized Kullback-Leibler

divergence (using the discrete Laplace method) was used. This distance measure

is described in Appendix A. The distance between two subpopulations, j1 and j2,

is denoted by

KL( j1, j2).(1)
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Now, we have a distance measure between subpopulations, and we introduce

a summary of the v̂i j values for each stratum, s, and each subpopulation, j . Let

ws j = n−1
s

∑

i∈Is

v̂i j(2)

be the s’th stratum’s mean probability of originating from the j ’th subpopulation

for s ∈ {1,2, . . . ,S} and j ∈ {1,2, . . . ,c}. Note, that

ws+ =
c∑

j=1

ws j = 1 and w+ j =
S∑

s=1

ws j = τ̂ j .

As mentioned, 40 subpopulations were found to be the optimal number using

BIC. In Figure 2, a map of Europe with the ws j values for all subpopulations

j ∈ {1,2, . . . ,c} at each stratum, s (sampling locations), is shown. The values were

calculated as shown below:

1 > vij <- bestfit$v_matrix

2 > wsj <- aggregate(vij, list(popnames), mean)

3 > rownames(wsj) <- wsj[, 1]

4 > wsj <- as.matrix(wsj[, -1])

The majority of the central haplotypes of the subpopulations were close to

each other. To better visualise the subpopulations, those with central haplotypes

close to each other were assembled into mega clusters. Given a desired number

of clusters, T , let Jt for t ∈ {1,2, . . . ,T } be a partition of {1,2, . . . ,c} such that

T⋃

t=1

Jt = {1,2, . . . ,c} and
T⋂

t=1

Jt =;,

where ;= {} is the empty set. The collapsed ws j values are

ust =
∑

j∈Jt

ws j ,

such that

u+t =
S∑

s=1

ust =
S∑

s=1

∑

j∈Jt

ws j =
∑

j∈Jt

S∑

s=1

ws j =
∑

j∈Jt

τ̂ j

for the t ’th cluster and

us+ =
T∑

t=1

ust =
T∑

t=1

∑

j∈Jt

ws j = 1

for the s’th stratum.

This means that we add together subpopulations Jt by adding their respective

ws j values for j ∈ Jt to obtain mega clusters. Note, that the strata (or information

about strata) are not used for constructing the mega clusters; only the central

haplotype of the subpopulations and p̂ j k parameters are used.

Motivated by Roewer et al. (2005), two mega clusters were made based on the

KL( j1, j2) distances between the central haplotype of subpopulations. Looking at

the resulting ust values on a European map as shown in Figure 3, it seems as if

an Eastern and a Western European population emerge.
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132 Cluster analysis of European Y-STR using the discrete Laplace method

If four mega clusters were chosen, a map as shown in Figure 4 was obtained.

As seen, it was now possible to identify Northern (Scandinavia), Southern (near

the Balkan Peninsula), Eastern and Western European populations.

Pairwise distances

Let

δ(s, t ) =
c∑

j=1

(

ws j −wt j

)2
(3)

be the pairwise (L2) distance between stratum s and stratum t using the mean

estimated subpopulation affiliations ws j and wt j introduced in Equation (2).

This is the squared Euclidean distance between vector (ws1, ws2, . . . , wsr ) and

vector (wt1, wt2, . . . , wtr ). This can for example be used for hierachical clustering,

as seen in Figure 6. For comparison, see Figure 7 for hierachical clustering of

the pairwise ΦST distances calculated with Arlequin version 3.5 (Excoffier and

Lischer, 2010) that uses the AMOVA method by Excoffier et al. (1992).

These pairwise distances can be compared as shown in Figure 5. As seen,

there is a strong correlation between the ΦST values and the δ(s, t ) values even

though they are calculated in two very different ways.

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●●

● ●

●●

●

●

●

●

●

● ●

●●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●
●

●

●
●

●
●

●
● ●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●
●
●

●

●

● ●

●

● ●
●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

● ●●

●

● ●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●
●●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●●

●

●●
●

●
●

●●●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●
●

● ●
● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●
● ●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●
●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

● ●

●●
●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●● ●

●

●● ●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●
● ●● ●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●●

●

●
●

●● ●

●● ●

●
●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
● ●

●
●

●
●

●

● ●

●

●

●

●
●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●●

●

● ●

●

●
●

●●●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●●

●

●

●●●

●

●

● ●

●

●

●

●
●

●

● ●

●●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●●

●●
●

●

●
●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●

●
● ●

●●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

● ●

●

● ●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

● ●

●
● ●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●●
●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●
● ●

●

●

●

●

●

●●
●

●

●
●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

● ●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●
●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●●

● ●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●

●

●

●

●

●

● ●●

●
●●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
● ●

●●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●
●

●
●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●●

●
●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.0

0
0

.1
0

0
.2

0
0

.3
0

ΦST, calculated using Arlequin 3.5

δ
(r

, 
q
)

y = x

Figure 5. Comparision of ΦST distances (from the AMOVA method of Excoffier et al. (1992) calculated

using Arlequin version 3.5 (Excoffier and Lischer, 2010)) and the δ(s, t ) distances (calculated using

the discrete Laplace method). Pearson’s correlation coefficient: 0.90 with p-value < 10−15.
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Population homogeneity

In this section, we focus on two different homogeneity measures for strata and

exemplify these measures by looking at three strata (sample locations).

First, let

Hs =
c∑

j=1

ws j log ws j

be the homogeneity entropy of the s’th stratum for s ∈ {1,2, . . . ,S}.

Let

ei =
c∑

j=1

v̂i j log v̂i j

be the entropy of the i ’th individual for i ∈ {1,2, . . . ,n}, and let

Ps = n−1
s

∑

i∈Is

ei

be the subpopulation certainty entropy of the s’th stratum for s ∈ {1,2, . . . ,S}.

Note, that Hs is the entropy of the v̂i j means whereas Ps is the mean of the

v̂i j entropies.

Three extreme strata are now chosen for further investigations. These

three strata are ’Finland’ (lowest homogeneity entropy Hs = 2.29 and lowest

subpopulation certainty entropy Ps = 0.60), ’Lublin, Eastern Poland’ (homogeneity

entropy Hs = 3.07 and highest subpopulation certainty entropy Ps = 1.16) and

’Berlin, Brandenburg, Germany’ (highest homogeneity entropy Hs = 3.43 and

subpopulation certainty entropy Ps = 0.86).

In Figure 8, v̂i j values are plottet for ’Finland’, ’Lublin, Eastern Poland’ and

’Berlin, Brandenburg, Germany’. This can also be done for the four mega clusters

and the result of this is shown in Figure 9.

3.2. Marginals

To validate a model of the Y-STR haplotype probability distribution, a reasonable

validation criterium is that the predicted single and pairwise marginal allele

distributions fit well with the observed distributions. This means that if 50% of

the individuals in the database have allele 14 at DYS19 (disregarding the alleles

at the other loci), then this should also be predicted by the discrete Laplace

method.

Single marginals

For each locus, the observed marginal distribution (percentage of individuals

having each allele) can be compared with the expected distribution under the

discrete Laplace method that is given by

P (x) =
c∑

j=1

τ̂ j f
(

|x − ŷ j k |; p̂ j k

)
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Finland (n = 399, Hs = 2.29, Ps = 0.6)

Berlin, Germany (n = 549, Hs = 3.43, Ps = 0.86)

Lublin, Eastern Poland (n = 134, Hs = 3.07, Ps = 1.16)

Figure 8. Each vertical bar shows an individual’s row in the vi j matrix (such that the i ’th vertical

bar consists of the 40 numbers {vi j } j for j ∈ {1,2, . . . ,40}). The vi j matrices are shown for Finland

(lowest homogeneity entropy, Hs = 2.29, and lowest subpopulation certainty entropy, Ps = 0.60), Lublin,

Eastern Poland (homogeneity entropy, Hs = 3.07, and highest subpopulation certainty entropy, Ps =
1.16) and Berlin, Germany (highest homogeneity entropy, Hs = 3.43, and subpopulation certainty

entropy, Ps = 0.86). The subpopulations (the columns of the vi j matrices) have the same order and

colour as in Figure 2. In Figure 9, a similar figure is shown for four mega clusters. The individuals

were reordered using the R library seriation (Hahsler et al., 2012, 2008) with the BEA_TSP method

(Hahsler et al., 2008).

for each allele x at the k ’th locus. Figure 10 shows the single marginal

distribution for each locus. Note, that this is a mixture of discrete Laplace

distributions, which means that it is not necessarily shaped like a single, discrete

Laplace distribution.

Pairwise marginals

For two loci, k and l , the observed marginal distribution (number of individuals

having each combination of alleles at the two loci) can be compared with the

expected distribution under the discrete Laplace method that is given by

P (xk , xl ) =
c∑

j=1

τ̂ j f
(

|xk − ŷ j k |; p̂ j k

)

f
(

|xl − ŷ j l |; p̂ j l

)

for alleles (xk , xl ) for locus k and l , respectively.

4. Discussion

We have demonstrated that the discrete Laplace method (analysing a mixture

of multivariate, marginally independent, discrete Laplace distributions) as
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Finland (n = 399, Hs = 2.29, Ps = 0.6)

Berlin, Germany (n = 549, Hs = 3.43, Ps = 0.86)

Lublin, Eastern Poland (n = 134, Hs = 3.07, Ps = 1.16)

Figure 9. Please refer to the caption of Figure 8. The subpopulations (the columns of the merged

vi j matrices were reordered such that four mega clusters were obtained) have the same order and

colour as in Figure 4.

described by Andersen et al. (2013b,a) is a valuable tool for modelling Y-

chromosomal STR haplotypes and for making inference based on such a

modelling. The discrete Laplace method can be used for a wide range of tasks

such as haplotype frequency estimation and model based cluster analysis (e.g.

in analysing substructure). Furthermore, the calculations can be performed on

a normal computer.

In the model based cluster analysis performed in Section 3.1, Western and

Eastern European subpopulations were identified (refer to Figure 3) similar

to the results of Roewer et al. (2005) obtained using the AMOVA method by

Excoffier et al. (1992). A more detailed map of Europe using all identified

subpopulations is shown in Figure 2.

Another comparison of the discrete Laplace method with the AMOVA method

(Excoffier et al., 1992) was performed in Section 3.1. Here, it was shown that

there was good agreement between the pairwise distances between strata

(geographically separated sampling locations) obtained using the discrete

Laplace method and the AMOVA method.

Homogeneity was analysed in two different ways, see Section 3.1. We found

that the Y-STR haplotypes from Finland were more homogeneous than those

from Lublin, Eastern Poland and Berlin, Germany (refer to Figure 8). Lublin

is known to have been a center for trade (Lerski, 1996), so this heterogeneity

seems quite reasonable.

The discrete Laplace method makes it possible to calculate the expected

distribution of alleles (expected percentage of individuals having a certain allele).

We demonstrated that the expected distribution of alleles at each locus was

similar to the observed distribution (refer to Section 3.2 and Figure 10).
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Figure 10. Single marginal observed and expected (by the discrete Laplace method) distributions

for each Y-STR locus.
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Appendix A. Kullback-Leibler distance measure

Let f (d ; p) be the probability mass function of the discrete Laplace distribution.

For the k ’th locus together with subpopulation g and h, let

z1 = ŷg k , z2 = ŷhk , p1 = p̂g k and p2 = p̂hk ,

such that the distance from subpopulation g to h can be defined as

KL′
k (g ,h) =

∑

d∈Z
f
(

|d − z1|; p1

)

log

(
f
(

|d − z1|; p1

)

f
(

|d − z2|; p2

)

)

=
∑

d∈Z

(
1−p1

1+p1

)

p
|d−z1|
1 log





(
1−p1

1+p1

)

p
|d−z1|
1

(
1−p2

1+p2

)

p
|d−z2|
2





=
(

1−p1

1+p1

)

×
∑

d∈Z
p
|d−z1|
1

{

|d − z1| log p1 + log

(
1−p1

1+p1

)

−|d − z2| log p2 − log

(
1−p2

1+p2

)}

=
(

1−p1

1+p1

)(

KL(1)
k

(g ,h)+KL(2)
k

(g ,h)+KL(3)
k

(g ,h)+KL(4)
k

(g ,h)
)

,

where

KL(1)
k

(g ,h) =
∑

d∈Z
p
|d−z1|
1 |d − z1| log p1 = log p1

∑

d∈Z
|d |p |d |

1 = 2log p1

∞∑

d=1

d pd
1 =

2p1 log p1

(p1 −1)2

KL(2)
k

(g ,h) =
∑

d∈Z
p
|d−z1|
1 log

(
1−p1

1+p1

)

= log

(
1−p1

1+p1

)
∑

d∈Z
p
|d |
1 = log

(
1−p1

1+p1

)(

1+2
∞∑

d=1

pd
1

)

= log

(
1−p1

1+p1

)(

1+
2p1

1−p1

)

=
(

1+p1

1−p1

)

log

(
1−p1

1+p1

)

KL(3)
k

(g ,h) =−
∑

d∈Z
p
|d−z1|
1 |d − z2| log p2 =− log p2

∑

d∈Z
|d − z2|p |d−z1|

1

=− log p2

∑

d∈Z
|d − z2 + z1|p |d |

1 =− log p2

∑

d∈Z
|z2 − z1 −d |p |d |

1

KL(4)
k

(g ,h) =−
∑

d∈Z
p
|d−z1|
1 log

(
1−p2

1+p2

)

=− log

(
1−p2

1+p2

)
∑

d∈Z
p
|d |
1 =−

(
1+p1

1−p1

)

log

(
1−p2

1+p2

)

.

To evaluate KL(3)
k

(g ,h), note that

∑

d∈Z
|z2 − z1 −d |p |d |

1 =
∑

d∈Z
|− (z2 − z1)+d |p |d |

1

=
∑

−d∈Z
|− (z2 − z1)−d |p |d |

1
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=
∑

−d∈Z
|z2 − z1 +d |p |d |

1 ,

such that for m = |z2 − z1| Ê 0,

∑

d∈Z
|z2 − z1 −d |p |d |

1 =
∑

d∈Z
|m −d |p |d |

1

=
0∑

d=−∞
|m −d |p |d |

1 +
m∑

d=1

|m −d |p |d |
1 +

∞∑

d=m+1

|m −d |p |d |
1

=
∞∑

d=0

(m +d)pd
1 +

m∑

d=1

(m −d)pd
1 +

∞∑

d=m+1

(d −m)pd
1

=
(1−p1)m +p1

(p1 −1)2
+

p1(pm
1 −m(p1 −1)−1)

(p1 −1)2
+

pm+1

(p1 −1)2

=
2pm+1

1 −m(p2
1 −1)

(p1 −1)2
,

resulting in

KL(3)
k

(g ,h) =−
(

2pm+1
1 −m(p2

1 −1)

(p1 −1)2

)

log p2.

Thus,

KL′
k (g ,h) =

(
1−p1

1+p1

)
2p1 log p1

(1−p1)2
+ log

(
1−p1

1+p1

)

−
(

1−p1

1+p1

)(

2pm+1
1 −m(p2

1 −1)

(p1 −1)2

)

log p2 − log

(
1−p2

1+p2

)

=
2p1 log p1

1−p2
1

+ log

(
(1−p1)(1+p2)

(1+p1)(1−p2)

)

−
(

2pm+1
1 −m(p2

1 −1)

1−p2
1

)

log p2.

To make the distance symmetric, let

KLk (g ,h) =KL′
k (g ,h)+KL′

k (h, g ).

Because mutations are assumed to happen independently across loci, we can

sum the distances at each locus such that

KL(g ,h) =
r∑

k=1

KLk (g ,h)

is the distance between subpopulation g and h.
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1. Introduction

Andersen et al. (2013) describe how to make inference using the expectation-

maximization (EM) algorithm by Dempster et al. (1977) in a mixture model with

a multivariate (marginally independent) exponential family as components for a

specific application (modelling a particular type of DNA profiles).

The standard way to make the maximization step – which is also what

Andersen et al. (2013) suggested – is to make inference in a generalized linear

model. Then, the number of rows in the design matrix will be n×c×r , where n is

the number of individuals, c the number of components in the mixture and r the

number of dimensions of the multivariate distribution, such that the number of

rows is huge, which will lead to slow inference. However, the design matrix is

very structured (the same block of c ×r rows is repeated n times) and this can be

exploited in making the maximization step much more both memory and CPU

efficient as will be described in this paper. Here, the setup will be slightly more

general than the one described by Andersen et al. (2013) as the design does not

need to be balanced and the exponential family does not need to be on canonical

form.

2. Model

Assume that we have repeated observations under two independent conditions

j ∈ {1,2, . . . ,c} and k ∈ {1,2, . . . ,r } with a certain weight. The number of observations

for conditions combination ( j ,k) is n j k . Hence, the observations are di j k with

weights wi j k for i ∈ {1,2, . . . ,n j k }, j ∈ {1,2, . . . ,c} and k ∈ {1,2, . . . ,r }. Assume that

the observations are distributed according to an exponential family with link

function g .

Below, it is assumed that r É c in order to invert the smallest possible matrix

(explained below). If r > c, the conditions should be interchanged as this leads to

more optimal computations.

The Kronecker delta is defined by

δpq =
{

1 if p = q and

0 otherwise.

The inference of interest is to estimate the main effects in the two-way layout

with no interaction. More specifically, let

µi j k = E[di j k ]

τi j k = Var[di j k ] =V (µi j k )/wi j k

g (µi j k ) =
c∑

p=1

δp jαp +
r−1∑

q=1

δqkλq

for j ∈ {1,2, . . . ,c}, k ∈ {1,2, . . . ,r } and i ∈ {1,2, . . . ,n j k }, where V (µi j k ) is the variance

function of the exponential family. Note, that there is only c + r −1 effects to

ensure uniqueness of the effects.



Model 143

Let ~β= (α1,α2, . . . ,αc ,λ1,λ2, . . . ,λr−1)⊤ be the parameter vector. Now, let ~̂β(0) be

the initial parameter vector. Then the iteratively reweighted least squares (IRLS)

algorithm with design matrix X requires the following steps until convergence:

~z(m+1) = X ~̂β(m)

µ(m+1)
i j k

= g−1
(

z(m+1)
i j k

)

τ(m+1)
i j k

=V
(

µ(m+1)
i j k

)

/wi j k

W (m+1) =diag

({[

τ(m+1)
i j k

{

g ′
(

µ(m+1)
i j k

)}2
]−1}

i j k

)

y (m+1)
i j k

= wi j k

(

di j k −µ(m+1)
i j k

)

~y⊤ =
{

y (m+1)
i j k

}

i j k

β̂(m+1) = β̂(m) +
(

X ⊤W (m+1)X
)−1

X ⊤W (m+1)
~y (m+1).

2.1. Optimising iterations

Note, that to estimate β̂(m+1), the quantity

(

X ⊤W (m+1)X
)−1

X ⊤W (m+1)
~y (m+1)

must be calculated. This can be done without explicitly constructing X as will

now be described.

Let
(
~ep

)

i j k
denote element i j k of ~ep , which e.g. can be represented as a three

dimensional array with dimensions
({

n j k

}

j k
,c,r

)

. The element i j k is given by

(
~ep

)

i j k
= δ j p .

This would correspond to the p ’th column of the design matrix. Similarly, let

(

~fq

)

i j k
= δkq .

This means that

X = (~e1,~e2, . . . ,~ec ,~f1,~f2, . . . ,~fr−1)

X~β=
c∑

p=1

~epαp +
r−1∑

q=1

~fqλq .

Let W (m+1) =diag

({

ψ(m+1)
i j k

}

i j k

)

such that

ψ(m+1)
i j k

=
[

τ(m+1)
i j k

{

g ′
(

µ(m+1)
i j k

)}2
]−1

.
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For ease of notation, drop the iteration number m + 1 as all the following

calculations are performed in the same iteration. Then, the elements of X ⊤W X

are

(
~ep

)⊤
W~e j = δp j

∑

i k

ψi j k = δp jψ+ j+

(

~fq

)⊤
W ~fk = δqk

∑

i j

ψi j k = δqkψ++k

(

~fq

)⊤
W~ep =

∑

i

ψi pq =ψ+pq .

Let

Dc =diag
(

{ψ+ j+} j

)

Dr−1 =diag
(

{ψ++k }k

)

H = {ψ+ j k } j k ,

where H is a c × (r −1) matrix having (ψ+1k ,ψ+2k , . . . ,ψ+ck )⊤ as the k ’th column.

Then,

X ⊤W (m+1)X =
[

Dc H

H⊤ Dr−1

]

.

According to Seber (1984, Appendix A3.1), the inverse of this is

(

X ⊤W (m+1)X
)−1 =

[
Dc H

H⊤ Dr−1

]−1

=
[

D−1
c +F E−1F⊤ −F E−1

−E−1F⊤ E−1

]

,

where

E = Dr−1 −H⊤D−1
c H

F = D−1
c H .

Here, the demanding operation is to find E−1 from the (r −1)× (r −1) matrix E .

This is the reason that the conditions should be interchanged such that r É c, as

mentioned previously.

2.2. Optimised scheme

Because of the very structured format of X ,~z(m+1) will include repeated elements

that do not contribute to the inference. The same is true for the values derived

from ~z(m+1). Now, redefine the quantities to not depend on i in order to obtain

the optimised scheme with

~̂β(0) =
(

α̂(0)
1 , α̂(0)

2 , . . . , α̂(0)
c , λ̂(0)

1 , λ̂(0)
2 , . . . , λ̂(0)

r−1

)⊤

as the initial parameter vector and iterate the following steps until convergence:

z(m+1)
j k

= α̂(m)
j

+ λ̂(m)
k



Application in mixtures 145

µ(m+1)
j k

= g−1
(

z(m+1)
j k

)

τ(m+1)
i j k

=V
(

µ(m+1)
j k

)

/wi j k

ψ(m+1)
i j k

=
[

τ(m+1)
i j k

{

g ′
(

µ(m+1)
j k

)}2
]−1

D (m+1)
c =diag

({

ψ(m+1)
+ j+

}

j

)

D (m+1)
r−1 =diag

({

ψ(m+1)
++k

}

k

)

H (m+1) =
{

ψ(m+1)
+ j k

}

j k

E (m+1) = D (m+1)
r−1 −

(

H (m+1)
)⊤ (

D (m+1)
c

)−1
H (m+1)

F (m+1) =
(

D (m+1)
c

)−1
H (m+1)

P (m+1) =
[

D−1
c +F E−1F⊤ −F E−1

−E−1F⊤ E−1

]

a(m+1)
j

=
∑

i k

wi j k

(

di j k −µ(m+1)
j k

)

b(m+1)
k

=
∑

i j

wi j k

(

di j k −µ(m+1)
j k

)

~γ(m+1) =
(

a(m+1)
1 , a(m+1)

2 , . . . , a(m+1)
c ,b(m+1)

1 ,b(m+1)
2 , . . . ,b(m+1)

r−1

)⊤

β̂(m+1) = β̂m +P (m+1)
~γ(m+1).

An implementation of this scheme is provided in Appendix A.

3. Application in mixtures

As noted in the introduction, Andersen et al. (2013) describe a problem that

can be solved more efficiently by using the described optimised IRLS. In this

section, we describe the set-up. The problem is tackled by using a mixture of

exponential families, where the component that each observation originates

from is unknown. To deal with this, the EM algorithm by Dempster et al. (1977)

is used to estimate the probability for originating from each component for each

observation.

The observation, x, relative to a known location parameter, t , is assumed to

be distributed according to a one-parameter exponential family on canonical

form, such that

P (x;θ) = a(θ)h(x)exp(θ|x − t |),

where a(θ) is the normalisation factor.

Let zi = j denote that the i ’th observation originates from mixture component

j and let vi j = 1{zi= j } be the indicator function of this such that vi j = 1 when zi = j

and 0 otherwise. The full likelihood for n observations, c mixture components
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and r dimensions is

L
({

θ j k

}

j k
,
{

vi j

}

j k
; {xi k }i k

)

∝
n∏

i=1

c∏

j=1

r∏

k=1

[

a(θ j k )exp(θ j k |xi k − t j k |)
]vi j ,

where θ j k =α j +λk .

As zi , and hence vi j , is assumed unknown, the full likelihood can be

maximised by using e.g. the EM algorithm by Dempster et al. (1977). The

E step consists of estimating

v̂i j = E[vi j | xi ]

given current estimates of {θ j k } j k . The M step consists of estimating {θ j k } j k given

{v̂i j }i j . Normally, the two-way layout in the M step (main effects of j and k)

would be estimated using a generalized linear model (e.g. using the glm.fit

function in R) with {v̂i j }i j as weights as described by Wedel and DeSarbo (1995).

The design matrix would then have n × c × r rows. Instead, the optimised IRLS

as described above, can used.

In the R (R Development Core Team, 2013) library disclapmix Andersen

and Eriksen (2013), the optimised IRLS method described above is implemented

as an alternative to the traditional glm.fit. This makes it possible to make

inference for a database with 20,000 DNA profiles (n) of 20 loci (r ) assuming more

than 150 mixture components (c) equalling larger datasets as that obtained from

a yet unpublished collaborative YHRD study of 23 Y-STRs in various populations

(personal communication with Lutz Roewer and Michael Nothnagel). Using

traditional generalized linear model (GLM) inference (e.g. via glm.fit), the

design matrix, X , has 6×107 rows.

The German population of the yet unpublished collaborative YHRD study

of r = 23 Y-STRs consists of n = 1,690 DNA profiles. Comparing the traditional

GLM inference with the more efficient method described above yield speed

improvements of almost 20 times for the optimal model for c = 20 (measured

by the Bayesian Information Criterium (BIC) by Schwarz (1978)) and more for

higher dimensional models. Even more can be gained by using the maximum

relative change in the coefficient vector as stopping criterium instead of the

deviance changes. See more details in Table 1. As seen, the speed-up increases

with the dimension of the model. In practise, one could use the maximum relative

change in the coefficient vector as stopping criterium until convergence and

afterwards continue until the deviance criterium is met. In this way, the best

from both can be utilised.
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Method

Efficient IRLS (coef) Efficient IRLS (dev) glm.fit (dev)

c = 1

Time 0.03 sec 0.06 sec 0.63 sec

Speed-up 19 x 11 x 1 x

Total time 0.07 sec 0.12 sec 1.27 sec

c = 5

Time 0.07 sec 0.25 sec 3.03 sec

Speed-up 43 x 12 x 1 x

Total time 3.38 sec 11.78 sec 145.59 sec

c = 10

Time 0.14 sec 0.51 sec 6.59 sec

Speed-up 49 x 13 x 1 x

Total time 2.70 sec 10.12 sec 131.84 sec

c = 20

Time 0.26 sec 1.00 sec 17.40 sec

Speed-up 66 x 17 x 1 x

Total time 11.33 sec 43.13 sec 748.08 sec

c = 30

Time 0.38 sec 1.49 sec 31.90 sec

Speed-up 84 x 21 x 1 x

Total time 24.32 sec 95.62 sec 2,041.64 sec

c = 40

Time 0.51 sec 1.99 sec 51.16 sec

Speed-up 101 x 26 x 1 x

Total time 43.14 sec 169.09 sec 4,348.99 sec

c = 50

Time 0.65 sec 2.50 sec 76.56 sec

Speed-up 118 x 31 x 1 x

Total time 69.14 sec 267.99 sec 8,192.30 sec

Table 1. Comparison study using n = 1,690 DNA profiles (with r = 23 Y-STR loci) from

the German population. The time is the median time for a converged IRLS fit. Speed-up

is the time compared to that of glm.fit. Total time is the median time for the EM

algorithm to converge as described by Andersen et al. (2013), i.e. a complete model fit.

Two different convergence criteria have been used: (dev) means that the deviance has

been used as convergence criterium and (coef) means that maximum relative change in

the coefficient vector has been used. The comparison was made on a desktop computer

with an Intel® Core™ i7 CPU model 2600 running at 3.40GHz and 12 GB RAM. Measured

by the Bayesian Information Criterium (BIC) by Schwarz (1978), 20 mixture components

are optimal.
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Appendix A. Implementation in R

1 > # d and w are arrays with dimension (n, c, r), where n, c and r are

defined in the main text

2 >

3 > IRLS <- function(d, w, family, beta_start = NULL, verbose = !FALSE,

4 > eps = 1e-6, maxit = 25L,

5 > return_linear_predictors = FALSE) {

6 >

7 > individuals <- dim(d)[1L]

8 > clusters <- dim(d)[2L]

9 > loci <- dim(d)[3L]

10 >

11 > converged <- FALSE

12 > lin_pred <- NULL

13 > dev <- 0

14 > devold <- Inf

15 >

16 > # Beta initialisation

17 > beta <- c(rep(-1, clusters), rep(0.5, loci - 1L))

18 >

19 > if (!is.null(beta_start)) {

20 > beta <- beta_start

21 > }

22 >

23 > for (iter in 1L:maxit) {

24 > # Deviance

25 > beta_dev <- c(beta, 0)

26 > lin_pred <- rep(beta_dev[1L:clusters], each = individuals)

27 > lin_pred <- lin_pred + rep(beta_dev[(clusters+1L):(clusters+loci)],

28 > each = clusters * individuals)

29 >

30 > mu_m <- family$linkinv(lin_pred)

31 > dev <- sum(family$dev.resids(d, mu_m, w))

32 >

33 > if (verbose == TRUE) {

34 > cat(" IWLS iteration ", iter, ",

35 > deviance = ", dev, "\n", sep = "")

36 > }

37 >

38 > if (abs(dev - devold)/(0.1 + abs(dev)) < eps) {

39 > converged <- TRUE

40 > break

41 > }

42 >

43 > devold <- dev

44 >

45 > # Calculating sufficient statistics

46 > beta_generic <- c(beta, 0)

47 > lin_pred_generic <- outer(beta_generic[1L:clusters],

48 > beta_generic[(clusters+1L):(clusters+loci)], "+")

49 > mu_generic <- t(apply(lin_pred_generic, 1L, family$linkinv))

50 >

51 > psi <- array(0, c(individuals, clusters, loci))

52 >

53 > for (j in 1L:clusters) {

54 > for (k in 1L:loci) {

55 > psi[, j, k] <- ( w[, j, k] *
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56 > family$mu.eta(lin_pred_generic[j, k])^2 ) /

57 > family$variance(mu_generic[j, k])

58 > }

59 > }

60 >

61 > H <- array(NA, c(clusters, loci))

62 > for (j in 1L:clusters) {

63 > for (k in 1L:loci) {

64 > H[j, k] <- sum(psi[, j, k])

65 > }

66 > }

67 >

68 > Dr <- diag(colSums(H)[1L:(loci - 1L)], nrow = loci - 1L,

69 > ncol = loci - 1L)

70 > Dcinv <- diag(1 / rowSums(H), nrow = clusters, ncol = clusters)

71 > H <- H[, 1L:(loci - 1L)]

72 >

73 > E <- Dr - t(H) %*% Dcinv %*% H

74 > Einv <- solve(E)

75 > F <- Dcinv %*% H

76 >

77 > P <- matrix(0, nrow = clusters + loci - 1L,

78 > ncol = clusters + loci - 1L)

79 > P[1L:clusters, 1L:clusters] <- Dcinv + F %*% Einv %*% t(F)

80 > P[1L:clusters, (clusters + 1L):(clusters + loci - 1L)] <- -F %*% Einv

81 > P[(clusters + 1L):(clusters + loci - 1L),

82 > 1L:clusters] <- -Einv %*% t(F)

83 > P[(clusters + 1L):(clusters + loci - 1L),

84 > (clusters + 1L):(clusters + loci - 1L)] <- Einv

85 >

86 > d_mu_res <- array(0, c(individuals, clusters, loci))

87 > for (i in 1L:individuals) {

88 > d_mu_res[i, , ] <- d[i, , ] - mu_generic

89 > }

90 >

91 > a <- unlist(lapply(1L:clusters,

92 > function(j) sum(w[,j,] * d_mu_res[,j,])))

93 > b <- unlist(lapply(1L:(loci - 1L),

94 > function(k) sum(w[,,k] * d_mu_res[,,k])))

95 >

96 > gamma <- c(a, b)

97 >

98 > beta_correction <- P %*% gamma

99 > beta <- beta + beta_correction

100 > }

101 >

102 > coefficients <- as.numeric(beta)

103 >

104 > if (!return_linear_predictors) {

105 > lin_pred <- NULL

106 > }

107 >

108 > ans <- list(

109 > coefficients = coefficients,

110 > converged = converged,

111 > deviance = dev,

112 > linear.predictors = lin_pred

113 > )

114 >
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115 > return(ans)

116 > }

117 >

118 > # Here follows an example for illustration only

119 > # (the dataset is too small to see any effect)

120 >

121 > # Contrasts specified such that

122 > # the same effects are fitted for both methods

123 > lmfit <- lm(breaks ~ tension + wool - 1, warpbreaks,

124 > contrasts = list(

125 > wool = contr.treatment(n = levels(warpbreaks$wool),

126 > base = length(levels(warpbreaks$wool)))))

127 >

128 > # Construct d and w such that r <= c

129 > l <- lapply(split(warpbreaks, warpbreaks$wool),

130 > function(df) do.call(cbind,

131 > lapply(split(df, df$tension), function(df2) df2$breaks)))

132 > d <- array(unlist(l), c(nrow(l[[1L]]), ncol(l[[1L]]), length(l)))

133 > w <- array(rep(1, length(d)), dim(d))

134 > irlsfit <- IRLS(d = d, w = w, family = gaussian(),

135 > return_linear_predictors = TRUE)

136 >

137 > # Check the result

138 > coef(lmfit)

139 > irlsfit$coefficients

140 > irlsfit$coefficients - coef(lmfit)

141 > deviance(lmfit) - irlsfit$deviance

142 > sum((irlsfit$linear.predictors - predict(lmfit))^2)





Part 3

Epilogue





Conclusion

In this thesis, several models for lineage DNA markers have been presented.

The work range from modelling errors introduced by chemicals and apparatus

to population genetic work on how to estimate haplotype frequencies.

Most work was put into the discrete Laplace method, which is also reflected

in the papers included. The main results in this thesis indicate that modelling

of Y chromosomal short tandem repeat (Y-STR) haplotypes is done well by a

finite mixture of discrete Laplace distributions (’the discrete Laplace method’).

Both inference of haplotype frequencies and cluster analysis using this method

(which has been implemented in publicly available software) yield state of the

art results.
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Future research

In this chapter, I will briefly describe the topics that I consider as the major

parts of my future research. It is divided into extensions to existing work and

new areas.

Appendix A. Extensions to existing work

1.1. Validation of the discrete Laplace method

Andersen et al. (2013) validated the discrete Laplace method based on popula-

tions following the Fisher-Wright model of evolution by Fisher (1922, 1930, 1958);

Wright (1931); Ewens (2004) with assumptions of primarily neutral, single-step

mutations of STRs (Ohta and Kimura, 1973). The performance of the discrete

Laplace method should also be investigated for other types of populations and

mutation models such as the logistic mutation model by Jochens et al. (2011).

1.2. Robustness of the discrete Laplace method

First, assume that we have a database with n DNA profiles. Next, assume that

a biological trace containing a DNA profile, T , has been found at a crime scene

and that a suspect has DNA profile S. Before calculating the match probability

of S, S would have to be included in the database. An interesting question is:

How much extra information is gained by adding S to the database?

This is a difficult question to answer, but one way to approach it is by

considering the discrete Laplace method. Here, the match probabilty can be

calculated in two situations: One based on the database without S and one based

on the database with S included.

This has been done for each observation in 21 loci Y-STR haplotype databases

(PowerPlex Y23 Y-STR haplotypes excluding DYS385a/b) from five populations

(Danish, German, Italian, Spanish, Swedish) obtained from a yet unpublished

collaborative YHRD study of 23 Y-STRs in various populations containing more

than 18,000 haplotypes (personal communication with Lutz Roewer and Michael

Nothnagel). The German database e.g. consists of 1,690 haplotypes. A discrete

Laplace model was fitted for the entire database, and then 1,690 discrete Laplace

models were fitted for each of the databases of size 1,689 obtained by removing

each observation in turn. Similar inferences were performed with 15, 10 and 7

Y-STR loci.

In Figure 1, the comparison for the 7 Y-STR loci German population (n = 1,690)

is shown. As seen, almost every point is on the straight line. This means that

the Pearson correlation is high.

In Figure 2, the Pearson correlation for each population and number of loci

is shown. Note, that for some databases and populations, the inclusion of the

haplotype yields very different results. This is e.g. the case for the Swedish 10
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Figure 1. Comparison of estimated 7 loci Y-STR haplotype frequencies in the German population

sample (n = 1,690) when including and not including a haplotype, h. Left: The straight line has an

intercept of 0 and a slope of 1, such that it illustrates where the ordinate equals the abscissa. Right:

x is Frequency (DB with h) and y is Frequency (DB without h). The straight line has an intercept of

0 and a slope of 0. As seen, x − y > 0, meaning that the frequency is higher when a profile is included

in the database.

loci database (n = 296) shown in Figure 3. As seen, some haplotypes are severely

underestimated when they are not included in the database.

Parts of this seem to be caused by the choice of the optimal number of clusters

chosen by the discrete Laplace method, meaning that the number of clusters is

not always robustly determined. If the same number of clusters is used for the

fits without haplotype h as was chosen optimal for the entire database including

h, the result shown in Figure 4 is obtained. Hence, not including a haplotype

might cause a different number of optimal clusters.

Besides the optimal number of clusters chosen, the initial values of the

central haplotypes of the clusters also play an important role, although the

central haplotypes are allowed to changed during the inference as described by

Andersen et al. (2013). This can be seen by choosing the initial central haplotypes

in various ways and comparing the marginal BIC values of the resulting model

fits. Such an analysis was done for the 10 loci Swedish database (n = 296). The

method suggested by Andersen et al. (2013), based on experience, is partitioning

around medoids (PAM) by Kaufman and Rousseeuw (1990). Besides this, three

other methods were used. First, a principal component analysis (PCA) was made.

From this, a k-means clustering was used to cluster the data (assigning each

observation to a cluster). Then, the median in each dimension of the data points

in each cluster was used as the initial central haplotypes. Second, a method by

Kaufman and Rousseeuw (1990) similar to PAM called CLARA (that is based on

simulation) was tried with 20 different random seeds. Third, observations were

randomly chosen as central haplotypes. The results of this analysis are shown

in Figure 5. As seen, some instances of CLARA gave better results than PAM,

but this is not always the case, especially not for larger databases.

As demonstrated in this section, the likelihood function in the discrete

Laplace method seems to have many local maxima, which sometimes can cause
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Figure 2. The Pearson correlation for each population and number of loci.

lack of robustness. This is an inherent problem due to the curse of dimensionality

with such high dimensional data. However, this problem can most likely be solved

for the discrete Laplace method. Hence, additional research in exploring the

likelihood function is intended.

1.3. Cluster analysis

Cluster analysis using the discrete Laplace method of the data of a yet unpub-

lished collaborative YHRD study of 23 Y-STRs in various populations including

more than 18,000 haplotypes is work in progress (personal communication with

Lutz Roewer and Michael Nothnagel). The results are to be compared with those

obtained in paper VIII.

1.4. Mixture analysis

Because the discrete Laplace method can estimate frequencies of unobserved

haplotypes, the method can be used for analysing Y-STR mixtures. One

application is to make a deconvolution of a mixture to obtain the most probable

individual profiles.

To assess how well such a deconvolution would work, a database of Y-STR

profiles can be used. From this, two profiles, h1 and h2, can be drawn randomly

and excluded from the database. Now, a discrete Laplace model can be estimated

for the restricted database without h1 and h2. A mixture is then made from h1

and h2. Now, a deconvolution of this mixture can be made using the discrete

Laplace model, e.g. by maximising the simultaneous probability of observing h1

and h2. This procedure must be repeated a certain number of times, e.g. 1,000

times. Similar analyses can be done for mixtures with three or more individuals.
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Figure 3. Comparison of estimated 10 loci Y-STR haplotype frequencies for the Swedish population

sample (n = 296) when including and not including a haplotype, h. Left: The straight line has an

intercept of 0 and a slope of 1, such that it illustrates where the ordinate equals the abscissa. Right:

x is Frequency (DB with h) and y is Frequency (DB without h). The straight line has an intercept of

0 and a slope of 0. As seen, x − y > 0, meaning that the frequency is higher when a profile is included

in the database.

Appendix B. New areas

2.1. Population structure

In this section, I briefly describe subjects related to population structure. I intend

to do research in all these areas as they all have a huge impact on the use of

lineage markers in forensic geneticists’ everyday life of evidence interpretation.

Database collection

Evidential weight is calculated based on observed haplotypes and assuming cer-

tain population characteristics. Because the haplotypes of the entire population

are not known, a sample from what is believed to be the population of interest

is used. The way that a sample is assembled is essential for using it correctly.

Normally, it is required that a sample consists of independent observations (a

random sample) in order to analyse it using traditional statistical methods. This

means that two closely related individuals both can be included in the sample

simply by coincidence. And that is the way it should be.

If a random sample is taken and certain observations are excluded afterwards,

for example due to assumed relationship (e.g. determined with autosomal STR

analysis), then the sample is no longer a random sample and it is difficult or

even impossible to use it for sound statistical analyses. Bodner et al. (2011)

describe how to obtain ’better mtDNA population samples in forensic databases’

by sampling unrelated individuals (sometimes this is refered to as ’sampling

lineages’) and their conclusion is:

The presence of maternally related donors in a ”random“ population

sample has so far not been as thoroughly addressed in quality control

as other aspects of mtDNA analysis and databasing. The simple
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Figure 4. Comparison of estimated 10 loci Y-STR haplotype frequencies for the Swedish population

sample (n = 296) when including and not including a haplotype, h. The number of clusters used was

the same as that with the complete database. Left: The straight line has an intercept of 0 and a

slope of 1, such that it illustrates where the ordinate equals the abscissa. Right: x is Frequency (DB

with h) and y is Frequency (DB without h). The straight line has an intercept of 0 and a slope of 0.

As seen, x − y > 0, meaning that the frequency is higher when a profile is included in the database.

practical approach presented here helps to detect the ”clear and easy“

cases of close maternal kinship between donors in a sample set:

following the procedure described, these samples can be identified

and subsequently excluded. If appreciated, this additional tool will

contribute towards better random mtDNA population samples repre-

sentative for their population, for the benefit of all research applying

mtDNA as a genetic marker.

Such a filtered sample with certain observations excluded may be usable for

other analyses, but for evidential weight calculations, the haplotypes (and the

number of times that they have been observed) is important information.

When a sample is filtered by excluding haplotypes from related individuals,

the sample will not correctly reflect the frequency of the haplotypes as the

haplotypes filtered will be underrepresented in the sample. This contradicts

traditional statistical inference, where a sample must consist of independent

observations.

To further emphasise the importance of having truly random samples: Almost

all statistical methods assume random samples. If the sample is not random,

the statistical results are not reliable.

Subpopulation correction

There has been some debate lately about incorporating knowledge about possible

population structure when calculating the evidential weight of lineage markers,

e.g. Buckleton et al. (2011).

It seems like there is still not consensus about how to calculate the evidential

weight of lineage markers. It may have something to do with the interpretation

of the standard defender’s hypothesis stating:
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Figure 5. Comparison of the marginal BIC values of the resulting model fits when chosing the

initial central haplotypes in various ways.

The probability that the suspect matches the haplotype found at the

crime scene given that the suspect is unconnected to the crime.

This is often translated to:

The probability that a random man’s haplotype matches the haplo-

type found at the crime scene.

Then one essential bit is specifying what is meant by a random man (e.g. what

population, relationship to the offender, etc.). If it e.g. is believed that the offender

originates from a certain part of a country, but only a country-wide sample is

available, can the evidential weight be calculated using such a sample? And

similarly for worldwide samples versus country specific samples.

Another consideration is if population structure corrections also should be

made to results from methods that already model some population structure

like the discrete Laplace method by Andersen et al. (2013).

Combining lineage markers and autosomal markers

Sometimes, both lineage markers and autosomal markers (or both Y chromoso-

mal and mitochondrial DNA markers) are available. It is not obvious how an

evidential weight from each of these should be combined to one evidential weight.

Hence, methods for calculating the evidential weight using a combination of the

different marker types have to be developed.
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2.2. Binary lineage DNA marker haplotypes

The discrete Laplace method by Andersen et al. (2013) is a mixture model for

Y-STR haplotypes. Each component consists of independent discrete Laplace

distributions that model the STR alleles.

In principle, it should be possible to make a model for binary lineage DNA

marker haplotypes such as mitochondrial DNA (mtDNA) and Y chromosomal

single nucleotide polymorphism (Y-SNP) haplotypes by using a mixture of

independent Bernoulli distributions. It requires a reference haplotype. The

binary marker can then be whether the individual’s marker is similar to that of

the reference or not.

In NCBI dbSNP build 137 by Sherry et al. (2001), 1,246 single nucleotide

substitutions were observed in the mtDNA. Of these, only 56 had substitutions

of more than one nucleotide besides the one defined by the rCRS. Using these

numbers, more than 90 % of the mtDNA substitutions can be thought of as a

binary marker although it cannot be excluded that polymorphisms with three or

four variants may be found. It would be interesting to use databases of mtDNA

variations such as EMPOP (http://www.empop.org/) by Parson and Dür

(2007) for estimating the fraction of mtDNA variations that can be assumed to

be binary markers.

If more than one substitution is observed for a marker, the Bernoulli model

requires one of at least two different approaches: (1) Disregard the marker or

(2) group variations on a marker different from the reference in a single group.

Both approaches mean that information is ignored or reduced. Hence, more

advanced models must be considered, e.g. allowing for more than one variation

at a position.

2.3. Combining STR and SNP information

The discrete Laplace method by Andersen et al. (2013) is a mixture model

and so is the above mentioned Bernoulli mixture model for binary lineage DNA

marker haplotypes. In principle, it should be possible to make a model for lineage

haplotypes consisting of both STR markers and SNP markers. For example by

combining the mixture models. It would be interesting to investigate this further.

It might also help making the discrete Laplace model more robust in terms of

clusters if including SNPs.

2.4. Models for DNA sequences

Another very interesting trend in genetics, including forensic genetics, is the use

of second generating sequencing (SGS) also sometimes ambiguously referred to

as next generation sequencing (NGS). SGS is a massively parallel sequencing

technique that produces millions of reads (DNA fragments of up to 500

nucleotides). These reads can be mapped to a reference genome (or a part

of it) such that consensus sequences of the sample sequenced can be constructed.

A consensus sequence is typically made of up to hundreds of overlapping reads

http://www.empop.org/
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per nucleotide. When sequencing haploid genomes, the aim is to obtain one

consensus sequence and two when sequencing diploid genomes.

A consensus sequence may contain variations compared to the reference

genome. These can either be actual variations or caused by errors in the

sequencing process. If e.g. only one read out of hundred reads contains the

variation, it is probably an error from the sequencing process. If all reads contain

the variation, it is probably because the individual actually varies from the

reference.

Variations that are interesting for forensic genetics include the traditional

STR systems, where both length variations and complex repeats are relevant.

The task of confirming a variation satisfactorily for forensic purposes is still not

solved.

In this context, there are two major paths for analysing sequence data: 1)

Determine when a variation is true and then use the variation as if it was

confirmed. 2) Use all the reads for stating evidence about a possible variation.

Analogous to detecting STRs using electrophoresis, then 1) would be similar

to using only the occurrence of alleles and neglect the peak heights and 2) would

correspond to using all the peak heights, including stutters, noise etc. (sometimes

referred to as continuous models).

Thus, second generating sequencing gives rise to a whole new era of data.

Research in statistical methods for extracting high confidence information from

SGS is planned.
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