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INJURY 
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Cognitive impairment is the most frequent cause of disability in humans following traumatic 

brain injury (TBI), yet the behavioral tasks used to assess cognitive behavior in rodent models of 

brain injury are underrepresented in the field. Additionally, few of these tasks have been used to 

assess behavior across degrees of injury severity. The goal of the present study was to compare 

four behavioral tasks commonly used in the field in frontally-injured rats with both mild and 

moderate-to-severe brain injuries. At the start of the study, rats were assigned to two of the 

following behavioral tasks: Dig scent discrimination (Dig) task, novel object recognition (NOR) 

task, Morris water maze (MWM), and passive avoidance (PA) task. Four days prior to injury, 

Dig rats were trained to dig in unscented sand and MWM rats were trained to locate a hidden 

platform positioned in the northeast quadrant of the MWM. Following training, bilateral 

controlled cortical impact injuries were induced (mild bilateral frontal TBI, moderate-to-severe 

bilateral frontal TBI, or non-injured, sham). Following a seven day recovery period, rats were 

tested on the two assigned behavioral tasks. Following testing, linear mixed effects modeling 

was performed assessing performance differences on the four tasks as a function of injury 

(injured vs. non-injured), injury severity (mild TBI vs. moderate-to-severe TBI), and task 

interaction. The results indicated that, while all four behavioral tasks were effective at assessing 

injury, some of the tasks were more effective at differentiating between injury severities than 
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others. Specifically, the Dig task and MWM were effective at differentiating between rats with 

mild TBIs and rats with moderate-to-severe TBIs. Interactions between tasks also occurred such 

that Dig rats also assigned to the NOR task had significantly higher learning curves on the scent 

discriminations. The results from the current study indicate that all four behavioral tasks have the 

potential to assess cognitive impairment after TBI. However, these results are only a beginning. 

More work is needed before we can fully understand the efficacy of each of these tasks as 

behavioral assessment measures for cognitive functioning after TBI. 
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CHAPTER 1 

INTRODUCTION 

 Traumatic brain injury (TBI) has been identified as a major health problem facing the 

United States today. The Centers for Disease Control and Prevention (CDC) estimates that, every 

year, 1.7 million people experience a TBI in the United States. Of these 1.7 million, 

approximately 1.4 million (82%) are treated and released from the hospital emergency room, 

275,000 (16%) require hospitalization, and 52,000 (2%) die from complications resulting from 

the TBI (CDC, 2011). Sadly, these statistics do not account for the injuries that go unreported 

including individuals who do not seek medical care and those who are treated in military 

facilities either in the United States or abroad. Estimates for these injuries range from an 

additional 200,000 to nearly 1 million (Langlois, Rutland-Brown, & Wald, 2006). In the United 

States today it is estimated that approximately 5.3 million Americans, approximately 2% of the 

population, are living with the need for assistance due to a TBI (Langlois et al., 2006; Thurman, 

Alverson, Dunn, Guerrero, & Sniezek, 1999).  

 The leading cause of TBI in the United States is from falls. According to the CDC 

(2011), falls account for 35.2% of cases per year. Falls are the leading cause of TBI among 

adults aged 65 years and older and account for approximately half of the TBIs among children 

aged 0 to 14 years. After falls, 17.3% of annual TBI cases are caused by motor vehicle accidents. 

Compared to any other age group, teenagers aged 16 to 19 years are at the greatest risk of being 

involved in a motor vehicle accident. To date motor vehicle accidents remain the leading cause 

of death for U.S. teens, accounting for more than one in three deaths. After motor vehicle 

accidents, 16.5% of annual TBI cases are caused by struck by/against events. Struck by/against 

events involve colliding with a moving or stationary object and are the second leading cause of 
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TBI among children aged 0 to 14 years, accounting for approximately 25% of the TBIs in this 

age group. After struck by/against events, 10% of annual TBI cases are caused by assault. Of the 

remaining 21% of annual TBI cases, the causes are unknown (CDC, 2011).  

 When combining TBI cases from emergency department visits, hospitalizations, and 

deaths, children aged 0 to 4 years and teens aged 15 to 19 years were more likely to sustain a 

TBI than persons in any other age group (Langlois et al., 2006). However, when assessing 

hospitalizations only, adults aged 75 years or older have the highest incidence of TBI. 

Independent of age group, the incidence of TBI among males is higher than it is among females, 

accounting for 59% of TBI cases that occur each year (Summers, Ivins, & Schwab, 2009). The 

most common etiologies for males include falls, motor vehicle accidents, and being struck by or 

against an object. 

 The statistics presented thus far clearly demonstrate the importance of TBI as a public 

health problem; however, with the newly published addition of injuries sustained by military 

personnel in the Iraq (Operation Iraqi Freedom) and Afghanistan (Operation Enduring Freedom) 

theaters of operation the numbers become staggering. While better equipped to protect against 

penetrating injuries caused by bullets and bombs, soldiers are extremely vulnerable to blast 

injuries caused by improvised explosive devices, rocket-propelled grenades, and land mines 

(Galarneau, Woodruff, Dye, Mohrle, & Wade, 2008; McCrea, Jaffee, Guskiewicz, & Doncevic, 

2009). These injuries occur as a direct result of blast wave-induced changes in atmospheric 

pressure, from projectiles (i.e., objects put in motion by the blast) hitting people, and from people 

being put into motion by the blast (Taber, Warden, & Hurley, 2006). Experimental research has 

shown that the brain is vulnerable to each type of blast injury (Taber et al., 2006). Blast injuries 

among military personnel have become so prevalent that they are considered by some to be the 
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“signature wound” of the wars in Iraq and Afghanistan (Galarneau et al., 2008; McCrea et al., 

2009).To put the prevalence of TBI as a result of blast injury in perspective, ten years prior to the 

start of Operation Enduring Freedom approximately 20% of military personnel serving in the 

Persian Gulf War had primary or concurrent head injuries (Carey, 1996; Leadham, Newland, & 

Blood, 1993). The estimates from the most recent war in the Middle East, while not known for 

certain, are estimated to be as high as 60% (Galarneau et al., 2008). According to Fischer (2010), 

the incidence of TBI among military personnel from 2000-2010 who survived their injuries is 

estimated to be around 180,000 with 140,000 mild TBI cases, 30,000 moderate TBI cases, and 

2,000 severe. The remaining 8,000 cases were not classified. The return of these soldiers 

increases the already immense burden of TBI. 

 The burden of TBI is immense and often underrepresented. Economically, a loss in 

productivity and medical treatment for the individual is costly. As of 2000, the direct medical 

costs and indirect costs of TBI totaled an estimated $60 billion in the U.S. with the per person 

costs totaling an estimating $45 thousand (CDC, 2011; Corrigan, Selassie, & Langlois, 2010). 

Individually, physical and/or psychological impairment and an increased risk for neurological 

disorders as the individual ages can have a lifelong financial and emotional impact on the 

individual. While impairment following injury depends upon multiple factors (e.g., injury 

location and severity, age, and general health of the individual), even a mild TBI can cause long-

term deficits in cognition (i.e., complex behavioral phenomena such as memory, language, 

attention, problem solving, and emotion that cannot be observed) that affect the individual‟s 

ability to perform daily activities including returning back to work (Thurman et al., 1999). As the 

individual ages, their risk for various health conditions and neurological disorders increases. 

Post-injury, these individuals are 11 times more likely to develop epilepsy and have a 1.5 times 
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increased risk for depression compared to non-injured controls (Langlois et al., 2006). In 

addition, these individuals have shown a 2.3 and 4.5 times increased risk of Alzheimer's disease 

associated with moderate and severe head injury, respectively (Langlois et al., 2006). However, 

despite these widespread socio-economic effects there is currently no approved, standardized 

treatment for victims of head trauma. While numerous attempts have been made to develop a 

treatment for TBI, of the 21 clinical trials run since 1985, none have succeeded (Maas, 

Marmarou, Murray, Teasdale, & Steyerberg, 2007). The current protocol, as recommended by 

the National Institute of Neurological Disorders and Stroke (NINDS), is to try to stabilize the 

patient through a reduction in bleeding and an increase in oxygen supply to the brain all while 

controlling blood pressure (NINDS, 2011). As evidenced by the 52,000 individuals who die from 

TBI every year and the 5.3 million Americans who are living with the need for assistance due to 

a TBI, it is imperative that this simplistic protocol be improved upon. In order to develop a 

standardized treatment for victims of TBI, the deficits and pathology seen after injury must be 

reproduced in animal models of testing. Working toward this goal, the present study will attempt 

to further the field‟s understanding of the deficits that occur in frontally-mediated cognitive 

functioning after both mild and moderate-to-severe TBI. This will be accomplished by 

conducting a comparison of the behavioral tasks used in the field for the assessment of cognitive 

functioning in the rat. However, prior to outlining this study, more information regarding the 

injury process, the types of animal models used to study TBI, the cognitive deficits seen in 

humans after injury, and the evaluation of cognitive deficits in rodents after TBI must occur.  

Pathophysiology of Traumatic Brain Injury 

The injury process following TBI can be characterized by two major phases: primary 

damage and secondary injury. Head injury typically results from either a direct impact to the 
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head or from an indirect impact resulting from rapid acceleration being applied to the head and 

neck when the torso is stopped or accelerated rapidly. Primary damage results from the direct 

mechanical deformation in the form of linear acceleration, rotational head movement, or both of 

the brain tissue (Greve & Zink, 2009). It is believed that linear acceleration produces focal brain 

injuries leading to damage of the gray matter closest to the surface of the brain causing cortical 

contusions and hemorrhage (Greve & Zink, 2009). Rotational movements, on the other hand, are 

believed to produce both focal and diffuse brain injuries leading to shearing and diffuse axonal 

injury of the deep cerebral white matter axons (Greve & Zink, 2009). The primary phase of 

injury is untreatable except through prevention. Therapeutics can only focus on treating the 

secondary injury (McIntosh, 1993; Werner & Engelhard, 2007). 

Secondary injury results from the biomolecular and physiological changes that follow the 

insult. Compared to the primary damage, it is a much more complex process that involves a 

multitude of actions depending on the type of injury, severity, and relative chemical balance of 

the brain. Some of the biomolecular responses to TBI include: edema, hemorrhage, 

inflammation, ischemia, excitotoxicity, neuronal cell death, and free radical production. 

 Edema. 

 Edema is an increase in net brain water content leading to an increase in tissue volume 

(Unterberg, Stover, Kress, & Kiening, 2004). The following types of edema may occur after 

injury: vasogenic edema, cytotoxic edema, and osmotic edema. Vasogenic edema is 

characterized by a breakdown of the tight endothelial junctions which make up the blood-brain 

barrier (BBB) resulting in increases in extracellular fluid and plasma proteins (Roof, Duvdevani, 

& Stein, 1993; Unterberg et al., 2004). Cytotoxic edema occurs independently of BBB 

compromise and is characterized by sustained intracellular fluid accumulation involving both 
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astrocytes and neurons. The mechanisms that account for this swelling consist of increases in 

sodium (Na
+
) and potassium (K

+
) permeability of the cell membrane, energy depletion followed 

by a failure of the sodium-potassium pumps (Na
+
/K

+
 pumps), and sustained uptake of 

osmotically active solutes (Unterberg et al., 2004). Osmotic edema is characterized by an 

increase in osmotic pressure, resulting in a large influx of water into the injury area (Unterberg et 

al., 2004).  

 While it was originally believed that brain edema following TBI was mostly vasogenic in 

nature, recent evidence from numerous experimental studies is pointing toward cytotoxic edema. 

While transient and moderate opening of the BBB has been shown to occur, implicating 

vasogenic edema, it appears to occur later in the second injury cascade (Unterberg et al., 2004). 

Cytotoxic edema can be traced directly to influxes in Calcium (Ca
2+

) and Na
+
. As the contents of 

the cell become saturated with Na
+
, the osmotic pressure of the cell increases and begins to draw 

in more water. With the cell‟s energy source, adenosine triphosphate (ATP), depleted, the 

Na
+
/K

+
 pumps fail resulting in increased swelling as Na

+
 continues to enter the cell (Unterberg et 

al., 2004). This increased swelling is detrimental to the neurons. Cytotoxic edema has also been 

shown to be detrimental to glial cells, particularly astrocytes. A major process associated with 

astrocytes after injury is the increased amount of the protein water channel, aquaporin-4. 

Aquaporin-4 upregulation has been shown to exist exclusively on activated, swollen astrocytes 

and increase progressively with increased edema (Kiening et al., 2002). 

 Hemorrhage. 

 A hemorrhage is a leaking of blood from the blood vessels inside the brain. After head 

trauma, hemorrhaging can be the result of the initial insult (i.e., tearing of blood vessels at the 

moment of head impact) or the product of secondary injuries (Finnie & Blumbergs, 2002; Greve 
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& Zink, 2009). The following types of hemorrhaging may occur after head trauma: petechial 

hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, intraventricular hemorrhage, and 

intraparenchymal hemorrhage. A petechial hemorrhage is a minor hemorrhage that can occur 

after injury. A single petechial hemorrhage can occur or numerous petechial hemorrhages 

scattered throughout the brain (i.e., diffuse vascular injury). In the case of the latter, survival 

after injury is rare (Finnie & Blumbergs, 2002). A subdural hemorrhage occurs when blood 

gathers within the outermost meningeal layer, between the dura and arachnoid mater. A subdural 

hemorrhage is commonly produced in inertial acceleration models where bridging veins are 

ruptured by rapid angular acceleration forces (Finnie & Blumbergs, 2002). This type of 

hemorrhage is more extensive compared to the petechial hemorrhage and may extend over an 

entire hemisphere. A subarachnoid hemorrhage occurs when blood gathers within the 

subarachnoid space, between the arachnoid and pia mater. A subarachnoid hemorrhage is the 

most common form of vascular injury after head trauma (Finnie & Blumbergs, 2002). This type 

of hemorrhage is usually minor, but may evolve into a significant lesion. An intraventricular 

hemorrhage occurs when blood gathers within the brain‟s ventricular system and has been found 

to occur in 35% of moderate-to-severe TBIs (Barkley, Morales, Hayman, & Diaz-Marchan, 

2007). This type of hemorrhage requires a great deal of force to cause; thus, this hemorrhage 

usually does not occur without extensive associated damage (Dawodu, 2007). An 

intraparenchymal hemorrhage occurs when blood gathers in the brain‟s parenchyma (i.e., 

neurons and glial cells). In percussion models an intraparenchymal hemorrhage is often 

principally distributed throughout the brainstem (Finnie & Blumbergs, 2002).  

Hemorrhaging may affect the brain in a variety of ways. It can increase intracranial pressure 

(ICP), aid in the formation of free radicals, and/or increase the brain‟s inflammatory response. In 
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regards to ICP, as the brain is housed in a rigid cavity it has a very limited ability to compensate 

for increases in intracranial blood volume and pressure. Hemorrhaging, in combination with 

edema, is a major contributor to the increase in ICP (Finnie & Blumbergs, 2002). In regards to 

free radical formation, blood is a rich source of iron which has been shown to catalyze free-

radical formation. In addition, blood is a major mode of transportation for other excitatory amino 

acids (see Free radical production.). In regards to the brain‟s inflammatory response, blood 

within the interstitial space has been shown to be proinflammatory (see Inflammation.) (Greve 

& Zink, 2009). 

 Inflammation. 

 TBI triggers an inflammatory response that is initiated by the release of pro-inflammatory 

cytokines. As the various processes of edema and hemorrhage cause cell death following injury, 

the brain and body generate an immunological response to the tissue damage that can continue 

for months to years (Holmin & Mathiesen, 1999). This occurs due to an increase in the 

permeability of the BBB that allows for the influx of blood-borne proteins into the brain. These 

proteins are part of the body‟s immune system and help to defend the body against disease. 

While this immune response should clear away dead cells at the site of injury, the influx of new 

cells only appear to increase cell death due to swelling and inflammation (Holmin & Mathiesen, 

1999; Lenzinger, Morganti-Kossman, Laurer, & McIntosh, 2001). Inflammation right after 

injury appears to be good, continued inflammation is bad. In humans, this immune response has 

been associated with an increased risk for disorders such as Alzheimer‟s and Parkinson‟s as well 

as certain types of dementia.   
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Ischemia. 

 Ischemia is characterized by a lack of oxygen and glucose after injury. As a result of the 

primary injury, blood flow is interrupted to the damaged areas resulting in a lack of sugars and 

lipids used for the synthesis of ATP. As ATP is depleted, the cells switch over to anaerobic 

mechanisms of energy which are unable to maintain cellular energy states, a large portion of 

which is used to maintain the Na
+
/K

+
 pumps (Werner & Engelhard, 2007). As the ion-pumps fail 

to remove Na
+
 trickling into the cell, the intracellular voltage increases. As the threshold of 

excitation is met, the voltage-gated Na
+
 channels open resulting in a large influx of Na

+
 and an 

efflux of K
+
 (McIntosh, 1994). The depolarization of the neuron causes it to fire, releasing large 

amounts of neurotransmitter, specifically the excitatory amino acid neurotransmitter glutamate 

(McIntosh, 1994). As the failed Na
+
/K

+ 
pumps are unable to regain neural homeostasis, the 

neuron is no longer able to function and cell death occurs (see Neuronal cell death.). Energy 

depletion has also been shown to lead to the depolarization of astroglia, a type of glial cell, 

increasing the amount of excitatory transmitter in the synapse (Dirnagl & Priller, 2005). As 

energy-dependent reuptake is unable to occur in the compromised presynaptic neuron or 

astroglia, the overabundance of excitatory transmitter in the synapse leads to the excitation of 

other postsynaptic neurons who succumb to the same fate (see Excitotoxity.). 

 Excitotoxicity. 

 Excitotoxity is the pathological process by which nerve cells are damaged and killed by 

excessive stimulation of excitatory chemicals (e.g., glutamate). Excitotoxity occurs as a result of 

ischemic stroke and TBI. After primary injury, localized ischemia results in a lack of available 

cellular energy. With the depletion of ATP, neuronal cells are unable to maintain basic cellular 

functions and, as a result, the Na
+
/K

+ 
pumps fail to remove Na

+
 trickling into the cell leading to 
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an increase in the intracellular voltage. As the threshold of excitation is met the neuron fires 

releasing large amounts of excitatory neurotransmitter into the synapse stimulating other neurons 

(McIntosh, 1994). As these neurons fire, more glutamate is released into the synapse resulting in 

an increase in concentration of extracellular glutamate. In the uninjured brain, extracellular 

glutamate is regulated (via clearing) by the astrocytic glutamate transporters excitatory amino 

acid transporter-1 (EAAT1) and EAAT2 (Mongin & Kimelberg, 2004). However, after injury, 

astrocytes coexpressing EAAT1or EAAT2 have been shown to decrease due to astrocytic 

degeneration (Van Landeghem, Weiss, Oehmichen, & Von Deimling, 2006). The repetitive 

release of glutamate stimulates local NMDA and AMPA receptors. As these receptors are 

activated, Ca
2+

 enters the cell and begins to accumulate. This accumulation, combined with 

increases in intracellular Na
+
, leads to neuronal swelling (Obrenovitch & Urenjak, 1997). In 

addition to neuronal swelling, the excessive accumulation of Ca
2+

 has also been shown to have 

toxic effects within the cell. Calcium has been shown to not only increase free radical 

production, but, due to its nature as an endogenous secondary messenger, to activate several 

detrimental chemicals including phospholipases and proteases (Choi, 1988; Werner & 

Engelhard, 2007). Phospholipases break down the phospholipid bilayer that makes up the cell 

wall. Proteases (calpains) degrade cytoskeletal proteins (Kampfl et al., 1997). Excitotoxicity, in 

combination with other secondary processes, leads to necrotic cell death. 

 Neuronal cell death. 

 The two types of neuronal cell death after TBI: apoptosis and necrosis. Apoptosis, termed 

programmed cell death, occurs when the cell undergoes a self-destruction protocol wherein it 

dismantles itself to be reabsorbed by other cells in the central nervous system (CNS) 

(Huttenlocher, 2002). This type of cell death typically occurs during development and is 
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characterized by mitochondrial degeneration and endoplasmic reticulum vacuolization after the 

rupture of the nuclear membrane (Stoica & Faden, 2010). Necrosis occurs when the cell dies 

without dismantling its components and requires the assistance of microglia to scavenge it 

(Stoica & Faden, 2010). Necrotic cell death is characterized by rupture of the mitochondria and 

endoplasmic reticulum, followed by the formation of small chromatin clumps at the center of the 

nucleus, and the rupture of the cell membrane (Stoica & Faden, 2010). 

 After injury the cells in the brain are likely to undergo apoptosis, necrosis, or both. High 

levels of intracellular ATP favors the initiation of apoptosis, a complex, energy-requiring 

process, while low intracellular levels of ATP are associated with necrosis. As necrosis has been 

shown to initialize an inflammatory response along with cell death, apoptosis is the slightly 

better alternative (Stoica & Faden, 2010). However, when ATP depletion occurs in the cell, it no 

longer has the resources to undertake apoptosis and instead succumbs to necrotic cell death 

(Raghupathi, Graham, & McIntosh, 2000). 

 Free radical production. 

 Free radicals (i.e., superoxide, nitric oxide) are ions with unpaired electrons making them 

highly chemically reactive. Excessive amounts of free radicals has been shown to lead to cell 

injury and death and may result in certain cancers and stroke as well as major disorders such as 

Parkinson's and Alzheimer's (Valko et al., 2007).  

 In regards to brain injury, the increased production of free radicals after TBI is one of the 

major detrimental events that occur in the secondary injury process. While this upregulation is 

the result of multiple processes, Ca
2+

 appears to play the largest role. Calcium-dependent free 

radical production occurs as a result of the following mechanisms: It leads to the utilization of 

arachidonic acid and it aids in the breakdown of the electron transport chain (Lewén, Matz, & 
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Chan, 2000). In regards to arachidonic acid utilization, increased levels of Ca
2+

 signaling 

increase the production of phosolipase C (PLC). The upregulation of PLC causes an increase in 

the release of arachidonic acid. The utilization of arachidonic acid results in the generation of 

superoxide (O-), a powerful free radical (Kontos & Wei, 1986). In regards to the breakdown of 

the electron transport chain, Ca
2+

 influx activates cellular enzymes which reduce the capacity of 

the electron transport chain to reduce oxidation (Lewén et al., 2000). As a result, more free 

radicals are produced. In a normal functioning cell, the free radicals would be scavenged. 

However, due to the ATP depletion and the breakdown of the electron transport chain, there is no 

energy to scavenge the increased free radicals. The marked increase in free radicals after injury 

leads to further damage to the cells. Free radicals are inherently unstable and attempt to acquire 

electrons from other sources. As the free radicals work their way into the extracellular space, 

they begin the process of lipid peroxidation wherein electrons are stolen from the cell membrane. 

This results in the compromise of the cellular membrane and causes further stress to the cell 

(Halliwell & Chirico, 1993). This free radical-induced cellular stress can be instrumental in 

initiating apoptosis in the cell (Raghupathi, 2004). 

Animal Models of Traumatic Brain Injury 

 Treatment development for TBI requires the use of an animal injury model that exhibits 

both the pathophysiology and behavioral responses similar to those described clinically 

(Lighthall, 1988). While no single model has the ability to replicate the entire spectrum seen in 

human clinical TBI, several different models have been developed to attempt to imitate the 

various outcomes seen after head injury (Finnie & Blumbergs, 2002; Lighthall, Dixon, & 

Anderson, 1989; Morales et al., 2005; O‟Connor, Smyth, & Gilchrist, 2011). Of these models, 

the two most commonly employed to model human focal injuries are the fluid percussion injury 
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(FPI) and the controlled cortical impact (CCI) models of TBI (Chen, Pickard, & Harris, 2003; 

Morales et al., 2005; O‟Connor et al., 2011). 

 Originally developed by Lindgren and Rinder (1965), the FPI model makes use of a fluid 

pressure pulse delivered to the exposed, intact dura of the animal (Lighthall et al., 1989). The FPI 

model results in an injury severity that can range from mild to severe and has the ability to 

replicate both focal and diffuse injury characteristics (i.e., gray matter damage, subdural 

hematoma, subarachnoid hemorrhage, diffuse axonal injury) (Morales et al., 2005; Thompson et 

al., 2005). Unlike CCI, the anatomical consequences of FPI differ based on the injury location. A 

midline FPI leads to smaller contusions and herniation of the brainstem, adding to increased 

morbidity. A lateral FPI leads to widespread cortical damage without compression of the 

brainstem, closer to what is seen in clinical TBI (Lighthall et al., 1989; Thompson et al., 2005). 

The FPI model is used to mimic concussive events that occur as a result of rapid acceleration 

being applied to the head and neck when the torso is stopped or accelerated rapidly. 

 Originally developed by Lighthall (1988), the CCI model features a pneumatically driven 

piston that impacts the exposed, intact dura of the animal. Through the control of impact 

velocity, impact compression, and impactor size, the CCI model results in a precise injury that 

can range from mild to severe (Lighthall, 1988). The advantage of the CCI model is that it 

produces an anatomically and behaviorally accurate injury that replicates those seen in human 

clinical TBI; the injury is both controllable and replicable. This precision makes the CCI model 

an ideal candidate for examining the injury process as well as testing various pharmacological 

agents (Chen et al., 2003). The CCI model is used to mimic impact events that occur as a result 

of an automobile accident, fall, or struck by/against event. 
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Cognitive Functioning Deficits after Traumatic Brain Injury 

 Cognitive impairment is the most frequent cause of disability following TBI with deficits 

occurring in attention, learning, motivation, personality, and memory (Al-Adawi, Powell, & 

Greenwood, 1998; Draper & Ponsford, 2008; Fujimoto et al., 2004; Hamm et al., 1992; Hicks et 

al., 1993; Mathias, Beall, & Bigler, 2004; Serino et al., 2007; Thurman et al., 1999). These 

impairments occur as a result of injury to the head with an impact site over the frontal and/or 

temporal cortical regions and/or damage to any of the frontal-subcortical circuits. Dependent 

upon location site and injury severity, these impairments have the ability to affect the capacity of 

the individual to make normal everyday decisions leading to hardships in day-to-day living.  

 Location site. 

Evidenced from lesion studies, it is widely acknowledged that the frontal lobe plays a 

major role in human behavior with damage to its anterior cortical regions and/or subcortical 

circuits producing distinctive symptoms (Cummings, 1993). In regards to the cortical regions, 

damage to the dorsolateral and/or orbitofrontal region of the prefrontal cortex has been shown to 

produce deficits in the various cognitive domains of planning, decision making, personality, and 

moderating correct social behavior (Cummings, 1993; Yang & Raine, 2009).  

Damage to the dorsolateral prefrontal cortex (DLPFC) in both humans and animals has 

been shown to produce deficits in planning, working memory, attention, problem solving, verbal 

reasoning, inhibition, multi-tasking, initiation, and monitoring of actions (Cummings, 1993). For 

example, Milner (1963) found that patients with unilateral lesions of the DLPFC were incapable 

of set-shifting from one strategy to another on the Wisconsin Card Sorting Test. These 

individuals achieved fewer sorting categories and made larger perseveration errors compared to 

patients with lesions of the orbitofrontal cortex. In another study, Hornak and colleagues (2004) 
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found that patients with unilateral lesions of the DLPFC had difficulty in attending to feedback 

(i.e., the amount of money won or lost) during the reversal phase of a two-choice visual 

discrimination task (i.e., discriminating a simple pattern in order to earn or lose varying amounts 

of imaginary money). While these individuals were successful in determining the more 

“profitable” pattern during the initial phase of the task, they performed below chance during the 

reversal phase of the task. In another study, Levy and Goldman-Rakic (2000) found that lesions 

of the DLPFC in nonhuman primates disrupted eye movements to spatial cues on a series of 

spatial delayed-response tasks (i.e., remembering the spatial location of a peripheral cue while 

fixating on a central target). The spatial delayed-response task has been used as a primary 

instrument for assessing working memory capacity in nonhuman primates. In a final study, 

Broersen and Uylings (1999) found that lesions of the medial prefrontal cortex in rats decreased 

the percentage of correct responses on a three-choice serial reaction time task (i.e., responding to 

stimuli presented in one of three spatial locations for reinforcement). 

Damage to the orbitofrontal cortex (OFC) in both humans and animals has been shown to 

produce impairments in decision making and impairments in emotional and social behavior (e.g., 

disinhibition, social inappropriateness) (Cummings, 1993). For example, Bechara and colleagues 

(1996) found that patients with bilateral lesions of the OFC performed significantly worse on a 

gambling task (i.e., consistently selected cards from one of the two “bad” decks with the largest 

immediate reward, but largest overall loss) compared to controls. Of utmost interest with this 

particular study, while individuals in the control group began to generate skin conductance 

responses prior to selecting a card from the “bad” decks patients with OFC lesions produced no 

conductance responses. In another study, Logue and colleagues (1968) found that survivors with 

OFC injuries as a result of ruptured anterior communicating artery aneurysms demonstrated 
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abrupt changes in personality. These changes included becoming more outspoken, more irritable, 

and less considerate or conscientiousness of the feelings of others. In another study, Deets and 

colleagues (1970) found that bilateral lesions of the OFC in nonhuman primates modified the 

social behavior of the animals. Compared to controls, the lesioned primates displayed more 

solitary behavior such that they spent less time near primates (unknown to the control/lesioned 

animals) used as social stimuli and reacted with passive submission toward the female social 

stimuli animals. The lesioned primates also displayed higher levels of distress (e.g., fear 

grimacing, cooing, screeching, compulsive body rocking, aggression directed toward its body) 

compared to the unoperated controls. In a final study, Rudebeck and colleagues (2006) found 

that lesions of the OFC in rats increased impulsive behavior on a simple T-maze cost benefit 

delay-based decision-making task (i.e., rats choosing the low-reward arm of the maze received 

one food pellet, rats choosing the high-reward arm of the maze received 10 food pellets after a 

five second delay). All rats were trained to criterion (choosing the high-reward arm on at least 

80% of trials) prior to injury. While sham rats and rats with anterior cingulate cortex lesions 

continued to choose the high-reward arm post injury, rats with OFC lesions chose the low-

reward arm (immediate, small reward) on the majority of trials.  

While research on certain injury-induced cognitive deficits have thus far pointed to 

damage of one or more of the anterior cortical regions, dysfunction of any of the subcortical 

circuits that link regions of the frontal lobe to the subcortical structures have also been 

implicated. Each of these circuits form a loop that originates in the frontal lobe, projects to the 

striatal structures (caudate, putamen, ventral striatum), projects to specific thalamic nuclei, and 

terminates back in the frontal lobe closing the loop (Cummings, 1993). Similar to the anterior 

cortical regions, dysfunction of any of these circuits has been shown to produce a wide range of 
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cognitive impairments such as decreases in attention and motivation and personality changes 

(Cummings, 1993). For example, dysfunction of the subcortical circuit linking the anterior 

cingulate with the medial dorsal thalamus has been associated with decreases in motivation 

(Cummings, 1993). Dysfunction of the subcortical circuit linking the DLPFC with the head of 

the caudate has been associated with deficits in attention as well as abnormalities in motor 

programming (Cummings, 1993). Dysfunction of the subcortical circuit linking the OFC with the 

ventromedial caudate has been associated with changes in personality (Cummings, 1993).  

 Injury severity. 

 The extent to which impairments in cognitive functioning alter the way in which an 

individual leads his or her day-to-day life depends not only upon the injury location but, more 

importantly, upon the injury severity. The severity of an injury following TBI is most commonly 

assessed using the Glasgow Coma Scale (GCS). The GCS is a neurological scale that attempts to 

give a reliable, objective way of recording the conscious state of a person at the time of injury 

(Corrigan et al., 2010). Scores on the GCS range from 3 to 15, with higher numbers predicting 

better outcome following injury. Injury severity can also be assessed, although less frequently, 

by the duration of time the individual loses consciousness (LOC) and/or the duration of 

posttraumatic amnesia (PTA) experienced by the individual (Corrigan et al., 2010). Using these 

assessment measures the level of severity after injury can be categorized as being mild, 

moderate, or severe; however, it should be noted that the boundaries of these categories are 

somewhat ambiguous and can differ by the measurement scale used. According to the NINDS 

(2011), a mild injury is classified by GCS scores ranging from 13 to 15 with a LOC of less than 

30 minutes and a PTA of less than 24 hours. A moderate injury is classified by GCS scores 

ranging from 9 to 12 with a LOC of 30 minutes to 24 hours and a PTA of approximately one 
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week (NINDS, 2011). A severe injury is classified by GCS scores ranging from 3 to 8 with a 

LOC of greater than 24 hours and a PTA of greater than one week (NINDS, 2011). When 

comparing the number of mild, moderate, and severe injuries that occur every year, mild injuries 

occur much more frequently compared to either moderate or severe injuries (Bohnen, Jolles, & 

Twijnstra, 1992). 

 With regard to the degree of impairment in cognitive functioning after TBI, research 

indicates that, most often, severity of injury (e.g., mild, moderate, severe) is predictive of 

outcome. For example, while decreases in processing speed and impairments in selective and 

sustained attention have been found to occur after mild TBI these impairments are subtle with 

recovery of function typically occurring 1 to 6 months post injury regardless of the age of the 

patient (Bohnen et al., 1992; Gentilini, Nichelli, & Schoenhuber, 1989; Gentilini et al., 1985; 

Iverson, 2005; Leininger, Gramling, Farrell, Kreutzer, & Peck, 1990; MacFlynn, Montgomery, 

Fenton, & Rutherford, 1984). Impairments in intelligence, memory, and verbal and non-verbal 

fluency have also been found to occur; however, these types of impairments are uncommon after 

mild TBI and typically only occur in select cases (Bohnen et al., 1992; Iverson, 2005; Leininger 

et al., 1990). In comparison, functional outcome after moderate and severe TBI is not as 

straightforward with impairments in memory, concentration, processing speed, personality, 

attention, mood, and various sensory or motor disturbances being reported (Draper & Ponsford, 

2008; Hellawell, Taylor, & Pentland, 1999; Olver, Ponsford, & Curran, 1996). In contrast to 

mild TBI, these impairments have been shown to continue long after the initial injury. Results 

from neuropsychological testing found significant decreases in processing speed, memory, and 

executive functioning in individuals, 10 years post-TBI, compared to non-injured, 

demographically similar controls (Draper & Ponsford, 2008). The injury severity of these 
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individuals was found to correlate with test performance; the more severe the injury, the worse 

the performance. As these impairments can drastically affect the ability of the individual to 

remain independent, it is imperative more work be done to develop a standardized treatment for 

victims of TBI. This standardization is possible, but requires a more critical look at the 

assessment measures the TBI field relies upon to assess changes in animal behavior after injury. 

Evaluating Behavior in Rodents after Traumatic Brain Injury 

 Traumatic brain injury results in a multitude of deficits following injury, the long-term 

consequences of which can cause impairments in sensation and perception, motor control, and 

cognition. In an attempt to assess the varied deficits following brain injury, many behavioral 

batteries of testing have been adopted in rodent models of TBI evaluating sensory, motor, and 

cognitive behavior (Fujimoto et al., 2004; Hamm et al., 1992; Schallert, Woodlee, & Fleming, 

2002). While an extensive number of tasks have been developed for the assessment of sensory 

and motor functioning after injury, the tasks assessing cognitive behavior are lacking. Cognitive 

tasks typically consist of mazes that evaluate only one aspect of behavior, episodic memory 

(Fujimoto et al., 2004; Schallert et al., 2002). Few tasks assessing non-hippocampal aspects of 

cognitive behavior (e.g., application of rules, strategies, procedures) have been developed for use 

in rodent models of TBI. Of the tasks that exist, few are in current use (Fujimoto et al., 2004; 

Schallert et al., 2002). As deficits in cognitive functioning in humans are prevalent after TBI and 

cognition is not a process mediated solely by the hippocampus, it is important to examine 

multiple types of tasks that have the ability to assess non-hippocampal aspects of cognitive 

behavior.  
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Mazes. 

Of the mazes available, the most widely used to investigate spatial learning and memory 

in rodents after experimental TBI is the Morris water maze (MWM) (Fujimoto et al., 2004; 

Schallert et al., 2002). The MWM consists of a circular tank filled with water. Hidden in the 

water is a small, usually submerged platform. The purpose of the task is for the rodent to locate 

the platform through the use of visual cues located outside of the tank. Training of the task prior 

to injury can occur, but not in all cases. Post injury, the rodent is placed into the maze at various 

locations and given a set amount of time to locate the platform. Rodents that do not locate the 

platform in the allotted time are guided there by the researcher and then removed from the maze. 

The latency or distance to locate the platform is used as an indicator of spatial learning and 

memory. 

The MWM was first described by Morris (1981). In the study, rats were trained to escape 

from water under conditions where an escape platform was either visible or invisible, and 

occupied either a fixed or semi-random position. The results of the study showed that, through 

the use of distal cues, rats were able to locate an object (i.e., a platform) they could not see, hear, 

or smell by locating its position in a familiar space. The importance of the MWM was that it was 

the first maze to assess spatial learning through only the use of distal cues, supporting the theory 

that spatial learning differed from other forms of associative learning (Morris, 1984). Since 

Morris‟ description over 30 years ago, the MWM has been used to assess spatial learning and 

memory after a multitude of experimental manipulations.  

The first study to use the MWM after TBI was conducted by Smith and colleagues 

(1991). In the study, the MWM was used as a measurement of post-TBI memory retention forty-

two hours after moderate and severe lateral FPI in rats. The results of the study showed that 
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memory retention was significantly worse in the severely-injured group compared to the 

moderately-injured group and significantly worse in the moderately-injured group compared to 

the non-injured, control group as measured by latency to the platform. The results from this 

study indicated that the MWM had the ability to assess spatial learning and memory in rats after 

experimental TBI. The MWM has since become the number one behavioral task used for the 

assessment of cognitive behavior after TBI. 

 For the assessment of frontally-mediated behavior after injury, the working memory 

paradigm of the MWM is typically used. In the working memory paradigm, the location of the 

platform is moved at the start of each testing day requiring the rodent to relearn the location.  

Research utilizing the working memory paradigm of the MWM in frontally-injured rats has 

shown significant differences between injured and non-injured animals. According to the 

research, non-injured rats (i.e., sham rats) locate the platform significantly faster during each 

testing day compared to injured rats (i.e., vehicle rats) after both mild and moderate-to-severe 

CCI (Hoane, Akstulewicz, & Toppen, 2003; Hoane, Pierce, Holland, & Anderson, 2008; Hoane, 

Wolyniak, & Akstulewicz, 2005; Hoffman, Fulop, & Stein, 1994).   

 Avoidance tasks. 

In avoidance tasks, non-injured rodents learn to avoid an environment in which an 

aversive stimulus was previously delivered (Fujimoto et al., 2004). Of the variations on the 

avoidance task available, one used for the assessment of non-spatial learning and memory after 

experimental TBI is the passive avoidance (PA) task (Fujimoto et al., 2004). The PA task 

involves an apparatus divided into two adjoining compartments, one illuminated and one 

darkened, divided by a guillotine door. The floor of the compartments consists of steel rods 

capable of delivering an electric footshock to the rodent. On the first day of testing, the rodent is 
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placed in the illuminated compartment of the apparatus and allowed to explore. When the rodent 

crosses over into the preferred darkened compartment, it receives an electric footshock. Non-

injured rodents learn to associate properties of the darkened compartment with the foot shock 

and refrain from entering during subsequent testing (Adwanikar, Noble-Haeusslein, & Levin, 

2011). The latency to enter into the darkened compartment post shock is used as an indicator of 

learning and memory (Fujimoto et al., 2004). 

While the development of avoidance tasks is credited to Mowrer (1938) as a way to 

explain phobias in humans, it was first experimentally described in animals by Hudson (1939). In 

Hudson‟s study, rats were placed into a cage which contained an electrified food cup. Mounted 

on the cup was a striped pattern. Contact with the food cup resulted in a severe shock. Testing 

began one week post shock and continued as the rats aged. Learning established by the shock 

was measured by approaches to and withdrawals from the striped pattern. Early on, during 

testing, rats would push bedding material over the striped pattern and withdraw to the other end 

of the cage. As testing continued, and the rats aged, this behavior decreased. The results of the 

study showed that rats were able to demonstrate a conditioned fear reaction after one occurrence 

of an aversive stimulus. Apart from the substitution of a grid floor for the food cup by Maatsch 

(1959), the protocol for the PA task has remained relatively unchanged since Hudson‟s study 

over 70 years ago. 

 A major benefit of the PA task for the assessment of non-spatial learning and memory in 

frontally-injured rodents is that impairment in performance on the PA task has been shown to 

occur after lesions of the frontal cortex (Santucci, Kanof, & Haroutunian, 1989). These findings 

implicate the frontal cortex as an important area for the acquisition of the PA task. Lending 

further support to this implication, acquisition of the PA task does not appear dependent on 
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hippocampal processing as accessed via hippocampal lesion studies (Hamm, Lyeth, Jenkins, 

O‟Dell, & Pike, 1993). Thus, behavioral differences that occur on the PA task between frontally-

injured and non-injured rodents can be attributed to damage that occurs to an area of the frontal 

cortex critical for acquisition of the task. Research utilizing the PA task in frontally-injured rats 

has shown shorter latencies to enter into the darkened compartment for up to 14 days following 

both mild and moderate-to-severe lateral FPI compared to non-injured, controls (Hamm et al., 

1993; Hogg, Moser, & Sanger, 1998; Yamaguchi et al., 1996). 

 Object exploration tasks. 

 Of the variations on the object exploration task, the novel object recognition (NOR) task 

is used as an assessment of recognition memory after experimental TBI (Ennaceur, Michalikova, 

Bradford, & Ahmed, 2005; Zhao, Loane, Murray II, Stoica, & Faden, 2012). The NOR task 

relies on the spontaneous inclination of non-injured rodents to explore novel over familiar 

objects in an environment and is often used to test a rodent‟s ability to recognize an object over a 

variable length of time (Ennaceur et al., 2005; Reger, Hovda, & Giza, 2009). In the NOR task, 

rodents are placed in an open field and exposed, for a limited period of time, to two identical 

(sample) objects. The rodents are then returned to their home cage. After a variable length of 

time has elapsed, the rodents are returned to the open field where they are exposed to two 

different objects, one identical to the familiar sample object and the other novel. The amount of 

time spent exploring the novel object compared to the familiar object is used as an indicator of 

recognition memory (Ennaceur & Delacour, 1988; Ennaceur et al., 2005; Ennaceur, Neave, & 

Aggleton, 1997).  

The NOR task was first described by Ennaceur and Delacour (1988). Prior to the 

development of the NOR task, memory was frequently assessed in animals using delayed match 
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and nonmatch-to-sample procedures (Mishkin & Delacour, 1975). As it was difficult to tease 

apart the extent to which remembering or rule learning contributed to performance on the 

delayed match and nonmatch-to-sample task, Ennaceur and Delacour developed a one trial 

memory task based entirely on the spontaneous exploratory behavior of the rat (Ennaceur & 

Delacour, 1988). Over the course of five experiments, the protocol for the NOR task was refined 

to include two sample objects (from an original one) and intertrial intervals of one minute to 24 

hours. The results of the study showed that normal rats preferentially explore new, compared to 

familiar, objects. The results of the study also showed that the recognition memory strength, 

defined as the ratio of time the new object was explored compared to the familiar object, could 

be influenced by the length of the intertrial interval (ITI) such that shorter ITIs resulted in 

increased exploration of the new object compared to the familiar. 

 The benefit of the NOR task is that it does not provoke high stress levels in rodents 

during testing (Davis, Shear, Chen, Lu, & Tortella, 2010). Another benefit of the NOR task is its 

versatility in experimental TBI research. While a large number of studies have used the NOR 

task to assess learning and memory after injury, its ability as an assessment measure of anxiety 

after post-traumatic stress is just now being discovered. Research utilizing the NOR task has 

shown significant differences between frontally-injured and non-injured, control rodents and 

between stressed and non-injured control rodents. According to the research, rats with a 

penetrating ballistic-like brain injury displayed significantly decreased object exploration at 

seven days post-injury compared to non-injured, control rats (Davis et al., 2010). In another 

study, mice with closed head injuries (induced via a weight-drop device) displayed varying 

degrees of impairment dependent upon injury severity such that mice with mild injuries 

performed at control level while mice with severe injuries showed no difference between the 
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novel and familiar object from day three to six post injury (Tsenter et al., 2008). Performance 

improved from day 14 to 28, but was always significantly worse from the mildly-injured group 

(Tsenter et al., 2008). In a final study, mice exposed to a stress procedure (i.e., a novel clean cage 

identical to the home cage) displayed significantly decreased object exploration five days after 

the final (of 16) stress exposures compared to controls (Scullion, Kendall, Sunter, Marsden, & 

Pardon, 2009).  

 Discrimination tasks. 

The assessment of decision-making behavior in rodents has been extensively tested under 

many different paradigms (e.g., conditional discrimination, delayed matching-to-sample, 

differential reinforcement of low rate of responding, effort-based decision making) in the field of 

the experimental analysis of behavior (Burkett & Bunnell, 1966; Fantino, 1998; Herrnstein, 

1970; Porter, Burk, & Mair, 2000; Walton, Bannerman, Alterescu, & Rushworth, 2003; 

Williams, 1994). Operant tasks have long utilized behavioral choice paradigms and have come to 

be known to some extent as the “gold standard” when it comes to evaluating decision-making 

behavior (Fantino, 1998). However, while these tasks are highly regarded for their ability to 

parse out subtle differences between animals and treatments, they are frequently both time and 

equipment intensive. Due to these barriers and the narrow therapeutic window following TBI, 

time intensive operant paradigms are rarely incorporated into the battery of TBI tests 

traditionally used. Of the few laboratories that are currently utilizing operant paradigms for the 

assessment of cognitive behavior after TBI, only one is using the paradigm in frontally-injured 

rats (Martens, Vonder Haar, Hutsell, & Hoane, 2012a; Martens, Vonder Haar, Hutsell, & Hoane, 

2012b).   
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Regardless of the research field, simple discrimination paradigms have been and remain a 

popular method for the study of animal decision-making behavior. While the protocol for these 

tasks remains relatively consistent from laboratory to laboratory, the discriminative stimuli used 

vary depending on the dominant sensory modality of the animal being studied (Eichenbaum, 

Fagan, & Cohen, 1986). For the study of decision-making behavior in rodents, whose dominant 

sensory modality is olfaction, odor discrimination tasks are commonly employed (Slotnick & 

Katz, 1974). Of the variations on the odor discrimination task, the Dig task is used by the Hoane 

laboratory for the assessment of decision-making behavior in rodents after frontal TBI. The Dig 

task is a simple odor discrimination task that requires rats to dig in various scented sands for a 

reinforcer. Prior to injury, rats are trained to recover and consume a food reinforcer buried in 

unscented sand. Post injury, rats are tested on a series of simple scent discriminations: simple 

discrimination 1 (cocoa scented sand [baited] vs. basil scented sand), reversal 1 (basil baited), 

simple discrimination 2 (cumin scented sand [baited] vs. coffee scented sand), and reversal 2 

(coffee baited) until a predetermined criterion level is achieved. Rats unable to reach criterion 

after a variable number of days are automatically moved to the next discrimination. The accuracy 

level on each of the scent discriminations is used as an indicator of both decision-making 

behavior and learning. 

The first study to use odor discrimination in the rat was conducted by Jennings and 

Keefer (1969). In the study, water-deprived rats were presented with a pairing of positive 

(reinforced) and negative odorants. Correct discrimination of the positive odorant resulted in 

access to water. The results of the study showed that rats could learn a simple discrimination task 

using odor cues. The findings by Jennings and Keefer (1969) were supported a few years later by 

Slotnick and Katz (1974). In the Slotnick and Katz (1974) study, water-deprived rats were 
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trained on a go, no-go odor discrimination task utilizing 16 odorants. During the task, a positive 

(reinforced) or negative odorant was presented for 5 seconds. A correct response in the presence 

of the positive odorant resulted in access to water. Similar to the findings by Jennings and Keefer 

(1969), rats were able to discriminate between the positive and negative odorants. 

The first study to use odor discrimination after TBI was conducted by Martens and 

colleagues (2012a, b). In the study, the Dig task was used as a measurement of decision-making 

behavior after severe CCI in rats. The results of the study indicated that the Dig task was 

successful in assessing deficits after frontal TBI such that frontally-injured rats had significantly 

lower accuracy levels on all four of the scent discriminations post injury compared to non-

injured, sham rats (Martens et al., 2012a; Martens et al., 2012b). While data from the Dig task 

appears promising, there is concern that the poor performance by the frontal TBI rats was the 

result of the inability of the rats to perceive the odor of the scented sands (anosmia) due to 

damage to the olfactory bulb(s) or olfactory tract. 

With regard to olfactory disruption after frontal TBI, prior research in the Hoane 

laboratory, utilizing the same injury coordinates, showed that frontally-injured rats responded 

strongly to predator scent introduced into the environment (Hoane, unpublished date). In 

addition, a body of research exist showing that lesions of the olfactory bulb and olfactory tract do 

not disrupt scent discrimination in rats (Lu & Slotnick, 1998; Slotnick, 1985; Slotnick, Bell, 

Panhuber, & Laing, 1997). In a study by Lu and Slotnick (1998), rats received a unilateral 

olfactory bulbectomy and removal of different parts (anterior, lateral, medial, or dorsal) of the 

contralateral bulb. Post-surgery the rats were tested on a preoperatively learned series of odor 

detection and discrimination tasks. The results of the study showed that only the rats with less 

than 21% remaining of the contralateral olfactory bulb showed deficits in the detection and 
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discrimination tasks. Rats with more than 21% remaining of the contralateral olfactory bulb 

performed as well or nearly as well as controls. These results demonstrated that relatively small 

remnants of one olfactory bulb can be sufficient for the detection of odor. In another study by 

Slotnick and Berman (1980), rats received lesions of the olfactory peduncle and part of the 

lateral olfactory tract and anterior commissure. Post-surgery the rats were tested on a 

preoperatively learned series of odor detection and discrimination tasks. The results of the study 

showed that lesions of the olfactory peduncle and lateral olfactory tract had little or no effect on 

odor detection and discrimination performance in the lesioned rats. While these animals had 

deficits in retention and relearning of the odor tasks, the lesions did not produce anosmia. In a 

final study by Slotnick (1985), rats received a posterior lateral olfactory tract and anterior 

amygdala lesion. Post-surgery the rats were tested on a preoperatively learned series of odor 

detection and discrimination tasks. The results showed that the lesioned rats had perfect or near-

perfect retention of the detection task and there were no discernible differences between groups 

in learning new odor discriminations. With the compilation of results from Slotnick and 

colleagues, it seems unlikely that potential damage to the olfactory bulbs or olfactory tract after 

frontal TBI would result in an inability of the frontal TBI rats to detect odors on the Dig task. 

Thus, the poor performance on the Dig task by the frontally-injured rats appears to be related to a 

learning deficit as a function of damage to the frontal cortex and not anosmia. 

Introduction Summary 

Traumatic brain injury is a major health problem facing the United States. It has the 

ability to result in a multitude of deficits in sensory, motor, and cognitive functioning following 

injury that can drastically affect the ability of the individual to remain independent. The 

development of standardized treatments for victims of TBI requires the use of animal models. 
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While an extensive number of tasks have been developed for the assessment of sensory and 

motor functioning after injury, tasks assessing frontally-mediated behavior are lacking. Of the 

tasks that exist to assess frontally-mediated behavior, few are in current use. Of the few that are 

in use, none have been used to compare across differing degrees of injury severity. The goal of 

the present study will be to compare the following tasks: MWM, PA, NOR, and Dig in frontally-

injured rats with two types of injury severity: mild and moderate-to-severe. The purpose of this 

comparison will determine the following: 1) the ability of each task to assess deficits after frontal 

injury, 2) the sensitivity of each task to assess deficits in mild and moderate-to-severe injuries, 

and 3) the influence of each task on a secondary task which consisted of the MWM, PA, NOR, 

and Dig task. 

Specific Aims 

1. Determine whether rats with frontal brain injuries demonstrate deficits on the MWM, PA, 

NOR, and Dig tasks. 

2. Determine the sensitivity of the MWM, PA, NOR, and Dig tasks to assess deficits in mild 

and moderate-to-severe injuries. 

3. Determine the extent of the influence of the MWM, PA, NOR, and Dig tasks on a secondary 

task. The secondary task consisted of the MWM, PA, NOR, and Dig tasks. 

Research Hypotheses 

1. Based upon the aforementioned literature, it is hypothesized that performance deficits on the 

four tasks will occur in frontally-injured rats compared to non-injured, sham rats. It is further 

hypothesized that the performance deficits will occur in the following manner: 

a. Injured rats will demonstrate higher latencies in the MWM, lower latencies in the PA 

task, explore the novel object less compared to the familiar object in the NOR task, 
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and show deficits in discrimination ability on all four scent discriminations in the Dig 

task compared to non-injured, sham rats. 

2. Based upon differences in injury severity, it is hypothesized that mildly-injured rats will 

exhibit fewer performance deficits on all four tasks compared to rats with moderate-to-severe 

injuries. It is further hypothesized that the extent of the performance deficits will differ 

depending upon the behavioral task used such that: 

a. The MWM and Dig task, as a result of task difficulty, will be more sensitive at 

detecting performance deficits compared to either the PA or NOR task which rely 

heavily upon the exploratory behavior of the animal. 

3. Based upon task protocol and task difficulty, it is hypothesized that some of the behavioral 

tasks will have an influence upon the secondary task it is paired with. It is further 

hypothesized that this influence will occur in the following manner: 

a. As a result of the task difficulty and the long testing protocol, rats assigned to the 

MWM or Dig task will show improved performance on the assigned secondary task. 

It is also believed that, as a result of the fear response elicited by the foot shock, rats 

assigned to the PA task will show a decrease in performance on the assigned 

secondary task.   

4. Using a cresyl violet nissl stain to assess cavitation, it is hypothesized that mildly-injured rats 

will have less brain damage (higher brain volumes) compared to rats with moderate-to-severe 

injuries.  
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CHAPTER 2 

METHODS 

Animals 

 Seventy-two Sprague-Dawley rats, approximately three months of age with an average 

weight of 325 g (+/- 15 g), were included in this study. All experimental procedures described in 

this study were reviewed and approved by the Institutional Animal Care and Use Committee and 

the study was conducted in a facility certified by the American Association for the Accreditation 

of Laboratory Animal Care. Rats were housed singly in standard cages on a 12-hour light/dark 

cycle with ad libitum access to water. Rats were food restricted to 15-20 g of food per day and 

maintained at 85% of free feeding body weight during training and testing sessions. Training and 

testing were conducted during the light cycle. One week prior to the start of Dig training, rats 

were randomly assigned to one of six behavioral testing groups (see Behavioral Testing). 

Within each behavioral testing group, rats were randomly assigned to one of three experimental 

groups: mild TBI (mTBI), moderate-to-severe TBI (TBI), or intact sham (sham). 

Surgery 

 Surgical procedures were performed under aseptic conditions according to previous 

studies (Hoane et al., 2003; Hoane, Lasley, & Akstulewicz, 2004; Hoane et al., 2005). Rats were 

anesthetized under a combination of Isofluorane (2-4%) and oxygen (0.8 L/min) and placed in a 

stereotaxic device. Body temperature was maintained at 37° C using a heated surgical stage. Rats 

were randomly assigned to three groups: mild bilateral, frontal CCI (mTBI; n = 24), moderate-to-

severe bilateral, frontal CCI (TBI; n = 24), or intact sham (sham; n = 24). The procedure began 

with a midline incision through the skin and underlying fascia. A craniotomy measuring 6.0 mm 

in diameter was created using an electronic microdrill positioned at AP = +3.0, ML = 0.0 relative 
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to bregma. A drill bit was used and care was taken to prevent damage to the dura and cortex. The 

cortical region containing the frontal cortex was exposed. A 5.0 mm stainless steel impactor tip 

attached to an electromagnetic impactor (myneurolab.com) was used to induce the injury. The 

cortex of the mTBI group was impacted at a velocity of 1.5 m/s to a compression depth of 2.0 

mm with a contact time of 0.5 seconds. The cortex of the TBI group was impacted at a velocity 

of 3.0 m/s to a compression depth of 2.5 mm with a contact time of 0.5 seconds. Following 

injury, bleeding was controlled and the incision sutured closed. Afterwards, the rats were placed 

in a heated recovery cage until locomotion returned. The sham group received anesthesia and an 

incision, but no craniotomy. All rats were placed on free feeding for four days following surgery. 

Behavioral Testing 

One week prior to dig training and 11 days prior to surgery, rats were food restricted to 

15-20 g of food per day and maintained at 85% of free feeding body weight during training and 

testing sessions. Rats were then randomly assigned to one of six behavioral testing groups (Table 

1). The experimental timeline consisted of six animal squads (n = 12 per squad) run over the 

course of six months. In order to avoid confounds in behavioral testing, all four behavioral tasks 

were accounted for by assigning rats, from each squad, to each behavioral task and running the 

tasks concurrently. When applicable, each testing day started in the morning with the Dig task, 

followed by the NOR task, followed by the MWM, and was completed in the late afternoon with 

the PA task (Figure 1). 

Dig task. 

The Dig task was utilized to assess cognitive behavior on days 7-47 post injury. Testing 

was conducted in a bank of chambers (30.5 x 25.4 x 23.2 cm) located in a dimly lit room. A 

piece of opaque Plexiglas (10 x 22 cm) with two circular holes (5.5 cm in diameter) to provide 
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locations for scent cups were placed in each chamber (Figure 2). The scent cups were 

constructed from PVC pipe end-caps (6 cm tall and 5.5 cm in diameter). The scented sands that 

were used in this task were selected from previous studies (Kaiser & Means, 2006; Martens et 

al., 2012a; Martens et al., 2012b) and consisted of cocoa, basil, cumin, and coffee. Each of the 

scented sands was mixed at a ratio of 1g of odorant to 110 g of unscented sand. The pairing of 

each scented sand and the order in which each scented sand pairing was presented was done 

randomly. Fruit loop cereal pieces were used as the reinforcer. 

 Dig training. 

 The first step of dig training consisted of habituation to the chamber and magazine 

training of the scent cups. During this step, the scent cups were only filled with the reinforcer. 

Rats were placed in the chambers and allowed to freely consume the reinforcer for 30 minutes. 

The first step was used to establish both scent cups as a source for reinforcement.  

The second step consisted of training the rats to uncover the reinforcer from unscented 

sand. During this step, multiple reinforcers were buried in unscented sand in such a way that half 

protruded from the sand. As the rats consumed the visible reinforcers, additional ones were 

uncovered and consumed. To correct for side preference, manually uncovering the reinforcer in 

the non-preferred cup was sufficient to generate roughly equivalent digging across the two scent 

cups. The second step was used to establish digging behavior.  

Once digging behavior was established, the third step consisted of training rats to recover 

a single reinforcer from the bottom of each scent cup. During this step the depth of the reinforcer 

was gradually increased from just under the surface of the sand to resting on the bottom of the 

scent cup. Rats were required to retrieve the reinforcer from the bottom of each scent cup. The 

third step was used to establish complete digging behavior. 
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Once digging was acquired, the final step was to familiarize rats with the discrimination 

testing trial structure. During this step rats were required to retrieve the reinforcer from the 

bottom of each scent cup within 30 seconds. Upon retrieving and consuming both reinforcers, or 

after 30 seconds had elapsed, the rats were placed into a separate holding cage. This continued 

for the number of trials necessary to meet criterion (recovering both reinforcers, within 30 

seconds, eight consecutive times). Upon reaching criterion, rats were advanced to surgery.  

 Post-injury discrimination testing. 

Rats assigned to the Dig task were tested seven days post injury on the following 

discriminations: simple discrimination 1 (cocoa scented sand [baited] vs. basil scented sand), 

reversal 1 (basil baited), simple discrimination 2 (cumin scented sand [baited] vs. coffee scented 

sand), and reversal 2 (coffee baited). During the post-injury discrimination testing rats were 

given 30 seconds (per trial) to dig in one of the scent cups. Correct choices were reinforced by 

consumption of the reinforcer followed by an ITI. Incorrect choices were punished by an 

immediate ITI. Rats were not allowed to correct for incorrect choices. The ITIs lasted 30 seconds 

and occurred in a separate holding cage. Rats received a clean Plexiglass/scent cup setup for each 

trial and the testing chambers were cleaned with 70% ethanol (EtOH) between each testing 

session to remove all olfactory cues. Rats received eight trials per session, one session per day. 

The criterion level was performance at 85% or greater for three consecutive days. Rats unable to 

reach criterion after 10 days were considered unable to learn/relearn the discrimination and 

moved on to the next scent. 

Novel object recognition (NOR) task. 

The NOR task was utilized to assess object recognition memory on days 7-12 post injury 

as originally described in a previous study (Ennaceur & Delacour, 1988; Ennaceur et al., 2005). 
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The testing arena consisted of a Plexiglas chamber (25.4 x 47 cm; San Diego Instruments [SDI], 

San Diego, CA) located in a dimly lit room (Figure 3). The objects used in this task consisted of 

glass bottles for the first day of testing and wooden shapes for the second day of testing (Figure 

4). All objects were attached to the floor of the testing arena via Velcro to ensure that they would 

not be displaced by the rats. The arena and all objects were cleaned with 70% EtOH between 

each testing session to remove all olfactory cues.  

 Habituation phase. 

 On post-injury days 7-9 rats were allowed to freely explore the empty arena. The 

habituation phase consisted of three, ten minute sessions administered once per day.   

 Testing phase. 

 On post-injury days 10 and 12 rats were tested on the sample (T1) and choice (T2) trials 

of the NOR task. During T1, each rat was placed into the arena containing two identical, sample 

objects (tall glass bottles during testing day 10; wooden spheres during testing day 12). The 

objects were placed close (approximately 10 cm) to the two adjacent corners of the arena. The 

rats were allowed to explore the arena for three minutes before being returned to their home 

cage. After an ITI of 1 hour, T2 was administered. The procedure for T2 was identical to that of 

T1 except a novel object (short glass bottle during testing day 10; wooden cube during testing 

day 12) was substituted for one of the sample objects. The novel object was similar in material 

and color, yet discernibly different from the sample objects. The position of the novel object was 

counterbalanced. To avoid olfactory trails, the sample object presented during T2 was a duplicate 

of the sample object presented in T1. 

For the purposes of the task, object exploration was defined as interaction with the object 

via sniffing, touching, or rearing.  
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Morris water maze (MWM). 

The MWM was utilized to assess spatial learning and memory on days 11-17 post injury 

as described in previous studies (Hamm et al., 1996; Hoane, Tan, Pierce, Anderson, & Smith, 

2006; Kaufman et al., 2010). The water maze consisted of a blue fiberglass tank (76 cm tall and 

1.5 m in diameter) filled with water to a depth of 32 cm and maintained at 24° C and located in a 

dimly lit room (Figure 5). A clear Plexiglas platform (10 x 10 cm) was submerged 1 cm below 

the surface of the water. Video tracking system and SMART tracking software (SDI) were used 

to record the path length and latency of the animals to the submerged platform. For training and 

testing purposes, a trial was terminated when an animal either reached the submerged platform or 

when 90 seconds had elapsed. Rats unable to reach the platform after 90 seconds were guided by 

hand to the platform. Each animal was allowed to remain on the platform for 10 seconds and was 

then placed in a warm holding cage for 15 minutes prior to starting the next trial. There were two 

phases of testing: retrograde amnesia and working memory. 

Retrograde amnesia task. 

Four days prior to surgery rats assigned to the MWM were trained on the reference 

memory paradigm of the MWM. For this task, the clear Plexiglas platform was submerged in the 

center of the northwest quadrant of the water maze. Each rat was lowered in, facing the wall, 

from one of four randomly ordered release points (NE, SE, SW, NW). Rats received four trials 

per session (15-minute ITIs), one session per day for four consecutive days. On post-injury day 

11 rats were tested on the retrograde amnesia paradigm of the MWM, which tests for the ability 

of the rat to remember the previously learned, fixed location. For the retrograde amnesia 

paradigm the rats received one session (four trials) of testing.  
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Working memory task. 

On post-injury days 12-17 rats were tested on the working memory paradigm of the 

MWM. The procedure for this task was identical to that of the reference memory paradigm 

except the Plexiglas platform was placed in a randomized new location at the start of each testing 

day.  

Passive avoidance (PA) task. 

The PA task was utilized to assess non-spatial learning and memory on days 9-14 post 

injury as described in accordance to previously detailed methods (Hamm et al., 1993) with 

alterations in the number of testing days. The passive avoidance device consisted of two 

adjoining compartments, one illuminated (20.3 x 15.9 x 21.3 cm) and one darkened (20.3 x 15.9 

x 21.3 cm), divided by a guillotine door (Med Associates Inc., St. Albans, VT; Figure 6). The 

floor of the compartments consisted of steel rods capable of delivering an electric footshock. The 

electric shock was delivered by a Programmable Animal Shocker (Med Associates Inc.). The 

device was cleaned with 70% EtOH between each testing session to remove all olfactory cues. A 

stop watch was used to record the amount of time spent in the illuminated compartment. 

Procedure. 

On post-injury day nine each rat was placed in the illuminated compartment. As soon as 

the rat crossed into the darkened compartment, the guillotine door was closed and the animal 

received an electric footshock (1.5 mA, 1 second). Following the footshock, the rat was removed 

from the apparatus and returned to its home cage.  

On post-injury days 10-14 rats were tested for the retention of the PA response. Rats were 

placed in the illuminated compartment and the latency for the animal to cross into the darkened 

compartment was recorded. No shock was delivered during testing. Animals that did not 
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crossover into the darkened compartment were allowed to remain in the illuminated 

compartment for the full 5 minutes and assigned a latency of 300 seconds. Rats received one trial 

per session, one session per day for five days. 

Histology 

On day 31 post injury, rats were anesthetized with a lethal dose of sodium pentobarbital 

(Euthasol, Virbac Animal Health; 0.3 mL, i.p.). Once eye-blink and pedal responses disappeared, 

rats were transcardially perfused with ice cold 0.9% phosphate buffered saline (PBS), followed 

by 10% phosphate buffered formalin (PBF). After the brains were removed from the skull, they 

were post-fixed for one day in PBF. Brains were then placed in a 30% sucrose solution for three 

days. Following this, serial sections (40 µm thick) were sliced using a sliding microtome with an 

electronic freezing stage and collected in a phosphate buffer solution. 

Cresyl-violet staining. 

A series of slices transversing the lesion cavity (+0.50 to +4.20 mm relative to bregma) 

and matching sections from shams were mounted on gelatin-subbed slides for staining. The 

slices were rehydrated by sequential washes of xylene, 95% EtOH, 70% EtOH, 50% EtOH, and 

distilled water. The slices were then stained with cresyl-violet and dehydrated by sequential 

washes of distilled water, 50% EtOH, 70% EtOH, 95% EtOH, 95% EtOH + Glacial Acetic Acid, 

100% EtOH, and xylene. The slices were then cover-slipped and prepared for light microscopy 

to examine the extent of the lesion. 

 Lesion analysis. 

Five sections transversing the lesion cavity were selected for analysis (+0.50, +1.70, 

+2.70, +3.70, and +4.20 mm relative to bregma). The extent of the lesion was analyzed with an 

Olympus microscope (BX-51) and an Olympus 13.5-megapixel digital camera (DP-70). The 
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areas of the lesioned tissue were calculated using imaging software (Image Tool) according to 

previous studies (Hoane, Kaufman, Vitek, & McKenna, 2009; Hoane et al., 2008). For the 

injured animals, the total brain areas were calculated by adding the two hemispheres together. 

The Calvalieri method was then used to calculate the volume (Coggeshall, 1992). The number of 

sections (5) was then multiplied by the thickness (40 µm) and the average area of the brain 

sections. This subsequent volume was then compared to the sham group. 

Data Analysis 

Dig task. 

The accuracy of the rats on each of the four scent discriminations was recorded. All 

analyses were run based on the assumptions of normality being met. A linear mixed effects 

model was used to assess rat performance as a function of Experimental Group (mTBI, TBI, 

sham) x Secondary Task (NOR, MWM, PA) x Discrimination (simple discrimination 1, reversal 

1, simple discrimination 2, reversal 2) x Day x Trial (the latter two IVs were entered as 

continuous linear predictors). Planned comparisons were used to assess specific group 

differences. A significance level of p less than .05 was used for all statistical analyses. 

Novel object recognition (NOR) task. 

The percentage of time the rats explored the novel object was recorded for each testing 

day. All analyses were run based on the assumptions of normality being met. A linear mixed 

effects model was used to assess rat performance as a function of Experimental Group (mTBI, 

TBI, sham) x Secondary Task (Dig, MWM, PA) x Day (the latter IV was entered as a continuous 

linear predictor). Planned comparisons were used to assess specific group differences. A 

significance level of p less than .05 was used for all statistical analyses. 
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Morris water maze (MWM). 

The latencies for the rats to reach the platform were recorded for each testing day. All 

analyses were run based on the assumptions of normality being met. A linear mixed effects 

model was used to assess rat performance as a function of Experimental Group (mTBI, TBI, 

sham) x Secondary Task (Dig, NOR, PA) x Testing (Pre-injury Testing, Post-injury Testing) x 

Day (the latter IV was entered as a continuous linear predictor). Planned comparisons were used 

to assess specific group differences. A significance level of p less than .05 was used for all 

statistical analyses. 

Passive avoidance (PA) task. 

The latencies for the rats to enter into the darkened compartment were recorded for each 

testing day. All analyses were run based on the assumptions of normality being met. A linear 

mixed effects model was used to assess rat performance as a function of Experimental Group 

(mTBI, TBI, sham) x Secondary Task (Dig, NOR, MWM). Planned comparisons were used to 

assess specific group differences. A significance level of p less than .05 was used for all 

statistical analyses. 

Lesion analysis. 

All analyses were run based on the assumptions of normality being met. The brain 

volume of each rat was analyzed using a one-way between subjects ANOVA. Planned 

comparisons were used to assess specific group differences. A significance level of p less than 

.05 was used for all statistical analyses. 
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CHAPTER 3 

RESULTS 

Of the 72 rats used in this study, eight were excluded from analyses based upon a 

predetermined anatomical criterion (absence of sufficient bilaterality of the craniotomy). The 

distribution of the remaining 64 rats by both behavioral task and experimental group are shown 

in Table 2. 

Behavioral Results 

 Dig task. 

The accuracy of the rats on each of the four scent discriminations was recorded. A linear 

mixed effects model was used to assess rat performance as a function of Experimental Group 

(mTBI, TBI, sham) x Secondary Task (NOR, MWM, PA) x Discrimination (simple 

discrimination 1, reversal 1, simple discrimination 2, reversal 2) x Day x Trial (the latter two IVs 

were entered as continuous linear predictors). The fixed effects from the model are shown in 

Table 3. The effects of Discrimination, Day, and Trial were allowed to randomly vary across 

subjects, capturing both within-subject dependencies and individual differences (Gelman & Hill, 

2006). 

There were significant main effects of Experimental Group, F(2, 22.73) = 5.33, p = .013, 

Discrimination, F(3, 71.75) = 11.41, p < .0001, Day, F(1, 23.5) = 147.55, p < .0001, and Trial, 

F(1, 65.62) = 39.29, p < .0001. There were also significant interactions of Experimental 

Group*Day, F(2, 23.53) = 7.01, p = .004, Discrimination*Day, F(3, 63.39) = 6.32, p < .0008, 

Day*Trial, F(1, 153.8) = 15.12, p = .0001, and Secondary Task*Day*Trial, F(2, 112.6) = 3.32, p 

= .040. 
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For the main effect of Experimental Group, planned comparisons indicated that, overall, 

the sham group (LSM = 0.81) was significantly more accurate on the scent discriminations 

compared to the TBI group (LSM = 0.62), p < .05. Additionally, the mTBI group (LSM = 0.77) 

was significantly more accurate on the scent discriminations compared to the TBI group, p < .05. 

No differences in accuracy occurred between the sham and mTBI groups, p >.05. For the main 

effect of Discrimination, planned comparisons indicated that rats were significantly more 

accurate on simple discrimination 2 (LSM = 0.88) and significantly less accurate on reversal 1 

(LSM = 0.58), p < .05. No differences in accuracy occurred on either simple discrimination 1 

(LSM = 0.73) or reversal 2 (LSM = 0.77), p > .05 (Figure 7). For the main effect of Day, the 

positive slope (slope = .101, SE = .008) indicated that overall accuracy increased across testing 

days. The largest improvement in accuracy occurred from testing days 1-5 (Figure 8). For the 

main effect of Trial, the positive slope (slope = .017, SE = .003) indicated that accuracy 

increased within each testing day; however, the effect was relatively minor (Figure 9). 

For the Experimental Group*Day interaction, the improvement in accuracy across testing 

days was equal for both the sham (slope = .123) and mTBI groups (slope = .124), SE for the 

slope difference was .012. The similarities in accuracy improvement occurred from testing days 

1-5. No significant improvement in accuracy across testing days occurred for the TBI group 

(slope = .056) (Figure 8). For the Discrimination*Day interaction, the improvement in accuracy 

across testing days was largest on reversal 1 (slope = .127) followed by reversal 2 (slope = .114), 

SE for the slope difference was .008. A significant improvement in accuracy across testing days 

also occurred on simple discrimination 1 (slope = .089, SE = .008) and simple discrimination 2 

(slope = .074, SE = .008) (Figure 8). For the Day*Trial interaction, a significant improvement in 

accuracy occurred across trials across testing days (slope = .096, SE = .001); however, the effect 
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was minor with the largest improvement in accuracy occurring early on during testing (Figure 

10). For the Secondary Task*Day*Trial interaction, rats also assigned to the NOR task (slope = 

.124) had a significant improvement in accuracy across trials across testing days compared to 

rats also assigned to either the MWM (slope = .105) or the PA task (slope = .074), SE for the 

slope difference was .002 (Figure 11). 

Novel object recognition (NOR) task. 

The percentage of time the rats explored the novel object was recorded for each testing 

day. A linear mixed effects model was used to assess rat performance as a function of 

Experimental Group (mTBI, TBI, sham) x Secondary Task (Dig, MWM, PA) x Day (the latter 

IV was entered as a continuous linear predictor). The fixed effects from the model are shown in 

Table 4. The effect of Day was allowed to randomly vary across subjects, capturing both within-

subject dependencies and individual differences. 

There was a significant main effect of Day, F(1, 18.27) = 17.95, p = .0005. No other 

effects were significant. 

For the main effect of Day, the positive slope (slope = .100, SE = .024) indicated that 

exploration of the novel object was greater on post-injury testing day 12 compared to post-injury 

testing day 10 (Figure 12).  

The type of interaction that occurred with the novel object (number of sniffs, touches, and 

rears) was recorded for each testing day. A linear mixed effects model was used to assess rat 

performance as a function of Experimental Group (mTBI, TBI, sham) x Secondary Task (Dig, 

MWM, PA) x Day (the latter IV was entered as a continuous linear predictor). The effect of Day 

was allowed to randomly vary across subjects, capturing both within-subject dependencies and 

individual differences. 
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There was a significant main effect of Day for both time spent sniffing, F(1, 22.09) = 

6.85, p = .016, and time spent rearing toward the novel object, F(1, 16.75) = 4.73, p = .044. Time 

spent touching the novel object was not significant, F(1, 19.44) = 1.89, p = .184, (Figure 13). No 

other effects were significant. 

Morris water maze (MWM). 

An analysis was performed on post-injury rat swim speed (distance divided by latency) to 

examine consistency between the two measures recorded. Prior to analyzing, a log 

transformation was performed on the latency and distance data points in order to correct for 

skewness in the distribution of the data. A linear mixed effects model was used to assess rat 

performance as a function of Experimental Group (mTBI, TBI, sham). No experimental group 

differences were found, F(2, 23) = 1.45, p = .255, indicating that motor deficits were not a 

significant factor in latency scores. As a result of reliability between the two measures, 

remaining MWM analyses used latency as the dependent variable.  

The latencies for the rats to reach the platform were recorded for each testing day. Prior 

to analyses, a log transformation was performed on the latency data points in order to correct for 

skewness in the distribution of the data. A linear mixed effects model was used to assess rat 

performance as a function of Experimental Group (mTBI, TBI, sham) x Secondary Task (Dig, 

NOR, PA) x Testing (Pre-injury Testing, Post-injury Testing) x Day (the latter IV was entered as 

a continuous linear predictor). The fixed effects from the model are shown in Table 5. The 

effects of Testing and Day were allowed to randomly vary across subjects, capturing both 

within-subject dependencies and individual differences. 
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There were significant main effects of Experimental Group, F(2, 26.86) = 7.07, p = .003, 

Testing, F(1, 27.36) = 8.91, p = .001, and Day, F(1, 36.75) = 34.76, p < .0001. There was also a 

significant interaction of Testing*Day, F(1, 32.72) = 16.95, p = .0002. 

For the main effect of Experimental Group, a planned comparison indicated that, overall, 

the sham group (LSM = 13.39) took significantly less time to reach the platform compared to the 

TBI group (LSM = 22.32), t(26.86) = 14.13, p = .001. No differences in time occurred between 

the sham and mTBI groups (LSM = 17.03), t(26.86) = 3.13, p = .088, or the mTBI and TBI 

groups, t(26.86) = 3.60, p = .069, (Figure 14). For the main effect of Testing, rats took 

significantly less time to reach the platform during pre-injury testing (LSM = 14.42) compared to 

post-injury testing (LSM = 20.52), F(1, 27.36) = 8.91, p = .001 (Figure 14). For the main effect 

of Day, the negative slope (slope = -.127, SE = .022) indicated that performance of the rats 

improved across each testing day. The improvement in performance was greatest pre-injury 

(Figure 14).  

For the Testing*Day interaction, the improvement in performance across testing days was 

larger pre-injury (slope = -.238) compared to post-injury (slope = -.015), SE for the slope 

difference was .027 (Figure 14). 

Passive avoidance (PA) task. 

The latencies for the rats to enter into the darkened compartment were recorded for each 

testing day. Prior to analyses, a log transformation was performed on the latency data points in 

order to correct for skewness in the distribution of the data. A linear mixed effects model was 

used to assess rat performance as a function of Experimental Group (mTBI, TBI, sham) x 

Secondary Task (Dig, NOR, MWM). The fixed effects from the model are shown in Table 6.  
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There were significant main effects of Experimental Group, F(2, 24) = 12.03, p = .0002, 

and Secondary Task, F(2, 24) = 3.68, p = .040. 

For the main effect of Experimental Group, a planned comparison indicated that, overall, 

the sham group (LSM = 133.96) took significantly more time to enter the darkened compartment 

compared to both the mTBI (LSM = 43.35), t(24) = 7.63, p = .011, and TBI groups (LSM = 

19.25), t(24) = 23.73, p < .0001. No differences in time occurred between the mTBI and TBI 

groups, t(24) = 3.76, p = .064, (Figure 15). For the main effect of Secondary Task, a planned 

comparison indicated that rats also assigned to the Dig task (LSM = 89.83) took significantly 

more time to enter the darkened compartment compared to rats also assigned to the MWM (LSM 

= 31.07), t(24) = 6.75, p = .016 (Figure 16). No differences in time occurred between rats also 

assigned to the NOR task (LSM = 40.07), t(24) = 3.91, p = .059. 

The same linear mixed effects model was used to assess the fear response of each rat as a 

function of Urination (presence of urine, absence of urine) x Defecation (amount of fecal boli). 

Urination and defecation. 

Regarding urination, a significant interaction of Experimental Group*Day, F(2, 24) = 

4.64, p = .020, occurred. No other effects were significant. 

For the Experimental Group*Day interaction, across testing days, urine production for 

the sham group decreased (slope = -.103) while the mTBI (slope = .007) and TBI groups (slope = 

.000) had no change, SE for the slope difference was .024, (Figure 17). 

No difference in the total number of fecal boli produced occurred.  
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Histological Results 

 Lesion analysis. 

A one-way between subjects ANOVA was used to assess differences in brain volume 

between rats perfused on post-injury day 18 compared to post-injury day 47. No differences in 

brain volume occurred between the mTBI rats perfused on post-injury day 18 and those perfused 

on post-injury day 47, F(1, 18) = 0.08, p = .788. No differences in brain volume also occurred 

between the TBI rats perfused on post-injury day 18 and those perfused on post-injury day 47, 

F(1, 18) = 0.03, p = .860. As a result of these findings, remaining analyses used a combination of 

both post-injury brains. 

The brain volume was calculated for each rat and analyzed using a one-way between 

subjects ANOVA. The analysis showed a significant main effect of Experimental Group, F(2, 

61) = 60.93, p < .001. A planned comparison indicated that both the mTBI (M = 9.94), t(61) = 

8.74, p < .001, and TBI groups (M = 9.55), t(61) = 9.98, p < .001, had significant reductions in 

total brain volume compared to the sham group (M = 12.70). No differences in lesion size 

occurred between the mTBI and TBI groups, t(61) = 1.19, p = .241, (Figure 18). Representative 

histological images are shown in Figure 19. 

Relationship between Behavioral Performance and Brain Volume 

The findings that differences in behavioral performance occurred between the mTBI and 

TBI rats on the Dig task without there being any differences in brain volume prompted further 

analyses. Thus, the relationship between performance of the mTBI and TBI rats on the Dig task 

and their respective brain volumes was assessed. 
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Dig task.  

A Pearson‟s correlation was run to determine the relationship between brain volume and 

accuracy on each of the four scent discriminations (simple discrimination 1, reversal 1, simple 

discrimination 2, reversal 2) between mTBI and TBI rats. A positive correlation occurred on 

reversal 2, r = .522, p = .022, indicating that rats with less brain damage (higher brain volumes) 

performed more accurately on the final discrimination compared to rats with more brain damage 

(lower brain volumes) (Table 7). No relationship between brain volume and accuracy occurred 

on any other discrimination. 
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CHAPTER 4 

DISCUSSION 

Four primary research hypotheses were made regarding the current study. (1) 

Performance deficits on the four tasks (Dig, novel object recognition [NOR], Morris water maze 

[MWM], passive avoidance [PA]) would occur in frontally-injured rats compared to non-injured, 

sham rats. (2) Mildly-injured (mTBI) rats would exhibit fewer performance deficits on all four 

tasks compared to moderate-to-severely-injured (TBI) rats. (3) Rats assigned to either the MWM 

or Dig task would show improved performance on the assigned secondary task while rats 

assigned to the PA task would show a decrease in performance on the assigned secondary task. 

(4) MTBI rats would have less brain damage (higher brain volumes) compared to TBI rats. Of 

the four primary research hypotheses, three were partially supported by the findings of this study. 

The following section will first summarize and then address these findings. 

Summary of the Findings 

Hypothesis 1. 

It was hypothesized that performance deficits on the four tasks would occur in frontally-

injured rats compared to non-injured, sham rats. The results from the study indicated that an 

injury effect was shown in three of the four tasks (Dig, MWM, PA).  

On the Dig task, sham rats were significantly more accurate on the scent discriminations 

compared to TBI rats. Sham rats also demonstrated improved performance across testing 

compared to TBI rats. This improvement was most transparent during the reversal performance 

(52% accuracy during reversal 1, 74% accuracy during reversal 2). 

On the MWM, sham rats were significantly faster at locating the platform throughout 

testing compared to TBI rats. 
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 On the PA task, sham rats took significantly more time to enter the darkened 

compartment compared to both mTBI and TBI rats. Sham rats also demonstrated significant 

decreases in urine production across testing compared to both mTBI and TBI rats. 

 Hypothesis 2. 

It was hypothesized that mTBI rats would exhibit fewer performance deficits on all four 

tasks compared to TBI rats. The results from the study indicated that only one of the four tasks 

was sensitive enough to detect differences in injury severity. 

On the Dig task, mTBI rats were significantly more accurate on the scent discriminations 

compared to TBI rats. MTBI rats also demonstrated improved performance across testing 

compared to TBI rats. 

Hypothesis 3. 

It was hypothesized that rats assigned to the MWM or the Dig task would show improved 

performance on an assigned secondary task while rats assigned to the PA task would show 

decreased performance on an assigned secondary task. The results from the study indicated that 

this effect occurred, but only in one of the hypothesized three tasks.  

On the Dig task, rats also assigned to the NOR task had a significant improvement in 

accuracy across trials across testing days compared to rats also assigned to the MWM or PA task.  

 On the PA task, it was believed that rats also assigned to the Dig task took significantly 

more time to enter the darkened compartment compared to rats also assigned to the MWM.  

In graphing out the data, however, it appears that this finding was the result of a floor effect 

caused by the limited variability of the rats also assigned to the MWM (Figure 16). 
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Hypothesis 4. 

 It was hypothesized that mTBI rats would have less brain damage (higher brain volumes) 

compared to TBI rats. Interestingly, no differences in lesion size occurred between the mTBI and 

TBI rats (Figure 18). 

Discussion of the Findings 

The injury that was administered in this study resulted in cell death and tissue loss to a 

range of medial prefrontal cortical (mPFC) regions including the cingulate, prelimbic, and 

infralimbic cortex (Figure 20). As a direct result, input from various subcortical regions (e.g., 

amygdala, hippocampal formation) and neuromodulatory systems was also lost. As evident by 

the vast amount of research on the mPFC, damage to any of these regions can lead to 

impairments in learning, memory, and inhibition (Dalley, Mar, Economidou, & Robbins, 2008; 

Euston, Gruber, & McNaughton, 2012; Kolb, 1984, 1990). What follows is a discussion of the 

findings of this study, specifically how impairments in learning, memory, and inhibition caused 

by damage to regions of the mPFC can best explain the performance of the frontally-injured rats 

on the four behavioral tasks. 

Performance by the frontally-injured rats on the Dig task was varied. The results indicate 

that mTBI rats were significantly more accurate than TBI rats on the scent discriminations. The 

distribution of data for each mTBI rat supports this finding (Figure 7). As a group, the mTBI rats 

performed similarly well on the Dig task. The results also indicate that TBI rats made no 

improvements in accuracy across testing days and performed at chance level for three of the four 

scent discriminations (54% accuracy on simple discrimination 1, 55% accuracy on reversal 1, 

58% accuracy on reversal 2). This indicates that TBI rats were unable to learn the changing 

contingencies of the different discriminations and, instead, adopted a bias toward one side (i.e., 
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only dug in the right or left scent cup for each session) ensuring reinforcement half of the time. 

However, the distribution of data for each TBI rat indicates learning slowly occurred (54% 

accuracy on simple discrimination 1, 68% accuracy on simple discrimination 2) for nearly half of 

the rats (Figure 7). For the few rats that were unable to learn the changing contingencies of the 

Dig task, the positive correlation between performance and brain volume (Table 7) indicates that 

these rats had more severe brain damage affecting both the dorsal (cingulate) and ventral mPFC 

(prelimbic cortex, infralimbic cortex). While damage to the dorsal mPFC did not appear to 

influence performance on the Dig task as evident by mTBI rat performance, damage to the 

ventral mPFC may have as damage to this region has been shown to produce impairments in 

both reinforcement learning and response inhibition. Research has shown that dopaminergic 

signals from the ventral tegmental area to the ventral mPFC implements reward learning by 

signaling whenever behavior should be redirected from a previously reinforcing stimulus to one 

in which a more valuable goal can be achieved. This signal prompts the exploration of the more 

valuable goal while interference of this signaling has been shown to lead to perseverative 

behavior (i.e., exploitation) (Cohen, McClure, & Yu, 2007; Montague, Hyman, & Cohen, 2004). 

Research has also shown that lesions of the ventral mPFC leads to increases in both impulsive 

choice as assessed by delay discounting (i.e., preference for smaller, immediate over larger, 

delayed rewards) and increases in premature responding accompanied by fast response latencies 

as assessed by reaction time tasks (Chudasama et al., 2003; Churchwell, Morris, Heurtelou, & 

Kesner, 2009; Narayanan, Horst, & Laubach, 2006). For the rats that performed at chance on the 

scent discriminations of the Dig task, it is unclear whether impairments in reinforcement 

learning, impairments in behavioral inhibition, or a third variable accounted for the performance 

deficits. Interference of the signal from the ventral tegmental area due to ventral mPFC cell loss 
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would account for the perseverative behavior (i.e., side bias) in these rats. However, as these rats 

were not allowed to correct for incorrect choices and as the scent cups were generally 

approached from the same direction, impairments in behavioral inhibition (i.e., rats consistently 

digging in the first scent cup that was approached) would also account for the behavior. Without 

a specific task to rule out impulsivity, it is difficult to assert that either impairment attributed to 

the rats‟ behavior. However, further support would be lent to the findings of the Dig task by 

assessing the extent to which either impairment contributed to the deficits also see on the NOR 

and PA tasks. 

Performance by the rats on the NOR task was comparable. The results indicate that all 

rats spent more time exploring the novel object on post-injury testing day 12 (Figure 12). These 

findings support the notion that regions of the mPFC are not important for the discrimination 

of novel or familiar objects (Barker, Bird, Alexander, & Warburton, 2007; 

Cross, Brown, Aggleton, & Warburton, 2012; Nelson, Cooper, Thur, Marsden, & Cassaday, 

2011). These findings also indicate something reinforcing about the properties of the object used 

on that testing day, a wooden cube (Figure 4). Unlike the other objects used in this task, the 

wooden cube had a solid base, large surface area, and accessible corners constructed from wood 

making it potentially reinforcing for animals that commonly explore environments through 

climbing. This was in contrast to the smaller base and smooth surface area of the other objects 

used in the task (glass containers, wooden sphere). Of particular interest with this task is that rats 

assigned to both the NOR and Dig task performed more accurately on the scent discriminations 

of the Dig task (Figure 11). It is unclear if this indicates that exploration on the NOR task by the 

rats led to increased exploration (and subsequent accuracy) on the Dig task, if frontally-injured 

TBI rats assigned to both NOR and Dig tasks had less damage to the ventral mPFC leading to 
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less overall behavioral deficits, or if some aspect of the other secondary tasks (MWM, PA) led to 

a decrease in accuracy on the Dig task. What is clear is that behavior on the NOR task appears to 

influence behavior on the Dig task and vice versa. If the influence of the NOR task on the Dig 

task is positive (i.e., performance on NOR improves performance on Dig), it could indicate a 

potential therapeutic tool to improve performance on the Dig task as well as other decision-

making tasks. 

Performance by the frontally-injured rats on the PA task was also comparable. The results 

indicate that both mTBI and TBI rats entered the darkened compartment significantly faster on 

post-injury testing days 10-14 compared to non-injured, sham rats (Figure 15). These findings 

indicate similarities in the behavior of the frontally-injured rats on the PA task implicating 

impairments in response inhibition, fear learning, or both. A study assessing behavior after 

moderate-to-severe fluid percussion injury to the right parietal cortex found that, compared to 

non-injured rats, injured rats performed significantly worse on a PA task, yet significantly better 

on an active avoidance task (Hogg et al., 1998). The researchers concluded that decreases in 

freezing behavior by the injured rats prompted performance on both tasks. Research has also 

shown that memory for fearful events are disrupted after damage to or inactivation of regions of 

the mPFC (anterior cingulate, prelimbic cortex) due to the interference of dopaminergic signals 

from the amygdala to the mPFC (Lauzon, Bishop, & Laviolette, 2009). These impairments have 

been shown to occur during stimulus-shock (tone, odor) or context-shock (passive avoidance) 

pairings and do not appear to be affected by delay (Bissiere et al., 2008; Blum, Hebert, & Dash, 

2006; Corcoran & Quirk, 2007; Lauzon et al., 2009; Riekkinen, Kuitunen, & Riekkinen, 1995). 

Impairments in fear learning also do not appear to be dependent on infralimbic cortex 

involvement (Morgan, Romanski, & LeDoux, 1993; Quirk, Russo, Barron, & Lebron, 2000). If 
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decreases in behavioral inhibition influenced TBI rat performance on the Dig task, it seems 

likely that it would also influence performance on the PA task. Combining impulsive behavior 

with impairments in fear learning (i.e., ability to remember the footshock) would explain the 

consistently short latencies seen in this group. However, impulsive behavior does not easily 

explain performance by mTBI rats given their performance on the Dig task. However, the speed 

at which the majority of mTBI rats entered the darkened compartment compared to sham rats 

does indicate some level of diminishing fear response on the part of the mTBI rats. Perhaps entry 

into the darkened compartment on testing day 10 by the mTBI rats without receiving a footshock 

reinforced entry into the darkened compartment on the subsequent testing days. As deficits in 

fear learning have been shown to occur with damage to the anterior cingulate (Bissiere et al., 

2008; Blum et al., 2006; Riekkinen et al., 1995), the diminishing fear response by mTBI rats 

(i.e., faster entry into the darkened compartment) holds true.  

In the final task, performance by the frontally-injured rats on the MWM was varied. The 

results indicate that, while no differences occurred with mTBI rats, TBI rats took significantly 

longer to locate the hidden platform compared to sham rats. Of interest with these findings is that 

the frontally-injured rats performed consistently throughout testing regardless of the task used 

(retrograde amnesia vs. working memory). For example, throughout testing it took TBI rats a 

mean of 55-65 seconds to locate the platform while mTBI rats located it within a mean of 25-35 

seconds. This was consistent across both retrograde amnesia (used to assess remembering) and 

working memory (used to assess learning) tasks indicating that, within each group, the frontally-

injured rats may have relied on the same strategy to locate the platform. Research has shown that 

dense projections connecting the hippocampus to the dorsal (cingulate) and ventral (prelimbic 

cortex) mPFC implements behavioral flexibility such that, after injury to the mPFC, rats have 
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difficulty shifting their behavior away from a previously correct goal resulting in perseverative 

behavior (de Bruin, Sanchez-Santed, Heinsbroek, Donker, & Postmes, 1994; Euston et al., 2012; 

Gemmell & O‟Mara 1999; Jay & Witter, 1991; McDonald, King, Foong, Rizos, & Hong, 2008; 

Montague et al., 2004; St-Laurent, Petrides, & Sziklas, 2009; Van Groen & Wyss, 1990). In one 

study, rats were given multiple trials per session to locate a hidden platform that was relocated at 

the start of each session. While non-injured rats were able to swim directly to the platform by the 

second trial, mPFC-injured rats were not. However, with continued practice at each location the 

mPFC-injured rats were eventually able to swim directly to the platform. The findings of the 

study indicated that damage to the mPFC impaired the behavioral flexibility of these rats, not 

their ability to navigate spatially (McDonald et al., 2008). Regarding the current study, 

consistent, within group performance by the frontally-injured rats on both the retrograde amnesia 

and working memory tasks is consistent with the notion that damage to the mPFC resulted in 

impairments in the behavioral flexibility of these rats. Overall, the finding that impairments in 

behavioral flexibility best explain TBI rat performance deficits on three of the four behavioral 

tasks (Dig, PA, MWM) suggesting that mPFC-related deficits have the ability to permeate 

multiple behavioral tasks regardless of what the task is believed to assess.  

Four behavioral tasks were used in this study to assess cognitive functioning following 

frontal TBI. Each task was selected based on 1) its use as an assessment measure of cognitive 

behavior and 2) its prevalence in the TBI field.  Prior to running the study, it was assumed each 

task would pinpoint a specific impairment after frontal TBI (spatial and non-spatial learning and 

memory, object recognition, decision-making). It is now believed that the tasks were not 

assessing specific impairments, but one or two impairments (behavioral flexibility/reinforcement 

learning, behavioral inhibition) that pervaded throughout three of the four tasks. The research 
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used to support this theory consisted primarily of lesions studies focusing on specific regions of 

the mPFC. Unfortunately, the mPFC is a highly complex region that contains multiple structures 

involved in numerous executive functions. The sheer amount of damage produced by the TBI in 

this study may have resulted in global impairments that were oversimplified through the use of 

lesion studies. Thus, in order to get a better understanding of how effective behavioral tasks are 

in the assessment of frontal TBI for the purpose of therapy development, it is imperative that 

more research be conducted using frontal TBI models. 
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CHAPTER 5 

CONCLUSION 

The purpose of this study was to better understand the effectiveness of behavioral tasks 

used in the TBI field for the assessment of frontal injury. The results of the study indicated that 

impairments in behavioral flexibility/reinforcement learning and behavioral inhibition resulted in 

performance deficits on each of the four tasks (behavioral flexibility/reinforcement learning on 

Dig, PA, and MWM; behavioral inhibition on Dig and PA). However, the extent of brain damage 

that occurred in this study was significant and the reliance on lesion work to support the findings 

may have resulted in an oversimplification of the impairments. Unfortunately, the past decade 

has seen little advancement in the TBI field with regard to rodent frontal brain injury. Until more 

research is conducted that can better explain the results of this study, the source of the deficits 

seen on the four behavioral tasks must be inferred through lesion work.  

What do the results of this study mean for human frontal TBI? First, the results of this 

study indicate that deficits in learning and inhibition are major problems after injury. The effect 

size for each of the affected behavioral tasks was large, explaining 13-29% of the overall 

variance (Dig task ηρ² = .24, PA task ηρ² = .13, MWM ηρ² = .29). Second, the results of this 

study may also be applied to humans. Research indicates that deficits in learning and inhibition 

are commonly reported to occur in humans after TBI. Regarding behavioral inhibition, Draper, 

Ponsford, and colleagues found that impairments in response inhibition can occur up to 10 years 

post-TBI in individuals with a wide range of injury severities. Using the same database, these 

researchers also found that a significant relationship between injury severity and cognitive 

impairment exists (Draper & Ponsford, 2008; Ponsford, Draper, & Schonberger, 2008). 

Regarding reinforcement learning, Schlund and colleagues found that TBI reduced the sensitivity 
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to consequences and reinforcement contingencies. In one study, individuals with brain injury 

made less adaptive choices and earned significantly less money on a task that required the 

pressing of a response key under a series of concurrent response-reinforcer contingencies that 

periodically delivered money for responding and not responding (Schlund & Pace, 2000). In 

another study, individuals with brain injuries failed to discriminate among significant 

contingencies on a delay discounting task (Schlund, 2002). Regarding fear learning, Bryant 

(2010) theorizes that overwhelming stress and fear felt at the time of injury may increase ones 

susceptibility for developing posttraumatic stress and other emotional disorders such as anxiety 

and depression. This theory is of utmost importance with regard to combat TBI.  

Research findings like the ones listed above are thorough in listing the types of 

impairments seen after frontal TBI. Unfortunately, they do little to recommend treatment. In 

replicating what appear to be similar impairments, this study presents an opportunity for 

treatment development. While this study can do nothing to alleviate the biomolecular and 

physiological changes that occur following TBI, through the implementation of behavioral and 

pharmacotherapies, this study can help to improve recovery of function following frontal injury. 

However, before potential therapies can be considered, the findings from this study must be 

replicated. In doing so a few alterations to the study design should be considered.  

1. Future studies should include an even “milder” injury. The cell death and tissue loss that 

resulted from the “mild” TBI was determined to be more moderate damage than mild. 

Including a fourth group (sham, mild, moderate, severe) into future studies would help to 

clarify why significant differences occurred between sham and mTBI rats on the MWM, 

but not on the Dig and PA tasks.     
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2. Future studies should also consider the strengths and weaknesses of different rodent 

strains available. In certain cases, frontal TBI can lead to rodent temperament changes 

(e.g., extreme fear, aggression, hyperactivity) making the calm temperament and easy 

going demeanor of Sprague-Dawleys (SDs) excellent research subjects. Post-injury, SDs 

are easier to work with compared to some of the more active strains. However, when 

conducting cognitive research, it has been suggested that Long-Evans (LEs) perform 

better (Andrews, Jansen, Linders, Princen, & Broekkamp, 1995; Tonkiss, Shultz, & 

Galler, 1992). Long-Evan rats have been shown to be more accurate on the MWM and 

are able to discriminate novel from known objects on two-choice object discrimination 

tests. Unfortunately, research assessing strain differences after TBI has not been as 

straightforward. After FPI, no performance differences occurred between SDs and LEs 

on the MWM working memory task and between SDs and Fischer 344s on the MWM 

reference memory task (Reid et al., 2010; Tan, Quigley, Smith, & Hoane, 2008). Since 

strain selection does not appear to be a significant predictor of cognitive ability post-TBI, 

a strain should be selected based upon temperament and the ability to recover well after 

surgery. 

3. Future studies using the same behavioral tasks should also consider making specific task 

changes.  

a. Regarding the Dig task, rats should be tested for the same number of days instead 

of being moved on after reaching a predetermined criterion. The variability in the 

number of testing days on the Dig task not only limited the way in which the data 

could be analyzed, but it altered the environment of the Dig rats such that some 

were run for a short amount of time while others were run much longer.  
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b. Regarding the MWM, more days should be included in the retrograde amnesia 

task. According to McDonald and colleagues (2008), practice on the MWM was 

shown to improve the behavioral flexibility of frontally-lesioned rats in the water 

maze. Adding one or two more testing days to the retrograde amnesia task would 

enable the researcher to see if practice improves performance. 

c. Regarding the PA task, a voltage less than 1.5 mA should be considered. The 

intensity of the 1.5 mA footshock was such that the majority of non-injured, sham 

rats froze in the illuminated compartment for the entirety of testing. A reduction 

in voltage would result in more varied behavior from the sham group and more 

interesting results for the researcher.  

d. An impulsivity measure should be included. Results on a number of the tasks 

suggested an increase in impulsive behavior by the frontally-injured rats. 

However, without an assessment measure it is difficult to know for sure whether 

this occurred in the current study.  

After replicating the findings from this study, different behavioral and pharmacotherapies can be 

administered. Some interesting avenues to explore include 1) Assessing the significant 

interaction between the NOR task and the Dig task. If the influence of object exploration on 

simple discrimination is positive (i.e., performance on NOR improves performance on Dig), it 

could indicate a potential therapeutic tool for individuals who have impairments in decision-

making such as those with frontal TBI. 2) Assessing if and how continued practice on the MWM 

improves behavioral flexibility after mPFC-injury. 3) Assessing how salience might improve 

decision-making ability. If increased exploration of the wooden cube was a result of its salient 

features, it could indicate a potential therapeutic tool for individuals who have impairments in 
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deciding which environmental contingencies to attend to and which to ignore such as those with 

attention deficit disorders. 4) Assessing whether dopaminergic drug administration is able to 

counteract dysfunction after frontal TBI through the upregulation of receptors in regions around 

the damaged tissue. Dopaminergic pharmacotherapies may help to alleviate impairments in 

decision-making and reinforcement learning that occurs as a result of dopamine dysfunction. 

Only through exploration of these and other research questions will we have the ability to treat 

cognitive dysfunction after frontal TBI. The results from the current study indicate that the 

majority of these behavioral tasks have the potential to assess cognitive impairment after TBI. 

However, these results are only a beginning. More work is needed before we can fully 

understand the efficacy of each of these tasks as behavioral assessment measures for cognitive 

functioning after TBI and even more work before we can use these tasks to help those in need. 
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Table 1. 

Behavioral testing groups. 

Behavioral Testing 

Group 

Experimental  

Group 

Behavioral 

Task 1 

Behavioral 

Task 2 

1 

mTBI n = 4 

Dig NOR 
TBI n = 4 

Sham n = 4 

2 

mTBI n = 4 

Dig MWM 
TBI n = 4 

Sham n = 4 

3 

mTBI n = 4 

Dig PA 
TBI n = 4 

Sham n = 4 

4 

mTBI n = 4 

NOR MWM 
TBI n = 4 

Sham n = 4 

5 

mTBI n = 4 

NOR PA 
TBI n = 4 

Sham n = 4 

6 

mTBI n = 4 

MWM PA 
TBI n = 4 

Sham n = 4 
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Table 2. 

Distribution of rats for analyses. 

  mTBI 

n 

TBI Sham 

Task N (n) (n) (n) 

Dig 31 10 9 12 

NOR 32 10 10 12 

MWM 32 10 10 12 

PA 33 10 11 12 
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Table 3. 

Dig task fixed effects. 

Effect F-test p-value 

Exp. Group 5.33  .013* 

Secondary Task 2.38  .115 

Exp. Group*Secondary Task 1.26  .315 

Discrimination        11.41 <.0001* 

Exp. Group*Discrimination 1.42  .220 

Secondary Task*Discrimination 0.09  .997 

Exp. Group*Secondary Task*Discrimination 0.95  .500 

Day      147.55 <.0001* 

Exp. Group*Day 7.01  .004* 

Secondary Task*Day 3.18  .060 

Exp. Group*Secondary Task*Day  1.75  .174 

Discrimination*Day           6.32  .0008* 

Exp. Group*Discrimination*Day  1.36  .243 

Secondary Task*Discrimination*Day  1.20  .319 

Exp. Group*Secondary Task*Discrimination*Day 1.00  .461 

Trial        39.29 <.0001* 

Exp. Group*Trial 1.15  .323 

Secondary Task*Trial 1.58  .216 

Exp. Group*Secondary Task*Trial 0.71  .587 

Discrimination*Trial           1.10  .349 

 
Exp. Group*Discrimination*Trial  1.45  .201 

Secondary Task*Discrimination*Trial  0.63  .705 

Exp. Group*Secondary Task*Discrimination*Trial 0.81  .641 

Day*Trial        15.12  .0001* 

Exp. Group*Day*Trial 0.82  .444 

Secondary Task*Day*Trial 3.32  .040* 

Exp. Group*Secondary Task*Day*Trial  1.04  .391 

Discrimination*Day*Trial           1.63  .182 

Exp. Group*Discrimination*Day*Trial  1.42  .209 

Secondary Task*Discrimination*Day*Trial  0.51  .798 

Exp. Group*Secondary Task*Discrimination*Day*Trial          0.63  .816 
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Table 4. 

Novel object recognition task fixed effects. 

Effect F-test p-value 

Size 
Exp. Group  1.93    .174 

Secondary Task  0.07    .932 

Exp. Group*Secondary Task  1.02    .424 

Day        17.95    .0005* 

Exp. Group*Day  1.96    .169 

Secondary Task*Day  0.28    .763 

Exp. Group*Secondary Task*Day   0.16    .957 
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Table 5. 

Morris water maze fixed effects. 

Effect F-test p-value 

Size 
Exp. Group 7.07 .003* 

Secondary Task 1.03 .372 

Exp. Group*Secondary Task 1.42 .254 

Testing 8.91 .001* 

Exp. Group*Testing 2.84 .076 

Secondary Task*Testing 0.53 .593 

Exp. Group*Secondary Task*Testing 0.27 .895 

Day       34.76 <.0001* 

Exp. Group*Day 0.36 .698 

Secondary Task*Day 2.64 .085 

Exp. Group*Secondary Task*Day  3.15 .055 

Testing*Day        16.95 .0002* 

Exp. Group*Testing*Day  0.94 .400 

Secondary Task*Testing*Day  0.68 .512 

Exp. Group*Secondary Task*Testing*Day 1.83 .147 
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Table 6. 

Passive avoidance task fixed effects.  

Effect F-test p-value 

Size 
Exp. Group       12.03 .0002* 

Secondary Task 3.68 .040* 

Exp. Group*Secondary Task 1.36 .276 
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Table 7. 

Dig task performance and brain volume (mTBI vs. TBI rats) correlation table. 

Discrimination Pearson Correlation p-value 

Size 
Simple Discrimination 1   .350 .142 

Reversal 1 -.042 .863 

Simple Discrimination 2  .236 .332 

Reversal 2  .522 .022* 
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Figure 1. Experimental timeline. The figure shows the experimental timeline for all four 

behavioral tasks.  
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Figure 2. Dig chamber. The image shows the testing chamber for the Dig task. A piece of 

Plexiglass with inserted scent cups, to allow for presentation of the reinforcer, is shown. 
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Figure 3. Novel object recognition testing arena. The image shows the testing arena for 

the novel object recognition task. The blue squares signify the placement of the objects during 

testing.   
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Figure 4. Novel object recognition objects. The images show the objects used in the 

novel object recognition task. (A) The sample object used on testing day 10. (B) The novel 

object used on testing day 10. (C) The sample object used on testing day 12. (D) The novel 

object used on testing day 12. 

  

B A 

D C 



74 
 

 

 

Figure 5. Morris water maze. The image shows the blue fiberglass tank used for the 

Morris water maze. The clear Plexiglas platform, submerged below the surface of the water, is 

pictured in the lower left. 
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Figure 6. Passive avoidance chamber. The image shows the chamber used for the passive 

avoidance task. The metal handle of the guillotine door, separating the illuminated from the 

darkened compartment, is shown protruding from the top of the chamber. 
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Figure 7. Dig scent discrimination performance. The graphs show the accuracy scores for 

all three experimental groups for each of the four scent discriminations with the white dots 

representing data points for individual rats in each group. As a whole, Dig rats were significantly 
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more accurate on simple discrimination 2 and significantly less accurate on reversal 1. By 

experimental group, sham and mTBI rats were significantly more accurate on the scent 

discriminations compared to TBI rats. 
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Figure 8. Dig scent discrimination performance across testing days. The graph shows the 

performance of individual Dig rats on each of the four scent discriminations across each day of 

testing. The improvement in accuracy across testing days was equal for the sham and mTBI 

groups, with the largest improvement in accuracy occurring on reversal 1followed by reversal 2. 

No significant improvement in accuracy occurred for the TBI group. 
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Figure 9. Dig scent discrimination performance across trials. The graph shows the 

accuracy scores for Dig rats across each trial of testing. A slight improvement in accuracy 

occurred across testing trials.  
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Figure 10. Dig scent discrimination performance across trials by testing days. The graph 

shows the accuracy scores for Dig rats across trials during a range of testing days. The largest 

improvement in accuracy occurred early on during testing. 
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Figure 11. Dig scent discrimination performance across trials across testing days by 

secondary task. The graph shows the accuracy scores for Dig rats on each of the secondary tasks 

across trials across testing days. Rats also assigned to the NOR task had a significant 

improvement in accuracy across trials across testing days compared to rats also assigned to the 

MWM or PA task. 
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Figure 12. Novel object exploration across testing days. The graph shows the percentage 

of time the novel object was explored by NOR rats on each post-injury testing day. On post-

injury testing day 12, the novel object was explored significantly longer compared to on post-

injury testing day 10. 
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Figure 13. Novel object interaction across testing days. The graph shows the type and 

amount of interaction that occurred with the novel object by NOR rats on each post-injury testing 

day. On post-injury testing day 12, more time was spent sniffing and rearing toward the novel 

object compared to on post-injury testing day 10. 
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Figure 14. Morris water maze performance by experimental group. The graph shows the 

log latency scores for all three experimental groups across each day of MWM testing. Overall, 

the sham group took significantly less time to locate the platform compared to the TBI group. No 

differences occurred between the sham and mTBI groups or the mTBI and TBI groups. 
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Figure 15. Passive avoidance performance by experimental group. The graph shows the 

log latency scores for all three experimental groups across each day of PA testing. Overall, the 

sham group took significantly more time to enter the darkened compartment compared to both 

the mTBI and TBI groups. No differences occurred between the mTBI and TBI groups. 

 



87 
 

 

  

 

Figure 16. Passive avoidance performance by secondary task. The graph shows the log 

latency scores for PA rats on each of the secondary tasks across testing days. Rats also assigned 

to the Dig task had significantly longer latency scores compared to rats also assigned to the 

MWM.  
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Figure 17. Passive avoidance urination across testing days by experimental group. The 

graph shows urination by all three experimental groups across each day of PA testing. The sham 

group had a greater decrease in urine production over the testing days compared to either the 

mTBI or TBI groups. 
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Figure 18. Lesion analysis. The graph shows the mean (±SEM) brain volume between 

the three experimental groups with the white dots representing data points for individual rats in 

each group. Both the mTBI and TBI groups had significant reductions in total brain volume 

compared to the sham group (*** p < 0.001). No differences in brain tissue volume occurred 

between the mTBI and TBI groups. 
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Figure 19. Histology plate. Shown are representative cresyl violet images of sections 

(+0.48, +1.70, +2.70, +3.70, and +4.20 mm relative to bregma) from a representative sham, 

mTBI, and TBI brain. The area (mm
2
) of each section is included. 
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Figure 20. Severity of damage to the rat brain. Shown are images of one section (+2.70 

mm relative to bregma) from an mTBI and TBI brain illustrating the range of cell death that 

occurred to structures of the prefrontal cortex. Note: M1 (primary motor cortex); M2 (secondary 

motor cortex); Cg1 (cingulate cortex area 1); PrL (prelimbiccortex); Cg (cingulum). 

 

  



92 
 

 

REFERENCES 

Adwanikar, H., Noble-Haeusslein, L., & Levin, H. S. (2011). Traumatic brain injury in animal 

 models and humans. In J. Raber (Ed.), Animal Models of Behavioral Analysis (pp. 237-

 265). New York: Humana Press. 

Al-Adawi, S., Powell, J. H., & Greenwood, R. J. (1998). Motivational deficits after brain injury: 

 A neuropsychological approach using new assessment techniques. Neuropsychology, 

 12(1), 115- 124. 

Andrews, J. S., Jansen, J. H., Linders, S., Princen, A., & Broekkamp, C. L. (1995). Performance  

of four different rat strains in the autoshaping, two-object discrimination, and swim maze 

tests of learning and memory. Physiology & Behavior, 57, 785-790.  

Barker, G. R., Bird, F., Alexander, V., & Warburton, E. C. (2007). Recognition memory for  

objects, place, and temporal order: A disconnection analysis of the role of the medial 

prefrontal cortex and perirhinal cortex. Journal of Neuroscience, 27(11), 2948-4957. 

Barkley, J., Morales, D., Hayman, L. A., & Diaz-Marchan, P. (2007). Static neuroimaging in the 

 evaluation of TBI. In N. Zasler, D. Katz, & R. Zafonte (Eds.), Brain injury medicine: 

 Principles and practice (pp. 129-148). New York: Demos Medical Publishing. 

Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond 

 autonomically to anticipated future outcomes following damage to prefrontal cortex. 

 Cerebral Cortex, 6, 215-225. 

Bissière, S., Plachta, N., Hoyer, D., McAllister, K. H., Olpe, H-R., Grace, A. A., & Cryan, J. F. 

(2008). The rostral anterior cingulate cortex modulates the efficiency of amygdala-

dependent fear learning. Biological Psychiatry, 63, 821-831. 

Blum, S., Hebert, A. E., & Dash, P. K. (2006). A role for the prefrontal cortex in recall of recent 



93 
 

 

and remote memories. Learning and Memory, 17(3), 341-344. 

Bohnen, N., Jolles, J., & Twijnstra, A. (1992). Neuropsychological deficits in patients with 

 persistent symptoms six months after mild head injury. Neurosurgery, 30(5), 692-696. 

Broersen, L. M., & Uylings, H. B. M. (1999). Visual attention task performance in Wistar and 

 Lister hooded rats: Response inhibition deficits after medial prefrontal cortex lesions. 

 Neuroscience, 94(1), 47-57. 

Bryant, R. A. (2010). Posttraumatic stress disorder and mild brain injury: Controversies, causes  

and consequences. Journal of Clinical and Experimental Neuropsychology, 23(6), 718-

728. 

Burkett, E. E., & Bunnell, B. N. (1966). Septal lesions and the retention of DRL performance in  

the rat. Journal of Comparative Physiological Psychology, 62, 468-471. 

Carey, M. E. (1996). Analysis of wounds incurred by U.S. Army Seventh Corps personnel 

 treated in Corps hospitals during Operation Desert Storm, February 20 to March 10, 

 1991. Journal of Trauma, 40(3), 165-169. 

Centers for Disease Control and Prevention. (2011, May 5). Injury prevention and control: 

 Traumatic brain injury. Retrieved from 

 http://www.cdc.gov/TraumaticBrainInjury/index.html  

Chen, S., Pickard, J. D., & Harris, N. G. (2003). Time course of cellular pathology after 

 controlled cortical impact injury. Experimental Neurology, 182, 87-102.  

Choi, D. W. (1988). Calcium-mediated neurotoxicity: Relationship to specific channel types and 

 role in ischemic damage. Trends in Neuroscience, 11(10), 465-469. 

Chudasama, Y., Passetti, F., Rhodes, S. E. V., Lopian, D., Desai, A., & Robbins, T. W. (2003). 



94 
 

 

Dissociable aspects of performance on the 5-choice serial reaction time task following 

lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: 

Differential effects on selectivity, impulsivity and compulsivity. Behavioural Brain 

Research, 146, 105-119. 

Churchwell, J. C., Morris, A. M., Heurtelou, N. M., & Kesner, R. P. (2009). Interactions between  

the prefrontal cortex and amygdala during delay discounting and reversal. Behavioral 

Neuroscience, 123(6), 1185-1196. 

Coggeshall, R. E. (1992). A consideration of neural counting methods. Trends in Neuroscience, 

 15, 9-13. 

Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should I stay or should I go? How the human  

brain manages the trade-off between exploitation and exploration. Philosophical 

Transactions of the Royal Society B, 362, 933-942. 

Corcoran, K. A., & Quirk, G. J. (2007). Activity in prelimbic cortex is necessary for the 

expression of learned, but not innate fears. The Journal of Neuroscience, 27(4), 840-844. 

Corrigan, J. D., Selassie, A. W., & Langlois, J. A. (2010). The epidemiology of traumatic brain  

injury. The Journal of Head Trauma  Rehabilitation, 25(2), 72-80.  

Cross, L., Brown, M. W., Aggleton, J. P., & Warburton, E. C. (2012). The medial dorsal  

thalamic nucleus and the medial prefrontal cortex of the rat function together to support 

associative recognition and recency but not item recognition. Learning & Memory, 20(1), 

41-50.  

Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of 

 Neurology, 50(8), 873-880. 

Dalley, J. W., Mar, A. C., Economidou, D., & Robbins, T. W. (2008). Neurobehavioral 



95 
 

 

mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry.  

Pharmacology, Biochemistry, and Behavior, 90, 250-260. 

Davis, A. R., Shear, D. A., Chen, Z., Lu, X. M., & Tortella, F. C. (2010). A comparison of two 

 cognitive test paradigms in a penetrating brain injury model. Journal of Neuroscience 

 Methods, 189, 84-87. 

Dawodu, S. T. (2007). Traumatic brain injury: Definition, epidemiology, and pathophysiology. 

 Retrieved from http://www.emedicine.com/PMR/topic212.htm 

de Bruin, J. P. C., Sanchez-Santed, F., Heinsbroek, R. P. W., Donker, A., & Postmes, P. (1994).  

A behavioural analysis of rats with damage to the medial prefrontal cortex using the 

Morris water maze: Evidence for behavioural flexibility, but not for impaired spatial 

navigation. Brain Research, 652, 323-333. 

Deets, A. C., Harlow, H. F., Singh, S. D., & Blomquist, A. J. (1970). Effects of bilateral lesions 

 of the frontal granular cortex on the social behavior of rhesus monkeys. Journal of 

 Comparative and Physiological Psychology, 72(3), 452-461. 

Dirnagl, U., & Priller, J. (2005). Focal cerebral ischemia: The multifaceted role of glia cells. In 

 H. Kettenmann & B. R. Ramson (Eds.), Neuroglia (pp. 511-520). New York: Oxford 

 University Press.  

Draper, K., & Ponsford, J. (2008). Cognitive functioning ten years following traumatic brain  

injury and rehabilitation. Neuropsychology, 22(5), 618-625. 

Eichenbaum, H., Fagan, A., & Cohen, J. (1986). Normal olfactory discrimination learning set 

and facilitation of reversal learning after medial-temporal damage in rats: Implications  

for an account of preserved learning abilities in amnesia. The Journal of Neuroscience,  

6(7), 1876-1884. 



96 
 

 

Ennaceur, A., & Delacour, J. (1988). A new one-trial test for neurobiological studies of memory 

 in rats. Behavioural Brain Research, 31, 47-59. 

Ennaceur, A., Michalikova, S., Bradford, A., & Ahmed, S. (2005). Detailed analysis of the 

 behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks. 

 Behavior Brain Research, 159, 247-266. 

Ennaceur, A., Neave, N., & Aggleton, J. P. (1997). Spontaneous object recognition and object 

location memory in rats: The effects of lesions in the cingulate cortices, the medial  

prefrontal cortex, the cingulum bundle and the fornix. Experimental Brain Research, 113, 

509-519. 

Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex 

in memory and decision making. Neuron, 76, 1057-1070. 

Fantino, E. (1998). Behavior analysis and decision making. Journal of the Experimental Analysis  

of Behavior, 69, 355-364. 

Finnie, J. W., & Blumbergs, P. C. (2002). Traumatic brain injury. Veterinary Pathology, 39, 

 679-689. 

Fischer, H. (2010). U.S. military casualty statistics: Operation New Dawn, Operation Iraqi 

 Freedom, and Operation Enduring Freedom. Retrieved from 

 http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA535410&Location=U2&doc=GetTR 

Fujimoto, S. T., Longhi, L., Saatman, K. E., Conte, V., Stocchetti, N., & McIntosh, T. K. (2004). 

 Motor and cognitive function evaluation following experimental traumatic brain injury. 

 Neuroscience and Biobehavioral Reviews, 28, 365-378. 



97 
 

 

Galarneau, M. R., Woodruff, S., Dye, J. L., Mohrle, C. R., & Wade, A. L. (2008). Traumatic 

 brain injury during Operation Iraqi Freedom: Findings from the United States Navy-

 Marine Corps Combat Trauma Registry. Journal of Neurosurgery, 108, 950-957. 

Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical  

models. New York: Cambridge University Press. 

Gemmell, C., & O‟Mara, S. M. (1999). Medial prefrontal cortex lesions cause deficits in a  

variable-goal location task but not in object exploration. Behavioral Neuroscience, 113, 

465-474. 

Gentilini, M., Nichelli, P., & Schoenhuber, R. (1989). Assessment of attention in mild head 

 injury. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Mild Head Injury (pp. 

 163-175). New York: Oxford University Press.  

Gentilini, M., Nichelli, P., Schoenhuber, R., Bortolotti, P., Tonelli, L., Falasca, A., & Merli, G.

 A. (1985). Neuropsychological evaluation of mild head injury. Journal of Neurology, 

 Neurosurgery, & Psychiatry, 48, 137-140.  

Greve, M. W., & Zink, B. J. (2009). Pathophysiology of traumatic brain injury. Mount Sinai 

 Journal of Medicine, 76, 97-104. 

Halliwell, B., & Chirico, S. (1993). Lipid peroxidation: Its mechanism, measurement and 

 significance. American Journal of Clinical Nutrition, 57(5), 7155-7245. 

Hamm, R. J., Dixon, C. E., Gbadebo, D. M., Singha, A. K., Jenkins, L. W., Lyeth, B. G., & 

Hayes, R. L. (1992). Cognitive deficits following traumatic brain injury produced by 

controlled cortical impact. Journal of Neurotrauma, 9(1), 11-20. 



98 
 

 

Hamm, R. J., Lyeth, B. G., Jenkins, L. W., O‟Dell, D. M., & Pike, B. R. (1993). Selective 

 cognitive impairment following traumatic brain injury in rats. Behavioural Brain 

 Research, 59, 169-173. 

Hamm, R. J., Temple, M. D., Pike, B. R., O‟Dell, D. M., Buck, D. L., & Lyeth, B. G. (1996). 

Working memory deficits following traumatic brain injury in the rat. Journal of 

Neurotrauma, 13(6), 317-323.  

Hellawell, D. J., Taylor, R., & Pentland, B. (1999). Cognitive and psychosocial outcome 

 following moderate or severe traumatic brain injury. Brain Injury, 13(7), 489-504. 

Herrnstein, R. J. (1970). On the law of effect. Journal of the Experimental Analysis of Behavior,  

13, 243-266. 

Hicks, R. R., Smith, D. H., Lowenstein, D. H., Saint Marie, R., & McIntosh, T. K. (1993). Mild  

experimental brain injury in the rat induces cognitive deficits associated with regional 

neuronal loss in the hippocampus. Journal of Neurotrauma, 10(4), 405-414. 

Hoane, M. R., Akstulewicz, S. L., & Toppen, J. (2003). Treatment with vitamin B3 improves  

functional recovery and reduces GFAP expression following traumatic brain injury in 

rats. Journal of Neurotrauma, 20(11), 1189-1199. 

Hoane, M. R., Kaufman, N., Vitek, M. P., & McKenna, S. E. (2009). COG1410 improves 

 cognitive performance and reduces cortical neuronal loss in the traumatically injured 

 brain. Journal of Neurotrauma, 26, 121-129. 

Hoane, M. R., Lasley, L. A., & Akstulewicz, S. L. (2004). Middle age increases tissue  

vulnerability and impairs sensorimotor and cognitive recovery following traumatic brain 

injury in the rat. Behavioural Brain Research, 153, 189-197. 

Hoane, M. R., Pierce, J. L., Holland, M. A., & Anderson, G. D. (2008). Nicotinamide treatment  



99 
 

 

induces behavioral recovery when administered up to 4 hours following cortical 

contusion injury in the rat. Neuroscience, 154, 861-868. 

Hoane, M. R., Tan, A. A., Pierce, J. L., Anderson, G. D., & Smith, D. C. (2006). Nicotinamide 

treatment reduces behavioral impairments and provides cortical protection after fluid 

percussion injury in the rat. Journal of Neurotrauma, 23(10), 1535-1548. 

Hoane, M. R., Wolyniak, J. G., & Akstulewicz, S. L. (2005). Administration of riboflavin  

improves behavioral outcome and reduces edema formation and glial fibrillary acidic 

protein expression after traumatic brain injury. Journal of Neurotrauma, 22(10), 1112-

1122. 

Hoffman, S. W., Fulop, Z., & Stein, D. G. (1994). Bilateral frontal cortical contusion in rats: 

Behavioral and anatomic consequences. Journal of Neurotrauma, 11(4), 417-431. 

Hogg, S., Moser, P. C., & Sanger, D. J. (1998). Mild traumatic lesion of the right parietal cortex 

in the rat: Selective behavioural deficits in the absence of neurological impairment. 

Behavioural Brain Research, 93, 157-165. 

Holmin, S., & Mathiesen, T. (1999). Long-term intracerebral inflammatory response after 

 experimental focal brain injury in rat. Neuroreport, 10, 1889-1891. 

Hornak, J., O‟Doherty, J., Bramham, J., Rolls, E. T., Morris, R. G., Bullock, P. R., & Polkey, C.

 E. (2004). Reward-related reversal learning after surgical excisions in orbito-frontal or 

 dorsolateral prefrontal cortex in humans. Journal of Cognitive Neuroscience, 16(3), 463-

 478. 

Hudson, B. (1939). One-trial learning in rats. Psychological Bulletin, 36, 643. 

Huttenlocher, P. R. (2002). Neural plasticity: The effects of environment on the development of 

 the cerebral cortex. Cambridge, MA: Harvard University Press. 



100 
 

 

Iverson, G. L. (2005). Outcome from mild traumatic brain injury. Current Opinion in Psychiatry, 

 18, 301-317. 

Jay, T. M., & Witter, M. P. (1991). Distribution of hippocampal CA1 and subicular efferents in  

the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus  

vulgaris-leucoagglutinin. Journal of Comparative Neurology, 313, 574-586. 

Jennings, J. W., & Keefer, L. H. (1969). Olfactory learning set in two varieties of domestic rat.  

Psychological Reports, 24, 3-15. 

Kaiser, D. H., & Means, L. (2006). Value transfer across odor stimuli using probability of 

 reinforcement in the rat. Behavioural Processes, 73, 164-169. 

Kampfl, A., Posmantur, R. M., Zhao, X., Schmutzhard, E., Clifton, G. L., & Hayes, R. L. (1997). 

 Mechanisms of calpain proteolysis following traumatic brain injury: Implications for 

 pathology and therapy: A review and update.  Journal of Neurotrauma, 14, 121-130. 

Kaufman, N. A., Beare, J. E., Tan, A. A., Vitek, M. P., McKenna, S. E., & Hoane, M. R. (2010). 

COG1410, an apolipoprotein E-based peptide, improves cognitive performance and 

reduces cortical loss following moderate fluid percussion injury in the rat. Behavioural 

Brain Research, 214, 395-401. 

Kiening, K. L., van Landeghem, F. K. H., Schreiber, S., Thomale, U. W., von Deimling, A., 

 Unterberg, A. W., & Stover, J. F. (2002). Decreased hemispheric aquaporin-4 is linked to 

 evolving brain edema following controlled cortical impact injury in rats. Neuroscience 

 Letters, 324, 105-108. 

Kolb, B. (1984). Functions of the frontal cortex of the rat: A comparative review. Brain  

Research Reviews, 8, 65-98. 

Kolb, B. (1990). Animal models for human PFC-related disorders. Progress in Brain Research,  



101 
 

 

85, 501-519. 

Kontos, H. A., & Wei, E. P. (1986). Superoxide production in experimental brain injury. Journal 

 of Neurosurgery, 64, 803-807. 

Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of 

 traumatic brain injury: A brief overview. Journal of Head Trauma  Rehabilitation, 21(5),

 375-378. 

Lauzon, N. M., Bishop, S. F., & Laviolette, S. R. (2009). Dopamine D1 versus D4 receptors 

differentially modulate the encoding of salient versus nonsalient emotional information in 

the medial prefrontal cortex. The Journal of Neuroscience, 29(15), 4836-4845. 

Leadham, C. S., Newland, C., & Blood, C. G. (1993). A descriptive analysis of wounds among 

 U.S. Marines treated at second echelon facilities in the Kuwaiti theater of operation. 

 Military Medicine, 158(8), 508-512. 

Leininger, B. E., Gramling, S. E., Farrell, A. D., Kreutzer, J. S., & Peck, E. A. (1990). 

 Neuropsychological deficits in symptomatic minor head injury patients after concussion 

 and mild concussion. Journal of Neurology, Neurosurgery, & Psychiatry, 53, 293-296.  

Lenzinger, P. M., Morganti-Kossman, M. C., Laurer, H. L., & McIntosh, T. K. (2001). The 

 duality of the inflammatory response to traumatic brain injury. Molecular Neurobiology, 

 24, 169-181. 

Levy, R., & Goldman-Rakic, P. S. (2000). Segregation of working memory functions within the 

 dorsolateral prefrontal cortex. Experimental Brain Research, 133, 23-32. 

Lewén, A., Matz, P., & Chan, P. H. (2000). Free radical pathways in CNS injury. Journal of 

 Neurotrauma, 17, 871-884. 



102 
 

 

Lighthall, J. W. (1988). Controlled cortical impact: A new experimental brain injury model.

 Journal of Neurotrauma, 5, 1-15. 

Lighthall, J. W., Dixon, C. E., & Anderson, T. E. (1989). Experimental models of  brain injury. 

 Journal of Neurotrauma, 6, 83-97. 

Lindgren, S., & Rinder, L. (1965). Experimental studies of head injury. I. Some factors 

 influencing results of model experiments. Biophysik, 2, 20-329. 

Logue, V., Durward, M., Pratt, R. T. C., Piercy, M., & Nixon, W. L. B. (1968). The quality of 

 survival after rupture of an anterior cerebral aneurysm. The British Journal of Psychiatry, 

 114, 137-160. 

Lu, X-C. M., & Slotnick, B. M. (1998). Olfaction in rats with extensive lesions of the olfactory 

bulbs: Implications for odor coding. Neuroscience, 84, 849-866. 

Maas, A. I. R., Marmarou, A., Murray, G. D., Teasdale, G. M., & Steyerberg, E. W. (2007). 

Prognosis and clinical trial design in traumatic brain injury: The IMPACT study. Journal 

of Neurotrauma, 24, 232-238. 

Maatsch, J. L. (1959). Learning and fixation after a single shock trial. Journal of Comparative  

and Physiological Psychology, 52, 408-410. 

MacFlynn, G., Montgomery, E. A., Fenton, G. W., & Rutherford, W. (1984). Measurement of 

 reaction time following minor head injury. Journal of Neurology, Neurosurgery, &

 Psychiatry, 47, 1326-1331.  

Martens, K. M., Vonder Haar, C., Hutsell, B., & Hoane, M. R. (2012a). A discrimination task  

used as a novel method of testing decision-making behavior. Journal of Neurotrauma, 

29, 2505-2512. 

Martens, K. M., Vonder Haar, C., Hutsell, B., & Hoane, M. R. (2012b). The Dig task: A simple 



103 
 

 

scent discrimination reveals deficits following frontal brain damage. Journal of 

Visualized Experiments, 71, e50033. 

Mathias, J. L., Beall, J. A., & Bigler, E. D. (2004). Neuropsychological and information 

 processing deficits following mild traumatic brain injury. Journal of the International 

 Neuropsychological Society, 10, 286-297. 

McCrea, M., Jaffee, M., Guskiewicz, K. H., & Doncevic, S. (2009). Validation of the military  

acute concussion evaluation (MACE) for in-theater evaluation of combat-related 

traumatic brain injury. Retrieved from http://handle.dtic.mil/100.2/ADA515492 

McDonald, R. J., King, A. L., Foong, N., Rizos, Z., & Hong, N. S. (2008). Neurotoxic lesions of  

the medial prefrontal cortex or medial striatum impair multiple-location place learning in 

the water task: Evidence for neural structures with complementary roles in behavioural 

flexibility. Experimental Brain Research, 187, 419-427. 

McIntosh, T. K. (1993). Novel pharmacologic therapies in the treatment of experimental 

 traumatic brain injury: A review. Journal of Neurotrauma, 10, 215-261. 

McIntosh, T. K. (1994). Neurochemical sequelae of traumatic brian injury: Therapeutic 

 implications. Cerebrovascular and Brain Metabolism Review, 6, 109-162. 

Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9,

 90-100. 

Mishkin, M., & Delacour, J. (1975). An analysis of short-term visual memory in the monkey. 

Journal of Experimental Psychology: Animal Behavior Processes, 1, 326-334. 

Mongin, A. A., & Kimelberg, H. K. (2004). Astrocytic swelling in neuropathology. In H. 

Kettenmann & B. R. Ransom (Eds.), Neuroglia. Oxford: Oxford University Press. 

Montague, P. R., Hyman, S. E., & Cohen, J. D. (2004). Computational roles for dopamine in  



104 
 

 

behavioural control. Nature, 431, 760-767. 

Morales, D. M., Marklund, N., Lebold, D., Thompson, H. J., Pitkanen, A.,  Maxwell, W. L., …

 McIntosh, T. K. (2005). Experimental models of traumatic brain injury: Do we really 

 need to build a better mousetrap? Neuroscience, 136, 971-989. 

Morgan, M. A., Romanski, L. M., & LeDoux, J. E. (1993). Extinction of emotional learning: 

Contribution of medial prefrontal cortex. Neuroscience Letters, 163, 109-113. 

Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues.  

Learning and Motivation, 12, 239-260. 

Morris, R. G. M. (1984). Developments of a water-maze procedure for studying spatial learning  

in the rat. Journal of Neuroscience Methods, 11, 47-60. 

Mowrer, O. H. (1938). Apparatus for the study and treatment of enuresis. The American Journal  

of Psychology, 51(1), 163-165. 

National Institute of Neurological Disorders and Stroke. (2011, April 15). Traumatic brain 

 injury: Hope through research. Retrieved from 

 http://www.ninds.nih.gov/disorders/tbi/detail_tbi.htm  

Narayanan, N. S., Horst, N. K., & Laubach, M. (2006). Reversible inactivations of rat medial  

prefrontal cortex impair the ability to wait for a stimulus. Neuroscience, 139, 865-876. 

Nelson, A. J., Cooper, M. T., Thur, K. E., Marsden, C. A., & Cassaday, H. J. (2011). The effect  

of catecholaminergic depletion within the prelimbic and infralimbic medial prefrontal 

cortex on recognition memory for recency, location, and objects. Behavioral 

Neuroscience, 125(3), 396-403. 

O‟Connor, W. T., Smyth, A., & Gilchrist, M. D. (2011). Animal models of traumatic brain  

injury: A critical evaluation. Pharmacology and Therapeutics, 130, 106-113. 



105 
 

 

Obrenovitch, T. P., & Urenjak, J. (1997). Is high extracellular glutamate the key to excitotoxicity

 in traumatic brain injury? Journal of Neuortrauma, 14, 677-698. 

Olver, J. H., Ponsford, J. L., & Curran, C. A. (1996). Outcome following traumatic brain injury: 

 A comparison between 2 and 5 years after injury. Brain Injury, 10(11), 841-848. 

Ponsford, J., Draper, K., & Schonberger, M. (2008). Functional outcome 10 years after traumatic  

brain injury: Its relationship with demographic, injury severity, and cognitive and 

emotional status. Journal of the International Neuropsychological Society, 14, 233-242. 

Porter, M. C., Burk, J. A., & Mair, R. G. (2000). A comparison of the effects of hippocampal or  

prefrontal cortical lesions on three versions of delayed non-matching-to-sample based on  

positional or spatial cues. Behavioral Brain Research, 109, 69-81. 

Quirk, G. J., Russo, G. K., Barron, J. L., & Lebron, K. (2000). The role of ventromedial 

prefrontal cortex in the recovery of extinguished fear. The Journal of Neuroscience, 

20(16), 6225-6231. 

Raghupathi, R. (2004). Cell death mechanisms following traumatic brain injury. Brain

 Pathology, 14, 215-222. 

Raghupathi, R., Graham, D. I., & McIntosh, T. K. (2000). Apoptosis after traumatic brain injury.

 Journal of Neurotrauma, 17, 927-935. 

Reger, M. L., Hovda, D. A., & Giza, C. C. (2009). Ontogeny of rat recognition memory 

 measured by the novel object recognition task. Developmental Psychobiology, 51(8), 

 672-678. 

Reid, W. M., Rolfe, A., Register, D., Levasseur, J. E., Churn, S. B., & Sun, D. (2010). Strain- 

related differences after experimental traumatic brain injury in rats. Journal of 

Neurotrauma, 27, 1243-1253. 



106 
 

 

Riekkinen, P., Jr., Kuitunen, J., & Riekkinen, M. (1995). Effects of scopolamine infusions into  

the anterior and posterior cingulate on passive avoidance and water maze navigation. 

Brain Research, 685, 46-54. 

Roof, R. L., Duvdevani, R., & Stein, D. G. (1993). Gender influences outcome of  brain injury: 

 Progesterone plays a role. Brain Research, 607, 333-336. 

Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M., & Rushworth, M. F. S.

 (2006). Separate neural pathways process different decision costs. Nature Neuroscience, 

 9(9), 1161-1168.  

Santucci, A. C., Kanof, P. D., & Haroutunian, V. (1989). Infusion of NMDA into nucleus basalis 

of Meynert, frontal cortex of lateral ventricle in rats: Effects on memory and cholinergic  

brain neurochemistry. Pharmacological, Biochemical, and Behavior, 33, 485-488. 

Schallert, T., Woodlee, M. T., & Fleming, S. M. (2002). Disentangling multiple types of 

 recovery from brain injury. In J. Krieglstein & S. Klumpp (Eds.), Pharmacology of 

 cerebral ischemia (pp. 201-216). Stuttgart: Medpharm Scientific Publishers. 

Schlund, M. W. (2002). Effects of acquired brain injury on adaptive choice and the role of  

reduced sensitivity to contingencies. Brain Injury, 16(6), 527-535. 

Schlund, M. W., & Pace, G. (2000). The effects of traumatic brain injury on reporting and  

responding to causal relations: An investigation of sensitivity to reinforcement 

contingencies. Brain Injury, 14(6), 573-583. 

Scullion, G. A., Kendall, D. A., Sunter, D., Marsden, C. A., & Pardon, M. C. (2009). Central 

 noradrenergic depletion by DSP-4 prevents stress-induced memory impairments in the 

 object recognition task. Neuroscience, 164, 415-423. 



107 
 

 

Serino, A., Ciaramelli, E., Di Santantonio, A., Malagu, S., Servadei, F., & La‟davas, E. (2007).

 A pilot study for rehabilitation of central executive deficits after traumatic brain injury.

 Brain Injury, 21(1), 11-19. 

Slotnick, B. M. (1985). Olfactory discrimination in rats with anterior amygdala lesions. 

Behavioral Neuroscience, 99(5), 956-963. 

Slotnick, B. M., Bell, G. A., Panhuber, H., & Laing, D. G. (1997). Detection and discrimination 

of propionic acid after removal of its 2-DG identified major focus in the olfactory bulb: A 

psychophysical analysis. Brain Research, 762, 89-96. 

Slotnick, B. M., & Berman, E. J. (1980). Transection of the lateral olfactory tract does not  

produce anosmia. Brain Research Bulletin, 5(2), 141-145. 

Slotnick, B. M., & Katz, H. M. (1974). Olfactory learning-set formation in rats. Science,  

185(4153), 796-798. 

Smith, D. H., Okiyama, K., Thomas, M. J., Claussen, B., & McIntosh, T. A. (1991). Evaluation  

of memory dysfunction following experimental brain injury using the Morris water maze. 

Journal of Neurotrauma, 8(4), 259-269. 

St-Laurent, M., Petrides, M., & Sziklas, V. (2009). Does the cingulate cortex contribute to spatial  

conditional associative learning in the rat? Hippocampus, 19, 612-622.  

Stoica, B. A., & Faden, A. I. (2010). Cell death mechanisms and modulation in traumatic brain 

 injury. Neurotherapeutics, 7(1), 3-12. 

Summers, C. R., Ivins, B., & Schwab, K. A. (2009). Traumatic brain injury in the United States: 

 An epidemiologic overview. Mount Sinai Journal of Medicine, 76, 105-110. 

Taber, K. H., Warden, D. L., & Hurley, R. A. (2006). Blast-related traumatic brain injury: What 

 is known? Journal of Neuropsychiatry Clinical Neuroscience, 18(2), 141-145. 



108 
 

 

Tan, A. A., Quigley, A., Smith, D. C., & Hoane, M. R. (2009). Strain differences in response to  

traumatic brain injury in Long-Evans compared to Sprague-Dawley rats. Journal of 

Neurotrauma, 26, 539-548. 

Thompson, H. J., Lifshitz, J., Marklund, N., Grady, M. S., Graham, D. I., Hovda, D. A., &

 McIntosh, T. K. (2005). Lateral fluid percussion brain injury: A 15-year review and 

 evaluation. Journal of Neurotrauma, 22, 42-75. 

Thurman, D. J., Alverson, C., Dunn, K. A., Guerrero, J., & Sniezek, J. E. (1999). Traumatic 

 brain injury in the United States: A public health perspective. Journal of Head Trauma 

 Rehabilitation 14(6), 602-615. 

Tonkiss, J., Shultz, P., & Galler, J. R. (1992). Long-Evans and Sprague-Dawley rats differ in  

their spatial navigation performance during ontogeny and at maturity. Developmental 

Psychobiology, 25, 567-579. 

Tsenter, J., Beni-Adani, L., Assaf, Y., Alexandrovich, A. G., Trembovler, V., & Shohami, E.

 (2008). Dynamic changes in the recovery after traumatic brain injury in mice: Effect of 

 injury severity on T2-weighted MRI abnormalities, and motor and cognitive functions. 

 Journal of Neurotrauma, 25, 324-333. 

Unterberg, A. W., Stover, J., Kress, B., & Kiening, K. L. (2004). Edema and brain trauma.

 Neuroscience, 129, 1021-1029. 

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free 

 radicals and antioxidants in normal physiological functions and human disease.

 International Journal of Biochemistry & Cell Biology, 39, 44-84. 

Van Groen, T., & Wyss, J. M. (1990). Extrinsic projections from area CA1 of the rat  



109 
 

 

hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation 

projections. Journal of Comparative Neurology, 302, 515-528. 

Van Landeghem, F. K. H., Weiss, T., Oehmichen, M., & Von Deimling, A. (2006). Decreased 

expression of glutamate transporters in astrocytes after human traumatic brain injury. 

Journal of Neurotrauma, 23(10), 1518-1528.  

Walton, M. E., Bannerman, D. M., Alterescu, K., & Rushworth, M. F. S. (2003). Functional  

specialization within medial frontal cortex of the anterior cingulate for evaluating effort- 

related decisions. Journal of Neuroscience, 23, 6475-6479. 

Werner, C., & Engelhard, K. (2007). Pathophysiology of traumatic brain injury. British Journal 

 of Anesthesia, 99, 4-9. 

Williams, B. A. (1994). Reinforcement and choice. In N. J. Mackintosh (Ed.), Animal learning 

 and cognition (pp. 81-108). San Diego, CA: Academic Press. 

Yamaguchi, T., Ozawa, Y., Suzuki, M., Yamamoto, M., Nakamura, T., & Yamaura, A. (1996).

 Indeloxazine hydrochloride improves impairment of passive avoidance performance after 

 fluid percussion brain injury in rats. Neuropharmacology, 35, 329-336. 

Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in 

 antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research, 

 174(2), 81-88. 

Zhao, Z., Loane, D. J., Murray II, M. G., Stoica, B. A., & Faden, A. I. (2012). Comparing the 

predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic 

brain injury. Journal of Neurotrauma, 29, 1-15. 

  



110 
 

 

VITA 

Graduate School 

Southern Illinois University 

 

Kristina M. Martens       

 

KrisMMartens@gmail.com 

 

Southern Illinois University Carbondale 

Bachelor of Arts, Psychology, May 2005 

 

Southern Illinois University Carbondale 

Master of Arts, Psychology, August 2010 

 

Special Honors and Awards: 

2008 Marijuana Effects. Grant funded by the Office of Research, Development, and 

Administration, Southern Illinois University at Carbondale (David G. Gilbert, PI). 

Total Award: $13,334 

 

2011 Dissertation Research Assistantship, Southern Illinois University at Carbondale. 

Assistantship funded by the Graduate School, Southern Illinois University at 

Carbondale. Total Award: $13,914 

 

Dissertation Title: 

The Effect of Injury Severity on Behavioral Tasks used for the Assessment of Cognitive 

Functioning Following Traumatic Brain Injury 

 

Major Professor:  Michael Hoane 

 

Publications: 

Vonder Haar, C., Peterson, T. C., Martens, K. M., & Hoane, M. R. (in press). The use of 

nicotinamide as a treatment for experimental traumatic brain injury and stroke: A review 

and evaluation. Clinical Pharmacology and Biopharmaceutics. 

 

Martens, K. M., Vonder Haar, C., Hutsell, B. A., & Hoane, M. R. (2012). The Dig task: 

A simple scent discrimination reveals deficits following frontal brain damage. Journal of 

Visualized Experiments, 71, e50033. doi: 10.3791/50033. 

 

Martens, K. M., Vonder Haar, C., Hutsell, B. A., & Hoane, M. R. (2012). A 

discrimination task used as a novel method of testing decision-making behavior 

following traumatic brain injury. Journal of Neurotrauma, 29, 2505-2512. doi: 

10.1089/neu.2012.2388. 

 



111 
 

 

Martens, K. M. (2010). Benign environmental distractors modulate the anxiolytic effects 

of marijuana administration in humans. (Master„s thesis, Southern Illinois University - 

Carbondale). 

 

Martens, K. M., & Gilbert, D. G. (2008). Marijuana and tobacco exposure predict affect-

regulation expectancies in dual users. Addictive Behaviors, 33, 1484-1490. doi: 

10.1016/j.addbeh.2008.07.002. 


	Southern Illinois University Carbondale
	OpenSIUC
	5-1-2013

	The Effect of Injury Severity on Behavioral Tasks Used for the Assessment of Cognitive Functioning Following Traumatic Brain Injury
	Kris M. Martens
	Recommended Citation



