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Abstract

Several of today’s most popular and widely used stochastic radio channel models rely in
their construction on one-dimensional point processes. The first use of point processes as
a tool for stochastic modeling of time-invariant radio channels can be traced back nearly
half a century to the seminal work by Turin, with follow-up developments by Suzuki
and Hashemi. Subsequently entered the popular contribution by Saleh and Valenzuela
as well as the more recent extension by Spencer. Similarly, and originally proposed
by Papantoniou, the use of one-dimensional point processes has also repeatedly been
suggested as a modeling tool for time-variant stochastic radio channels.

Despite a pronounced use for modeling purposes, neither point processes nor their
underlying theoretical framework have been favored in the literature as tools for the
subsequent analysis. For example, the classical channel model by Saleh and Valenzuela
has been widely used for simulation purposes such as performance assessments of com-
munication systems. However, due to the models’ heuristic construction the resulting
channel properties and characteristics are not well-understood or not well-known (e.g.
the shape of the power-delay profile).

In this work we view a representative selection of popular radio channel models from
a new and highly facilitating perspective. We naturally exploit the fact that the original
constructions of these channel models rely on point processes. By use of the theory of
spatial point processes we obtain novel insight on the different channel models, their
underlying structures and properties. The theoretical key to our achievements is the
application of Campbell’s Theorem.

In one of our main contributions we revisit the classical multipath channel model
by Saleh and Valenzuela. We show that the model is comprised by the union of two
dependent point processes, namely a Poisson point process and a Cox point process.
We exploit this conceptual view to re-derive the intensity of path components and the
channel’s power-delay profile in a much simpler and more insightful way compared to
previous derivations (the intensity rises linearly with propagation delay and the power-
delay profile is not exponentially decaying). In essence, our conclusions arise as a direct
result of the point process perspective and in particular due to the wide applicability
and straightforward use of Campbell’s Theorem.
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Our main contribution is a thorough analysis of a particular class of time-variant
stochastic radio channel models. Common to all models in this class is that individual
multipath components are emerging and vanishing in a temporal birth-death like man-
ner. The stochastic mechanism used to generate the birth-death behavior is governed
by two facilitating assumptions. By aid of our spatial point process perspective and
Campbell’s Theorem we provide a novel analytical characterization of this stochastic
mechanism. Additionally, we derive the general structure of the time-frequency corre-
lation function for this type of time-variant channel models. Despite their birth-death
behavior, we show under suitable assumptions that these channels become wide-sense
stationary in both time and frequency. The engineering relevance of being able to
analytically characterize this class of time-variant channel models is evident as key pa-
rameters enter explicit in practically measurable quantities (power-delay profile, large-
and small-scale correlation functions, etc.). For instance, the power-delay profile can
be estimated from channel sounding measurements and so we have a rigorous way of
calibrating the model. So far, these practically measurable quantities have not been
reported in the literature.

Finally, we illustrate also how the point process framework proves particularly bene-
ficial in terms of computer simulation. In essence, the theoretical knowledge gained from
the point process perspective enables new and alternative simulation methods to be ap-
plied. Furthermore, the theoretical insight allows for a variety of difficulties encountered
in literature to be elegantly circumvented.



Dansk Resumé

Adskillige vellidte og almindeligt anvendte stokastiske radiokanalmodeller er baseret på
én-dimensionale punktprocesser. Brugen af punktprocesser som et led i modelleringen af
tidsinvariante stokastiske radiokanaler kan spores tilbage omtrent et halvt århundrede,
til Turins skelsættende arbejde og til Suzuki og Hashemis opfølgende bidrag. Senere
fulgte Saleh & Valenzuela op med deres populære model, og efterfølgende kom Spencers
relativt nyere udvidelse heraf. Brugen af én-dimensionale punktprocesser er også gen-
tagne gange blevet foreslået i forbindelse med modelleringen af tidsvarierende stokastiske
radiokanaler, første gang af Papantoniou.

Til trods for de udbredte anvendelser til modelleringsformål, så er brugen af hverken
punktprocesser eller den bagvedliggende teori blevet foretrukket i faglitteraturen til
de efterfølgende analyseformål. Eksempelvis har Saleh & Valenzuelas populære radio-
kanalmodel været almindeligt brugt til simulationsformål, f.eks. til evaluering af forskel-
lige kommunikationssystemers ydeevne. Imidlertid er flere af radiokanalmodellens vigtige
egenskaber (f.eks. formen på power-delay profilen) helt eller delvist ukendte pga. model-
lens umiddelbare heuristiske opbygning.

I denne afhandling beskæftiger vi os med et repræsentativt udsnit af populære radio-
kanalmodeller, og vi anskuer dem fra et nyt og yderst fremmende synspunkt. Vi drager
naturligt fordel af, at radiokanalmodellerne alle beror sig på punktprocesser. Ved an-
vendelse af teorien for rumlige punktprocesser tilegner vi os ny viden om de forskellige
modeller, deres underliggende strukturer og deres egenskaber. Campbells Sætning udgør
det altoverskyggende teoretiske redskab i denne sammenhæng.

Et af afhandlingens hovedbidrag udgøres af et tilbageblik på Saleh & Valenzuelas
klassiske flervejskanalmodel. Vi viser, at modellen består af foreningsmængden mellem
to afhængige punktprocesser; nemlig en Poisson punktproces og en Cox punktproces.
Dette konceptuelle synspunkt udnyttes til, på ny, at udlede intensiteten for flervejskom-
ponenterne samt til at udlede kanalens power-delay profil. Udledningen er væsentligt
simplere, og den giver større indsigt end tidligere udledninger af de samme resultater
(intensiteten vokser lineært med udbredelsesforsinkelsen, og power-delay profilen af-
tager ikke eksponentielt). Vores konklusioner udspringer, som et direkte resultat, af den
alsidige og ukomplicerede brug af Campbells Sætning.
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Afhandlingens hovedbidrag består af en tilbundsgående analyse af en særlig klasse af
tidsvarierende stokastiske radiokanalmodeller. Fælles for alle modellerne i denne klasse
er, at de individuelle flervejskomponenter opstår og forsvinder i et tidsmæssigt fødsels-
døds lignende mønster. Den stokastiske anordning, som skaber fødsels-døds adfærden,
reguleres af to fleksible men forenklende præmisser. Anvendelsen af rumlige punktpro-
cesser og Campbells Sætning giver samlet anledning til en ny analytisk karakterisering af
den stokastiske fødsels-døds anordning. Vi udleder derudover den generelle struktur af
tids-frekvens korrelationsfunktionen for denne type af tidsvarierende radiokanalmodel-
ler. Til trods for fødsels-døds adfærden er det, under passende antagelser, muligt for
modellerne, at udvise svag stationaritet i både tid og frekvens. Fra et ingeniørmæs-
sigt synspunkt, er de ovennævnte analytiske karakteriseringer åbenlyst relevante, fordi
radiokanalmodellens nøgleparametre eksplicit kommer til udtryk i egentlige målbare
størrelser (power-delay profilen, korrelationsfunktioner, osv.). Eksempelvis kan power-
delay profilen estimeres udfra måledata, og således har man en velfunderet metode til
at kalibrere modellen med. Radiokanalmodellens egentlige målbare størrelser har ikke
tidligere været rapporteret i faglitteraturen.

Slutteligt illustrerer vi også, hvordan punktprocesserne og de medfølgende teoretiske
perspektiver viser sig fordelagtige i forbindelse med computersimulering. Teorien viser
sig nemlig at kunne bidrage med indsigt til nye og alternative simuleringsmetoder. Yder-
mere afhjælper de teoretiske aspekter også på elegant vis en række besværligheder, som
tidligere er blevet påpeget i faglitteraturen.
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Part I

Stochastic Radio Channels:
Modeling and Analysis

1





Introduction to Channel
Modeling and Selected
Fundamentals

What is radio channel modeling and why is it needed? This question seems natural
and relevant to ask. Especially if questioned by someone completely unfamiliar with
communications engineering and mathematics. The answer should be straightforward
for me to provide! If matters are kept simple enough, in the sense of omitting irrelevant
technicalities, then it may even be that the person who originally asked the question
is not entirely lost once I stop explaining. This chapter is deliberately formed with
an intention to appear comprehensible (at least conceptually) for readers who are not
familiar with the engineering discipline of radio channel modeling.

Communication systems engineering is all about enabling entities to communicate.
Indeed, the ability to conveniently and reliably communicate is truly indispensable
nowadays. Radio communications is most often applied when wired connections are
not among the realistic options. The first wireless transmission based on radio waves
took place more than a century ago when G. Marconi got the ingenious idea of using a
flashlight to communicate from a boat to the shore. More precisely, he used a spark-gap
transmitter and a coherer receiver to essentially make up a Morse code communication
system. Nowadays, a multitude of radio communication systems are deployed all over
and they operate across a wide range of physical distances and across even wider ranges
of applications and purposes. Anything from a wireless optical mouse to deep-space
communications, with GPS and cell phone applications as intermediate examples.

In its simplest form, a radio communication system consists of one transmitter (one
transmit antenna) and one receiver (one receive antenna). The transmitter emits elec-
tromagnetic waves which propagate throughout the physical environment. The receiver
senses the electromagnetic waves which were launched by the transmitter. The electro-
magnetic waves sensed by the receiver depend on the emitted waves (think of the Morse
example). Hence, information can be inserted into the electromagnetic waves intended
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for transmission. If propagation conditions of sufficiently good quality exist, it means
that the originally inserted information can be recovered at the receiver. Conceptually,
this is the key idea of any (radio) communication system.

Radio channel modeling has to do with the dependencies between the electromagnetic
waves being transmitted and received. Knowledge of these dependencies is of paramount
importance for the design and engineering of modern radio communication systems.
When engineers speak of the wireless radio channel they essentially refer to the entire
physical environment in which the electromagnetic waves propagate. Hence, the radio
channel includes the atmosphere, buildings, vegetation, cars, humans and everything
else which impact the propagation conditions of electromagnetic waves, including the
transmit and receive antennas. From a conceptual point of view, one may think of the
radio channel as a “black box” that we cannot control but only adapt to. Since we cannot
control the wireless radio channel it inherently becomes an engineering challenge to
build and design a communication system relying so fundamentally on it. The challenge
becomes even more demanding when certain constraints and requirements are imposed
on the communication system. A typical system requirement nowadays could be based
on the ability to support steady connectivity at vehicular-speeds, with high-rate data
transfers ongoing, and for a large number of users operating simultaneously. Yet, a radio
communication system does not by default comply with three such conflicting demands.
The key to make it all work initially relies on profound knowledge and understanding
of the mechanisms of the wireless radio channel. In a nutshell, radio channel modeling
consists of creating and studying representations of the real-world radio channel. As
engineers, we use these representations to devise comprehension which enables us to
design, optimize and implement wireless communication systems in practice.

A radio channel model consists most often of a mathematical representation. The
language of mathematics allows for stringency in the formulation of such a model and
provides at the same time a natural environment for several key optimization aspects.
A radio channel model can be based on theoretical considerations, e.g. elements from
physics, but it can also be inspired from intuition and empirical observations, i.e. mea-
surements. As a naive starting point we could say that the task in radio channel model-
ing is to formulate a mathematical model which efficiently, accurately and exhaustively
reproduces all relevant characteristics of the real propagation environment (although it
may not be too clear what this really means!). Yet, research activities in radio channel
modeling are naturally driven by today’s communication systems as well as those in-
tended for the near future. Current technological advancements play a key role as well.
Hence, the research activities emerging as a result of the constraints and requirements
imposed on today’s 4G systems are rather different from the research activities taking
place around the development of 1G systems. Several of the engineering challenges faced
today were simply not relevant at that time. Accordingly, the “reproducing” capabili-
ties of a radio channel model is to be understood relative to the effects and mechanisms
which impact the performance and operability of current communication systems.



1. First View Upon the Radio Channel 5

Before digging into concrete mathematical representations of the radio channel we
stress here the fact that every model, be it of the radio channel or not, is created for a
specific purpose. Accordingly, it makes sense to compare different models only if they
are intended for the same purpose [1]. A radio channel model intended for aircraft
positioning should really not be put in the context of, nor compared to, a channel
model intended for standardized throughput comparisons among different cell phone
architectures. Two models created for the very same purpose are perfectly comparable.
However, it may not always be straightforward how to compare them, and which one
of the models to utilize in the end depends most often on context. Nonetheless, an
important concept to always keep in mind when dealing with models is the principle
of parsimony (Occam’s razor). The simplest explanation is the better! And, as Albert
Einstein is often quoted for having said: “things should be made as simple as possible,
but not simpler”. This statement explains why the radio channel models developed for
1G communication systems did not account for what is needed today.

1 First View Upon the Radio Channel
To comprehend a complicated system it typically offers adequate conceptual simplicity
to make drawings and to put things into boxes. As engineers we do that all the time,
namely breaking matters into smaller confined pieces. Consider for that reason the
communication system depicted in Fig. 1. The wireless radio channel, which for the

Transmitter

Input signal

x

Radio Channel

?

Receiver

Output signal

y

Fig. 1: A communication system with one transmitter, a “black box” radio channel, and one receiver.

moment is being perceived as a “black box”, is connecting a transmitter and a receiver.
At time t1 the transmitter launches a signal x into the radio channel and at some time
a bit later than t1, the receiver captures a signal y. Channel modeling is all about
providing a characterization of the link between x and y. At time t2 the transmitter
launches the exact same signal x into the radio channel and at some time later than
t2, the receiver captures a new signal. Yet, the latter signal being captured is not the
same as the former (the signal we denoted as y). Maybe the receiver moved in between
the two transmissions or maybe the propagation environment changed for some other
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reason. A similar phenomenon occurs if signals are transmitted at different frequencies.
That is, the wireless radio channel alters its characteristics with time and frequency.
This is not all there is to say, but it’s a sound and adequate point of departure. It
is by all means nontrivial to enter the engineering world of radio channel modeling.
There exist an excessive amount of concepts and just to get familiar with the common
technical language requires a notable effort.

Personally, I have found great inspiration and comprehension from consulting R. S.
Kennedy’s book from 1969 entitled “Fading Dispersive Communication Channels” [2].
One of Kennedy’s preliminary statements is that “fading dispersive radio channels are
adequately described as random linear time-varying filters”. (Accept for the moment
that we do not know exactly what this means.) Kennedy also immediately highlights
that parts of a channel model can most often be generalized at will. However, it also
frequently appears that such attempts do not appreciably affect the applicability of the
model to the problem of interest, whereas it does complicate the analysis (I’m using his
choice of words without quoting minutely). In the end, the utility of a channel model is
determined by the extent to which results deduced therefrom coincide with analogous
results obtained by experiment (his words as well). In the channel modeling literature
I have not yet found a modeling philosophy and the principle of parsimony conveyed as
early, as explicit, and as concise as in Kennedy’s book from 1969. However, Kennedy’s
experimentally driven utility aspect of the channel model should be supplemented by
additional requirements such as tractability, accuracy and complexity. Of course, vali-
dation techniques such as Monte Carlo simulation were not among the standard options
in 1969.

2 Linear Systems and Filters
This paragraph is highly inspired from an elegant and ultra short section in the book [3]
by K. Gröchenig. The purpose is not to bore and stall the qualified reader with “ancient”
fundamentals but merely to introduce a piece of engineering language leading to the
concept of a random linear time-varying filter.

A linear system is a “black box” A which modifies an input element x into an output
element y = Ax. The system being linear means that

A(c1x1 + c2x2) = c1Ax1 + c2Ax2

for all scalars c1 and c2 and for all input elements x1 and x2. Linearity is one of the
most fundamental concepts in mathematics. For mathematicians, dealing with a linear
system means dealing with a linear operator. What is not yet clear, no matter if we
call it a system or an operator, is how x, y and A really look like. Mathematicians
would most likely start talking about Hilbert spaces1 and bounded/continuos operators

1The interested reader may consult, for instance [4] or [5].
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while engineers would start talking about bandwidth-limited finite-energy signals2. Two
different worlds are potentially joining forces and getting to know both languages is
greatly advantageous but does not come over night, unfortunately. In any case, what
is meant is that the action of the system cannot be arbitrarily powerful if it has to
represent a real-world mechanism such as the wireless radio channel. If a finite portion
of energy is released into the air we do not expect to be able to retrieve again unlimited
amounts of energy. Here, we act mainly as engineers and for that reason, the input x
and the output y will now be referred to as a signals. This means that x and y are scalar
functions defined on the entire real line (interpreted as time). According to engineering
tradition we then write x(t) and y(t) to indicate that the signals under consideration
are evolving in time. Mathematicians would still write only x and y or maybe x(·) and
y(·).

In signal processing the restriction of linear systems to the time-invariant case is
of fundamental importance. A time-invariant linear system does not care if an input
signal x is applied today or tomorrow. It simply shifts the output signal y from today
till tomorrow without changing its shape. Hence, such systems are not appropriate as
representations for mechanisms which, in fact, do alter their characteristics with time.
Nonetheless, time-invariant linear systems are crucial in electrical engineering and the
technical language originally proposed and used for these systems is found all over in
literature. In signal processing the linear operator A is referred to as a linear filter. A
filter is a mechanism that preserves and discards, like a coffee filter where water and
taste should sustain or like a low-pass filter which removes high-frequency components.
Time-invariant linear systems act as convolution operators in time and equivalently,
as multiplication operators in frequency. In the written language of mathematics this
means that

y(t) = {Ax}(t)

= {h ∗ x}(t) =
∫
h(τ)x(t− τ)dτ (1)

= F−1{HX}(t) =
∫
H(f)X(f)ej2πftdf. (2)

The action in (1) is the time-domain convolution while the action in (2) is the frequency-
domain multiplication followed by conversion back into the time-domain. In (2) we have
H = Fh as well as X = Fx, where F is yet another linear operator, namely the Fourier
transform and F−1 is its inverse. Hence, the relationship in (2) renders itself much
simpler in the frequency-domain since there it reads

Y = HX.

The quantity h in (1) is referred to as the impulse response of the linear time-invariant
system and H is called the transfer function. These names are adequate since h reveals

2For this matter the interested reader should definitely consult [6].
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how the system (or filter) responds when excited by an impulse3 and H explains how
pure frequencies are transferred through the system.

To be able to capture a variety of real mechanisms we need to consider linear time-
varying systems as well. In contrast to the time-invariant ones, these systems do indeed
care whether an input signal x is applied today or tomorrow. In working with linear time-
varying systems we wish to preserve our technical formalism from earlier. Essentially,
this means that we wish to keep the notion of an impulse response and the associated
transfer function (even though we end up abusing terminology a bit). The brute-force
way of preserve our technical formalism is to simply add the necessary time-dependence
to each of the functions h and H in (1) and (2). Accordingly, we now get the input-
output relationship

y(t) = {Ax}(t)

=
∫
h(t, τ)x(t− τ)dτ (3)

=
∫
H(t, f)X(f)ej2πftdf. (4)

The function h(t, τ) in (3) has two variables and is referred to as the time-variant
impulse response of the linear system4. It can be seen as a time-dependent (or time-
indexed) family of impulse responses. Similarly, the function H(t, f) in (4) is called the
time-variant transfer function.

In practical applications the goal is often to learn the characteristics of a linear sys-
tem, be it time-invariant or time-variant. Essentially, that is to describe the “black box”
A using a small number of comprehensible parameters, preferably related to physically
meaningful or observable quantities. Knowledge of these parameters enables to predict
the future behavior of the system, at least for a limited period and to some reasonable
degree of accuracy (like in weather forecasting). Yet, numerous practical systems are
best captured, mimicked or represented if we add another layer of flexibility, namely
randomness5.

The mathematical theories of probability and stochastic processes [9, 10] are often
employed in engineering contexts. This has to do with the fact that many real mech-
anisms are behaving in ways which we can conveniently/adequately perceive as being
random, e.g. the weather, internet traffic flow or stock markets just to name a few. That

3Namely, the Dirac delta which belongs to an advanced mathematical discipline called the theory of
distributions. The Dirac delta can be seen as a mathematical representation of the temporally infinitesi-
mal interaction taking place when a hammer is smashed with great force onto an anvil. This conceptual
view has been borrowed from [7], a recommendable introduction to the theory of distributions.

4An alternative name for h(t, τ) is the input delay-spread function [8] which, similar to the “impulse
response” terminology, may appear somewhat misleading.

5Which can also frequently be viewed as ignorance or lack of detailed knowledge, but we do not find
it appropriate to enter such a discussion here.
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some mechanism behaves at random does not necessarily imply that it is completely ir-
regular and disorderly. Systematic tendencies and recurring patterns are often in play
but we cannot say with absolute certainty what to come next. Hence, when parame-
terizing a linear system A, we can for example decide upon certain candidate shapes
for its impulse response or its transfer function. From measurements and experience
we may know grossly or qualitatively how these functions behave. This is exactly the
case for the wireless radio channel. In Sec. 8 and Sec. 9 we elaborate on a few popular
approaches within stochastic radio channel modeling.

3 Fading Dispersive Radio Channels
Recall Kennedy’s statement saying that fading dispersive radio channels are adequately
described as random linear time-varying filters. In this section we set out to elaborate
on his statement. In particular, we set out to conceptually elaborate on the two terms
fading and dispersion. Both belong to the engineering vocabularies and dictionaries in
use when dealing with radio channel modeling. And we may as well warn the reader
immediately. The terminology in use within this area of engineering is not always
consistent! This can be seen from a pessimistic perspective as well as from a rather
positive perspective. The downside is that it can and does often lead to great confusion
and frustration. On the other hand, it repeatedly forces one to stop-and-think and to
wear sceptic but eventually rewarding glasses.

Conceptually, Kennedy tells us that the wireless radio channel acts like a filter.
When a certain signal is launched into the channel, then a filtered version of the input
comes out. Certain signal components are weakened or entirely removed while others are
passed through undistorted. Since the channel is time-variant it does not consistently
filter away the same signal features all the time. Which frequency components being
distorted, how and when, is described by the time-variant (channel) transfer function
H(t, f). Fig. 2 illustrates a “frequency-slice” and a “time-slice” of some fictitious time-
variant transfer function. In the left-hand side of the figure the time-variable t is kept
fixed whereas in the right-hand side the frequency-variable f is fixed.

The above figure comprises all we need in order to grasp what communication engi-
neers mean when they speak about fading. Fading is a common term used to emphasize
the chasms in the two curves in Fig. 2. The degree of attenuation affecting the input
signal is not constant and the channel recurrently exhibits a fade. Some fades are deep
while others are not as can be seen from inspection of the different “valleys”, e.g. in
the left-hand side of the figure. Certain frequency components are experiencing levels
of attenuation which are orders of magnitude stronger compared to other components.
Essentially, this is the filtering nature of the wireless radio channel. Fading is caused by
effects detrimental to propagation and signal reception. It is common to classify fading
into different groups according to the underlying causes for it. Hence, in literature one
frequently encounters keywords likemultipath-fading and shadow-fading, fast-fading and
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f [Hertz]

|H(0, f)|

t [Seconds]

|H(t, 0)|

Fig. 2: Two slices of a time-variant channel transfer function H(t, f). (Left) Magnitude of H(0, f)
versus frequency. (Right) Magnitude of H(t, 0) versus time.

slow-fading or maybe small-scale fading and large-scale fading. We intentionally avoid
entering a tedious discussion with the objective to define, justify, relate and compare
the diverse terminology in use. Most academic textbooks on wireless communications
or radio channels contain dedicated paragraphs with exactly such a discussion. Notes,
warnings and remarks on terminology-wise misconceptions are often found too, e.g. as
in [11, Sec. 2.2] where G. D. Durgin demystifies and clarifies why fast-fading is sometimes
not-so-fast after all.

Dispersion and selectivity are two additional concepts from the world of channel
modeling and both are intimately related to fading, yet, also intimately related to each
other. The fictitious channel represented in Fig. 2 is said to be selective in both time
and frequency. Such a channel is also often referred to as being doubly-selective with a
default understanding of the selectivity to be with respect to time and frequency.

The wireless radio channel’s selectivity in time is triggered via motion in the sur-
rounding physical environment. Everything is essentially in an ever-changing mode since
the receiver is often moving or changing its orientation, leaves on trees are rustling in
the wind [11], cars are moving, etc. Unless everything in the propagation environment
remains entirely static the resulting radio channel will exhibit selectivity in time, albeit
the variations need not always be noteworthy.

Selectivity in frequency enters since the transmit signal propagates along multiple
different physical routes or paths on its way to the receiver. This phenomenon is called
multipath propagation. When the individual signal contributions eventually show up
at the receiving antenna they superimpose and combine. As most individual signal
contributions have traveled distinct physical routes it naturally means that some arrive
later than others. Hence, individually delayed and individually attenuated copies of
the original signal arrive and superimpose at the receiving antenna. When some signal
copies arrive considerably later than the earliest ones it leads to severe signal distortion
– especially if the time span allocated to transmit consecutive pieces of information is



4. System Functions 11

smaller than the delays introduced in the channel6. Essentially, time-shifted copies of
dissimilar pieces of information fall on top of each other and so the overall received
signal is highly distorted from interference with itself. Engineers refer to this type of
signal distortion as inter-symbol-interference.

As a rule of thumb, the radio channel’s selectivity in time has to do with motion
whereas the selectivity in frequency has to do with multipath propagation. Although
this is a simplified view it still conceptually offers all we need to keep in mind. The last
tricky fact we remain to comprehend is that dispersion is equivalent to selectivity (via
Fourier transform duality). The radio channel being selective in frequency is nothing
but to say that the channel is dispersive in delay. The radio channel being selective in
time is to say that the channel is dispersive in Doppler7. Hence, the term dispersion
is used to emphasize that the wireless radio channel essentially spreads out the input
signal (in delay and Doppler).

We summarize shortly by recalling once more Kennedy’s statement saying that fading
dispersive radio channels are adequately described as random linear time-varying filters.
And this time we have a fairly good conceptual idea on what his statement is all about.

4 System Functions
In radio channel modeling we seek to establish the link between an arbitrary input signal
x and the corresponding output signal y. From (3) and (4) we know already two input-
output relationships. Yet, we have also just got to know that the wireless radio channel
is dispersive in delay and Doppler. That is, the radio channel takes the input signal x
and spreads/smears it in delay and Doppler and brings it to the receiver antenna where
the dispersed signal contributions superimpose, forming the output signal y. Neither (3)
nor (4) directly provide this interpretation of the action of the wireless radio channel. A
partial transform of the time-variant impulse response h(t, τ) brings forward this view,

6This is indeed the case for modern communications system which are required to support high-
rate data transfers, achieved essentially by transmitting consecutive pieces of information very closely
separated in time (i.e. the so-called signaling period is very short).

7The Doppler effect is a phenomenon which is well-known from acoustics. Most people have expe-
rienced it upon witnessing an ambulance approaching fast from behind, after which it passes straight
by. The sound of the siren changes quite remarkably as the ambulance passes. When it approaches
the sound waves are being squeezed due to the motion of the vehicle. On the other hand, when de-
parting, the sound waves are being stretched. At the very intersection everything records completely
irregular. It sounds like the siren is altering its frequency and this is all caused by the motion of the
vehicle. Exactly the same enters in the wireless radio channel, namely that the electromagnetic waves
are being squeezed and stretched due to physical motion in the propagation environment. As seen from
the receiver, the incoming electromagnetic waves have all been individually shifted in frequency (in
Doppler).
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namely by introducing

s(ν, τ) :=
∫
h(t, τ)e−j2πνtdt. (5)

The function in (5) has two variables ν and τ which represent Doppler and delay,
respectively. By rearranging the relationship in (5) and by inserting it in (3) we get
immediately a new input-output equation reading

y(t) = {Ax}(t) =
∫∫

s(ν, τ)x(t− τ)ej2πνtdνdτ. (6)

The mathematical relationship in (6) reveals that the output signal y is a superposi-
tion of translated (delayed) and modulated (Doppler shifted) versions of the input signal
x. Each delay-Doppler shifted version of the input signal is weighted by the corre-
sponding value of the function s(ν, τ) and all such contributions are combined. For
this reason, the quantity s(ν, τ) is called the Doppler-delay spreading function of the
(doubly-dispersive/doubly-selective) radio channel. Essentially, we now have three dif-
ferent but equivalent input-output relationships at our disposal, namely (3), (4) and
(6). Each relationship provides its own interpretation of the wireless radio channel and
each of the quantities

h(t, τ) : the time-variant impulse response,
H(t, f) : the time-variant transfer function,
s(ν, τ) : the spreading function,

possesses its own properties and characteristics. The impulse response, the transfer
function and the spreading function are in literature often referred to as (channel)
system functions8. In the forthcoming chapter we provide a detailed overview of the
relevant state-of-the-art modeling and characterization of these system functions.

5 Modeling Paradigms
Channel modeling paradigms and categorization of radio channel models. As mentioned
earlier, we often seek to put things into adequate boxes in order to conveniently maintain
an overview. For radio channel models relying explicitly on electromagnetic wave prop-
agation it has been suggested to distinguish three overall paradigms, see [12, Sec. 2] for
an overview. These paradigms are coined deterministic channel modeling, geometric-
stochastic channel modeling and finally just stochastic channel modeling. The latter
approach is sometimes encountered with prefixes such as “purely” or “non-geometrical”

8A fourth system function exists as well [8]. It has two frequency variables, namely ν and f . However,
this particular system function has not received much attention in the channel modeling literature.
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to emphasize that aspects related to geometry are not considered or incorporated in any
way9.

As a rule of thumb, deterministic channel models rely on geometry as well as con-
siderations from physics, e.g. optics and diffraction theory. Deterministic models seek
to accurately mimic how the electromagnetic waves propagate and interact with ob-
stacles in the surrounding environment, ultimately seeking to approximate solutions of
Maxwell’s equations. Overall, deterministic approaches (such as ray-tracing [16, Sec. 3.4])
require a detailed description of the propagation environment, materials, surfaces, phys-
ical point-to-point distances, and so on. Deterministic models are often computationally
demanding but potentially also very accurate.

To the contrary, purely stochastic channel models rely on partial ignorance. That is,
the physical wave propagation phenomenon is still being mimicked but is now character-
ized by statistical means only. Essentially, certain stochastic mechanisms are proposed,
probability distributions selected, and their parameters calibrated. Stochastic models
are often flexible with respect to changes in the propagation environment, such as being
applicable for both indoor and outdoor communications if the underlying parameters
are adjusted accordingly.

The approach of geometric-stochastic channel modeling can be seen as an interme-
diate between deterministic modeling and purely stochastic modeling. Specifically, a
geometric-stochastic channel model is incorporating certain assumptions about geomet-
rical aspects in the propagation environment [12, Sec. 2.2]. Typical and popular examples
of such assumptions are related to the actual physical positions of transmitter, receiver
and obstacles. Yet, a geometric-stochastic channel model is also based on certain de-
grees of ignorance, e.g. such that the interactions between electromagnetic waves and
physical objects are treated stochastically. One of the most dominant advantages of
a geometric-stochastic modeling approach is its accurate relationship to the physical
environment, e.g. in terms of the steady change in the propagation constellation caused
by receiver movements.

The fundamental differences among the three paradigms described above do not
render one particular paradigm more attractive or proper than another. It is crucial
to notice that channel models belonging to different paradigms are typically used for
distinct purposes. Ray-tracing models are in general not attractive for Monte Carlo sim-
ulations due to their computationally demanding nature. However, ray-tracing models
are favorable for coverage prediction, something the stochastic models are usually not.
Accordingly, a categorization of radio channel models does not necessarily enable an
option for model comparison but merely it helps to maintain an overview.

9In [12], channel models relying explicitly on electromagnetic wave propagation are called physical
models. We stress that numerous channel and propagation models proposed in the literature do not
belong to this category, see e.g. [13, 14] and [12, Sec. 3] for examples of so-called analytical models [12].
Furthermore, other paradigms/categorizations exist in the channel modeling literature as well [15].
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6 Outlook
We now possess conceptual knowledge as well as general insight on the engineering ter-
minology in use within the area of stochastic radio channel modeling. In the forthcoming
chapter we highlight a selection of landmark contributions which have entered since the
earliest days of radio channel modeling. We indicate and discuss existing and emerging
trends. In particular, we emphasize a selection of stochastic radio channel models which
rely in their construction on point processes. These radio channel models serve as a
natural starting point for the contributions of this thesis. Specifically, point processes
comprise a convenient and adequate tool for stochastic modeling of linear time-invariant
radio channels. This has been known for nearly half a century by now. However, point
processes and the associated theoretical framework have not been adopted in a similar
fashion when it comes to the important task of analyzing the variety of channel models
proposed in the literature. The last decade has offered a few contributions in this di-
rection [17–19] but seemingly without much recognition10. The ultimate goal with this
thesis is to explore the powerful tools of the theory of spatial point processes in the
context of stochastic radio channel modeling and analysis. Specifically, we seek to refine
our understanding of the inherent structures and properties of stochastic radio channels
and their impact on current and future communication systems and networks.

Throughout the work presented in this thesis it remains a standing assumption that
the action of the wireless radio channel can be described via the integral equations (3),
(4) and (6). Obviously, these three input-output relationships are disregarding the addi-
tive effect of noise as well as interference from other users of the wireless radio channel.
Mitigation of noise and interference comprises another important topic in communica-
tions engineering which nonetheless is beyond the scope of this thesis. Although not
directly emphasized in our main contributions, the point process tools developed can
be naturally applied in extensions of the considered models and their use cases. This
could for example be communication systems making use of multiple transmit and re-
ceive antennas (so-called MIMO systems) or radio channel models embedding additional
propagation effects such as dispersion in direction and polarization. Finally, as we shall
see, our main contributions are related only to two of the modeling paradigms men-
tioned in the previous section, namely the purely stochastic approaches (Papers A, B,
and C) and the geometric-stochastic approaches (Paper D).

10Despite the fact that the theory of spatial point processes has already been successfully employed
in related areas of research, namely, for the design and analysis of wireless networks [20].



A Subjective View Upon
Trends and Seminal
Contributions

The overview and exposition to be established in this chapter is non-exhaustive indeed,
as well as biased from subjective preferences, thoughts, and impressions. The messages
conveyed are better perceived if the reader has prior knowledge beyond that of the mere
basics of stochastic radio channel modeling.

The earliest days of radio channel modeling were primarily influenced by S. O. Rice
[21, 22] and L. Zadeh [23, 24]. Shot-noise random processes and Campbell’s Theorem
played dominant roles in Rice’s work on a mathematical characterization of random
noise. Zadeh introduced the time-variant transfer function and the notion of system
functions in his analytical treatment of time-variant linear filters. The time-variant
transfer function and Campbell’s Theorem are both fundamental concepts within the
contributions of this thesis, and hence, the combined work of Rice and Zadeh is naturally
highlighted.

7 The Bello–Clarke–Kennedy Decade
Three seminal and very popular contributions concerning the modeling and characteri-
zation of stochastic radio channels are:

• P. A. Bello’s “Characterization of Randomly Time-Variant Linear Channels” [8],

• R. H. Clarke’s “A Statistical Theory of Mobile-Radio Reception” [25], and

• R. S. Kennedy’s “Fading Dispersive Communication Channels” [2].

These contributions, all from the nineteen sixties, have been cited over and over and the
trend is ongoing. Their ideas and expositions are so fundamental that these “classics”

15
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still highly impact today’s literature on radio channel modeling. Below we briefly high-
light the key aspects of the work by Bello and Clarke. Since Kennedy’s contribution
was already mentioned in the previous chapter we omit bringing further details on his
work at this point.

Bello characterizes, among others, the so-called wide-sense stationary uncorrelated
scattering (WSSUS) channel. In this setup the system functions are modeled as random
processes. The time-variant impulse response h(t, τ) is wide-sense stationary (WSS) in
the time variable t and exhibits uncorrelated scattering (US) in the delay variable τ . The
spreading function s(ν, τ) is white in both variables whereas the time-variant transfer
function H(t, f) is WSS in both of its variables. Bello emphasizes that this doubly-
selective channel is the simplest one to characterize in terms of correlation functions
while fortunately also being a channel of practical interest. This fact most likely explains
the overwhelming dominance of the use of this type of channel model in literature and
practice. That H(t, f) is doubly WSS means that its autocorrelation function

E
[
H∗(t, f)H(t′, f ′)

]
= RH(∆t,∆f) (7)

depends on two variables only, namely the lags ∆t := t′ − t and ∆f := f ′ − f . The
quantity in the right-hand side of (7) is often referred to as the channel’s time-frequency
correlation function. The power spectral density of the random process H(t, f) is the
Fourier transform of the time-frequency correlation function, namely

P (ν, τ) :=
∫∫

RH(∆t,∆f)e−j2π(ν∆t+τ∆f)d∆td∆f. (8)

This non-negative quantity, referred to as the channel’s scattering function, reveals
how the channel’s average power is distributed jointly in Doppler and delay. In general,
when the time-variant transfer function is non-stationary, the time-frequency correlation
function depends on all four variables (t, t′, f, f ′) in the left-hand side of (7) and the
scattering function as above is not defined11. Major parts of Bello’s landmark paper
have reentered in literature multiple times, especially in modern academic textbooks [28,
Chap. 6], [29, Chap. 7], [30, Chap. 3]. This is true, in particular for those graphs Bello used
for demonstrating the relationship between different correlation functions (via duality
and Fourier transforms).

Clarke originally derived the well-known bathtub-shaped power-Doppler profile

PDoppler(ν; νmax) :=
∫
P (ν, τ)dτ ∝

1
[
|ν| < νmax

]√
1− (ν/νmax)2

, (9)

which frequently serves as a default choice when modeling the individual path gains
in the widely used Rayleigh-fading multipath channel. The positive parameter νmax

11A rigorous theoretical framework for handling, analyzing, and characterizing non-WSSUS channel
models can be found in [26, 27]
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controls the largest possible Doppler shift in the channel and is typically determined from
assumptions on receiver and scatterer velocities. Larger Doppler shifts means more rapid
channel selectivity in time in the sense of shorter intervals between consecutive fades,
recall Fig. 2. Clarke’s ideas were further developed by W. C. Jakes [31] and the bathtub-
shaped Doppler spectrum is from time to time referred to as Jakes’ spectrum. Doppler
spectra more realistic compared to (9), in the sense of not only supposing horizontal
wave propagation and consequently being less peaky at the support boundaries, were
suggested by T. Aulin [32] some ten years after Clarke’s pioneering contribution.

Having the above second-order characterizations of Bello and Clarke in mind, we
now proceed to elaborate on a selection of concrete modeling suggestions.

8 A Class of Time-Invariant Stochastic Models
A simple, flexible, and widely used class of time-invariant stochastic channel impulse
responses is given by [33, 34]

h(τ) =
L∑
`=1

α
`
δ(τ − τ

`
), (10)

where δ(·) is the Dirac delta mentioned in the footnote on page 7. The parameters of
the generic model in (10) are:

• L, the number of (multi)path components, which may be infinite,

• (α1 , α2 , . . . , αL
), a collection of complex-valued12 path gains, and

• (τ1 , τ2 , . . . , τL
), a collection of non-negative propagation delays.

Each term in the sum in (10) is called a path component, and each integer-indexed pair
(α

`
, τ

`
) ∈ C × R+ is referred to as the corresponding path parameter(s). Alternative

channel models can include path components with additional or different path parame-
ters, e.g. directions. We often abuse terminology and refer to the pair (α

`
, τ

`
) as a path

component since this should not be able to cause any confusion.
Some of the parameters in (10) may enter the model in a deterministic fashion while

others are randomly generated from realization to realization. For example, the param-
eter L and the collection (τ1 , τ2 , . . . , τL

) may be fixed in advance such that only the path
gains (α1 , α2 , . . . , αL

) are randomly assigned. Another example is where all parameters
are generated at random, and so calling them “parameters” may seem a bit misleading.
One can also imagine more peculiar constructions where deterministic infinite sequences
(τ1 , τ2 , . . .) and (α1 , α2 , . . .) are predefined13 and where each realization is formed using

12Incorporating both magnitude and phase such that α` = |α` | exp(jθ` ), in contrast to [34, Sec. II].
13Basically resembling Durgin’s SLAC model construction in [11, Sec. 4.4].
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a random number L of randomly selected integer-indices
(
`(1), `(2), . . . , `(L)

)
∈ NL, i.e.

not necessarily those indices running from 1 to L. In principle, the “only” limiting factor
at this stage is a combination of creativity, sanity, purpose, relevance, and simplicity
(the principle of parsimony). Another limiting factor enters only later, namely analyt-
ical tractability. This key element appears now and then to be entirely forgotten when
certain channel models are designed.

A variety of different radio channel models emerge in (10) upon specifying different
joint distributions of all path components [34, Sec. IV]. An attractive way of doing so
is to initially fix L or to select a suitable probability distribution (binomial, geometric,
Poisson, etc.). Next step is to specify the joint distribution of the propagation delays
(τ1 , τ2 , . . . , τL

) for any given value of L. Finally, the conditional joint distribution of
(α1 , α2 , . . . , αL

) is to be specified, for example such that

E[α
`
|τ

`
] = 0 and E

[
|α

`
|2|τ

`

]
= σ2

α(τ
`
), ` = 1, 2, . . . , L, (11)

where the function σ2
α(·) is assigning conditional average power to each path gain as

a function of its associated propagation delay. Motivated by physical arguments, the
function σ2

α(τ) is usually selected to exercise a decaying trend versus increasing delay τ .
More generally, the conditional joint distribution of (α1 , α2 , . . . , αL

) can also be specified
with correlated components, for example such that

E[α|τ ] = 0 and E
[
ααH |τ

]
= Σα(τ ), (12)

where we have introduced a compact vector notation with τ := (τ1 , τ2 , . . . , τL
)> and

α := (α1 , α2 , . . . , αL
)>. Notice that (11) is a special-case of (12), but notice also

that entirely different choices could have been made as well. Yet, no matter how the
conditional joint distribution of the path gains is selected it should in all cases remain
feasible to calculate and normalize the channel’s average power gain

Ptotal := E

[∣∣∣ L∑
`=1

α
`

∣∣∣2]. (13)

Obviously, the gain in (13) should be finite in order for the proposed model to make
physical sense. Furthermore, without the ability to calculate (13) the suggested channel
model renders itself of only very limited interest (even for simulation purposes).

Example 1. Consider the following construction of a model of type (10). Let L be
any random variable with non-negative integer range. In each realization, conditioned
on L, suppose that all path components (α

`
, τ

`
) are mutually i.i.d. and independent

of L such that

f(α, τ |L) =
L∏
`=1

f(α
`
|τ

`
)f(τ

`
),
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where f is used in a generic manner to represent several different probability density
functions, being distinguishable only by their arguments. We assume that f(α

`
|τ

`
) is

such that E[α
`
|τ

`
] = 0, i.e. (11) applies and we need to specify the function σ2

α(·) at
some point. However, we can directly calculate the channel’s average power gain as

Ptotal = E

[( L∑
`=1

α
`

)∗( L∑
k=1

α
k

)]
= E

[ L∑
`=1

E

[
|α

`
|2
∣∣L]] = E

[ L∑
`=1

E

[
E
[
|α

`
|2|τ

`

]]]

= E

[ L∑
`=1

E
[
σ2
α(τ

`
)
]]

= E

[
LE
[
σ2
α(τ?)

]]
= E[L]E

[
σ2
α(τ?)

]
, (14)

where τ? denotes an arbitrary propagation delay drawn from the marginal density
f(τ).

We can now make explicit choices such as drawing the propagation delays uni-
formly on a suitably chosen interval [0, τmax] and letting σ2

α(τ) = Qe−ρτ for some
positive constants Q and ρ. Entering these choices in (14) yields

Ptotal = E[L] Q

ρτmax
(1− e−ρτmax),

which can be normalized via Q upon specifying the remaining three parameters. Such
a normalization would be needed, e.g. in simulation studies regarding performance
assessments of communication systems (to control the average signal-to-noise ratio).

More involved examples can be straightforwardly constructed by applying (12)
with a non-diagonal conditional covariance structure Σα. The conditional joint den-
sity f(α, τ |L) may also depend more crucially on L compared to just letting this
integer assign the vector dimension of α and τ . However, most calculations imme-
diately turn tedious as a consequence of any such changes and assessment of the
channel’s average power gain Ptotal becomes non-trivial. This is exactly where the
analytical tractability enters as a limiting factor.

Channel models of type (10) appear in numerous places in the literature [33, 34].
Some are quite simplistic while others are more sophisticated in their setup depending
on the context. Some proposed models rely in their constructions on one-dimensional
point processes (see Appendix E for an introduction) and these are particularly relevant
for the scope of this thesis. Specific examples of such channel models are:
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• G. L. Turin et al. [35], 1972, a model intended for urban radio communications.
The collection of propagation delays {τ

`
} forms a (possibly inhomogeneous) Pois-

son point process [36, 37]. The distribution of each path gain’s magnitude |α
`
| is

log-normal with parameters depending on the corresponding propagation delay τ
`
.

• H. Suzuki [38], 1977, a PhD student of Turin treating the so-called ∆-K model, a
follow-up development outlined already in Turin’s original paper [35]. The collec-
tion of propagation delays {τ

`
} now forms a self-exciting point process [39, Chap. 6],

while in a special-case forming a renewal type point process as Suzuki also re-
marked in his PhD thesis [40, pp. 149]. The proposed construction, which aimed
at triggering the propagation delays to form groups, was unfortunately found dif-
ficult to analyze. An important remark is that Suzuki appears to be the first to
use the notion of “local” scattering, local clusters, local objects and so on. Such
terminology is now frequently being used in the channel modeling literature.

• A. A. M. Saleh & R. A. Valenzuela [41], 1987, a model intended for indoor radio
communications. This construction involves two layers of homogeneous Poisson
point processes, designed specifically to enforce the propagation delays to form
so-called clusters. Path gain magnitudes are Rayleigh distributed with a peculiar
two-layered exponentially decaying structure for the conditional average powers.

From an analytical point of view the computational aspects are not getting any
lighter upon introducing point processes in the generic channel model description (10).
This is also clearly evidenced when consulting the original references [35, 38, 41] since
only confined fragments of analytical characterizations are provided. However, by rela-
tively obscure arguments, Saleh & Valenzuela do in fact obtain a closed-form expression
of the average power gain (13) for their proposed two-layer model [41, Eq. (27)+(31)].

Apart from the average power gain of a certain channel model, we are similarly in-
terested in being able to characterize its frequency domain correlation properties and
its power-delay profile. This knowledge allows to calculate key parameters such as co-
herence bandwidth, delay spread, mean excess delay, maximum excess delay, and so on.
These parameters are essential to the design and operability of modern communication
and positioning systems.

Example 2. We proceed with a further analysis of the channel model from Exam-
ple 1. Recall that L, the number of path components, is a random variable. The
transfer function corresponding to the impulse response in (10) reads

H(f) =
L∑
`=1

α
`
e−j2πfτ` , (15)
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which is an ordinary complex-valued random process in the frequency variable f .
Under the same assumptions as in Example 1 we readily find that

E
[
H(f)

]
= E

[ L∑
`=1

E

[
E
[
α

`
|τ

`

]︸ ︷︷ ︸
=0

e−j2πfτ`

]]
= 0,

i.e. the transfer function is a zero-mean process. The autocorrelation function of
H(f) is obtained by manipulations matching those leading to (14), and so

RH(f, f ′) := E
[
H∗(f)H(f ′)

]
= E

[ L∑
`=1

α∗
`
ej2πfτ`

L∑
k=1

α
k
e−j2πf

′τ
k

]
, (16)

= E[L]E
[
σ2
α(τ?)e−j2π∆fτ?

]
, (17)

= R̃H(∆f)

where all cross-terms vanish in (16), and where τ? denotes an arbitrary propagation
delay drawn from the marginal density f(τ) as in Example 1. Thus, the transfer
function H(f) is found to be WSS and we notice how (17) differs from (14) only by
the complex exponential term inside the expectation. Obviously, (17) coincides with
(14) when evaluated at ∆f = 0. By inspection of (17) we identify that the correlation
function R̃H(∆f) is in fact a scaled Fourier transform. Specifically, we have that

R̃H(∆f) = E[L]F
{
f(τ)σ2

α(τ)
}

(∆f),

and so we immediately find that the power-delay profile of this channel is given by

Pdelay(τ) = E[L]f(τ)σ2
α(τ) with

∫ ∞
0

Pdelay(τ)dτ = Ptotal.

Hence, a channel of type (10) with i.i.d. path components and conditionally uncor-
related zero-mean path gains is WSS in the frequency domain and has a power-delay
profile given by the three-term product:

average number of path components
×

marginal density of propagation delays
×

conditional second-moment of path gains.

In case of L not being random we can simply replace E[L] by the constant L itself.
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A key feature of the correlation function R̃H(∆f) in Example 2 is that it contains the
information necessary to form linear estimators of H(f) which are optimal in minimum
mean squared error sense, e.g. for OFDM applications. Furthermore, the main lobe
of R̃H(∆f) is used to extract knowledge about the pace at which the transfer function
H(f) decorrelates, i.e. the correlation function R̃H(∆f) provides information about the
coherence bandwidth of the channel [42].

For a point process construction such as the one by Saleh & Valenzuela [41], the
frequency domain correlation function and the power-delay profile are not as easily
assessed as in Example 2. In fact, these second-order characteristics have only recently
been reported in literature [19]. Unfortunately, the results in [19] are obscured from
a pronounced notational overhead in combination with the fact that most derivations
rely on relatively advanced mathematical tools (measure-theoretical counting integrals,
moment generating functionals for Poisson-driven shot-noise, etc.). Yet, the crucial
analytical properties of Saleh & Valenzuela’s model can be re-derived in a simpler and
more insightful way (Paper B), essentially by application of point process related tools
no more advanced than Campbell’s Theorem [37, Sec. 3.2], [43, Prop. 4.1], [44, Thm. 2.2].

9 Time-Variant Stochastic Modeling
Despite the generic channel impulse response in (10) being time-invariant, this very
model is frequently used for time-variant scenarios as well. The time axis is then sliced
into appropriate slots and individual realizations of (10) are placed in each individual
time slot. Such discretized time-variant constructions are often referred to as block-
fading channels. However, there are also numerous other ways to design a stochastic
model of the time-variant radio channel. A straightforward procedure is as follows.
Start from the model in (10) and incorporate time-dependency into some or all of its
parameters. One particular outcome of this strategy would lead to a sequence of models
reading

a) h(τ) =
L∑
`=1

α
`
δ(τ − τ

`
) (18)

b) h(t, τ) =
L∑
`=1

α
`
(t)δ(τ − τ

`
) (19)

c) h(t, τ) =
L(t)∑
`=1

α
`
(t)δ(τ − τ

`
) (20)

d) h(t, τ) =
L(t)∑
`=1

α
`
(t)δ

(
τ − τ

`
(t)
)
, (21)
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with the model class in (18)/(21) incorporating the smallest/largest number of time-
variant quantities. In fact, class a) in (18) is just copied from (10) and so not being
time-variant at all. Furthermore, not all configurations are displayed above as 2 ·2 ·2 = 8
different scenarios are possible:

L time-variant? {α
`
} time-variant? {τ

`
} time-variant?

yes or no yes or no yes or no

The course through the sequence a)→ b)→ c)→ d) is deliberate and the reason for dis-
regarding four alternative configurations is not that these are practically or theoretically
irrelevant. The sequence a) → b) → c) → d) is chosen to represent a steady increase
of “complexity” in the sense of time-variability. Within class d) we seek essentially to
incorporate as many time-dynamic features as possible without breaching the scope of
the original multipath channel model in (10). A conceptual illustration of a realization
of some fictitious class d) model is provided in Fig. 3.

Fig. 3: (21) depicted in conceptual terms to highlight its time-variant multipath behavior. Initially,
only two path components are present but as time progresses a new path component emerges. Propa-
gation delays and path gain magnitudes are fluctuating with time.

Channel models belonging to class a) were discussed already in the previous section.
Models from class b) are often found in literature [45], [46, Sec. II-C], [47, Chap. 6], [16,
Chap. 6], and these appear to comprise the easiest type of time-variant radio channels
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to “handle” and analyze. A known fact is that Bello’s WSSUS characterization applies
for all type b) models with conditionally uncorrelated zero-mean WSS path gain pro-
cesses, see e.g. [45]. This fact renders merely what to be expected, especially with the
conclusions from Example 2 in mind.

Channel models belonging to the classes c) and d) appear frequently in literature
as well [34, Eq. (1)], [30, Chap. 3], [48]. Yet, the ability to analytically characterize these
models seems to become more and more challenging with the increased degree of time-
variability, as also emphasized by Hashemi in [34, Sec. V-A]. It is not immediately clear
if a type c) model has the ability to enter as a member of the analytically attractive
WSSUS class14. And if a type c) model can in fact be a WSSUS channel, under what
specific conditions then? Intuitively, one expects at least that the integer-valued random
process L(t) in (20) has to be WSS. Yet, is this condition sufficient? Obviously, the same
and even further speculations apply to the models of type d).

A few of the time-invariant channel constructions mentioned in the previous section
employed point processes to incorporate dispersion in the delay-domain. However, point
processes can similarly be used to incorporate dispersion in Doppler, direction, and so
on. Some time-variant channel models of classes c) and d) rely on point processes.
A popular setup used to generate the temporal random process L(t) in (20)/(21) is
based on a stochastic birth-death mechanism. Specifically, the birth-death mechanism
is designed using a homogenous Poisson point process (birth times) in combination
with a sequence of i.i.d. exponentially distributed random variables (lifetimes). This
particular construction has entered in the literature several times [49–51] while being
originally proposed in the context of radio channel modeling by S. J. Papantoniou [52].
Only few analytical properties of this particular type d) model have been reported
in the channel modeling literature. This fact seems to confirm Hashemi’s statement
regarding the difficulties emerging due to increased time-variability. However, a wide
range of analytical properties can be extracted by naturally exploiting the fact that the
underlying construction relies on a point process (Paper A).

10 Analysis of Stochastic Radio Channels Via Point
Processes and Campbell’s Theorem

Two examples are provided in the following to indicate and hint towards the potential
arising when employing the theory of spatial point processes to facilitate the analytical
characterization of stochastic radio channel models. Concise and targeted introductions
to the theory of spatial point processes can be found in Sec. 2 in Paper B or Sec. 3 in

14Being a member of the WSSUS class is to be understood here as a question of whether the associated
time-variant channel transfer function H(t, f) is doubly WSS. Essentially, the impulse response models
considered in this section do not belong/fit within Bello’s original work since these are not ordinary
two-dimensional random processes. They are random generalized functions.
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Paper A. Alternatively, Appendix E takes the form of a study note which provides a
highly accessible introduction to spatial point processes. The examples below presup-
pose familiarity with several concepts from the theory of spatial point processes.

Example 3. Recall Example 2 where we derived a three-term product-structured
power-delay profile for a simple time-invariant channel model of type (10). In this
example we generalize the result and assess a similar product structure using a point
process approach.

We start by reformulating the impulse response model in (10) using a one-
dimensional point process Y (propagation delays) and a collection of conditionally
uncorrelated zero-mean marks {αy : y ∈ Y } (path gains). The exact reformulation
reads

h(τ) =
L∑
`=1

α
`
δ(τ − τ

`
) −→ h(τ) =

∑
y∈Y

αyδ(τ − y),

which for the moment looks as nothing but a shift in notation. The point process Y
is defined on the non-negative reals R+ := [0,∞) and it has a non-negative intensity
function %

Y
(y). We assume that the complex-valued random marks are drawn such

that
E[αy|Y ] = E[αy|y] = 0, y ∈ Y,

and such that

E
[
α∗yαỹ|Y

]
= E

[
α∗yαỹ|y, ỹ

]
= σ2

α(y)1[y = ỹ], y, ỹ ∈ Y,

which is the assumption of conditionally uncorrelated zero-mean path gains. With
our new notation the associated channel transfer function reads

H(f) =
∑
y∈Y

αye−j2πfy.

We can immediately proceed by computing its correlation function:

RH(f, f ′) = E[H∗(f)H(f ′)] = E
[
E[H∗(f)H(f ′)|Y ]

]
(22)

= E

[∑
y∈Y

∑
ỹ∈Y

E
[
α∗yαỹ|Y

]
ej2πfye−j2πf

′ỹ

]
,

= E

[∑
y∈Y

σ2
α(y)e−j2π∆fy︸ ︷︷ ︸

g(y;∆f)

]
, (23)

=
∫ ∞

0
%

Y
(y)σ2

α(y)e−j2π∆fydy, (24)

= F
{
%

Y
(·)σ2

α(·)︸ ︷︷ ︸
Pdelay(·)

}
(∆f), (25)
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where the step in (22) amounts to standard conditioning, (23) follows by conditional
uncorrelatedness, and the step from (23) to (24) follows by application of Campbell’s
Theorem.

In conclusion, we end up with a product-structured power-delay profile which
generalizes the result from Example 2 (for a suitable choice of the point process
Y ). Conditioned on L, the collection in Y forms a binomial point process since the
propagation delays are i.i.d. by assumption. Obviously, for the channel to make
physical sense we should have∫ ∞

0
Pdelay(y)dy =

∫ ∞
0

%
Y

(y)σ2
α(y)dy <∞,

and so enforcing a natural decay-condition on the product %
Y

(y)σ2
α(y). The result in

(25) applies to any linear time-invariant channel model for which the propagation de-
lays can be formulated as a point process and which holds conditionally uncorrelated
zero-mean path gains as specified in the beginning of this example. In particular, the
result holds for special-cases of the models proposed by Turin and Suzuki as well as
the one by Saleh & Valenzuela (Paper B).

Assume that a channel model has been cast within the scope of Example 3. The
frequency-domain correlation function and the associated power-delay profile are thus
both offered without the need for tedious calculations. Casting a model within the
scope of the above example amounts to specifying the desired type of point process for
Y (binomial, Poisson, self-exciting, Cox, etc.), its intensity function %

Y
(y), as well as

the function σ2
α(·) which assigns conditional average power to the individual path gains.

Example 4. In the last paragraph of the previous section it was mentioned how
the temporal random process L(t) in (21) has been generated in the literature so
far. Specifically, the suggested design is based on a homogenous Poisson point pro-
cess (birth times) in combination with a sequence of i.i.d. exponentially distributed
random variables (lifetimes). This construction can be naturally viewed as a marked
Poisson point process X or equivalently, as a two-dimensional point process X (which
is in fact a spatial Poisson point process with known intensity function since the marks
are mutually independent).

From this two-dimensional point process perspective the analytical characteriza-
tion of the random process L(t) renders suddenly quite feasible. Specifically, the
random process can be readily defined as

L(t) =
∑
x∈X

g(x; t),

for a suitable choice of the function g(x; t), where the points are now displayed in
boldface notation to stress that X is a two-dimensional point process. The mean
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E[L(t)] can be computed using Campbell’s Theorem and the time-varying impulse
response in (20) or (21) can be reformulated into a sum indexed by a point process,
essentially as in Example 3. Overall, the two-dimensional point process perspective
briefly described in this example enables novel analytical characterization of the time-
variant channel models in (20) and (21). In particular, it allows to partially answer
some of our previous questions regarding potential WSSUS properties (Paper A).

From the above two examples the curiosity of the potential reader has hopefully
been triggered. At least, we are now adequately prepared to take a closer look at the
main contributions of this thesis as well as their implications.
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Contributions, Conclusions,
and Outlook

This chapter outlines and summarizes the key contributions of this PhD thesis, namely
Papers A, B, C, and D, as well as the study note in Appendix E. The particular la-
beling of the papers is deliberately chosen to reflect subjective priorities. Yet, the true
chronological order

Paper C (2010) → Paper B (2012) → Paper D (2013) → Paper A (submitted 2013),

indirectly tells a story about the progress of my work. In particular, it reveals how my
personal view upon radio channel modeling has slowly but steadily changed, matured,
and settled. Paper C is the earliest one, my first “real” publication. Ironically, this
contribution does not at all rely on the theory of point processes. However, the cu-
riosity, technical outcomes, and ideas spawned from this paper happened to establish
the foundation for the subsequent direction of my work. My research activities are now
notably influenced by the theory of point processes and this is partly the reason why
the study note in Appendix E was put together almost two years ago.

11 Paper Contributions and Findings
In this section, all four papers are presented in a format which resembles an extended
abstract. Table 1 provides an ultra short summary of each paper (see next page). The
table essentially indicates the exact channel models being considered as well as the roles
played by the point processes introduced in each paper.
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Paper A:
Channel models: Purely stochastic, mainly type c) but also type d)
Point processes: Creates a temporal birth-death mechanism

Used for indexing of path components
Main findings: Novel and thorough analysis of birth-death mechanism

Type c) models can be WSSUS
Product-structured time-frequency correlation function

Paper B:
Channel model: Purely stochastic, type a)
Point processes: Creates delay dispersion
Main findings: Model formed by dependent Poisson and Cox point processes

Power-delay profile not exponentially decaying

Paper C:
Channel models: Purely stochastic, types b) and d)
Point processes: Not used
Main findings: Appropriate channel model selection is crucial

Paper D:
Channel model: Geometric-stochastic, type d) but such that L(t) = L
Point processes: Creates dispersion (delay, Doppler, space)
Main findings: Non-stationary but analytically tractable channel model

Table 1: Sparse overview of Papers A, B, C, and D.

a) h(τ) =
L∑
`=1

α
`
δ(τ − τ

`
)

b) h(t, τ) =
L∑
`=1

α
`
(t)δ(τ − τ

`
)

c) h(t, τ) =
L(t)∑
`=1

α
`
(t)δ(τ − τ

`
)

d) h(t, τ) =
L(t)∑
`=1

α
`
(t)δ

(
τ − τ

`
(t)
)

The impulse response models from page 22.
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Paper A – The topic of this paper is purely stochastic modeling and subsequent analysis
of time-variant radio channels. Specifically, channel models of type (20) and (21) are
considered with an underlying point process construction used to generate a temporal
birth-death behavior of individual path components.

The approach in the paper is based on analytically tractable reformulations of (20)
and (21) and on subsequent analysis of these via Campbell’s Theorem. Specifically, the
traditional integer-indexed sums in (20) and (21) are replaced by equivalent expressions
indexed by points from a particular spatial point process. Several novel investigations
are carried out in the paper. A comprehensive analytical characterization of the tem-
poral birth-death mechanism is given. Additionally, we derive the general structure of
the time-frequency correlation function for this type of time-variant channel models.
A key aspect of our approach is a gradual identification of conditions under which the
resulting channel models belong to the popular WSSUS class.

Several overall conclusions emerge in Paper A. The proposed point process perspec-
tive is analytically beneficial due to its inherent flexibilities with respect to dimension-
ality swapping and due to its ability to circumvent enumeration issues of traditional
modeling approaches. The point process perspective is also highly attractive for sim-
ulation purposes. Channel models of type (20) can indeed be designed such that they
belong to the WSSUS class. The general structure of the time-frequency correlation
function reveals a product form consisting of a large-scale and a small-scale term. Fi-
nally, the paper strongly suggests (without definitive proof, however) that models of
type (21) cannot be designed such that they belong to the WSSUS class.

Paper B – The topic of this paper is centered around the popular time-invariant channel
model by Saleh and Valenzuela (the S-V model), which is of type (18). The paper
presents a thorough and readily accessible point process analysis of the S-V model and its
underlying two-layered structure. The motivation for revisiting the classical S-V model
comes from the fact that it is being widely used in simulation studies, performance
comparisons and evaluations15. However, due to its rather ad-hoc construction, the
analytical properties of the original S-V channel model are not well-understood or not
known, e.g. the shape of the power-delay profile.

The approach in the paper relies on an analytically tractable reformulation of the
classical S-V model. Specifically, the collection of propagation delays emerging in two
layers is formulated as a new point process. This new formulation facilitates analytical
characterization via Campbell’s Theorem. Hence, the main idea is to naturally exploit
the fact that the original model construction relies on point processes. From this per-
spective the main investigations are driven by a question rooted in curiosity. What
basic analytical properties can be readily established for the popular S-V model and its
original two-layered construction?

15More precisely, a number of refined/extended S-V models are frequently employed, e.g. within the
ultra-wideband activities based on the IEEE 802.15.3a and IEEE 802.15.4a standardizations.
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The first main conclusion of Paper B is that the S-V model is comprised by the
union of two dependent point processes, namely a homogeneous Poisson point process
and an inhomogeneous Cox point process. Secondly, the intensity of path components
rises linearly with propagation delay. Finally, the power-delay profile of the S-V model
is not exponentially decaying, it consists of a sum of two exponentially decaying terms.
Overall, the paper re-derives the intensity of path components and the channel’s power-
delay profile in a simpler and more insightful way compared to previous [19] and alter-
native [53] derivations. In essence, the above conclusions arise now as a direct result of
the wide applicability and straightforward use of Campbell’s Theorem.

Paper C – The topic of this paper is channel estimation in orthogonal frequency-division
multiplexing (OFDM) systems. The work is motivated from the fact that the state-of-
the-art channel estimation algorithm16 for OFDM signalling suffers from an irreducible
performance degradation due to its robust design. However, a notable advantage of
this estimation algorithm is that it operates without knowledge on instantaneous radio
channel parameters such as propagation delays and the number of path components.
Previous studies have suggested that the robustly designed estimator can be outper-
formed by linear minimum mean squared error estimators exploiting/presupposing such
instantaneous information about the radio channel.

The approach in the paper is based on two different time-variant radio channel mod-
els, one of type (19) and one of type (21). For both of these scenarios, the same three-
step channel estimator is employed. Specifically, H(t, f) is sampled at M = 200 evenly
spaced pilot-subcarrier frequencies and from these samples the channel parameters (all
path components) are estimated via the following steps:

1) M1 ×M1 covariance matrix estimation (Toeplitz structure) where M1 ≤M ,

2) Propagation delay estimation using the Unitary ESPRIT algorithm [54],

3) Linear minimum mean squared error estimation of path gains.

Two separate endpoint investigations are considered. The first investigation is on the
bit-error-rate performance versus improved covariance matrix estimation in 1) via so-
called spatial smoothing (which is possible due to the Toeplitz structure). The second
investigation is on bit-error-rate performance versus increased temporal dynamic behav-
ior of the channel, i.e. when changing the channel model from type (19) to (21).

The overall conclusions of Paper C are that appropriate channel model selection is
crucial for performance assessment of receiver algorithms and that the robustly designed
state-of-the-art channel estimator can be outperformed at the expense of higher com-
putational complexity and provided that the number of path components in the radio
channel is known.

16A robustly designed linear estimator derived from a minimum mean squared error criterion [45].
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Paper D – The topic of this paper is geometric-stochastic channel modeling of scatter-
ing contributions induced from roadside vegetation in land-mobile-satellite applications.
The motivation for this work is that scattering, shadowing, and obstruction caused by
vegetation (e.g. trees) in the surrounding of mobile receivers of satellite navigation sys-
tems impair the overall system performance. Specifically, the delay dispersion caused
by the physical size of trees can easily be of the same order of magnitude as the inverse
signal bandwidth used in modern positioning systems.

The paper presents a channel modeling approach taking into account the geome-
try of the considered scenario, namely the position of a transmitter (a satellite), the
trajectory of a mobile receiver (a car) as well as the location and the size of a scat-
tering volume (a tree). The scattering mechanism in the tree is modeled as resulting
from single-bounce point-source scatterers located randomly inside the tree canopy. We
model the set of such scatterers as a marked spatial point process. Essentially, the
considered channel model is of type (21) but restricted such that the number of path
components L(t) = L does not change within the same realization of the channel, it
changes only from realization to realization. An integral-form expression of the chan-
nel’s time-frequency correlation function is derived by invoking Campbell’s Theorem.
Yet, a closed-form approximation of the time-frequency correlation function is given
for time lags corresponding to displacements along the receiver trajectory for which
the plane wave assumption holds. The proposed channel model is verified and validated
experimentally with wideband measurements and by means of Monte Carlo simulations.

One of the key conclusions of Paper D is that the channel transfer function H(t, f)
is non-stationary and that the (mobility induced) steady change of the propagation con-
stellation is the main cause for the non-stationarity. Three distinct phases are identified
within the temporal evolution of the time-variant channel transfer function. All three
phases comply well with intuition regarding the expected behavior of H(t, f) depending
on whether the mobile receiver is approaching, passing straight by, or departing a single
isolated roadside tree. In fact, for each fixed time instance, the channel transfer function
H(t, f) is found to be wide-sense stationary in frequency. The proposed model includes
conveniently and adequately the delay and Doppler dispersion induced by the physical
extent of the tree and the receiver’s movement.
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12 Conclusions and Outlook
Based on the four main contributions of this thesis and their individual findings (as
reported above), we draw the following two overall conclusions:

• The theory of spatial point processes is highly facilitating for the stochastic model-
ing of various radio channels. This is true for purely stochastic time-invariant and
time-variant channels models as well as for geometric-stochastic channel models.

• The theory of spatial point processes and its powerful tools, like Campbell’s The-
orem, are equally facilitating for the purpose of extracting analytical properties of
the proposed channel models.

The concept of marked (spatial) point processes comprises a flexible and easily applicable
tool for the “engineering treatment” of numerous radio channels. Knowledge on abstract
measure theory is not needed in order to apply the theory of spatial point processes, at
least not in the practical context of radio channel modeling and characterization. Beside
these overall statements, a number of more concrete implications can be highlighted as
well.

The point process perspective offers build-in flexibilities with respect to dimensional-
ity swapping as well as a natural ability to circumvent inconvenient enumeration issues
of traditional channel modeling approaches. Model extensions such as incorporation of
additional dispersion effects (e.g. direction and polarization) can be straightforwardly
accounted for by attaching new marks to existing point processes. A convenient aspect
is that the overall notation and the indexing procedures stay virtually the same. Calcu-
lations involving Campbell’s Theorem amounts to the same mechanical steps, the main
difference being that the vector dimensionality of the marks/points has increased.

The point process perspective offers as well guidelines in the direction of alterna-
tive/improved/easier computer simulation of channel model realizations. The analytical
insight gained in Paper A allows for the considered temporal birth-death channel to be
initialized in equilibrium. Approximate simulation is avoided and less running time is
required since no forerun is needed for the channel process to “settle in”. Essentially, a
flexible alternative to traditional block-fading simulations is also provided by the tem-
poral birth-death channel model in Paper A. The channel can be simulated as a single
long realization and it automatically reconfigures its path components and the number
of these along the way. The analytical insight gained in Paper B suggests an alterna-
tive procedure for generating channel realizations from the classical model by Saleh &
Valenzuela. Specifically, one can generate the homogeneous Poisson point process at
first and then, conditioned on its realization, generate the Cox point process according
to an inhomogeneous Poisson point process having a staircase-shaped intensity function.

New parameter estimation aspects naturally emerge due to the analytical benefits
of the point process perspective, in particular due the wide applicability of Camp-
bell’s Theorem. The practical importance of the direct ability to analytically assess
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time-frequency correlation functions and power-delay profiles is clearly evident. Key
parameters of the proposed channel models now reveal themselves explicit in practi-
cally measurable quantities. This aspect opens up new and alternative possibilities for
how to estimate these key parameters. Essentially, the proposed channel models can
be rigorously calibrated and used as well for measurement prediction purposes. Such
capabilities stand in notable contrast to the limitations of “pure” simulation models.
For such models it is usually unknown whether potential interactions occur between the
different model parameters. Furthermore, questions regarding stationarity properties of-
ten remain inconclusive for pure simulation models, simply because of their analytically
intractable setup.

Novel capacity assessments and bounding techniques could potentially enter as a
future byproduct of the perspectives offered by the facilitating theoretical framework
for spatial point processes. Research along these lines have already been considered
in [19] for ultra-wideband Saleh & Valenzuela type channel model extensions.



36 References

References
[1] T. Pedersen, “Contributions in radio channel sounding, modeling, and

estimation,” PhD thesis, Aalborg University, Denmark, 2009.

[2] R. S. Kennedy, Fading Dispersive Communication Channels. John Wiley &
Sons, 1969.

[3] K. Gröchenig, Foundations of Time-Frequency Analysis. Birkhäuser, 2001.

[4] R. A. Kennedy, Hilbert Space Methods in Signal Processing. Cambridge
University Press, 2013.

[5] O. Christensen, An Introduction to Frames and Riesz Bases. Birkhäuser, 2003.

[6] D. Slepian, “On bandwidth,” Proceedings of the IEEE, vol. 64, no. 3, pp. 292–300,
1976.

[7] J. I. Richards and H. K. Youn, Theory of Distributions: a non-technical
introduction, re-issued paperback ed. Cambridge University Press, 2007.

[8] P. A. Bello, “Characterization of randomly time-variant linear channels,” IEEE
Transactions on Communication Systems, pp. 360–393, 1963.

[9] P. Olofsson, Probability, Statistics, and Stochastic Processes. John Wiley &
Sons, Inc., 2005.

[10] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed.
McGraw-Hill, Inc., 1991.

[11] G. D. Durgin, Space-Time Wireless Channels. Pearson Education, Inc., 2003.

[12] P. Almers, E. Bonek, A. Burr, N. Czink, M. Debbah, V. Degli-Esposti, H.
Hofstetter, P. Kyösti, D. Laurenson, G. Matz, A. F. Molisch, C. Oestges, and H.
Özcelik, “Survey of channel and radio propagation models for wireless MIMO
systems,” EURASIP Journal on Wireless Communications and Networking, 2007.

[13] M. Franceschetti, “Stochastic rays pulse propagation,” IEEE Transactions on
Antennas and Propagation, vol. 52, no. 10, pp. 2742–2752, 2004.

[14] G. Matz and F. Hlawatsch, “Time-varying communication channels:
Fundamentals, recent developments, and open problems,” Proc. EUSIPCO, 2006.

[15] B. H. Fleury and P. E. Leuthold, “Radiowave propagation in mobile
communications: An overview of european research,” IEEE Communications
Magazine, pp. 70–81, 1996.



References 37

[16] R. Vaughan and J. B. Andersen, Channels, Propagation and Antennas for Mobile
Communications. The Institution of Electrical Engineers (IEE), 2003.

[17] A. Ridolfi, “Power spectra of random spikes and related complex signals,” PhD
thesis, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2004.

[18] R. F. Brøndum and E. Rubak, “Stochastic channel modelling - a bayesian
approach using reversible jump markov chain monte carlo methods,” Master’s
thesis, Aalborg University, Denmark, 2006.

[19] K. Hao, “Modeling and statistical analysis of ultra-wideband (UWB) channels
and systems: A point-process approach,” PhD thesis, University of
Wisconsin-Madison, USA, 2006.

[20] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse and M. Franceschetti,
“Stochastic geometry and random graphs for the analysis and design of wireless
networks,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 7,
pp. 1029–1046, 2009.

[21] S. O. Rice, “Mathematical analysis of random noise,” Bell System Technical
Journal, vol. 23, pp. 282–332, 1944.

[22] ——, “Mathematical analysis of random noise (continued),” Bell System
Technical Journal, vol. 24, pp. 46–156, 1945.

[23] L. Zadeh, “The determination of the impulsive response of variable networks,”
Journal of Applied Physics, vol. 21, pp. 642–645, 1950.

[24] ——, “Frequency analysis of variable networks,” Proceedings of IRE, vol. 38, pp.
291–299, 1950.

[25] R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell System
Technical Journal, pp. 957–1000, 1968.

[26] G. Matz, “Characterization of non-WSSUS fading dispersive channels,” IEEE
International Conference on Communications, pp. 2480–2484, 2003.

[27] ——, “On non-WSSUS wireless fading channels,” IEEE Transactions on Wireless
Communications, vol. 4, no. 5, pp. 2465–2478, 2005.

[28] J. D. Parsons, The Mobile Radio Propagation Channel, 2nd ed. John Wiley &
Sons, Ltd., 2000.

[29] M. Pätzold, Mobile Fading Channels. John Wiley & Sons, Ltd., 2002.

[30] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.



38 References

[31] W. C. Jakes, Microwave Mobile Communications. John Wiley & Sons, Inc., 1974.

[32] T. Aulin, “A modified model for the fading signal at a mobile radio channel,”
IEEE Transactions on Vehicular Technology, vol. 28, no. 3, pp. 182–203, 1979.

[33] H. Hashemi, “Impulse response modeling of indoor radio propagation channels,”
IEEE Journal on Selected Areas in Communications, vol. 11, no. 7, pp. 967–978,
1993.

[34] ——, “The indoor radio propagation channel,” Proceedings of the IEEE, vol. 81,
no. 7, pp. 943–968, 1993.

[35] G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical
model of urban multipath propagation,” IEEE Transactions on Vehicular
Technologies, vol. 21, no. 1, pp. 1–9, 1972.

[36] D. R. Cox and V. Isham, Point Processes. Chapman & Hall, 1980.

[37] J. F. C. Kingman, Poisson Processes. Oxford University Press, 1993.

[38] H. Suzuki, “A statistical model for urban radio propagation,” IEEE Transactions
on Communications, vol. 25, no. 7, pp. 673–680, 1977.

[39] D. L. Snyder and M. I. Miller, Random Point Processes in Time and Space.
Springer, 1991.

[40] H. Suzuki, “A statistical model for urban radio propagation,” PhD thesis,
University of California, Berkeley, 1975.

[41] A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath
propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2,
pp. 128–137, 1987.

[42] B. H. Fleury, “An uncertainty relation for WSS processes and its application to
WSSUS systems,” IEEE Transactions on Communications, vol. 44, no. 12, pp.
1632–1634, 1996.

[43] J. Møller and R. P. Waagepetersen, Statistical Inference and Simulation for
Spatial Point Processes. Chapman & Hall/CRC, 2004.

[44] A. J. Baddeley, Spatial Point Processes and their Applications. (in “Stochastic
Geometry - Lecture Notes in Mathematics”), Springer, 2007.

[45] Y. (G.) Li, L. J. Cimini, Jr. and N. R. Sollenberger, “Robust channel estimation
for OFDM systems with rapid dispersive fading channels,” IEEE Transactions on
Communications, vol. 46, no. 7, pp. 902–915, 1998.



References 39

[46] E. Biglieri, J. Proakis and S. Shamai (Shitz), “Fading channels:
Information-theoretic and communications aspects,” IEEE Transactions on
Information Theory, vol. 44, no. 6, pp. 2619–2692, 1998.

[47] A. F. Molisch, Wireless Communications. John Wiley & Sons, Ltd., 2005.

[48] J. Karedal, F. Tufvesson, N. Czink, A. Paier, C. Dumard, T. Zemen, C. F.
Mecklenbräuker and A. F. Molisch, “A geometry-based stochastic mimo model for
vehicle-to-vehicle communications,” IEEE Transactions on Wireless
Communications, vol. 8, no. 7, pp. 3646–3657, 2009.

[49] H. Iwai and Y. Karasawa, “Wideband propagation model for the analysis of the
effect of the multipath fading on the near-far problem in CDMA mobile radio
systems,” IEICE Transactions on Communications, vol. E76-B, no. 2, pp.
103–112, 1993.

[50] B. H. Fleury, U. P. Bernhard and R. Heddergott, “Advanced radio channel model
for magic WAND,” ACTS Mobile Telecommunications Summit, pp. 600–607, 1996.

[51] T. Zwick, C. Fischer and W. Wiesbeck, “A stochastic multipath channel model
including path directions for indoor environments,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 6, pp. 1178–1192, 2002.

[52] S. J. Papantoniou, “Modelling the mobile radio channel,” PhD thesis,
Eidgeössische Technische Hochschule Zürich (ETHZ), Switzerland, 1990.

[53] J. A. Gubner, B. N. Bhaskar and K. Hao, “Multipath-cluster channel models,”
IEEE International Conference on UWB, pp. 292–296, 2012.

[54] M. Haardt and J. A. Nossek, “Unitary esprit: How to obtain increased estimation
accuracy with a reduced computational burden,” IEEE Transactions on Signal
Processing, vol. 43, no. 5, pp. 1232–1242, 1995.



40 References



Part II

Appendices

41





Appendix/Paper A

Analysis of Stochastic Radio Channels with Temporal
Birth-Death Dynamics: A Marked Spatial Point Process

Perspective

Morten Lomholt Jakobsen, Troels Pedersen and Bernard Henri Fleury

The paper has been submitted to the
IEEE Transactions on Antennas and Propagation, July, 2013.



© 2013
The layout has been revised.



1. Introduction 45

Abstract
We employ the theory of spatial point processes to revisit and reinterpret a well-known
class of time-variant stochastic radio channel models. Common for all models in this
class is that individual multipath components are emerging and vanishing in a tempo-
ral birth-death alike manner, with the stochastic birth-death mechanism governed by
two facilitating assumptions. Well-known analytical properties of this class of channel
models are reestablished by simple arguments and several new results are derived. The
primary tool used to obtain these results is Campbell’s Theorem which for example en-
ables novel assessment of the autocorrelation functions of random processes used in the
general channel model description. Under facilitating assumptions the channel transfer
function is shown to be wide-sense stationary in both time and frequency (despite the
birth-death behavior of the individual multipath components). This identification is
a direct result of the point process perspective and its inherent ability to circumvent
cumbersome enumeration issues in traditional channel modeling approaches. Further-
more, the practical importance of being able to analytically characterize the temporal
birth-death channel models is clearly evidenced since key parameters enter explicitly in
measurable quantities such as the power-delay profile.

1 Introduction
In the historical development of time-invariant stochastic radio channel models still
being favored nowadays, the first use of point processes can be traced back to the
seminal work by Turin [1, 2]. Specifically, Turin suggested to model the occurrences of
multipath delay components via a one-dimensional (possibly inhomogeneous) Poisson
point process. One-dimensional point processes were similarly involved in the later
developments by Suzuki [3] and Hashemi [4], namely as a convenient tool for modeling
and simulation. Despite a pronounced use for the modeling of stochastic radio channels,
neither point processes nor their underlying theoretical framework have been favored as
tools for analysis. This trend clearly maintains in the popular contribution by Saleh and
Valenzuela [5] as well as in the more recent extension by Spencer et al. [6]. Essentially,
point processes are employed only in the channel model specifications whereas tools
from the underlying theory have not been used for analytical characterizations. In
fact, this trend is present also for certain time-variant channel models, see [7–10]. Part
of the reason for this surprising trend is most likely attributed to scientific tradition
and to the scarce proportion of readily accessible, engineering targeted literature on
point processes around the time of Turin’s initial work. The textbook by Snyder [11]
is one of the earliest of its kind, targeted towards engineers, and covering numerous
examples and application areas. However, the engineering targeted exposition in [11]
(or its successor [12]) does not appear to have fully convinced the channel modeling
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community to also start analyzing their models using the variety of well-established
tools from the theory of point processes.

Recently, the theoretical framework of spatial1 point processes has revealed itself
an adequate tool for the analytical characterization of various stochastic radio channel
models, see e.g. [13–17]. In [13], a point process approach has been employed to derive
and analyze a non-stationary geometric-stochastic propagation model applicable within
satellite-to-vehicle communications. The well-known impulse response model by Saleh
and Valenzuela [5] and more recent variations of it [6] have been analyzed in [14–16] with
new and detailed insight gained in direct consequence of the point process perspective.
Campbell’s Theorem, a standard tool from the theory of spatial point processes, has
proven itself instrumental for achieving both well-known and new results via concise
and rigorous arguments, e.g. as in [13] and [15].

Time- and space-varying multipath propagation phenomenons, such as path compo-
nents which emerge and vanish again, occur due to movements of the communicating
entities and the surrounding scatterers [18, 19]. To imitate such a phenomenon, the
following two tractable assumptions have been invoked several times in the channel
modeling literature:

i) Stationary emergences: The collection of time instances where new path com-
ponents emerge forms a stationary point process on the real line.
† (Facilitating special-case: Poisson point process).

ii) i.i.d. lifetimes: The lifetimes of individual path components are drawn indepen-
dently and identically distributed.
† (Facilitating special-case: Exponential distribution).

The earliest appearance of i)† and ii)† is in [7] but these two special-case assumptions
have re-entered in several later contributions, e.g. [8–10]. Under the assumptions i)†
and ii)†, the instantaneous number of path components in the channel is a Poisson
distributed random variable (with known mean parameter). This property is justified
in [7] by reference to standard results from queuing theory. Basically, the random
process governing the time-varying number of path components in the channel can be
identified as an M/M/∞ queue [20, Sec. 16-2]. This observation also appears elsewhere
in literature, see e.g. [10, Sec. III-C], where the construct via i)† and ii)† is identified as a
birth-death process or, in different terminology, as a marked Poisson process. Analytical
benefits and additional insight can often be gained from such structural identifications,
e.g. as in [15] and [16] via the point process perspectives. Surprisingly, the promising
potential of the available theory of marked spatial point processes does not seem to

1When prepending the term “spatial” we refer to point processes in two dimensions or more. The
essential distinction compared to one-dimensional point processes is the inherent absence of a natural
ordering of the points.
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have been exploited so far in literature on time-variant radio channel models. Yet, we
emphasize that spatial point processes have already been successfully utilized in highly
related areas of research, namely, for the design and analysis of wireless networks, see [21]
and the extensive list of references therein.

In the present contribution we analyze the class of time-variant stochastic radio
channel models which is based on the more general assumptions i) and ii) in contrast to
the facilitating special-cases i)† and ii)†. Random processes essential for radio channel
characterization are constructed from underlying spatial point processes and straightfor-
ward use of Campbell’s Theorem facilitates novel analytical assessment of the associated
autocorrelation functions. A key feature of the point process perspective is its natural
ability to circumvent enumeration issues arising in traditional modeling approaches. Our
first main contribution is an extensive analysis of the temporal birth-death mechanism
induced from the assumptions i) and ii). We relate our analysis to the results already
obtained in the literature regarding the special-cases i)† and ii)†. Secondly, we derive a
novel and general expression for the time-frequency correlation function associated with
the class of temporal birth-death channel models. From example cases we illustrate how
a particular channel model can be readily extended by including additional marks in the
point process construction. We show as well how the point process perspective offers
crucial insight for the task of simulating channel realizations with temporal birth-death
dynamics. Overall, our contributions are together comprised by the point process for-
mulations and the analytical characterizations induced thereof. Our approach relies in
a consistent way on simple arguments and standard results from the theory of spatial
point processes. In particular, Campbell’s Theorem repeatedly reveals itself a highly
useful and easily applicable tool.

The paper is organized as follows. Sec. 2 provides the necessary background informa-
tion on the class of temporal birth-death channel models with an overview of previous
approaches and contributions. We then present a concise but self-contained introduction
to the basics of spatial point processes in Sec. 3. Subsequently, we initiate our investi-
gations of the class of time-variant channel models by analyzing and characterizing the
temporal birth-death process in Sec. 4. We continue in Sec. 5 with an exhaustive anal-
ysis of the channel’s time-frequency correlation function. Sec. 6 provides a selection of
illustrative examples on how the channel model can be modified and extended together
with details on its simulation aspects. Finally, we draw our conclusions in Sec. 6.

2 Radio Channel Models with Temporal Birth-Death
Dynamics

The class of stochastic radio channel models under consideration is governed by the
assumptions i) and ii) in Sec. 1. Common to the approaches [7–10] is that they essen-
tially all propose to incorporate a time-varying multipath channel impulse response of
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the form2

h(t, τ) =
L(t)∑
`=1

α
`
(t)δ

(
τ − τ

`
(t)
)
, (A.1)

where L(t) is the number of path components at time t, α
`
(t) is the complex-valued gain

of the `’th path component, τ
`
(t) is the associated propagation delay, and δ(·) is the

Dirac delta. The time-varying channel transfer function corresponding to (A.1) reads

H(t, f) =
L(t)∑
`=1

α
`
(t) exp

(
− j2πfτ

`
(t)
)
. (A.2)

The above two expressions or slight variations thereof are standard in the channel mod-
eling literature [18, 19]. The special-case which has attracted most attention is when
L(t) = L is constant (deterministic or random) within each realization of the channel.
That is, numerous traditional channel modeling approaches are disregarding the case
when the number of path components is allowed to vary within each channel realization.
However, the channel models considered in [7–10] all incorporate a temporal birth-death
feature via the integer-valued random process3 L(·). Specifically, the transition times
of L(·) are to be generated according to i) and ii) in Sec. 1, but common to the contri-
butions [7–10] is that they all specialize exclusively to the cases i)† and ii)†.

In [7] each amplitude |α
`
| is constant with time and the amplitudes of emerging com-

ponents are drawn i.i.d. according to a log-normal distribution. Hence, the conditional
second moment of |α

`
| does not depend on the associated propagation delay τ

`
. From

narrowband considerations the propagation delays are also modeled to be constant with
time and they are drawn i.i.d. from a uniform distribution.

The modeling in [9] is inspired by [7]. However, the amplitudes |α
`
(t)| are now

varying with time and to ensure smooth transitions when birth-death events occur, a
sequence of root-raised cosine functions are incorporated in a multiplicative manner.
Each propagation delay τ

`
(t) is varying with time as a function of the receiver’s position

in space and as a function of a random initial delay (the propagation delay when a path
emerges). The power-delay profile is targeted to exhibit an overall exponential decay.
See [22] for further details.

In [8] each time-varying amplitude |α
`
(t)| is smoothened using the non-negative part

of an ordinary sine function. The sine is stretched in time to match the individual life-
times and |α

`
(t)| is scaled such that its conditional second moment depends on τ

`
(t) in

2In fact [7–10] rely on a space-varying approach which subsequently can be converted into a time-
varying equivalent by appropriately assuming a receiver trajectory (most often a straight line in space).
Furthermore, [7] and [10] are both modeling the line-of-sight component via a separate stochastic
mechanism which alternates between being active and inactive.

3By L(·) we refer to the entire random process while with L(t) we indicate that the time instance t
is fixed. Hence, L(t) is a random variable.
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an exponentially decaying manner. Each propagation delay τ
`
(t) is varying as a function

of the receiver’s position together with an initial delay drawn from an exponential dis-
tribution. From this construction the power-delay profile appears to exhibit an overall
exponential decay, but the sine smoothing and the average number of path components
are both disregarded in the calculations.

The modeling in [10] is inspired by [8] and each path component is characterized
by a transfer matrix (polarization, antenna characteristics, etc.) together with a prop-
agation delay and directions of departure and arrival. Hence, the channel model in [10]
accounts for small-scale fading, large-scale fading and polarization aspects. A key as-
pect is the modeling of path directions which are found to be Laplacian distributed for
smaller propagation delays followed by migration into a uniform distribution for larger
delays. For the purpose of computer simulation, a number of guidelines are proposed
for controlling, initializing and time-discretizing the temporal birth-death mechanism.

2.1 Consequences of Temporal Birth-Death Dynamics
As just indicated, the individual contributions [7–10] rely on different assumptions on
the path gains, propagation delays, incidence directions, and so on. The approaches,
methodologies and techniques in use are rather distinct in general. But common to all
approaches seems to be the fact that thorough analytical characterization and assess-
ment of the resulting channel properties have been very difficult to carry out. Computer
simulation does not adequately provide the desired insight and is often not tractable
either – especially not when the number of overall model parameters grows as large as
in [10].

The essential part of the analytical challenge lies in the birth-death behavior of the
random process L(·) controlling the time-varying number of path components. Con-
ceptually, the random process L(·) may appear straightforward to handle and despite
the simplicity of the assumptions i) and ii), difficulties quickly arise in the attempt to
compute correlation quantities such as E[L(t)L(t′)] or E[H∗(t, f)H(t′, f ′)], where E[ · ]
denotes expectation and (·)∗ denotes complex conjugation. The difficulties emerge since
for distinct time instances t and t′, the integers L(t) and L(t′) are not necessarily re-
ferring to the same path components anymore (glimpse at Fig. A.4 on page 62). Such
enumeration issues occur in (A.1) and (A.2) whenever the random process L(·) experi-
ences a transition. The immediate consequence is that re-enumeration via the integer
index ` or other means of cumbersome bookkeeping is needed over and over again. Over-
all, the different issues emerging as a consequence of the temporal birth-death behavior
of L(·) are reported in various degrees of detail in [7–10].

Fortunately, as we shall see in Sec. 4, Sec. 5 and Sec. 6, the numerous analytical and
technical difficulties encountered in [7–10] are swiftly circumvented by use of marked
spatial point processes. Specifically, we demonstrate in a unifying manner how thorough
analytical insight can be obtained by virtue of this well-established mathematical frame-
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work. The approach is fully general in the sense that our results apply to any temporal
birth-death channel model from the class governed by i) and ii), in particular to the
models in [7–10] which all rely on i)† and ii)†. However, as knowledge on the basics
of spatial point processes will be essential for transparency in the later derivations, we
provide in the following a concise, self-contained and engineering targeted introduction
to this mathematical framework.

3 Spatial Point Processes
A spatial point process [12, 23–26] is a random countable collection Y of points sitting
in d-dimensional Euclidian space S (either Rd or a subset of it). The term “spatial” is
used here to stress the fact that d is larger than one, but the term is often skipped again
for the sake of brevity. Since the peculiar ordering property of the real line obscures
the overall theory, the reader is encouraged [24] to always think of the two-dimensional
(d = 2) case, see Fig. A.1.

For reasons of practical applicability and simplicity it is convenient to restrict at-
tention to the class of locally finite and simple point processes. Here, locally finite
means that only a finite number of points are falling in every bounded region B ⊂ Rd.
Furthermore, the term “simple” indicates that no two points of the process coincide.
Both conditions are to be satisfied with probability one. As no two points from Y co-
incide, each individual realization of Y can be identified as a countable set of points
{y1,y2,y3, . . .}, yi ∈ S. The counting index i on yi is used here only to distinguish
individual points and to indicate countability. This index does not imply any ordering
of the points (recall Fig. A.1) and for this reason we deliberately skip it again.

3.1 Region Counts and the Intensity Function
A natural way of exploring the properties of a point process is to count the number
of points falling in different regions [26]. Accordingly, for any set B ⊆ S consider the
region count

N
Y
(B) := |Y ∩B| =

∑
y∈Y

1[y ∈ B], (A.3)

where | · | denotes set cardinality and 1[ · ] is a generic indicator function taking the value
one if the logical statement in brackets is fulfilled and zero otherwise. As suggested by its
name, the region count N

Y
(B) in (A.3) gives the random number of points from Y falling

within the region B. For fixed and bounded B, the region count N
Y
(B) is an ordinary

random variable with rangeN0 := {0}∪N. An example illustration was already provided
in Fig. A.1. For a general point process Y , the probability distribution ofN

Y
(B) depends

on the region B via its d-dimensional Lebesgue measure, shape, location, orientation, and
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Fig. A.1: A pair of realizations of a two-dimensional point process Y . Notice that the points are not
enumerated/ordered and observe that each realization has a different number of points NY (B) falling
in the gray-shaded region B.

so on. The region B can be very complicated but certain properties of the region counts
are easily established. In particular we have N

Y
(∅) = 0 and also for disjoint regions

A,B ⊂ S it follows that N
Y
(A ∪ B) = N

Y
(A) + N

Y
(B). Indeed, various complicated

regions can be build up from simpler ones by use of set operations for which the behavior
of N

Y
(·) is obvious.

By forming the expected value of the region count µ
Y
(B) := E[N

Y
(B)] we induce

a measure on S, the so-called intensity measure of Y . If the intensity measure can be
expressed as an integral

µ
Y
(B) =

∫
B

%
Y
(y)dy, (A.4)

for some locally integrable function %
Y

: S → [0,∞), then %
Y
(·) is called the intensity

function of Y . For virtually all applications of practical relevance the intensity function
does exist. If %

Y
(·) is constant on S then Y is called a homogeneous point process and

otherwise Y is said to be inhomogeneous. In general, the shape of %
Y
(·) indicates where

points are more likely to occur. Besides this intuitive feature the intensity function plays
an important role for the use of Campbell’s Theorem [24, Chap. 3], [26, Thm. 2.2]. This
powerful and widely applicable theorem states that the identity

E

[∑
y∈Y

g(y)
]

=
∫
S

g(y)%
Y
(y)dy (A.5)

holds whenever the integral on the right is well-defined, where g(·) is any real- or
complex-valued function defined on S. Campbell’s Theorem is particularly useful as
it enables straightforward calculation of expected values of scalar random variables of
the form ∑

y∈Y
g(y). (A.6)



52 Appendix/Paper A.

When dealing with point processes one frequently encounters random variables of the
type in (A.6). One example already appeared in (A.3) where g(·) is the indicator
function for a region B. As we shall see in Sec. 4 and Sec. 5, the expression in (A.2) can
as well be reformulated into a sum indexed by a certain point process like the generic
expression in (A.6). This convenient form facilitates analysis via Campbell’s Theorem.

3.2 Marked Point Processes
Let Y be a point process on S ⊆ Rd and consider the procedure of attaching a random
label or a mark my to each point y ∈ Y . These marks can be of very general type but
they must all belong to the same space M . By attaching random marks to the points
of a point process, several underlying characteristics can be studied in a natural and
concise manner [23]. This will be evident in Sec. 4 and Sec. 5.

Definition 1. Let Y be a simple and locally finite point process on S ⊆ Rd and let M
be some space. If a random mark my ∈M is attached to each point y ∈ Y , then

X := {(y,my) : y ∈ Y } (A.7)

is called a marked spatial point process with points in S and marks in M .

By construction, X is a simple and locally finite random subset of S ×M . Accord-
ingly, a marked point process X with points in S and marks in M can always be viewed
as an unmarked point process on S ×M . However, the converse is not true since an
arbitrary point process cannot always be projected onto a lower dimensional space and
viewed as a marked point process. Such a collection of projected points is not necessarily
simple nor locally finite.

3.3 Poisson Point Processes
The most fundamental type of spatial point processes is the Poisson4 class:

Definition 2. [25, Def. 3.2] A point process Y on S ⊆ Rd is called a Poisson point
process with intensity function %

Y
(·) if:

1) For any region B ⊆ S with µ
Y
(B) =

∫
B
%

Y
(s)ds < ∞ the region count N

Y
(B) is

Poisson distributed with mean µ
Y
(B).

4A highly accessible introduction to Poisson point processes can be found in the book [24] by
Kingman. Although not crucial, his approach and choice of presentation is better perceived with some
minor knowledge on abstract measure theory. In contrast, several other books on spatial point processes
require a solid background in measure theory just to get started.
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2) Conditioned on the event N
Y

(B) = n ∈ N such that 0 < µ
Y
(B) < ∞, the joint

distribution of Y ∩B is the same as that of n points drawn i.i.d. according to the
probability density function f

B
(·), where

f
B

(s) := %
Y
(s)

µ
Y

(B)1[s ∈ B], s ∈ S.

We write Y ∼ PoissonPP(S, %
Y
).

For a Poisson point process the individual region counts are Poisson distributed
random variables. Hence the name of the process. Poisson point processes are flexible
and mathematically tractable in the sense of their stability with respect to several
manipulations [25, Chap. 3], e.g. independent superposition, independent thinning and
independent displacement.

A particularly useful property of Poisson point processes arise via the Marking The-
orem [24, Sec. 5.2], [25, Prop. 3.9]. This theorem states that if mutually independent
marks are attached to a Poisson point process, then the distended collection (of points
and marks) is again a Poisson point process (in a higher dimensional space) and the
associated intensity function is known. Loosely speaking, the Poisson property of the
region counts are sustained when blowing up the dimensionality. Notice that mutual
independence is the key requirement of the Marking Theorem, i.e. the marks need not
be identically distributed, for instance. Notice also that the Marking Theorem does
not apply to point processes in general, only to Poisson point processes. This partly
explains the facilitating aspect of the assumption i)† in Sec. 1.

4 Characterization of the Temporal Birth-Death Pro-
cess L(t)

In this section we assess the fundamental properties of the temporal birth-death mecha-
nism associated with the class of time-variant stochastic radio channel models invoking
the assumptions i) and ii) from Sec. 1. Our approach is to reformulate and incorporate
i) and ii) using a marked point process. This perspective facilitates a convenient defi-
nition of the random process L(·) which we briefly introduced in Sec. 2. We show that
L(·) is strict-sense stationary and we calculate its mean by use of Campbell’s Theorem.
Subsequently we extract a partial but crucial share of the second-order properties of
L(·), again by application of Campbell’s Theorem. Furthermore, we illustrate for the
facilitating special-case i)† how additional insight can be gained from changing perspec-
tive. Specifically, via the Marking Theorem for Poisson point processes we swap to
a higher dimensional representation and from this new perspective we readily identify
that L(t) is Poisson distributed for any fixed t ∈ R. Finally, we indicate that i) and
ii) are essential for preserving analytical tractability of L(·) as even minor relaxation
attempts turn L(·) into a non-stationary random process.
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4.1 Definition of L(·) Using a Marked Point Process
We begin by setting up a useful notation to incorporate assumption i) from Sec. 1. We
introduce Y to represent the one-dimensional stationary5 point process describing the
time instances where new path components emerge. For instance, Y could be a Poisson
point process, a renewal point process [12, Chap. 6], a Cox point process [25, Chap. 5],
and so on. A stationary point process is necessarily homogeneous [26, Cor. 1], and so we
introduce the intensity function %

Y
(·) of Y such that %

Y
(y) = λe is constant for all y ∈ R.

The subscript on the positive constant λe is used to abbreviate the term “emerge”.
Secondly, we need to incorporate assumption ii) from Sec. 1. To allocate the period

(or lifetime) of each path component, a random non-negative mark py is attached to each
element y ∈ Y (lifetimes are necessarily non-negative). The letter p is used to emphasize
the interpretation of each mark as a “period” while the subscript y on py serves as a
unique identifier for its underlying point (with probability one). Hence, instead of a
traditional integer-index looping across N, the countable collection of periods {py : y ∈
Y } is now indexed using the points from Y . The periods are drawn i.i.d. according to
some probability density function fperiod(·) with non-negative support and finite first-
order moment

E[py] = E[p?] =
∫ ∞

0
pfperiod(p)dp. (A.8)

In (A.8) we use the wildcard notation E[p?] to denote the mean of a “typical/arbitrary”
mark p? (as they are all drawn i.i.d.). By construction, the random collection

X := {(y, py) : y ∈ Y } (A.9)

is a marked point process on R×R+ with points in R and marks in R+. This marked
point process is analytically convenient as it allows directly for random variables of type
(A.6) to be established. Furthermore, we shall often find it convenient to also change
our view upon X. Sometimes we view it as a marked point process and sometimes as an
unmarked point process in two-dimensional space (which being more attractive depends
on context).

By use of the random collection X in (A.9), the number of “active” path components
at time t can now be formulated as

L(t) :=
∑
y∈Y

1[y < t ]1[y + py > t ], t ∈ R. (A.10)

An arbitrary component (y, py) from (A.9) contributes to the value of the sum in (A.10)
only if it emerges before and vanishes after time t (incorporated by the product of the

5In the sense of spatial point processes which similarly to ordinary random processes means that all
distributional properties are preserved under arbitrary fixed translations [26, Def. 1.7].
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two indicator functions). Obviously, L(·) as defined by (A.10) is a continuous-time
random process with range N0 (once more glimpse at Fig. A.4 on page 62).

As an immediate consequence of i) and ii), we show in Appendix 7 that the random
process L(·) is strict-sense stationary. Intuitively, this is also to be expected since
the underlying point process Y is stationary and since the marks/periods attached to
it are mutually independent and identically distributed. By strict-sense stationarity,
L(·) is also wide-sense stationary which means that E[L(t)] does not depend on t and
E[L(t)L(t′)] depends on t′ − t only.

4.2 First- And Second-Order Properties of L(·)
Using Campbell’s Theorem we can readily compute the mean of L(·) as follows:

E[L(t)] = E
[
E[L(t) |Y ]

]
= E

[∑
y∈Y

1[y < t ]E
[
1[y + py > t ]|Y

]]
= E

[∑
y∈Y

1[y < t ]Pr(py > t− y |y)︸ ︷︷ ︸
g(y;t)

]
.

=
∫
R

g(y; t)%
Y
(y)dy (Campbell’s Theorem)

=
∫ t

−∞
Pr(py > t− y)λedy. (A.11)

Performing the variable substitution ξ := t− y yields

E[L(t)] = λe

∫ ∞
0
Pr(pt−ξ > ξ)dξ = λeE[p?], (A.12)

i.e. the mean E[L(t)] does not depend on t, in accordance with L(·) being strict-sense
stationary. Readers familiar with queueing theory will recognize the final expression
in (A.12) to be consistent with well-known results for the M/G/∞ queue [20, Sec. 16-
2], [23, Sec. 5.6 (iii)], i.e. when specializing i) to the case i)†.

The interpretation of (A.12) is in fact rather intuitive: The average number of path
components in the channel is governed by the rate (λe) at which new components emerge,
together with the inverse rate (E[p?]) at which they vanish again. The mean E[L(t)] is
not affected by the exact shape of the probability density function fperiod(·) shared by
all the marks. Only the first-order moment E[p?] matters.

By strict-sense stationarity we know that the autocorrelation function E[L(t)L(t′)]
will depend only on the time difference t′ − t. To obtain further insight we introduce
and split the autocorrelation function as

RL(t, t′) := E[L(t)L(t′)] = E[(�1)] + E[(�2)], (A.13)
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with the definitions

(�1) :=
∑
y∈Y

1[y < min{t, t′}, y + py > max{t, t′}] (A.14)

(�2) :=
6=∑

y,ỹ∈Y

1[y < t, y + py > t]1[ỹ < t′, ỹ + p
ỹ
> t′].

The splitting in (A.13) reflects a deliberate choice as the first quantity (�1) gives the
random number of terms (y, py) from (A.9) contributing jointly to both L(t) and L(t′).
The mean of (�1) is readily assessed by the same manipulations as those leading to
(A.11), in particular Campbell’s Theorem, such that

E[(�1)] = E
[
E[(�1)|Y ]

]
= λe

∫ ∞
|t′−t|

Pr(p? > ξ)dξ (A.15)

with |t′ − t| = max{t, t′} −min{t, t′}.
The second quantity (�2) is not as easily handled as (�1) and its interpretation is also

not as straightforward (the symbol 6= above the summation in (�2) is used to indicate
that the sum is taken over pairwise distinct points y and ỹ). Calculating the mean of
(�2) is indeed possible but at the same time also more involved as it requires to know the
statistical properties on joint occurrences of points from Y . In general, such knowledge
is not available through the intensity function of Y . On the other hand, this information
is contained in a function sometimes called the second-order product density [25, Def. 4.3]
or the second moment density [26, Def. 2.5]. In the sequel we calculate for illustration
purposes the mean of (�2) for the tractable special-case i)†.

As expected, the quantity in (A.15) depends only on the time difference ∆t := t′− t,
and not on the specific time instances t and t′ (by strict-sense stationarity). In general,
without having calculated E[(�2)], we know that this quantity can also at most be a
function of ∆t. Opposite to the mean E[L(t)] in (A.12) which is affected only by the
first-order moment of fperiod(·), the exact shape of this probability density function
affects directly the autocorrelation function E[L(t)L(t′)] in (A.13). As will be shown
in Sec. 5, the quantity in (A.15) plays a crucial role as it influences the time-frequency
correlation function of the channel. To the contrary, the quantity E[(�2)] does not and
so indicates the main reason why we do not insist on calculating this particular term.

To the best of our knowledge, equally concise and rigorous derivations of the results
(A.12) and (A.15) have not appeared elsewhere in literature. The novelty here is that
our conclusions are valid for the general assumptions i) and ii) and that our observations
emerge as a concise and direct result of the point process perspective, in particular, as
a result of using Campbell’s Theorem.
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4.3 The Poisson Special-Case i)†

In the following we specialize i) to the facilitating case i)† and view the marked point
process in (A.9) from a new perspective. Specifically, since we now have (see Sec. 3.3)

Y ∼ PoissonPP(R, %
Y
), %

Y
(y) = λe, y ∈ R,

we can directly employ the Marking Theorem and swap to a higher dimensional point
process representation. Due to ii), the marks {py : y ∈ Y } are mutually independent
and each individual period py does not depend on Y \{y}. Then, by the Marking
Theorem [25, Prop. 3.9], it follows that the marked collection X in (A.9) is itself a
Poisson point process, namely

X ∼ PoissonPP(R×R+, %X
).

The associated intensity function %
X

(·) reads [25, Prop. 3.9]

%
X

(x) = %
Y
(y)fperiod(p), x = (y, p). (A.16)

To ease the notation it is often convenient to drop the index y on py as we just did.
We simply think of each x ∈ X as a two-dimensional point (y, p) and not as a one-
dimensional point with a mark attached. Notice that neither %

Y
(·) nor fperiod(·) depends

on y. Hence, the intensity function %
X

(·) varies only with its second argument p via the
shape of fperiod(·).

In view of this new, two-dimensional perspective it is a straightforward exercise to
see that L(t) is Poisson distributed for any fixed t ∈ R. In fact, L(t) as defined in
(A.10) can now beneficially be recognized as a region count associated with the point
process X. The exact region in question must necessarily be indexed by time t and from
inspection of the two indicator functions in (A.10) we “mechanically” define

Bt := {(y, p) : y < t, y + p > t} ⊂ R×R+. (A.17)

With this definition of the region Bt it follows that L(t) as defined in (A.10) coincides
directly with the number of points from X falling within Bt, i.e. (see also Fig. A.2)

L(t) = N
X

(Bt), t ∈ R. (A.18)

Since X is a Poisson point process the region count N
X

(Bt) is a Poisson distributed
random variable. By the equality in (A.18) it follows immediately that L(t) is Poisson
distributed. Notice the simplicity of this crucial argument and notice how it relates
naturally to the point process framework. In particular, no results from queuing theory
were needed as compared to the approach in [7].

Under the facilitating assumption i)†, we have now shown that the strict-sense sta-
tionary random process L(·) has Poisson distributed marginals, i.e. the random variable
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Fig. A.2: The region Bt ⊂ R×R+ for arbitrary t ∈ R with black bullets representing points from X.
Points falling within Bt indicate path components which are active in the radio channel at time t, i.e.
L(t) = NX(Bt). Notice that the collection of points from X contributing jointly to both L(t) and L(t′)
are exactly those falling in the region Bt ∩Bt′ .

L(t) is Poisson distributed for any fixed t. For the general case i), the marginal distri-
bution of L(t) depends crucially on the exact type of point process we assume for Y .
In particular, the distribution of L(t) = N

X
(Bt) depends on the properties inherited

by the marked collection X when viewed as a two-dimensional point process. In the
facilitating special-case i)† both Y and X are Poisson point processes, but in the general
case no such exceptional circumstances enter. The equality in (A.18) is of course valid
in the general case but without knowledge on the distribution of the region counts for
X, this two-dimensional perspective does (in principle) not lead to any further insight.
Yet, in the general case we have calculated in (A.12) the mean E[L(t)] by use of Camp-
bell’s Theorem. It is nonetheless surprisingly informative to reconsider the steps leading
to (A.12) in the light of our two-dimensional perspective when X is of Poisson type.
Specifically, the mean of the region count N

X
(Bt), and hence the mean of L(t), is given

by the value of the associated intensity measure at Bt, namely as (recall the general
relationship in (A.4))

µ
X

(Bt) =
∫
Bt

%
X

(x)dx = λe

∫ ∞
0
pfperiod(p)dp = λeE[p?].

The above step is natural in the sense that is it “dictated” by the point process frame-
work (to get the intensity measure just integrate the intensity function). In particular,
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we did not even make use of Campbell’s Theorem as opposed to the more involved steps
leading to (A.12)6.

Another immediate analytical benefit of Y and X being Poisson point processes is
that we can readily calculate the cumbersome autocorrelation term E[(�2)] from (A.13).
Specifically, since Y is a Poisson point process, special-case use of Campbell’s Theorem
yields [25, Prop. 4.1]

E[(�2)] = E[L(t)]E[L(t′)] = (λeE[p?])2.

Hence, under the facilitating assumption i)† we find the autocorrelation function of L(·)
to be

RL(t, t′) = E[(�1)] + E[(�2)]

= λe

∫ ∞
|∆t|

Pr(p? > ξ)dξ + (λeE[p?])2. (A.19)

Notice by evaluating (A.19) at ∆t = 0, one immediately identifies the well-known prop-
erty that for a Poisson distributed random variable, the mean and the variance coincide.

Example 1. Assume as in [7–10] that the i.i.d. collection of periods {py : y ∈ Y } is
generated according to an exponential distribution with mean E[p?] = 1/λv (subscript
used to abbreviate the term “vanish”). Carrying out the integral in (A.15) then leads
to the following special-case form of the autocorrelation function in (A.19):

RL(t, t′) = λe

λv
exp

(
− λv|∆t|

)
+
(λe

λv

)2
.

Example 2. For comparison, assume instead a uniform distribution for the periods
with the same mean parameter 1/λv. We select the uniform distribution on the interval
[0, 2

λv
]. In this case the autocorrelation function in (A.19) reads

RL(t, t′) = λe

(λv

4 |∆t|
2−|∆t|+ 1

λv

)
1
[
|∆t| ≤ 2

λv

]
+
(λe

λv

)2
.

As intuitively expected, when the periods are uniformly distributed on the interval
[0, 2

λv
], we find that the Poisson distributed random variables L(t) and L(t′) are uncor-

related whenever t and t′ are displaced further than the overall extent of the interval.
�

The result in (A.19) was derived in [23, Sec. 5.6 (iii)] under the facilitating special-case
assumption i)†. However, the derivations are more notably involved as [23, Sec. 5.6 (iii)]
does not rely on the easy applicability of Campbell’s Theorem.

6This interesting observation is well-aligned with the claim by Kingman in the preface of his
book [24], namely that the theory of (Poisson) point processes is more natural and powerful in higher
dimensions.
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4.4 Relaxing The General Assumptions i) and ii)
A compelling motivation for employing the special-case assumptions i)† and ii)† is that
these together lead to (quoting [7]) simple mathematics. As illustrated in the previous
subsection, the Poisson assumption i)† is indeed facilitating for analytical investigations.
In Sec. 6.3 we illustrate how i)† and ii)† are also particularly convenient from the point of
view of computer simulation. The core of the current contribution, however, relies on the
more general assumptions i) and ii). An interesting and practically relevant question
is whether these general assumptions can be relaxed while preserving the ability to
assess and comprehend the analytical properties inherited by L(·). The answer is that
relaxations are not to be entirely ruled out, but the resulting constructions tend to grow
overly cumbersome.

From the general result in (A.12), one may tend to think that the equation E[L(t)] =
λeE[p?] would stay unaffected if we relaxed i) and ii) such that Y would just be ho-
mogenous (not stationary) and such that the marks would hold the same mean E[p?]
(but not necessarily be identically distributed). Obviously, L(·) would then no longer be
strict-sense stationary as all arguments from Appendix 7 would break down. However,
L(·) could potentially remain wide-sense stationary. A simple construction inspired from
Examples 1 and 2 in the previous subsection suggests that this is not the case.
Example 3. Consider drawing the periods using a threshold procedure at the origin
such that

py ∼ fperiod(p) =
{
λve−λvp if y ≥ 0,
λv
2 1[0 ≤ p ≤ 2

λv
] if y < 0. (A.20)

One can then readily check via (A.12) that the particular construction in (A.20) gives
rise to a mean function depending on time in such a way that E[L(t)] = λe

λv
for t < 0

and

E[L(t)] = λe

λv

(
1− e−λvt

)
+ λe

(λv

4 t2 − t+ 1
λv

)
1
[
0 ≤ t ≤ 2

λv

]
for t ≥ 0 (see Fig. A.3). Hence, the mean E[L(t)] is clearly affected by the sudden change
of the mark distribution as given in (A.20). However, as time progresses the aftereffect
of this change in fperiod(·) becomes less and less noticeable (the birth-death mechanism
stabilizes again). �

The example-construction in (A.20) shows that it greatly affects the properties of the
temporal birth-death process L(·) when the periods are not identically distributed. The
influence of (A.20) on the autocorrelation function E[L(t)L(t′)] is even more complicated
than for the mean E[L(t)]. In conclusion, to preserve analytical tractability of the birth-
death process L(·), the assumption ii) cannot be relaxed. Assumption i) can be relaxed
in the sense of replacing the term “stationary” with “homogeneous”, and the resulting
birth-death process L(·) will sometimes remain wide-sense stationary but examples can
readily be constructed where this is not the case.
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t
R

E[L(t)]

t = 0

Fig. A.3: The effect of (A.20) upon the mean E[L(t)] from (A.12) as a result of an attempt to relax
the assumptions i) and ii).

5 The Time-Frequency Correlation Function
In this section our goal is to calculate the time-frequency correlation function

RH(t, t′, f, f ′) := E[H∗(t, f)H(t′, f ′)]. (A.21)

This function is often considered for radio channel characterization as the information
it carries is useful for several reasons [27]. Among others, the time-frequency corre-
lation function reveals if the time-variant channel transfer function H(·, ·) in (A.2) is
wide-sense stationary (in time, in frequency or in both domains simultaneously). This
knowledge is crucial since in practice we typically ask for stochastic models which in-
deed are wide-sense stationary, mainly to facilitate analytical insight and to simplify
our system designs. A frequently recurring example application of the time-frequency
correlation function emerges in linear minimum mean-squared error channel estimation
(see e.g. [28] for an OFDM use case). Wide-sense stationarity of H(·, ·) in both time
and frequency notably simplifies the design and implementation of such channel esti-
mators. Furthermore, wide-sense stationarity of H(·, ·) in frequency allows for inferring
on the rate of decay of received power versus propagation delay, namely, to infer on the
channel’s power-delay profile. Power-delay profiles are crucial to the design of modern
positioning and communication systems and such profiles are often estimated in practice
using channel sounding measurements.

Calculating the correlation function in (A.21) is conceptually straightforward when
the number of path components (deterministic or random) remains fixed within each
realization of the channel in (A.2). The traditional procedure is to introduce two sep-
arate integer-indices ` and k, one for each term in (A.21), and then to pair together
those path components for which ` = k. However, in the current time-variant setup
we cannot compute (A.21) by traditional means since the temporal birth-death process
L(·) is changing without explicit reference to the enumeration of the underlying random
quantities (path gains, propagation delays, etc.) describing H(·, ·) in (A.2). The overall
situation and the enumeration problem are together illustrated in Fig. A.4. Hence, with
the considered class of temporal birth-death channel models, we necessarily need to ac-
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Fig. A.4: Line segments in (a) indicating the time instances of birth-death transition of the random
process L(·) in (b). In this particular illustration, notice that only a single path component (thick gray
line) contributes jointly to both L(t) and L(t′).

count for the enumeration issues. As we shall see in the sequel, the use of marked spatial
point processes paves the way and provides at the same time a number of substantial
analytical advantages.

5.1 Using the Point Process X to Reformulate the Channel
Transfer Function H(·, ·)

To compute (A.21) we bypass the enumeration problem by adopting our previously
introduced point process perspective. The basic idea is to replace the integer-indexed
sum in the traditional expression (A.2) by a point process indexed sum similar to the one
in (A.10). Initially, we start out with a simplified setup as it allows to apply once more
the procedure of attaching marks to a point process (as done in Sec. 4). Specifically, we
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now introduce the marked point process{(
x, (αx, νx, τx)

)
: x ∈ X

}
, (A.22)

where the i.i.d. mark collection {(αx, νx, τx) : x ∈ X} is indexed using the points from
the two-dimensional point process X as defined in (A.9). Each three-dimensional mark
(αx, νx, τx) ∈ C×R×R+ is drawn from some joint probability distribution (shared by
all marks as they are drawn i.i.d.). Each mark designates a triplet of a path gain, a
Doppler shift, and a propagation delay, respectively. The point process construction in
(A.22) is fundamentally similar to the one in (A.9), and we use (A.22) to restrict and
reformulate the traditional expression (A.2) such that

H(t, f) =
∑
x∈X

1[x ∈ Bt]αxej2πtνxe−j2πfτx , (A.23)

where Bt is the triangular shaped region defined in (A.17) and shown in Fig. A.2. By
recalling (A.18), notice how the indicator function in (A.23) ensures to exactly pinpoint
those L(t) path components which should contribute to the time-variant channel trans-
fer function at time t. By comparing (A.23) with the traditional expression (A.2) it is
readily seen how we have simplified the model of the channel transfer function. Specif-
ically, we have substituted the two original collections of random processes {α

`
(t)} and

{τ
`
(t)} by simpler terms {(αx, νx, τx) : x ∈ X} which do not depend on time t and

so allows to be naturally incorporated as marks attached to X. This deliberate simpli-
fication ensures transparency in the forthcoming derivation. In Sec. 5.3 we relax this
simplified assumption and discuss the general case as well.

In addition to the expression in (A.23), we employ the reasonable assumption that
the marks are drawn such that

E[αx |νx, τx] = E[α? |ν?, τ?] = 0, x ∈ X, (A.24)

where we make use of a wildcard notation like in (A.8). The assumption in (A.24) is
usually justified from a default argument of uniformly distributed initial phases. By
(A.24), we can readily show that E[H(t, f)] = E

[
E[H(t, f)|X]

]
= 0, i.e. the channel

transfer function in (A.23) has zero mean.

5.2 Applying Campbell’s Theorem to Calculate the Time-Frequency
Correlation Function

To calculate the time-frequency correlation function we enter (A.23) in (A.21) and
proceed at first via intermediate conditioning on X such that

RH(t, t′, f, f ′) = E
[
E[H∗(t, f)H(t′, f ′) |X]

]
(A.25)

= E

[ ∑
x∈X

1[x ∈Bt ∩Bt′ ]E
[
|αx|2ej2π(∆tνx−∆fτx)]] (A.26)
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where in (A.26) we have introduced the notation ∆f := f ′ − f . The innermost expec-
tation in (A.26) is with respect to the joint distribution of the mark (αx, νx, τx). The
equality between (A.25) and (A.26) is established by use of (A.24) together with the
fact that the three-dimensional marks are mutually independent. Hence, all cross terms
vanish in the innermost expectation in (A.25). The outermost expectation in (A.26)
can be computed using Campbell’s Theorem. This operation is straightforward since
the indicator function of the region Bt ∩ Bt′ is the only term left depending on the
underlying points from X (not its marks). Accordingly, we have that

E

[∑
x∈X

1[x ∈Bt∩Bt′ ]
]

= E[N
X

(Bt∩Bt′)] = µ
X

(Bt∩Bt′).

Finally, the time-frequency correlation function reads

RH(t, t′,f,f ′) =µ
X

(Bt∩Bt′)E
[
|α?|2ej2π(∆tν?−∆fτ?)] (A.27)

with the first term µ
X

(Bt ∩ Bt′) providing the expected number of points from X con-
tributing jointly to both H(t, ·) and H(t′, ·), recall Fig. A.2. Notice that the region
count N

X
(Bt ∩ Bt′) is exactly the random quantity (�1) defined in (A.14) in Sec. 4.2

and its expectation has already been calculated in (A.15). Since the general expression
in (A.15) is a function of ∆t only, the time-frequency correlation function in (A.27) is
of the form

RH(t, t′, f, f ′) = R1(∆t)︸ ︷︷ ︸
µ

X
(·)

R2(∆t,∆f)︸ ︷︷ ︸
E[·]

(A.28)

which depends on time and frequency differences only. Hence, the time-variant channel
transfer function H(·, ·) in (A.23) is wide-sense stationary in both time and frequency.

The general expression in (A.27) is one of our main results. The product form
of (A.27) stated explicitly in (A.28) holds an attractive and intuitive interpretation.
The first term R1(∆t) gives the temporal (large-scale) correlation properties of the
birth-death process L(·). The second term R2(∆t,∆f) reports the “traditional” time-
frequency correlation properties of each individual path component (small-scale). If
we specialize to the traditional modeling approach where L(t) = L is constant within
individual channel realizations (deterministic or random), then all we have to modify
is the term R1(∆t). If L is a fixed constant then R1(∆t) is to be replaced by L itself,
whereas if L is a random variable, then R1(∆t) is to be replaced by E[L]. Hence,
for the temporal birth-death case it seems reasonable that R1(∆t) should be given by
E[N

X
(Bt ∩ Bt′)], i.e. the expected number of path components contributing jointly to

both H(t, ·) and H(t′, ·).
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5.3 Towards a More General Model for the Channel Transfer
Function H(·, ·)

With the simplified model (A.23) and the result (A.27) in mind, we may naturally seek
a more general expression for H(·, ·) with the path gains and the propagation delays
being described according to random processes as also suggested by the original model
in (A.2). To obtain such we depart from (A.23) and via term-by-term substitution we
introduce instead

H(t, f) =
∑
x∈X

1[x ∈ Bt]αx(t)e−j2πfτx(t). (A.29)

The only difference now between (A.29) and the traditional expression in (A.2) is that
the new collection {αx(t) : x ∈ X} is used in substitute for {α

`
(t)}, and similarly,

the new collection {τx(t) : x ∈ X} is used in substitute for {τ
`
(t)}. That is, we

use the points from X to index two individual sequences of random processes while
simultaneously generating the birth-death process L(·) using the very same points from
X. Notice carefully that (A.2) and (A.29) portray the very same random quantity, just
represented in two different ways.

With the general expression (A.29) in place, a relevant task is now to identify what
properties the two newly indexed sequences of random processes must possess in order
for H(·, ·) to be wide-sense stationary in both time and frequency. Hence, the funda-
mental question we ask is the following: When will

RH(t, t′, f, f ′) = E[H∗(t, f)H(t′, f ′)] ?= R̃H(∆t,∆f)

be a function of ∆t and ∆f only? The relevance of this question needs hardly no
motivation as the class of doubly wide-sense stationary stochastic channel models has
been favored both in literature and practice ever since Bello introduced his seminal
WSSUS characterization [27]. Bello did not assume a specific form of the time-variant
channel transfer function as we do here. Instead he treated H(·, ·) as a generic stochastic
process and we extend our analysis in a similar fashion in Sec. 5.5, but for now we restrict
to the repeatedly favored multipath model in (A.29).

At a first glance it may seem a rather innocent question when asking for how and
when (A.29) will be doubly wide-sense stationary. Surprisingly, it seems that the ques-
tion is not so innocent after all. In the spirit of Bello’s WSSUS framework we invoke
the popular assumption that the random processes {αx(t) : x ∈ X} are mutually uncor-
related and that they all hold zero mean (compare with (A.24) of the simplified setup).
Then, our analysis narrows down to deal with a random process including only a single
path component, namely H̃(t, f) = α(t)e−j2πfτ(t). If we then further make the simplis-
tic assumption of α(·) and τ(·) being independent random processes it means that we
need to draw our conclusions based on

R
H̃

(t, t′, f, f ′) = E[α∗(t)α(t′)]E
[
e−j2π(f ′τ(t′)−fτ(t))].
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Obviously, the random process α(·) must be wide-sense stationary in order to make the
first expectation a function of ∆t only. Surprisingly, the only way for the second expec-
tation to be a function of ∆f is when the random process τ(·) has constant realizations
(and hence it does not at all depend on t and t′). A detailed but simple argument for
this claim can be found in Appendix 7.

5.4 Principal Representation of H(·, ·) and Its Associated Time-
Frequency Correlation Function

The insight gained by now motivates the assumption of random but constant propaga-
tion delays as well as wide-sense stationary path gain processes. Accordingly, we thus
introduce an expression of the channel transfer function such that

H(t, f) =
∑
x∈X

1[x ∈ Bt]αx(t)e−j2πfτx . (A.30)

This expression can be seen as a natural intermediate between (A.23) and (A.29) with
the ability to result in being doubly wide-sense stationary. We make use of a collection
of random processes (path gains) together with a collection of random marks (propa-
gation delays) with both collections being indexed via the points from X. We assume
that the marks {τx : x ∈ X} comprise an i.i.d. collection drawn from a probability
density function fdelay(·). Conditioned on the marks, we further assume that the ran-
dom processes {αx(t) : x ∈ X} all hold zero mean, are mutually uncorrelated, and
individually exhibits an autocorrelation function parameterized via the corresponding
mark. Specifically, for all t, t′ ∈ R we assume that

E[α∗x(t)α
x̃

(t′) |τx, τx̃] = 0, x 6= x̃, (A.31)
E[α∗x(t)αx(t′) |τx] = Rα(∆t; τx), (A.32)

allowing (for instance) to conveniently assign conditional average power to each random
process αx(·) as a function of its corresponding propagation delay τx.

By repeating the procedures and calculations from Sec. 5.2 we now obtain a time-
frequency correlation function for the model in (A.30) reading

RH(t, t′, f, f ′) = R1(∆t)E
[
Rα(∆t; τ?)e−j2π∆fτ?

]
, (A.33)

with R1(∆t) = µ
X

(Bt ∩ Bt′) and where the expectation is with respect to fdelay(·), i.e.
we utilize again a wildcard notation τ? to represent a typical mark. By (A.33), the
time-variant channel transfer function H(·, ·) in (A.30) is also wide-sense stationary in
both time and frequency.
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5.5 The Channel Transfer Function H(·, ·) as a Sum of Generic
WSSUS Components

To complete the current investigations we extend our previous model of H(·, ·) such
that its individual time-frequency contributions are no longer of any particular form.
Specifically, we let

H(t, f) =
∑
x∈X

1[x ∈ Bt]Hx(t, f), (A.34)

and we augment the model in (A.34) with the tractable assumptions that the individual
component processes fulfill:

E[Hx(t, f) |x] = 0, x ∈ X, (A.35)
E[H∗x(t, f)H

x̃
(t′, f ′) |x, x̃] = R2(∆t,∆f)1[x = x̃]. (A.36)

For the model in (A.34) we obtain, analogously to previous expressions, a time-frequency
correlation function reading

RH(t, t′,f,f ′) = R1(∆t)R2(∆t,∆f). (A.37)

To summarize this section we emphasize the sole tool which enabled our novel assessment
of the time-frequency correlation function with the general product form as given in
(A.27), (A.28), (A.33) and (A.37). In a nutshell, our key step was to reformulate the
traditional expression (A.2) to circumvent the enumeration problem induced by the
traditional integer-indexing of path components. Specifically, we reformulated (A.2)
using the point process X defined in (A.9) which is the very same random collection
we also used for generating the temporal birth-death process L(·) in Sec. 4. Through
X, we then introduced several candidate representations in direct substitute of the
traditional and widely used model (A.2) of the channel transfer function. All substitute
representations were essentially of type (A.6) and hence appropriate for analysis using
Campbell’s Theorem.

6 Selected Examples and Simulation Aspects
This section provides a selection of examples intended to concretize the general results
obtained in Sec. 4 and Sec. 5. In particular, the goal is to highlight the practical implica-
tions of our novel findings as well as to illustrate the benefits of the spatial point process
perspective in terms of modeling flexibility and computer simulation. Specifically, we
show via concrete examples how the key parameters of the temporal birth-death chan-
nel model enter explicitly in quantities which can be measured in practice, e.g. the
power-delay profile. Furthermore, depending on its purpose, we show how the channel
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model can be readily modified to incorporate fewer or more stochastic features. Finally,
we illustrate from a simulation technical point of view the facilitating and convenient
aspects of the assumptions i)† and ii)†.

6.1 Power-Delay Profile Induced From A Separation Property
In Sec. 5.4 we did not introduce a specific choice for the autocorrelation function Rα(·; ·)
in (A.32). By making such a choice and by making also explicit choices about the
probability density functions fperiod(·) and fdelay(·), we readily end up with a final and
concrete expression for the time-frequency correlation function in (A.33).

Example 4. A simple choice for the autocorrelation function Rα(·; ·) in (A.32) is to
assume that

E[α∗x(t)αx(t′) |τx] = Rα(∆t; τx) = σ2
α(τx)J0(2πη∆t),

where J0(·) is the zeroth-order Bessel function of the first kind, η is a positive parameter
to be specified, and σ2

α(·) is assigning conditional average power to each random process
αx(·) as a function of its corresponding propagation delay τx. Similar assumptions
(or choices) are often found in literature [8, 28] and the use of the Bessel function J0(·)
originates from Clarke’s seminal work [29]. Notice that we in fact assume the correlation
function to be the same for all individual path gain processes {αx(t) : x ∈ X}, except
for an individual scaling by σ2

α(τx). With these choices the time-frequency correlation
function in (A.33) is readily seen to factorize in a product of time-frequency separated
terms, namely as

RH(t, t′, f, f ′) = Rtime(∆t)Rfreq(∆f), (A.38)
Rtime(∆t) := R1(∆t)J0(2πη∆t), (A.39)
Rfreq(∆f) := E

[
σ2
α(τ?)e−j2π∆fτ?

]
. (A.40)

The product form in the right-hand side of (A.38) reflects the separation property
mentioned briefly in [28]. An immediate and practically convenient consequence of the
separation property in (A.38) is that it notably simplifies the design of linear minimum
mean-squared error estimators of the channel transfer function H(·, ·), e.g. for OFDM
applications [28].

Notice how even (A.39) factorizes, namely as a product of large-scale and small-
scale fading induced correlation properties (recall also the discussion below (A.28) in
Sec. 5.2). To further concretize (A.39) we could invoke assumption ii)† as [7–10] and
like we also did in Example 1 in Sec. 4.2. The large-scale correlation term R1(∆t) would
then exhibit an exponential decay and specifically we would have

Rtime(∆t) = λe

λv
exp(−λv|∆t|)J0(2πη∆t).
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Exponentially decaying correlation functions for large-scale fading processes (shadowing)
have been suggested in literature several times, see e.g. [30] for one of the earliest
occurrences. We selected here the Bessel function J0(·) as the small-scale correlation
structure only to provide a concrete and popular example. Obviously, we could have
made any other selection for the normalized correlation function and substituted it
directly into (A.39) instead of J0(·).

The expression in (A.40) holds important information as well. Specifically, as we
can readily identify (A.40) as the Fourier transform

Rfreq(∆f) = F{σ2
α(·)fdelay(·)}(∆f)

we find that the power-delay profile of the channel is

Pdelay(τ) := Rtime(0)F{Rfreq(·)}(τ) = λe

λv
σ2
α(τ)fdelay(τ).

This function characterizes the rate of decay of received power versus propagation delay.
Knowledge of the power-delay profile (sometimes also called the delay-power spectrum)
is crucial for localization aspects and wireless communications in general. Motivated
by empirical observations, a standard assumption is that Pdelay(·) exhibits an overall
exponential decay. In [8, 9] such an exponential decay is maintained by appropriate
selections of the conditional power assigning function σ2

α(·) and the probability density
function fdelay(·).

To conclude this example we stress the importance of being able to calculate and
analytically assess the functions Rtime(·), Rfreq(·), Pdelay(·) and so on. The importance
consists in that key parameters of the channel model such as λe and λv enter explicit
in these practically measurable quantities. In turn, this allows for rigorous parameter
estimation and it enables also the temporal birth-death channel model to be utilized
as a tool for measurement prediction. Such capabilities stand in notable contrast to
the limitations of “pure” simulation models, where we usually do not know if potential
interactions occur between model parameters and where questions regarding stationarity
properties most often remain inconclusive. �

At a first glance it may seem quite restrictive that we in the above example assumed
a shared normalized correlation function for all individual path gains {αx(t) : x ∈ X}.
A straightforward way to generalize this is to introduce a second collection of i.i.d.
marks. We illustrate this idea in the sequel.

6.2 Modeling Flexibility
The forthcoming example illustrates an important attribute of the point process per-
spective: Once the underlying point process X from (A.9) is in place, we can in a
natural and straightforward manner change the modeling details of the channel transfer
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function. Specifically, we can swap in dimensionality by attaching fewer or more marks
to each x ∈ X depending on the degree of features we wish the random process H(·, ·)
to exhibit. Yet, the notation is nearly not affected by such changes and the crucial
details in the derivation of the resulting time-frequency correlation function (Sec. 5.2)
stay virtually unaffected. This attractive fact stand in notable contrast to a variety of
model extensions proposed in literature. Certain well-known model extensions appear
essentially to lack structure or to suffer from the absence of a profound theoretical mod-
eling framework. Examples include Spencer’s extension [6] of Saleh and Valenzuela’s
model [5] together with the ultra-wideband model [31] which is fundamentally based
on [5] as well.

To extend the temporal birth-death channel model in (A.30) we can for example
make use of the marked point process{(

x, (τx, θx)
)

: x ∈ X
}
. (A.41)

Conceptually we are attaching two-dimensional marks (τx, θx) and the collection in
(A.41) can of course be seen as a point process in a four-dimensional space (which may
sometimes be useful, but not always). The new collection {θx : x ∈ X} is modeling
azimuth (incidence) directions for the individual path components as also focused on in
e.g. [6] and [10]. Each θx is drawn independently from a probability density function
fazimuth(·) with support set [−π, π) and the assumption in (A.32) is then replaced (with
minor notational abuse) according to

E[α∗x(t)αx(t′) |τx, θx] = σ2
α(τx)Rα(∆t; θx) (A.42)

such that each path gain αx(·) holds an individual normalized autocorrelation function
Rα( · ; θx) parameterized by θx. When repeating the derivation in Sec. 5.2 based on
(A.42) we find that the resulting time-frequency correlation function now takes the
form

RH(t, t′, f, f ′) = R1(∆t)E[Rα(∆t; θ?)]E
[
σ2
α(τ?)e−j2π∆fτ?

]
, (A.43)

where the first expectation is with respect to fazimuth(·) and the second with respect to
fdelay(·). The above modification appears intuitively reasonable when comparing (A.43)
with the previous expressions (A.33) and (A.38) for the time-frequency correlation func-
tion.

Example 5. Conditioned on the two marks (τx, θx), we could for instance generate
each path gain process αx(·) in terms of azimuth-dispersed sub-components such that

αx(t) :=
√
σ2
α(τx)
M

M∑
m=1

Am exp
(
j2πη cos(ϕm)t

)
, t ∈ R,
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where {Am}
i.i.d.∼ CN (0, 1) and {ϕm}

i.i.d.∼ VM(θx, κ). Here we use CN and VM to
denote the complex normal distribution and the von Mises distribution, respectively.
Furthermore, (M,η, κ) are fixed parameters to be set according to the particular con-
text (environment, physical speeds, carrier wavelength, etc.) but they are not of main
concern at present.

It follows readily that αx(t)|(τx, θx) ∼ CN (0, σ2
α(τx)), and with some minor calcu-

lations we get (recall (A.42))

Rα(∆t; θx) = E[exp(j2πη cos(ϕ?)∆t) |θx] (A.44)

=
I0(
√
κ2 − (2πη∆t)2 + j4πκη∆t cos(θx) )

I0(κ) ,

where in (A.44) the expectation is with respect to an arbitrary ϕ? drawn from the von
Mises density

fVM(ϕ; θx, κ) = exp(κ cos(ϕ− θx))
2πI0(κ) , ϕ ∈ [−π, π),

and where I0(·) denotes the zeroth-order modified Bessel function of the first kind. We
refer to [32] for more details on the von Mises distribution and the properties of the
resulting correlation function. The current goal is to realize how our modeling choices
affect the time-frequency correlation function in (A.43). Specifically, we then need to
average (A.44) with respect to the density fazimuth(·), i.e.

E[Rα(∆t; θx)] = E
[
E[exp(j2πη cos(ϕ?)∆t) |θx]

]
=
∫∫

fazimuth(θ)fVM(ϕ; θ, κ)ej2πη cos(ϕ)∆tdϕdθ, (A.45)

where the region of integration is [−π, π)× [−π, π). The expression in (A.45) is difficult
to assess except for certain special cases of the density fazimuth(·). However, if we employ
the assumption that fazimuth(·) is the uniform density on [−π, π), then (A.45) simplifies
to the standard expression J0(2πη∆t) from Example 4. To see this, simply swap the
order of integration in (A.45) and notice that

∫
fVM(ϕ; θ, κ)dθ = 1 since the individual

roles of the “variables” ϕ and θ are interchangeable in the von Mises density. Hence,
from the very beginning we could have made the default selection of the Bessel function
J0(2πη∆t) for the shared correlation function in (A.32). However, we could also have
employed individual correlation functions as just shown. Yet, with the particular choices
made, in fact, the time-frequency correlation function in (A.43) would coincide with the
one from Example 4. �

The above example illustrated a particular choice and recipe for how each path gain
process αx(·) could be parameterized and generated in a computer simulation. In the
following we highlight a few selected details on tractable simulation procedures for the
underlying birth-death process L(·). In addition to its analytical advantages, the point
process perspective proves itself also particularly valuable for simulation purposes.
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6.3 Simulation Aspects Regarding the Point Process X and the
Temporal Birth-Death Process

The approaches in [7–10] rely exclusively on the assumptions i)† and ii)†. This can be
motivated by the fact that these two assumptions together endow the resulting channel
model with simple mathematics [7]. In fact, i)† and ii)† are also particularly convenient
in terms of computer simulation, especially due to our theoretical knowledge from Sec. 4
regarding the point process X.

The contribution in [7] focuses on modeling and experimental investigations and
does not cover aspects related to computer simulation. Both [8] and [9] mention a few
simulation aspects with example visualizations of generated channel impulse responses.
However, exact details or guidelines are not provided, in particular, the enumeration
issues related to the birth-death transitions of L(·) are not mentioned. In contrast,
[10] proposes a number of heuristic guidelines for controlling, initializing and time-
discretizing the temporal birth-death mechanism. For instance, the random process
L(·) is always initialized such that no path components are present. Hence, if the origin
is selected to be the arbitrary starting time, then [10] systematically assigns L(0) = 0.
The motivation for this is (quoting [10, Sec. III-C]): To avoid the problem of defining a
specific starting state. It is then suggested to initially let the process run long enough
to yield the “correct” value for E[L(t)]. Based on ii)†, a value is then given for the
minimum forerun needed to yield an error of at most 1% (in a certain sense). The
actual simulation should subsequently take place after this forerun7.

With our theoretical knowledge from Sec. 4, approximate simulation guidelines like
the one mentioned above can be entirely circumvented. In particular, rather than defin-
ing a starting state, L(0) should be drawn from a Poisson distribution instead of being
systematically assigned to zero. Conditioned on L(0), the task is then to calculate
the conditional joint distribution of emergence times and lifetimes of those L(0) path
components which necessarily are present in the channel at initialization time t = 0.
Obviously, all L(0) path components must have emerged before time t = 0.

Example 6. Our goal in this example is to show the facilitating aspects of i)† by itself.
Accordingly, we combine i)† with ii). In the following we show how to initialize the
birth-death process L(·) using emergence times and lifetimes drawn from the equilibrium
distribution.

Initially, recall Fig. A.2 and shift the region Bt to the origin. Since X as defined in
(A.9) is a Poisson point process we have that L(0) = N

X
(B0) is a Poisson distributed

random variable with mean µ
X

(B0) = λeE[p?]. Hence, we start by drawing the non-
negative integer L(0). By the second item of Definition 2 in Sec. 3, we should then draw

7This procedure resembles the well-known burn-in periods often used in Markov Chain Monte Carlo
(MCMC) simulations [25, Sec. 8.1.2]. Such a burn-in is employed to ensure that the marginal distribu-
tion of the Markov chain’s current state is sufficiently close to its (unknown) equilibrium distribution
for all practical purposes.
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the L(0) points X ∩B0 mutually independent and identically distributed according to

fB0(x) = %
X

(x)
µ

X
(B0)1[x ∈ B0] = fperiod(p)

E[p?]
1[(y, p) ∈ B0],

where the intensity function %
X

(·) is taken from (A.16). Due to the shape of the un-
bounded triangular region B0, it is most convenient to draw each two-dimensional point
x = (y, p) by a two-step procedure. Marginalizing fB0(·) with respect to each of y and
p yields respectively

fy(y) :=
∫
fB0(y, p)dp = 1[y < 0]

E[p?]

∫ ∞
−y
fperiod(p)dp = Pr(p? > −y)

E[p?]
1[y < 0], (A.46)

and

fp(p) :=
∫
fB0(y, p)dy = fperiod(p)

E[p?]

∫ 0

−p
1dy = pfperiod(p)

E[p?]
. (A.47)

(Notice that both fy(·) and fp(·) integrate to unity). The corresponding conditional
distributions read

fy|p(y|p) = fB0(y, p)
fp(p)

= 1
p
1[y ∈ (−p, 0)] (A.48)

and

fp|y(p|y) = fB0(y, p)
fy(y) = fperiod(p)

Pr(p? > −y)1[p > −y], (A.49)

(which also both integrate to unity as can be readily verified). Now, to generate a point
x = (y, p), we can first generate the emergence time y according to fy(·) in (A.46) and
then generate the corresponding8 period p according to fp|y(·|y) in (A.49). Alterna-
tively, we can first generate the period via (A.47) and then generate the corresponding
emergence time via (A.48). The approach most preferable for implementation depends
on our choice of the density fperiod(·). In essence, to initialize the temporal birth-death
process L(·) in equilibrium at time t = 0 we do as follows:

1. Draw L(0) = N
X

(B0) from a Poisson distribution with mean λeE[p?].

2. Draw the points X ∩ B0 i.i.d. according to (A.46) and (A.49) (alternatively, use
(A.47) and (A.48)).

8In this construction y and p are obviously dependent since we have conditioned on the fact that
exactly L(0) path components are present at time t = 0. To the contrary, the periods of those path
components to emerge in the future are to be drawn independently of their times of emergence.
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Accordingly, the temporal birth-death process L(·) exhibits its exact theoretical prop-
erties at initialization time t = 0 without imitating a forerun from the infinite past.

�

The example above illustrates in a convincing manner the benefits and the poten-
tial of the point process perspective. In contrast to the approximate and heuristic
initialization guideline in [10], the channel can now be initialized exact (in equilibrium)
from a “mechanic procedure” dictated by the properties of the Poisson point process X
(Definition 2 in Sec. 3).

7 Conclusion
The theoretical framework of spatial point processes and its powerful tools, like Camp-
bell’s Theorem, comprise a natural environment for the engineering treatment of various
stochastic radio channel models. Our analysis of the class of temporal birth-death chan-
nel models, governed by the assumptions i) and ii) in Sec. 1, supports this conclusion
and the usefulness of Campbell’s Theorem has been demonstrated repeatedly. Over-
all, the proposed point process perspective is analytically beneficial due to its inherent
flexibilities with respect to dimensionality swapping and its ability to circumvent in-
convenient enumeration issues of traditional modeling approaches. Specifically, the key
technique we employed was to replace traditional integer-indexed sums by equivalent
expressions indexed by points from spatial point processes. In essence, this allows for
keeping track of individual path components by use of the same stochastic mechanism
which is also generating the temporal birth-death behavior of the channel. In addition
to its analytical advantages, the point process perspective has proven itself particularly
valuable for simulation purposes as well. A complete and categorized overview of our
findings is given in Fig. A.5.

In Sec. 4 we have shown that the temporal birth-death process L(·) is strict-sense
stationary. The mean of L(·) does not depend on the exact shape of the probability
density function induced via ii), only the its first-order moment matters. However, the
autocorrelation function of L(·) is directly affected via its shape. Finally, we indicated
in Sec. 4 the crucial roles of i) and ii) in the sense that relaxation attempts in general
turn L(·) into a non-stationary random process.

We derived in Sec. 5 a general expression of the channel’s time-frequency correlation
function. To the best of our knowledge this expression has not appeared elsewhere in the
channel modeling literature. The time-frequency correlation function is comprised by
the product of a large-scale and a small-scale term. Under facilitating assumptions we
have shown that the channel transfer function becomes wide-sense stationary in both
time and frequency despite the birth-death behavior of the channels individual path
components.
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i) + ii)

i)† ii)†

Sec. IV-A Sec. IV-B Sec. V Sec. VI

L(·) strict-sense stationary

Example 4X ∼ PoissonPP

Sec. IV-C

Example 6

Example 1

Contributions
[7]-[10]

Fig. A.5: Overview of the present contribution in the form of a Venn-diagram. Notice that we have
not indicated Sec. 4.4 anywhere in the figure as this paragraph attempts to relax the assumptions i)
and ii) displayed in terms of the rectangular box.

We have shown and demonstrated via concrete examples in Sec. 6 the paramount
ability to calculate and assess the time-frequency correlation function by analytical
means. The key parameters of the birth-death channel model enter explicitly in practi-
cally measurable quantities such as temporal correlation functions and the power-delay
profile. Immediate practical implications are that new parameter estimation procedures
can be rigorously suggested and that the class of temporal birth-death channel models
can as well be used as a tool for measurement prediction (as compared to a model class
useful merely for simulation purposes).

Appendix A: Strict-Sense Stationarity of the Temporal
Birth-Death Process L(t)
Proposition. As a consequence of i) and ii), the random process L(·) defined in (A.10)
is strict-sense stationary.

Proof. To see that L(·) is strict-sense stationary we have to show (for any fixed time
shift s ∈ R and for any k ∈ N) that

Pr
(
L(t1 + s) ≤ n1, . . . , L(tk + s) ≤ nk

)
(A.50)

does not depend on our choice of s. However, the common time shift in (A.50) corre-
sponds in fact to nothing but a translation of the point process Y since by the definition
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of L(t) in (A.10) we have

L(ti + s) =
∑
y∈Y

1[y < ti + s, y + py > ti + s ]

=
∑
ỹ∈Ỹ

1[ ỹ < ti, ỹ + p
ỹ+s > ti ], i = 1, . . . , k,

where Ỹ := Y − s is the random collection {y − s : y ∈ Y } of shifted points. Indeed,
for any fixed s ∈ R, the shifted collection Ỹ is a stationary point process on the entire
real line with the same distributional properties as Y . Additionally, the marks/periods
are drawn i.i.d. irrespectively of the underlying point pattern and from this we now
conclude that (

L(t1 + s), . . . , L(tk + s)
)
∼
(
L(t1), . . . , L(tk)

)
.

That is, (A.50) does not depend on s and so the random process L(·) defined in (A.10)
is strict-sense stationary.

Appendix B: On Conditions for Wide-Sense Station-
arity
Proposition. Let τ(·) be real-valued random process for which the product-moment
E[τ(t)τ(t′)] exists for all t, t′ ∈ R. Then the function

g(t, t′, f, f ′) := E
[
e−j2π(f ′τ(t′)−fτ(t))] (A.51)

depends at most on ∆f = f ′ − f only if τ(·) is a random process with constant realiza-
tions.

Proof. Observe that the expectation in (A.51) relates directly to the characteristic func-
tion (or the moment generating function) of the bivariate random variable (X,Y ) =(
τ(t), τ(t′)

)
. Consider for simplicity the moment generating function

M
XY

(f1, f2) := E
[
ef1X+f2Y

]
, (A.52)

which relates to the characteristic function C
XY

(·, ·) by evaluating (A.52) at (jf1, jf2).
Moreover, it is readily seen that we directly obtain (A.51) by evaluating (A.52) at
(j2πf,−j2πf ′). Requiring (A.51) to be a function of ∆f essentially means that we
requireM

XY
(f1, f2) = M(f1 +f2), for some functionM(·). Then by using the fact that

(A.52) is a moment generating function it follows for all n,m ∈ N0 that

∂n

∂fn1

∂m

∂fm2
M

XY
(f1, f2)

∣∣∣
(0,0)

= E[XnY m] = M (n+m)(0),
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where M (k)(·) denotes the k’th order derivative of M(·). Hence, for first- and second-
order properties of X and Y we find that E[X] = E[Y ]and E[X2] = E[XY ] = E[Y 2],
which means that the correlation coefficient ρ

XY
between X and Y is such that |ρ

XY
| =

1. Accordingly, X and Y are related via some affine transform Y = aX + b but only
a = 1 and b = 0 together fulfills the first- and second-order requirements for X and Y ,
and these two random variables were arbitrary samples from the random process τ(·).
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Abstract
In this paper we revisit the classical channel model by Saleh & Valenzuela via the theory
of spatial point processes. By reformulating this model as a particular point process
and by repeated application of Campbell’s Theorem we provide concise and elegant
access to its overall structure and underlying features, like the intensity function of
the component delays and the delay-power intensity. The flexibility and clarity of the
mathematical instruments utilized to obtain these results lead us to conjecture that the
theory of spatial point processes provides a unifying mathematical framework to define,
analyze, and compare most channel models already suggested in literature and that the
powerful tools of this framework have not been fully exploited in this context yet.

1 Introduction
Literature regarding channel models for (indoor) radio propagation dates back earlier
than 1960, and most commonly the wireless multipath channel is characterized via its
(time and space varying) impulse response [1]. Two classic and seminal contributions
within channel modeling are those by Turin et al. [2] and Saleh & Valenzuela [3]. To
some extent the (indoor) model by Saleh & Valenzuela can be seen as a generalization of
the (urban) model by Turin. Specifically, the generalization aimed at mimicking cluster
alike behavior since this effect was reported to have been observed experimentally.

Ever since the model by Saleh & Valenzuela (for short the S-V model) was proposed
in 1987, many refined or marginally extended variants have appeared, see e.g. [4] and
[5]. Unfortunately, these channel models have not been developed within any unifying
mathematical framework. Instead their treatment is of rather ad-hoc nature and, as a
result, their inherent features remain essentially veiled and any two different models are
not easily comparable.

Recently the authors of [6] and [7] reformulated and outlined the S-V model in terms
of marked point processes. The S-V model has also been revisited in [8] by use of shot-
noise tools and point process theory. Among other things the analysis in [7] and [8]
show that the overall intensity of the relative delays of multipath components grows
linearly with the propagation delay. Unfortunately, the mathematical tools used in [7]
to extract the features of the model are not directly associated with the general theory
of point processes. On the other hand, the tools used in [8] are rather advanced and
the derivations less transparent. Accordingly, the potential theoretical benefits arising
through these point process reformulations are not immediately evident.

In this paper we showcase how the general theory of spatial point processes provides
an insightful view upon the inherent structure and features of the classical S-V model.
Like [7] and [8] we revisit the model and reformulate it as a particular point process.
Aligned with [7] we show that the component delays consist of the union of a Poisson
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point process and a Cox point process and we derive the associated intensity function as
an immediate consequence of Campbell’s Theorem. The derivation in [7] is similar but
with no reference to Campbell’s Theorem. Furthermore, and in contrast to the involved
proofs relying on shot-noise tools in [8], we obtain the delay-power intensity in a simple
and direct way by invoking once more Campbell’s Theorem. These results demonstrate
the potential of this well-known theorem from the theory of spatial point processes in
the context of stochastic channel modeling. In view of this, our conclusion is that the
theory of spatial point processes and its powerful tools have not been fully exploited
yet to analyze the properties of most proposed stochastic channel models. This theory
appears to provide the necessary unifying framework for which these models can be
contrasted within.

2 Point Process Framework
We assume familiarity with the basics of the theory of spatial point processes (see [9, Sec.
1.3, Chap. 2] and [10, Sec. 1.5, 6.2] for highly recommendable introductions). Concepts
from abstract measure theory will be kept at a minimum.

2.1 Locally finiteness and simplicity
Denote by Y a locally finite and simple point process defined on a d-dimensional space
S ⊆ Rd. For intuitive, practical and mathematical reasons, these two properties are
convenient to impose since several technical aspects can then be disregarded. A point
process is locally finite if the number of points falling in every bounded Borel set B ⊆ S
is almost surely finite. A point process is simple if, almost surely, no two points of the
process coincide. Accordingly, any realization of the point process Y can be identified as
a countable set of points

{
y1,y2,y3, . . .

}
, yi ∈ S, where the index i of yi serves solely

as a dummy label. Thus, the index is used only to distinguish points and to indicate
countability. It does not indicate any ordering of the points.

2.2 The intensity function and Campbell’s Theorem
Consider the counting function defined, using a generic indicator function 1[·] ∈ {0, 1},
as

N
Y

(B) :=
∑
y∈Y

1[y ∈ B],

which equals the random number of points from Y falling in the set B. For any fixed
and bounded B, the count N

Y
(B) is a non-negative integer-valued random variable. The

expected value of the counting function µ
Y

(B) := E
[
N

Y
(B)

]
defines a measure on S,
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the so-called intensity measure of Y . If the intensity measure can be expressed as

µ
Y

(B) =
∫
B

%
Y

(y)dy, B ⊆ S,

for a locally integrable function %
Y

:S→ [0,∞), then %
Y

is called the intensity function
of Y . The case when the intensity function exists is by far the most important for
applications [11]. The importance of the intensity function is evident from the following
result, often referred to as Campbell’s Theorem.

Campbell’s Theorem. Let Y be a point process on S ⊆ Rd with intensity function
%

Y
. Then for a real or complex-valued measurable function h : S → R (or C), the

random variable
∑
y∈Y

h(y) has expected valued

E

[∑
y∈Y

h(y)
]

=
∫
S

h(y)%
Y

(y)dy, (B.1)

provided that the integral on the right exists.

Proofs with varying degrees of detail can be found in [9, Sec. 3.2], [11, Prop. 4.1]
and [12, Thm. 2.2]. Often, the theorem is stated only for non-negative functions h, since
the equality in (B.1) is then unconditionally true, i.e. the integral is always well-defined
but possibly divergent. When h is real-valued some care must be taken since the integral
at the right hand side of (B.1) has no meaning if the positive and the negative part of
h are not integrable. Similar care must be taken for complex h.

2.3 Poisson and Cox point processes
We now define two classes of point processes which are particularly important for our
treatment in the forthcoming section, namely Poisson point processes and Cox point
processes. These definitions can be found in many text books covering the theory of
spatial point processes. Our treatment is directly inspired by [11] and the interested
reader may consult [10–12] for further details.

Definition. A point process Y on S ⊆ Rd is called a Poisson point process with inten-
sity function %

Y
if:

(i) For any B ⊆ S with µ
Y

(B) =
∫
B
%

Y
(s)ds < ∞ the count N

Y
(B) is Poisson

distributed with mean µ
Y

(B).

(ii) Given that N
Y

(B) = n ∈ N where 0 < µ
Y

(B) < ∞, the distribution of Y ∩ B is
the same as that of n points drawn i.i.d. according to f

B
, where

f
B

(s) := %
Y

(s)1[s ∈ B]
µ

Y
(B) .
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We write Y ∼ PoissonPP
(
S, %

Y

)
.

Definition. Let Z(s), s ∈ S, be a non-negative random field such that, almost surely,
every realization of Z is a locally integrable function on S. If a point process Y , con-
ditioned on Z, is a Poisson point process with intensity function Z, then Y is called a
Cox point process driven by Z.

Cox point processes (also often referred to as doubly stochastic Poisson point pro-
cesses [10]) are flexible models for clustered point patterns. Specifically, the two-level
construction most commonly entails the Cox class to exhibit so-called over-dispersion
compared to the Poisson class [11, Sec. 5.2].

3 The Model by Saleh & Valenzuela
In this section we analyze the impulse response of the classical S-V model within the
framework of spatial point processes. The main purpose of this effort is to straightfor-
wardly derive the features of this model through a flexible and powerful theory. Several
relevant aspects of the model are revealed through this reformulation, e.g. its overall
delay intensity, a concise and clear derivation of the average power gain and, a simple
derivation of the delay-power intensity as well.

3.1 Classical formulation
Saleh & Valenzuela define the channel impulse response with cluster and within-cluster
delays as [3, Eq. (25)]

h(t) =
∞∑
`=0

∞∑
k=0

βk,` exp(jθk,`)δ
(
t− (T` + τk,`)

)
, (B.2)

where δ is the Dirac delta and j is the imaginary unit. The index ` indicates a certain
cluster and k is the within-cluster index. By definition in [3], T0 = 0 and τ0,` = 0 for
each ` ∈ N0 := {0} ∪ N. Beside these fixed delay components, a sequence of Poisson
point processes are suggested such that

•
{
T`
}
`∈N ∼ PoissonPP

(
R+ , Λ

)
•
{
τk,`
}
k∈N ∼ PoissonPP

(
R+ , λ

)
for each ` ∈ N0,

with Λ, λ > 0 being two parameters. Moreover, conditional second-order moments are
modeled such that [3, Eq. (26)]

E
[
β2
k,`

∣∣T`, τk,`] = Q exp
(
− T`/Γ

)
exp

(
− τk,`/γ

)
, (B.3)
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with Γ, γ > 0 and Q being the average power gain of the first component within the first
cluster (i.e. corresponding to the fixed delay T0). Conditioned on all T`’s and all τk,`’s,
the βk,`’s are assumed to be mutually independent random variables. Specifically, each
power gain β2

k,`, conditioned on T` and τk,`, should follow an exponential distribution
with mean parameter decaying as described by (B.3). Fig. B.1 illustrates the Poisson
point processes involved in the S-V model.

Finally, it was mentioned in [3] that practically the doubly-infinite sum in (B.2)
should "stop" whenever each of the exponentially decaying terms in (B.3) had become
small enough. Through the insight gained via the forthcoming reformulation of this
classical channel model we are able to motivate a less heuristic "stopping criterion".

3.2 Point process formulation
Naturally, we select the space S = R+ and let T0 = 0 as above. In addition, we introduce
the point processes:

C :=
{
T`
}
`∈N

(
all cluster delays except T0

)
W` :=

{
T` + τk,`

}
k∈N

(
delays within the `’th cluster

)
W :=

∞⋃
`=0

W`

(
all within-cluster delays

)
Y := C ∪W

(
all propagation delays except T0

)
.

Notice that C is the Poisson point process specified at first in the previous paragraph.
Its intensity function has a simple form, namely %

C
(t) = Λ for all t ∈ S. By conditioning,

we immediately identify a sequence of Poisson point processes

W`

∣∣T` ∼ PoissonPP
(
R+ , λ1

[
t > T`

])
, ` ∈ N0,

and since the Poisson class is stable with respect to countable superpositions [11, Prop.
3.6], we see that

W
∣∣C ∼ PoissonPP

(
R+ , %̃W

)
,

with the staircase-alike intensity function

%̃
W

(t) = λ+ λ
∑
c∈C

1
[
t > c

]
, t ∈ S. (B.4)

Accordingly, we identify that the point process W , without conditioning on C, is a Cox
point process driven by a stochastic process Z having the same functional form as %̃

W

in (B.4) but with C being random. The intensity function of the Cox point process W
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Fig. B.1: Realization of Poisson point processes corresponding to the S-V model. Circle points indicate
fixed delay components. The top process occurs with rate Λ while each of the lower processes occurs
with rate λ. A new point process is initialized whenever a new point emerges from the top process.

is %
W

(t) = E
[
Z(t)

]
[11, Sec. 5.2], and by direct application of Campbell’s Theorem we

get

%
W

(t) = λ+ λE

[∑
c∈C

1
[
t > c

]]
= λ+ λΛt, t ∈ S.

Since Y = C ∪W is a union of almost surely disjoint point processes, its associated
intensity function reads [10, Sec. 6.2.3]

%
Y

(t) = %
C

(t) + %
W

(t) = Λ + λ+ λΛt, t ∈ S.

It is interesting to notice that the entire set of propagation delays (excluding the first
component T0) is the union of a Poisson point process and a Cox point process. Of
course, the realization of W depends upon the realization of C, i.e. these two point
processes are not independent. In [7] this interpretation was inherently adopted, without
being explicitly mentioned. Another interesting yet expected observation is that the
intensity function %

Y
rises linearly with propagation delay, see Fig. B.2. The jump of

height Λ + λ at T0 = 0 in the graph of %
Y

appears due to the cluster delays and the
delays within the very first cluster. The term λΛt result from the fact that, on average,
a total of Λt additional clusters emerge during the interval [0, t], with each and every
one of them spawning further delay components at rate λ.
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Fig. B.2: Intensity functions associated with the S-V model.

3.3 Multipath power gain
Analogous to the approach in [3], we consider the following non-negative random variable

G :=
∞∑
`=0

∞∑
k=0

β2
k,`, (B.5)

referred to as the total multipath power gain [3]. By splitting G into three terms corre-
sponding to T0 and arrivals in C and W , its expectation can be calculated as

E
[
G
]

= E
[
β2

0,0
]

+ E

[ ∞∑
`=1

β2
0,`︸ ︷︷ ︸

(?)

]
+ E

[ ∞∑
`=0

∞∑
k=1

β2
k,`︸ ︷︷ ︸

(�)

]
.

As in [3] we write β
(
T`, τk,`

)
in substitute for βk,` to facilitate a comprehensible notation

in the following. For additional clarity we introduce the function

f
(
t, t̃
)

:= Q exp
(
− t/Γ− t̃/γ

)
, t, t̃ ∈ S.

Notice that f
(
T`, τk,`

)
= f

(
T`, (T` + τk,`)− T`

)
coincides with the expression in (B.3).

Then, by intermediate conditioning on C, we calculate the expectation of the term (?)
as

E
[
(?)
]
=E

[∑
c∈C

β2(c, 0)
]

=E

[∑
c∈C

E

[
β2(c, 0)

∣∣C]︸ ︷︷ ︸
f(c,0)

]
=QΛΓ,
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where the final step follows by application of Campbell’s Theorem. Next, by defining
C0 := {T0} ∪ C and with a similar sequence of manipulations involving intermediate
conditioning and Campbell’s Theorem, we find the expected value of (�) to be1

E
[
(�)
]

= E

[ ∑
c∈C0

∑
w∈Wc

β2(c, w − c)
]

(B.6)

= E

[ ∑
c∈C0

E

[ ∑
w∈Wc

E

[
β2(c, w − c)

∣∣c, w︸ ︷︷ ︸
f(c,w−c)

]]]
= Q

(
1 + ΛΓ

)
λγ.

Accordingly, the average total power gain is given by

E
[
G
]

= E
[
β2

0,0
]

+ E
[
(?)
]

+ E
[
(�)
]

= Q + QΛΓ + Q
(
1 + ΛΓ

)
λγ

= Q
(
1 + λγ

)(
1 + ΛΓ

)
, (B.7)

as was also reported in a footnote in [3]. Yet, the original sequence of arguments used
to obtain this result may appear less instructive, see [3, Eq. (27), (31)] for comparison.
Notice that, depending on how we choose to write out the product in (B.7), we end up
with different interpretations of individual average power contributions.

3.4 Delay-power intensity
Motivated by the definition of G in (B.5) together with the relationship in (B.7), we
consider

p(t) :=
∞∑
`=0

∞∑
k=0

β2
k,`δ
(
t− (T` + τk,`)

)
.

We wish to calculate how the average power gains are distributed across delay. From
(B.7) we already know the mean total power gain, yet we seek to obtain further insight.
The above definition of p(t) is motivated by the fact that

∫∞
0 p(t)dt = G, and since E[G]

is finite, the non-negative random variable G is itself finite almost surely. Accordingly,
we define

P (t) := E
[
p(t)

]
, t ∈ S,

and we refer to this function as the delay-power intensity. By similar manipulations as
in the previous paragraph (conditioning, Campbell’s Theorem, etc.) we find

P (t)
Q

= δ(t) +
{

k1exp
(
− 1

Γ t
)

+ k2exp
(
− 1

γ t
)
, Γ 6= γ

%
Y

(t) exp
(
− 1

γ t
)

, Γ = γ

1Note that in (B.6) we abuse notation since the collections Wc are not explicitly defined. We only
defined these as W` via the counting index `.
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Fig. B.3: Delay-power intensity of the S-V model (solid line). The parameter values of Λ, λ,Γ, γ
correspond to the estimates reported in [3]. The dashed curve correspond to the selection Γ = γ = 40ns.
For comparison, the dotted curve provides a purely exponential decay.

where we have conveniently introduced the two constants

k1 := Λ
(

1 + λ
Γγ

Γ−γ

)
and k2 := λ

(
1− Λ Γγ

Γ−γ

)
.

The same expression for P (t) is obtained in [8, Chap. 2,3] using rather involved shot-noise
tools with weighty notational overhead. Notice the particular relationship

E[G] = E

[ ∫ ∞
0
p(t)dt

]
=
∫ ∞

0
E
[
p(t)

]
dt =

∫ ∞
0
P (t)dt.

The delay-power intensity of the S-V model is depicted in Fig. B.3. Notice that P (t) is
not exponentially decaying, not even when Γ = γ since %

Y
rises linearly (compare with

the dotted line in Fig. B.3).
Finally, as mentioned in the beginning of this section, we are now able to motivate

a simple "stopping criterion" suitable, e.g. for simulation purposes. Specifically, select
a delay threshold tmax(α) such that∫ tmax (α)

0
P (t)dt = αE[G],

for a relevant choice of α ∈ (0, 1), e.g. α = 0.99.
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4 Conclusion
In this contribution we have revisited the radio channel model by Saleh & Valenzuela
(the S-V model) within the framework of spatial point processes. We have shown that
the component delays in the S-V model emerge from the union of a Poisson point pro-
cess and a Cox point process. Furthermore, we have demonstrated that the intensity
function of the component delays and the delay-power intensity can be derived in a
straightforward and rigorous manner as an immediate consequence of Campbell’s The-
orem.

The above results indicate that the theory of spatial point processes yields a natural,
unifying theoretical framework for dealing with stochastic channel models. This applies
in particular to most channel models already suggested in literature, including the mod-
els by Turin et al. [2], Spencer et al. [4], and Chong et al. [5]. Our results also reveal
that the powerful tools available in this framework, like Campbell’s Theorem, have not
been exploited to their full extent in this context yet. Overall the considered applica-
tion to the S-V model and to some extent the work in [6–8] show that the resulting
mathematical treatments inherit clarity and conciseness, in addition to rigorousness, in
contrast to the traditionally used ad-hoc and heuristic arguments.
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Abstract
In this paper we present a refined model of the wireless multipath channel along with a
thorough analysis on the impact of spatial smoothing techniques when used for improved
channel estimation. The state-of-the-art channel estimation algorithm for pilot-aided
OFDM systems is robustly designed and operates without knowledge of the time-varying
multipath propagation delays in the wireless channel. However, algorithms exploiting
knowledge of these time-varying delay parameters can outperform the state-of-the-art
solution. We demonstrate from simulations how the Unitary ESPRIT algorithm to-
gether with spatial smoothing techniques exhibit a promising potential for multipath
propagation delay estimation. Furthermore, we show that the optimum smoothing pa-
rameters depend notably on the channel model assumed, specifically in terms of the
dynamical behavior of the multipath delays.

1 Introduction
During the last decade, the technique of orthogonal frequency-division multiplexing
(OFDM) has entered and settled within several wireless standards, e.g. European dig-
ital audio broadcasting, IEEE 802.11a wireless local area networking and 3GPP long
term evolution (LTE). The reasons for OFDM being widely selected are manifold. A
few motivations include the flexibility in spectrum occupancy, robustness against inter-
symbol-interference and easy integration with multiple antenna techniques.

Today, even higher data rates are demanded - calling for larger digital constellation
sizes and coherent detection. Channel estimation is therefore required and commonly
achieved using pilot symbol transmissions. In principle, the channel estimation may be
conducted in a completely non-parametric manner. However, this approach conflicts
with the requirement of high data rates due to the dimensionality of the estimation
problem and also due to the time-varying behavior of the wireless channel (expensive
time-frequency overhead of pilot symbols). With the aim of lowering the dimension of
the estimation task and the amount of pilot symbols needed, a parametric structure of
the wireless multipath channel is typically imposed [1–4]. Yet, the parametric channel
model assumed in scientific literature and wireless standards [5] does not adequately
reflect dynamic environments, e.g. with a mobile receiver. For instance, the multipath
propagation delays, the inter-delay gaps and the overall number of delays are often
modeled as persistently fixed - even though the receiver is assumed to be moving. Fur-
thermore, it is common to include modeling of the Doppler frequency shifts experienced
by the receiver [2, 4] - despite the fact that Doppler shifts and delay fluctuations are in-
disputably related. Hence, the default and widely used modeling of the wireless channel
is counterintuitive and inadequate.

When employing the state-of-the-art channel estimator [1] (robust design), the fluc-
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tuating behavior of the multipath delays are of no importance since a continuum of
equally powered channel components is assumed. However, this robust design yields
an irreducible performance degradation which is avoidable if instead a channel estima-
tor presupposing knowledge of the time-varying delays is used. Hence, if sufficiently
accurate delay estimates can be obtained, the robust state-of-the-art channel estima-
tor [1] can be outperformed. Yet, for this opposing solution to earn practical attention
it requires a sufficiently accurate/realistic model of the wireless multipath channel.

In recent literature [2] the ESPRIT algorithm [6] has been proposed to serve as initial
multipath delay acquisition tool for pilot-aided OFDM systems. The ESPRIT algorithm
is an eigenvalue decomposition based method which exhibits satisfactory estimation per-
formance when the multipath propagation delays in the channel model stay persistently
fixed. However, in more realistic scenarios the propagation delays will fluctuate over
time, the overall number of delays will change and also the inter-delay gaps will vary.
Thus, depending on the individual realizations of the channel the delays will sometimes
tend to cluster while other times tend to be more dispersed. Such effects are typically
not captured by the channel models in use. Accordingly, promising simulation-based
algorithm performance may implicitly give rise to erroneous comprehension - directly
inherited from the inappropriate channel modeling.

In this paper we present an advanced multipath channel model which manages to
mimic an increased amount of real-world channel effects. Compared to the default
state-of-the-art channel model, this advanced model is of supplementary dynamic na-
ture and therefore allows for interesting simulation-based comparisons. In terms of
channel estimation performance we compare the state-of-the-art algorithm [1] with the
linear minimum mean squared error (LMMSE) estimator [2] using Unitary ESPRIT [7]
as multipath delay estimation tool. Additionally, a key contribution of this paper is a
thorough analysis of the performance gain obtained when applying a spatial smoothing
scheme for improved delay estimation accuracy. The smoothing scheme is also employed
in [2], yet no analysis of its impact is provided and no justification for the smoothing
parameters are given. We investigate how to optimize the smoothing parameters de-
pending on the dynamical behavior of the wireless multipath channel model assumed.

The remaining parts of this paper are organized as follows. In Section 2 a scenario
involving an OFDM system is described and the signal model is presented. The channel
models considered are introduced and discussed in Section 3. In Section 4 we briefly
describe the main principles of the ESPRIT algorithm. Performance evaluations are
conducted and compared in terms of Monte-Carlo simulations in Section 5. Concluding
remarks are provided in Section 6.

2 OFDM Signal Model
We consider a single-input single-output OFDM system designed with a total of N sub-
carriers. The effective spectrum occupied by the system is often adjusted by forcing
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certain subcarriers inactive, for instance at each edge of the overall bandwidth. Accord-
ingly, only Nu ≤ N subcarriers are used for actual transmissions.

The OFDM signal is generated as follows. Initially, a stream of raw information
bits are modulated onto a set of PSK/QAM symbols which are then multiplexed with
a sequence of M pilot symbols. After multiplexing the sequence consists of exactly
Nu symbols x1 , x2 , . . . , xNu

, and these are intended for transmission. Finally, OFDM
modulation by means of an IFFT is performed and a cyclic prefix is inserted.

The received signal is OFDM demodulated by discarding the samples corresponding
to the cyclic prefix and the N time-domain samples left are exposed to a FFT. We
assume that the channel remains static during transmission of each OFDM symbol and
furthermore that the duration of the cyclic prefix exceeds the maximum excess delay of
the channel. The OFDM demodulated signal at the receiver is then given as

r =
[
r1 , r2 , . . . , rNu

]> = Xh+w, (C.1)

where X = diag
{
x1 , x2 , . . . , xNu

}
is a diagonal matrix built from the transmitted sym-

bols and h = [h1 , h2 , . . . , hNu
]> contains as components the channel frequency responses

at the Nu active subcarriers. Circular symmetric additive white Gaussian noise contri-
butions with variance σ2 are contained in the vector w = [w1 , w2 , . . . , wNu

]>.

2.1 Pilot Symbol Observations
The received pilot symbol observations are used to estimate the channel frequency re-
sponse at all subchannels carrying non-redundant data symbols. Conveniently, we define
the following subset of indices

P :=
{
p(1), p(2), . . . , p(M)

}
⊂
{

1, 2, . . . , Nu
}
,

which identifies the M subcarriers used for pilot symbol transmissions. We extract the
M equations from (C.1) corresponding to the indices contained in P and define

ym :=
r

p(m)

x
p(m)

, m = 1, 2, . . . ,M,

which we can appropriately and compactly formulate as

y :=
(
XP
)−1

rP = hP +
(
XP
)−1

wP , (C.2)

meanwhile the subscript notation should be obvious to interpret. We assume that
all pilot symbols hold unit power, whereby the statistics of the noise term

(
XP
)−1

wP
remains unchanged. Hence, the observations available in (C.2) are known to the receiver
due to the pilot symbol data and y yields the true channel frequency responses (at the
pilot subcarriers) embedded in zero-mean complex Gaussian noise. To properly estimate
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the channel frequency responses at all active subcarriers, i.e. the vector h in (C.1), a
parametric model of the wireless channel is invoked. In this way the dimension is
notably reduced since the task is now altered to estimate only a relatively small number
of channel model parameters.

3 Multipath Channel Models
Two different multipath channels are presented in this section. The overall model for
these two channels is the same and the first configuration described is simpler but
unrealistic with respect to certain physical interpretations. The second configuration
described is more dynamic and sophisticated while easier to accept from a physical point
of view. In the entire paper we assume a non-line-of-sight, far-field scenario where only
the receiver is moving.

The model commonly used to describe a time-varying multipath channel impulse
response is given by

g(t, τ) =
L(t)∑
`=1

α
`
(t)δ

(
τ − τ

`
(t)
)
, (C.3)

where δ is the Dirac delta. Each complex-valued amplitude α
`
, ` = 1, 2, . . . , L(t),

is typically modeled as a wide-sense stationary, zero-mean complex Gaussian process
[1–4]. The processes {α

`
} are furthermore assumed to be mutually uncorrelated, i.e.

the channel described by (C.3) is a so-called wide-sense stationary and uncorrelated
scattering [8] (WSSUS) Rayleigh fading channel.

3.1 Static Reference Channel
The simpler and static channel model is described according to a relaxed version of
(C.3) reading

g(t, τ) =
L∑
`=1

α
`
(t)δ(τ − τ

`
). (C.4)

The overall number L of echoes in the channel is fixed and also the delay parameters
{τ

`
} are persistently static. All amplitude processes {α

`
} are assumed to share the same

normalized autocorrelation function, given in terms of the zeroth-order Bessel function
of the first kind. Accordingly, the normalized Doppler power spectrum associated with
each echo is bathtub-shaped and usually referred to in terms of Clarke or Jakes, see [9,
Sec. 3.2] and the references therein. Such modeling is based on the assumption of
a uniform scattering environment, a scenario which is difficult to accept by physical
means. Specifically, it is hard to imagine a propagation environment such that the
transmitted signal is scattered into plenty reflections arriving uniformly from every
direction, all equally delayed, and thereby combining into one of the L dominant echoes
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in the channel. Nonetheless, such a channel model is usually assumed, e.g. by 3GPP
in [5].

3.2 Dynamic Channel
A more realistic model would allow for the delay parameters to fluctuate over time
as a result of receiver mobility. Also, the overall number of echoes in the channel may
change from time to time due to blocking obstacles in the environment. Hence, a channel
impulse response as described by (C.3) is appropriate and notably more realistic than
the model in (C.4). Initially, for ` = 1, 2, . . . , L(t), the channel echoes are modeled as

α
`
(t) =

√
Q

`

R

R∑
r=1

exp
(
j2πf

D
cos(θ

`,r )t+ jϕ
`,r

)
, (C.5)

where Q
`
is the average power of the `’th echo, f

D
denotes the maximum Doppler fre-

quency and {ϕ
`,r} are i.i.d. uniform initial phases. In contrast to the uniform scattering

environment, each channel echo α
`
in (C.5), is (heuristically) modeled from R azimuth

excited subcomponents centered around a nominal angle of arrival θ̄
`
. Specifically, the

modeling reads

θ̄
`

i.i.d.
∼ U(−π, π) and θ

`,r

∣∣θ̄
`

i.i.d.
∼ vM

(
θ̄

`
, κ
)
,

where the notation vM
(
θ̄

`
, κ
)
refers to the von Mises distribution with location param-

eter θ̄
`
and concentration parameter κ ≥ 0, see [10] for details. In this setup the channel

echoes do not share the same normalized autocorrelation function and the Doppler
power spectra are therefore individual too.

Following the modeling suggestion in [11], it is convenient to let transitions of arising
channel echoes occur according to a homogeneous Poisson process with rate λ

A
. As-

signing i.i.d. exponential lifetimes with mean 1/λ
B

to the echoes then results in L(t)
being a Poisson distributed random variable with E

[
L(t)

]
= λ

A
/λ

B
. For simplicity and

due to our receiver mobility assumption, it is furthermore convenient to model the delay
fluctuations from straight line advancements, i.e.

τ
`
(t) = τ

`,0 + f
D

cos(θ̄
`
)

fc

(t− t
`,0), t ≥ t

`,0 ,

where fc denotes the carrier frequency of the communication system and t
`,0 is the birth

time of the `’th echo. The distribution of the initial delays {τ
`,0} can be specified as

desired - a simple choice is to select the uniform distribution on an appropriate interval.
The average power terms {Q

`
} may then be assigned according to an exponentially

decaying function (i.e. the power delay profile is specified). The straight line advance-
ments of the multipath delays are illustrated in Fig. C.1 which reports a ten seconds
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Fig. C.1: Contiguous realization of the dynamic channel with maximum Doppler frequency fD =
100Hz and carrier frequency fc = 2GHz.

realization of the dynamic channel with E
[
L(t)

]
= 15 delays on average. As can be seen

from the figure the channel exhibits a reasonable amount of dynamical behavior, e.g.
the overall number of delays is changing over time and also the straight line patterns of
the delays are quite apparent.

The simpler and more static channel model described comprises the state-of-the-art
reference. The intention with the more realistic and dynamic channel model described is
to mimic a time-varying and fluctuating behavior of L(t),

{
τ

`
(t)
}
and

{
|τ

`
(t)− τ

k
(t)|
}
.

Our goal is to investigate how incorporation of such dynamics affects the pilot-aided
channel estimation performance.
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4 Propagation Delay Estimation
Assuming the reference channel model (C.4) as described in Section 3.1, we reformulate
the observation model (C.2) as

y = T(τ )α+ n, (C.6)

where we have introduced a M × L matrix T(τ ), the vector α = [α1 , α2 , . . . , αL
]> and

the additive noise vector n. The matrix T(τ ) depends on the delay parameters and the
pilot symbol positions in such a way that its (m, `)’th entry reads

T
m,`

= exp
(
− j2π p(m)

N

τ
`

Ts

)
,

m = 1, 2, . . . ,M,
` = 1, 2, . . . , L,

where Ts denotes the sampling time of the communication system. Notice that the L
columns building up the matrix T(τ ) are of identical structure and by system design the
parameters N, Ts and P are known - only the delays {τ

`
} are unknown. The theoretical

covariance matrix associated with y reads

R := E

[
yyH

]
= T(τ )ATH(τ ) + σ2I

M
, (C.7)

where we have implicitly assumed that any component of α is statistically independent
of any component of n. Furthermore, A := E

[
ααH

]
is a L× L diagonal matrix due to

the uncorrelated scattering assumption. Notice in (C.7), that since the delay parameters
are assumed static the covariance matrix R does not change over time.

Now, any vector in the null space of TH(τ ) is an eigenvector of R with associated
eigenvalue σ2. Therefore, the particular eigenvectors of R not belonging to the null
space of TH(τ ) are all associated with eigenvalues strictly greater than σ2. This key
fact provides insight on how the signal subspace and the noise subspace can be separated
according to the individual magnitudes of the eigenvalues. From a proper design of the
set P, the structure inherited by the matrix T(τ ) allows for two specific submatrices to
be related by a simple rotational (i.e. unitary) transform. Estimation of this unitary
transform is essentially how the ESPRIT algorithm is used to estimate the unknown
delay parameters, see [2].

Obviously, the theoretical covariance matrix R is not available. Instead the ESPRIT
algorithm is applied to some ‘prudent’ estimate of the matrix. Observations which we
denote by

{
y

k

}
are collected temporally, and in a generic manner we arrange K of such

vectors in the M ×K matrix

Y :=

 | | |
y1 y2 · · · y

K

| | |

 . (C.8)
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The estimate used could then be the sample covariance matrix

R̂ := 1
K

YYH or R̃ := 1
2

(
R̂ + JR̂>J

)
,

where R̃ is the centrosymmetric equivalent1 of R̂. Here J denotes the M ×M reversal
matrix with 1’s in its entire anti-diagonal and 0’s elsewhere, see [12, Sec. 4.8, 6.5.8].

If instead we assume the more realistic and dynamic channel model (C.3) as described
in Section 3.2, the entire situation is crucially altered. In (C.6), the delay parameter
τ = τ (t) is now time-variant and the basis of the underlying signal subspace is therefore
changing over time (potentially, the dimension changes too, e.g. while gathering data
for the matrix Y). Essentially, the rotational transform to be estimated is time-variant
since the delay parameters no longer stay fixed and hence, the basic assumptions for
ESPRIT are not satisfied. Yet, by considering only time frames of sufficiently short
duration, the delay fluctuations can be considered negligible. Finally, to achieve im-
proved estimation accuracy and reduced complexity we employ Unitary ESPRIT [7],
not standard ESPRIT.

4.1 Spatial Smoothing
To decrease any disturbing impact from the time-varying delay parameters it seem
obvious to use an observation matrix Y where K is as small as possible. With K
small, only a few observations are collected in the time direction and this fact complies
well with the rigorous latency requirements of today’s communication systems. If the
number of pilot symbols M is relatively large and if the set P is designed appropriately,
we can apply a so-called spatial smoothing technique. By doing so we artificially build
up more time-direction observations by suffering on overall dimension (aperture) in the
frequency direction. By applying a vertical sliding window of sizeM1 ≤M to theM×K
matrix in (C.8) we obtain a new observation array of size

M1 ×K(M −M1 + 1).

Notice how the attribute of wide-sense stationarity in the frequency domain (inherited
from the uncorrelated scattering assumption in the delay domain) is paramount when
applying the smoothing window. Obviously, the numberM1 should be chosen according
to a trade-off between aperture and estimation accuracy. ChoosingM1 smaller generates
more snapshots while is (simultaneously) penalized by poorer ability to resolve closely
displaced delay parameters. Notice that with K = 1 the data matrix Y in (C.8) has unit
rank and consequently R̂ only holds a single nonzero eigenvalue. In this case we should
indeed make sure that M −M1 + 1 exceeds the total number of delays in the channel

1The theoretical covariance matrix in (C.7) is Toeplitz when the subcarrier spacings between adjacent
pilots are all identical.
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- otherwise there are not enough nonzero eigenvalues for ESPRIT to process. Spatial
smoothing techniques are commonly employed to decorrelate coherent signal sources,
see e.g. [13] and the references therein.

5 Performance Evaluation
In this section we evaluate the pilot-assisted channel estimation performance of the
LMMSE estimator from [2] using Unitary ESPRIT as delay estimation tool. For all
configurations considered we evaluate uncoded bit-error-rate (BER) performance of the
OFDM system. We investigate the impact of spatial smoothing as a function of the
window sizeM1 and the two different channel models are treated separately. We consider
a 3GPP LTE alike scenario with system parameters:

N = 2048, Nu = 1200, Ts = 32.55ns, M = 200.

The duration of the cyclic prefix is 4.69µs, corresponding to 144 Ts-samples. A total of
14 OFDM symbols are transmitted every millisecond and four of these carry M = 200
pilots each. We assume the pilot symbols to be evenly positioned along the Nu = 1200
active subchannels with a fixed spacing of six subcarriers, i.e.

P =
{

3, 9, 15, . . . , 597, 603, . . . , 1185, 1191, 1197
}
. (C.9)

The set of pilot symbol positions P in (C.9) represents a uniform linear array of sensors
with maximum overlap. The carrier frequency of the system is assumed to be f

c
=

2GHz and we consider a receiver traveling at walking speed, i.e. the maximum Doppler
frequency is assumed to be f

D
= 10Hz. The digital modulation scheme used is QPSK

(gray coded), both for data symbols and pilot symbols.

5.1 Performance in Static Reference Channel
As the static reference channel we employ the 3GPP EVA-profile from [5, Annex B.2]
which constantly holds L = 9 multipath echoes with fixed delays and its maximum
excess delay is approximately half the duration of the cyclic prefix. To visualize how
the window size M1 impacts the overall system performance, we consider a span from
M1 = 200 towards M1 = 10, corresponding to no smoothing and full-scale smoothing,
respectively. Figure C.2 reports the uncoded BER-performance of the OFDM system
as a function of the window size M1 . We always feed the true number of delays (i.e.
L = 9) directly to Unitary ESPRIT, since estimation of the number of channel echoes
is not an objective in this paper. In Fig. C.2, it is interesting to note that a rather
wide range of window sizes are leading to the same degree of performance (near to
that of using known channel coefficients). Even with K = 1 we realize that near-
optimal performance is achievable. However, additional smoothing is required and the
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Fig. C.2: BER performance as a function of M1 . The two grey-dashed lines indicate the BER
performance at 10dB and 25dB of signal-to-noise ratio (SNR) using true/known channel frequency
responses.

range of window sizes inheriting splendid performance is more tight when K is smaller.
Notice also the immediate and steep performance gains obtained when M1 decreases
from its maximum value M = 200. This behavior partly reflects the fact that rank is
building up in the covariance matrix estimate, cf. the discussion at the end of Section 4.
Finally, recall that the inter-delay gaps are persistently fixed in this scenario and hence,
the resolvability issues for Unitary ESPRIT to deal with are identical/constant for all
individual channel realizations.

5.2 Performance in Dynamic Multipath Channel
With a channel inheriting additional dynamical behavior we now repeat the same sim-
ulation study as just described in the previous section. Hence, we wish to visualize
the impact of the window size M1 in a scenario where the delay resolvability issue is
non-constant across the individual realizations of the channel. For simulation technical
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Fig. C.3: BER performance as a function of M1 . The two grey-dashed lines indicate the BER
performance at 10dB and 25dB of SNR using true/known channel frequency responses.

reasons the dynamic channel holds fifteen echoes on average2, i.e. L(t) is Poisson dis-
tributed with mean parameter equal to 15. The maximum excess delay is the same as
for the static reference channel and also the power delay profile is similar to that of the
static reference channel. Since E

[
L(t)

]
= 15, then roughly anything from five to twenty-

five echoes can be observed in the instantaneous realizations of the channel. In some
realizations the delays will tend to cluster while in others tend to be more dispersed.
As before, we feed the true number of delays to Unitary ESPRIT such that it always
seeks for the instantaneous amount of channel echoes. Figure C.3 illustrates how the
window size M1 affects the system performance in this case.

As can be readily seen from Fig. C.3, the wide range of window sizes leading to
the same degree of performance is not present anymore. The curves are still bathtub
shaped, however, notably less steep and edged compared to Fig. C.2. Also, none of
the curves appear tight along the known channel bound as in the first case considered.

2Basically, we require P
(
L(t) = 0

)
to be negligible.
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This is jointly caused by the fact that more delays have to be estimated on average and
since the instantaneous realizations of the channel sometimes trigger the delays more
clustered. If for system design purposes we were to select and fix a single value of M1 ,
then based on Fig. C.2, anything in the range from 90 to 150 would seem appropriate.
Based on Fig. C.3, however, the optimum value of M1 seems to appear tightly around
120.

5.3 State-of-the-art Comparison
To get a full picture of the BER performance across a wide SNR-range we have fixed
M1 = 120 and conducted another simulation study. We now compare the LMMSE
estimator from [2] using Unitary ESPRIT against the robustly designed state-of-the-art
channel estimator from [1]. Our comparison is carried out using the dynamical channel
with parameters as in the previous section. Figure C.4 reports the outcome, where two
selected values for K are shown, namely K = 1 and K = 40.
In the SNR-range from −10dB to 15dB the state-of-the-art solution is marginally out-
performed with K = 1. However, when using K = 40 the state-of-the-art solution is
more notably outperformed and in a slightly wider SNR-range. That is, better or sim-
ilar performance can be achieved using the LMMSE estimator from [2] together with
Unitary ESPRIT. Yet, the state-of-the-art solution operates on lower computational
complexity and this fact directly implies a need for complexity reductions in order to
comparably gain the performance enhancements suggested in Fig. C.4.

Notice from Fig. C.2, where the static channel model was assumed, that a similar
study as reported in Fig. C.4 would conclude that the state-of-the-art solution could be
notably outperformed in the entire SNR-range considered, even withK = 1. This follows
since the BER performance in Fig. C.2 with K = 1 and M1 = 120 is almost as good as
using known channel frequency responses, both at 10dB and 25dB of SNR. The point
here is that the channel model selection can importantly affect the results obtained. In
general, validity of the evaluated algorithm performance is achieved through adequate
and comprehensive modeling.

6 Conclusion
In this paper we have considered channel estimation techniques for pilot-aided OFDM
systems, where the estimation is grounded on a parametric model of the wireless chan-
nel. The multipath delay parameters in the channel model have been estimated via
the Unitary ESPRIT algorithm and spatial smoothing techniques have been applied to
improve the estimation accuracy. Incorporation of the delay estimates in a LMMSE
estimator allows for improved performance compared to the robustly designed state-of-
the-art solution. That is, the state-of-the-art channel estimator can be outperformed
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Fig. C.4: BER-performance as a function of average SNR.

over a wide SNR-range. Yet, computational complexity and estimation of the instanta-
neous number of channel echoes remain critical issues for the opposing channel estimator
investigated.

In order to provide a rigorous performance assessment of the opposing channel esti-
mation solution, we have compared state-of-the-art channel modeling against a refined
channel model of additional dynamical nature. The main additional features comprise
a time-varying number of channel echoes together with fluctuating delay positions, i.e.
non-constant inter-delay gaps. From simulations we have analyzed the impact of spatial
smoothing techniques when used to improve the multipath delay estimation accuracy.
Our results indicate that both estimation accuracy and the optimum smoothing pa-
rameters are notably affected with increased dynamical behavior of the channel model
assumed.

To conclude, our work shows that the selection of appropriate channel models is
crucial when assessing the performance of receiver algorithms. Choosing inadequate
models may imply misleading comprehension and could therefore yield improper algo-
rithm selection for practical applications.
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Abstract
The design of efficient positioning algorithms in navigation satellite systems, like GNSS,
operating in land mobile environments demands for detailed models of the radio chan-
nel. On the one hand, the models need to accurately describe scattering and shadow-
ing/obstruction caused by vegetation. On the other hand, they have to incorporate the
steady change in the propagation constellation due to the receiver displacement. In this
paper we propose a model of the non-stationary radio channel in a scenario where a
mobile receiver drives past a scattering volume, such as a ball or a cuboid, while the
transmitter is elevated, like in satellite positioning applications. Such a volume may
represent the canopy of a single tree, the canopies of trees in a grove, or a small forest.
Scattering by the volume is characterized by means of multiple point-source scatterers
that are assumed to form a marked spatial point process. The system functions of the
radio channel are given. An integral form of the time-frequency correlation function of
the component in the system functions contributed by the scattering volume is obtained
as a direct consequence of Campbell’s Theorem. Furthermore, a closed-form approxima-
tion of this integral form is derived for time lags corresponding to displacements along
the receiver trajectory for which the plane wave assumption holds. The approximation
takes into account the steady change in the propagation constellation. The proposed
model is validated by means of Monte Carlo simulations and by comparing its prediction
capabilities with experimental data in a scenario where a mobile receiver drives past a
roadside tree. A good agreement is observed, despite the simplicity of the model.

1 Introduction
Signal scattering, shadowing, and obstruction caused by vegetation and human infras-
tructures in the surrounding of the mobile receiver of a Global Navigation Satellite
System (GNSS) may impair the system performance. The deterioration by such wave
propagation effects can be severe if no measure is taken to counterbalance them [1–3]. In
rural land-mobile satellite (LMS) environments these propagation effects result mainly
from vegetation, like single trees, alleys of trees, groves or forests. Furthermore, for
vehicular and pedestrian applications, the steady alteration of the propagation constel-
lation as the receiver moves makes the radio channel non-stationary.

Different models characterizing the propagation effects induced by vegetation, in
particular by trees and forests, have been published so far. In the sequel, we briefly
review these models and their main features. To do so we categorize the models into
narrowband and wideband models, depending on whether they discard or incorporate
the specific relative delays of multipath components.

Several narrowband models have been proposed that describe the temporal signal
fluctuation experienced by a mobile driving past roadside vegetation. In Loo’s LMS
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model [4] the complex signal is the sum of a line of sight (LOS) component weighted
with a log-normal attenuation factor and a complex Gaussian component accounting for
local scattering. The paper [5] presents experimental cumulative signal fade and fade
duration statistics obtained in an LMS scenario with roadside trees for both cases with
and without shadowing. In [6] the incoherent scattering of a deciduous treetop is derived
based on Twersky’s multiple scattering theory when the tree is in leaf and defoliated.
The same method is applied in an LMS model characterizing the signal fluctuation
caused by roadside trees [7]. Radiative transfer models based on the radiative energy
theory [8] have also been proposed, which mimic the scattering of trees and vegetation
layers, see [9, 10] and the references therein.

Since delay dispersion in the channel has been recognized as one of the most signifi-
cant effects impairing the ranging ability of GNSS terminals, the attention has focused
on wideband characterization and modeling of vegetation. The paper [11] presents re-
sults from 2GHz wideband measurements of scattering by a single tree. In [2] Koh
models the GNSS channel in a scenario where the receiver is surrounded by a number
of trees: the attenuation through the canopy is modeled using Foldy’s approximation,
while the scattering is the result of diffraction from finite dielectric cylinders represent-
ing tree branches. The investigations in these two papers inherently account for the
temporal dispersion caused by individual trees; however, they consider static scenarios.

Time-variant wideband models, which account for the variation of the propagation
constellation as the receiver moves, have been published in [12–14]. The LMS model [12]
includes a three-state Markov chain which drives the dynamic change of the level of shad-
owing/obstruction of the LOS component. In the GNSS models presented in [13, 14]
shadowing/obstruction of the LOS signal of a satellite is determined by human-made
and natural structures, like buildings, trees, etc., randomly selected and placed in a vir-
tual scenery in which the receiver moves. Both models consider multipath propagation
as well. The parameters of the multipath components are drawn according to probabil-
ity distributions estimated from aggregated measurement data. Thus, each generated
multipath component conceptually represents the contribution by a virtual scattering
object or structure. This scatterer is, however, not linked to any underlying scenery.

Recent experimental investigations of the temporal dispersion by trees in an LMS
environment have revealed that the delay spread caused by the geometrical size of trees
might be of the same order of magnitude as the inverse signal bandwidth of GNSS, and
therefore affects the performance of such systems [15]. Motivated by this observation we
present in this paper a model that describes the system functions of the radio channel1
in a scenario where a mobile receiver drives past a bounded scattering volume, while the
transmitter is elevated with respect to the receiver’s trajectory and the volume. The

1We understand as system function any of the four equivalent functions entering in the four integral
forms characterizing the input-output relationship of a time-variant linear channel [16]. In this con-
tribution we will focus on the time-variant (temporal or delay) response, the time-variant (frequency)
transfer function, and the delay-Doppler spread function of the radio channel.
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model belongs to the class of geometric-stochastic channel models (GSCM): it takes
into account the geometry of the scenario, i.e. the position of the transmitter, the
trajectory of the mobile as well as the location and the size of the scattering volume;
the scattering process in the volume is modeled as resulting from random point-source
scatterers located in this volume. For simplicity of the presentation, one single scattering
volume is considered. The extension to several such volumes is straightforward.

A point-source scatterer is characterized by its position in the volume and its complex
scattering coefficient. We model the set of scatterers as a marked spatial point process
[17, 18], i.e. the set of scatterer positions is a random point process characterized by
a (spatial) intensity function, while the scattering coefficients form the marks of the
point process. The statistics of the marks are specified by their conditional first and
second moments given the scatterer positions. In particular, given the underlying point
configuration, the marks are assumed to be mutually uncorrelated. The advantage of
modeling point-source scatterers as a marked point process is manifold. First, this
approach includes the traditional method where the number of point-source scatterers
is considered fixed, see e.g. [12]. However, the approach also allows for the number of
scatterers to be random. Second, the theoretical tools from the theory of point processes
can be exploited to compute in a rigorous manner specific functions characterizing the
statistical properties of the channel system functions as we will see later2. Due to the
constant change in the propagation constellation along the trajectory of the moving
receiver, the time-variant transfer function of the radio channel is a non-stationary
process.

The model provides expressions for the time-variant response and the time-variant
transfer function of the radio channel. An integral-form expression for the time-frequency
correlation function of the component in the channel system functions that is contributed
by the scattering volume is derived by invoking Campbell’s Theorem. A closed-form
approximation of this correlation function is derived for time lags corresponding to dis-
placements along the trajectory for which the plane wave assumption holds. The model
is verified and validated experimentally with wideband measurements and by means
of Monte Carlo simulations in a LMS scenario where the volume represents a treetop.
Despite its simplicity (no consideration of e.g. the attenuation by leaves, the multi-
ple scattering in the canopy, and diffraction by the trunk) a very good agreement is
observed.

This paper is organized as follows. Sec. 2 describes the considered scenario with
a mobile driving past a single scattering volume, states the model assumptions, and
provides the time-variant response and the time-variant transfer function of the radio
channel. The time-frequency correlation function is derived in Sec. 3, together with its

2The benefit of revisiting traditional approaches for stochastic modeling of the radio channel within
the theory of spatial point processes has been recently exemplified with the model by Saleh and Valen-
zuela [19], see [20–22]. Specific statistical properties and functions of this model, like the rate of
occurrence of multipath components on the delay axis and the delay power spectrum, could be derived
within this theoretical framework.
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Fig. D.1: Generic LMS scenario with a mobile receiver moving nearby a single scattering volume
V: the transmitter is located at position T , the receiver moves at constant velocity along the straight
trajectory x(t). In the figure, O denotes the origin of the coordinate system, r is the position of a
point-source scatterer in the volume, while x0 and v denote respectively the position at t = 0 and the
velocity of the receiver. The figure also includes the quantities that appear in the approximations of
d1(r) and d2(t, r) introduced in the sequel (see (D.24) and (D.25)).

closed-form approximation. We provide numerical examples in Sec. 4. Sec. 5 concludes
with a summary of presented results including their significance and an outlook.

2 Signal Model
In this section we develop a non-stationary GSCM describing the system functions
of the radio channel in a scenario where a receiver drives past a scattering volume,
while the transmitter is elevated with respect to the volume and the receiver trajectory,
see Fig. D.1. An antenna mounted on the top of a vehicle driving along a trajectory
x(t) ∈ R3 captures the electromagnetic field, which consists of the superposition of the
field contributed by the electromagnetic wave impinging directly from the transmitter
located at T ∈ R3 and the field re-scattered by the volume V ⊂ R3. Here R3 is used
to denote three-dimensional Euclidean space. We assume that the volume is bounded,
i.e. |V| =

∫
V 1 dr < ∞, and that it is sparsely filled with point-source scatterers. For

the sake of simplifying the presentation we consider the case with a single volume only.
The extension to several scattering volumes is straightforward.

With the scattering volume representing vegetation, like a single tree, a grove, or a
forest, and the transmitter being embarked in a satellite, the scenario is typical for LMS
applications. Notice that the model is also suitable for representing scattering by other



2. Signal Model 119

objects of large dimension such as human infrastructures, like buildings.

2.1 Modeling Assumptions
We group the model assumptions into three categories according to whether they relate
to the scattering volume, the geometrical configuration including the vehicle dynamics,
or the signals contributed by the electromagnetic waves re-scattered by the volume.

General points in R3 are denoted by b whereas points corresponding to the point-
source scatterers are denoted by r.

M1 Scattering volume:

a) The random set of positions of point-source scatterers in the bounded volume V is
a (spatial) point process Π with intensity function % : V → [0,∞). Given the point
configuration Π, we assume that a complex-valued scattering coefficient βr ∈ C is
attached to each r ∈ Π. Each pair of position and coefficient (r, βr) describes a
point-source scatterer. The collection of all such pairs{

(r, βr) : r ∈ Π
}
⊂ R

3 × C (D.1)

forms a so-called marked point process [17, 18].

b) Conditioned on Π, the scattering coefficients are mutually uncorrelated, zero-mean
random variables such that3

E
{
β∗rβr′

∣∣r, r′} = Q(r)1 {r = r′}, (D.2)

where Q : V → [0,∞) is a function specifying the conditional power of the scattering
coefficient βr given its associated location r.

c) The product of the intensity function %(r) and the power assigning function Q(r)
is finite on V, i.e. there exists a constant C such that %(b)Q(b) ≤ C for all b ∈ V.

d) No multiple scattering occurs in the volume V.

M2 Geometrical configuration and dynamics:

a) The receiver drives past the volume V along a straight trajectory x(t) with constant
velocity vector v.

b) The receiver trajectory does not cross V, i.e. x(t) 6∈ V for all time instances t. In
fact, for consistency in subsequent M3, we assume that the smallest distance from
x(t) to V is always greater than unity.

3
E {·} denotes expectation and 1 {·} is a generic indicator function.
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c) The transmitter’s location T as well as the locations of scatterers in Π stay fixed.

d) The transmitter is elevated with respect to x(t) and V. Hence, we consider a three-
dimensional model.

M3 Wave propagation:

a) The waves re-scattered by the point-source scatterers in V are approximated along
x(t) as spherical waves.

2.2 Implications and Remarks
The assumptions in M1 provide certain degrees of freedom allowing for some flexibility
in the definition of the random cloud of scatterers:

1. The scatterers’ locations and the average number of scatterers are governed by the
intensity function %(r). Specifically, the shape of %(r) indicates where points are
more likely to occur. The average number of point-source scatterers falling within
the volume V is

E

{∑
r∈Π

1 {r ∈ V}

}
=
∫
V
%(r) dr. (D.3)

The identity in (D.3) is a special instance of the famous Campbell Theorem [17, 18].
A location independent intensity appears when %(r) = %01 {r ∈ V}. In this case,
the positive constant %0 can be interpreted as the average number of points per
unit volume. A non-constant intensity function may be used to model e.g. a
treetop with a higher occurrence of scatterers around the center compared to the
border.

2. The scatterers’ conditional power is determined by the function Q(r). In the
model we do not specify the statistical properties of the marks {βr : r ∈ Π}
conditioned on the point process beyond their first and second moments. We show
later that this will suffice to compute the first- and second-order characteristics
of the channel responses. Thus, the conditional probability distributions of the
marks are only relevant in that their mean vanishes and their second moments,
via Q(r), are specified.

3. Location-wise interaction between scatterers can be accounted for via the type of
point process assumed for Π, e.g. a Poisson point process, a cluster point process
or any other point process on V ⊂ R3 exhibiting desirable properties.

4. Traditional models use a fixed number of scatterers. Such an approach can be
seen as a special case of the proposed method when Π is a binomial point process.
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Finally, notice that with M3 we assume the receiver trajectory x(t) to be in the
far-field region of the volume V.

2.3 Baseband Representation of the Time-Variant Response and
the Time-Variant Transfer Function

We model the time-variant response as being the superposition of a LOS component
hd(t, τ) due to direct propagation and a component hs(t, τ) contributed by the scatterers{

(r, βr) : r ∈ Π
}
:

h(t, τ) = hd(t, τ) + hs(t, τ). (D.4)

The LOS component is given by

hd(t, τ) = exp
(
−j2πdd(t)

λ

)
δ
(
τ − τd(t)

)
(D.5)

where λ denotes the wavelength, dd(t) , ‖T − x(t)‖ is the direct Euclidian distance
from T to x(t), and δ is the Dirac delta. The flight time of this direct signal reads

τd(t) , dd(t)/c0, (D.6)

where c0 = λfc is the speed of light and fc denotes the carrier frequency. Note that the
unobstructed LOS signal is normalized to unit amplitude.

In the sequel we focus on the component hs(t, τ) of the channel response solely
originating from the scattering volume. According to the set of assumptions M1, hs(t, τ)
is the sum of multipath components contributed by the point-source scatterers in V:

hs(t, τ) =
∑
r∈Π

α(t, r)δ
(
τ − τs(t, r)

)
. (D.7)

Here, τs(t, r) denotes the total signal flight time from the transmitter via a scatterer at
location r to the receiver. It can be obtained from the signal’s traveled distance from
T via r to x(t):

ds(t, r) , c0τs(t, r) = d1(r) + d2(t, r), (D.8)

where

d1(r) , ‖T − r‖ (D.9)
d2(t, r) , ‖x(t)− r‖, (D.10)

see Fig. D.1. From assumption M3 the component weight associated with r reads

α(t, r) = βr
d2(t, r) exp

(
–j2πds(t, r)

λ

)
. (D.11)
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R(f, f ′, t, t′) =
∫
V

Q(r)%(r)
d2(t, r)d2(t′, r) exp

(
–j2πc−1

0
[
d1(r), d2(t, r), d2(t′, r)

]
· f̄
)

dr

(D.15)

R(f, f ′, t, t′) = ΓEγ
{

1
d2(t, r)d2(t′, r) exp

(
–j2πc−1

0
[
d1(r), d2(t, r), d2(t′, r)

]
· f̄
)}

(D.20)

≈ ΓEγ
{

1
d2(t, r)d2(t′, r)

}
︸ ︷︷ ︸

E1

Eγ

{
exp

(
–j2πc−1

0
[
d1(r), d2(t, r), d2(t′, r)

]
· f̄
)}

︸ ︷︷ ︸
E2

(D.21)

The distance d2(t, r) in the denominator of (D.11) reflects the inverse-square law of
power attenuation of spherical waves versus distance. Notice that we always have
d2(t, r) ≥ 1 due to M2 b). Inserting (D.11) in (D.7) yields

hs(t, τ)=
∑
r∈Π

βr
d2(t, r) exp

(
–j2πds(t, r)

λ

)
δ
(
τ–τs(t, r)

)
. (D.12)

The time-variant transfer function is the partial Fourier transform with respect to the
delay variable of the time-variant response. As with the time-variant response in (D.4),
the time-frequency transfer function can be split into a component due to LOS propa-
gation and a component originating from the scattering volume:

H(t, f) = F {h(t, τ)} = Hd(t, f) +Hs(t, f).

The latter component is of main interest. From (D.12) we have

Hs(t, f) =
∑
r∈Π

βr
d2(t, r) exp

(
–j2π(fc + f)ds(t, r)

c0

)
. (D.13)
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R(f, f ′, t, t′) ≈ Γ 1
dx,µ(t)dx,µ(t′)

(
1+ e(x(t),µγ)TΣγe(x(t′),µγ)

dx,µ(t)dx,µ(t′)

)
× exp

(
–j2πc−1

0
[
dT ,µ, dx,µ(t), dx,µ(t′)

]
· f̄
)
I
(
u
)

(D.30)

3 Time-Frequency Correlation Function of the Com-
ponent Contributed by the Scattering Volume

The component Hs(t, f) in (D.13) of the time-variant transfer function contributed
by the scattering volume V is a two-dimensional random process, which we seek to
characterize in terms of its first and second moments.

We invoke the law of total expectation to intermediately condition on Π and then
by use of the assumptions in M1 it can be readily identified that Hs(t, f) is a zero-mean
process. The correlation function of Hs(t, f) is defined as

R(f, f ′, t, t′) , E
{
Hs
∗(t, f)Hs(t′, f ′)

}
. (D.14)

We insert (D.13) into (D.14) and condition intermediately on Π followed by repeated
application of (D.2). Subsequently, we apply Campbell’s Theorem and arrive at (D.15).
Notice that our assumptions in M1 and M2 ensure a well-defined integral with an abso-
lute value upper bounded by C|V|. For notational convenience we have introduced the
vector

f̄ , f̄
(
f, f ′

)
=

 f ′ − f
−(f + fc)
f ′ + fc

 (D.16)

and for any two vectors b1, b2 ∈ R3 the notation b1 · b2 represents the usual Euclidean
inner product on R3.

The integral form of the time-frequency correlation in (D.15) is one of our main re-
sults. It depends on the underlying marked point process only via the product Q(r)%(r).
Hence, different such processes with the same resulting product will lead to the same
correlation function.

The process Hs(t, f) is clearly non-stationary. So, despite the fact that the scattering
coefficients are conditionally uncorrelated (resembling Bello’s notion of uncorrelated
scattering), the contribution by the volume V to the time-variant transfer function is
not stationary. This is due to the steady change of the propagation constellation – in
terms of relative delays and incidence directions of the multipath components – as the
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mobile receiver moves along its trajectory. Yet, with the selection t′ = t we identify by
direct inspection of (D.15) that

R(f, f ′, t, t) =
∫
V

Q(r)%(r)
d2

2(t, r) exp
(
–j2πds(t, r)

c0
∆f
)

dr (D.17)

with ∆f , f ′ − f and ds(t, r) as defined in (D.8). Hence, for any fixed t, the frequency
process Hs(t, f) is wide-sense stationary.

Several previous studies have investigated local properties of the channel by restrict-
ing attention to time intervals of sufficiently short duration. Within such intervals the
receiver moves in the order of few tens of the wavelength. This assumption leads to
Bello’s WSSUS characterization [16] where the time-frequency correlation function de-
pends only on ∆t , t′ − t and ∆f . Basically, the time interval should be short enough
to ensure a fixed propagation constellation. Our general result in (D.15) can as well be
simplified to this local setup by assuming in (D.12) only the phase term −2πλ−1ds(t, r)
to dependent on t. The two other time dependent terms in (D.12) are assumed to re-
main constant since they vary only marginally within any sufficiently short time interval.
Without loss of generality we assume this interval to be centered around zero. Then,
for every scatterer position r ∈ Π we introduce a Doppler shift νr = λ−1‖v‖ cos(ψr) via
the first-order Taylor approximation

ds(t, r)
λ

≈ ds(0, r)
λ

+ νrt (D.18)

where ψr is the angle between the receiver velocity vector v and the vector x0−r (recall
Fig. D.1, but notice that ψr is not depicted). The time-frequency correlation function
resulting from these assumptions reads∫

V

Q(r)%(r)
d2

2(0, r) exp
(
−j2πνr∆t− j2πds(0, r)

c0
∆f
)

dr, (D.19)

which is a function only of ∆t and ∆f . Thus, at least locally, the time-variant transfer
function appears wide-sense stationary in both variables.

3.1 Simplifications and Approximations
The core assumption leading to the expression (D.19) is restrictive in the sense that the
time interval considered must be short enough to ensure essentially a fixed incidence
constellation. On the other hand the expression in (D.15) is the most general one
available but the integral involved is not easily handled. Consequently, we now impose
a set of assumptions giving rise to a closed-form expression which approximates (D.15)
for time lags corresponding to displacements along the trajectory for which the plane
wave assumption holds. Specifically, the closed-form approximation derived in the sequel
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takes into account the fact that the incidence constellation changes with the movement
of the receiver (and so can be seen as a tractable intermediate between (D.15) and
(D.19)).

Initially, we define the probability density function (pdf) γ(r) , Γ−1Q(r)%(r) where
Γ ,

∫
Q(r)%(r) dr is finite due to our assumptions in M1. We call γ(r) the (normalized)

power spatial density of the scattering volume V. This terminology is self-explanatory.
The advantage of introducing the pdf γ(r) is that it allows us to interpret a generic
element from Π and its associated weight via a random vector in three-dimensional
space. With the above definition of γ(r), (D.15) can be recast as the expectation given
in (D.20). Then, we approximate this expectation by the product of two expectations
and finally we arrive at (D.21). This approximation relies on the fact that, in (D.20), the
slowly changing term of inverse distances and the rapidly changing complex exponential
term are virtually uncorrelated. We will see later in Sec. 4 that this approximation is
reasonably accurate.

We now proceed with invoking the plane wave assumption to further simplify (D.21).
If the scatterers are sufficiently far away from the receiver trajectory, the re-radiated
spherical waves (Assumption M3) can be approximated as plane waves. First, we intro-
duce the first and second moments of γ(r):4

µγ , Eγ {r} (D.22)
Σγ , Eγ

{
(r − µγ)(r − µγ)T}. (D.23)

Both quantities exist since the support set of γ(r) is bounded. The plane wave repre-
sentation results from the first-order approximations (see Fig. D.1)

d1(r) ≈ dT ,µ + e(T ,µγ) · r̃, (D.24)
d2(t, r) ≈ dx,µ(t) + e(x(t),µγ) · r̃ (D.25)

with the definitions

r̃ , r − µγ (D.26)
dT ,µ , ‖T − µγ‖ (D.27)

dx,µ(t) , ‖x(t)− µγ‖ (D.28)

e(b1, b2) , b2 − b1

‖b2 − b1‖
. (D.29)

Note that e(b1, b2) returns the unit vector from b1 towards b2. We insert the approx-
imations (D.24) and (D.25) into (D.21). Then, closed-form approximations of E1 and
E2 in (D.21) can be computed (see Appendices 5 and 5, respectively). We obtain (D.30)

4The notation (·)T indicates the usual matrix-vector transpose operation.
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with the definitions

u , u(t, t′, f, f ′) = − 1
c0

 | | |

e(T ,µγ) e(x(t),µγ) e(x(t′),µγ)
| | |

 f̄ (D.31)

and

I(u) , Eγ

{
exp

(
j2πr̃ · u

)}
. (D.32)

Note that I(u) is the characteristic function of a centered version of the pdf γ(r). We
see immediately from (D.30) that the scattering volume affects the approximation of
R(f, f ′, t, t′) via γ(r) in several ways. Specifically, γ(r) determines µγ , Σγ , and I(u).

3.2 Example Power Spatial Densities
In the following, a few simple examples are given to demonstrate the easy evaluation
and general use of (D.30). We acknowledge the assumptions given in M1 and consider
different tractable forms of the power spatial density γ(r). It is important to realize
that with e.g. γ(r) ∝ 1 {r ∈ V}, we cannot conclude that the scatterers’ locations in Π
appear uniform on V. When γ(r) is uniform on V it merely means that, on average,
equally much power is re-radiated from every single location in V.

Uniform Power Spatial Density on a Cuboid

The power spatial density is of the form

γ(r̃) = 1 {r̃ ∈ [−w1, w1]× [−w2, w2]× [−w3, w3]}
2w12w22w3

. (D.33)

The set in (D.33) represents a cuboid centered at µγ and oriented along the axes of the
coordinate system. Inserting (D.33) in (D.32) yields

I(u) = I
(
[u1, u2, u3]

)
=

3∏
i=1

sinc (2wiui) . (D.34)

Insertion of (D.34) and Σγ = 1
3diag

(
w2

1, w
2
2, w

2
3
)
into (D.30) yields the approximation

of R(f, f ′, t, t′) for the case when equally much power is re-radiated from everywhere in
the cuboid.

Isotropic Power Spatial Density

The power spatial density is such that

γ(r̃) = f(‖r̃‖), (D.35)
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Fig. D.2: Spherical coordinates used to derive I(u) for γ(r) isotropic.

corresponding to an isotropic distribution in a coordinate system with µγ as origin.
To ease the computation of I(u) for fixed u 6= 0, we select the coordinate system(
µγ , (ẽ1, ẽ2, ẽ3)

)
using an orthonormal basis such that

ẽ3 , e(0,u) and ẽ1⊥ẽ2⊥ẽ3, (D.36)

see Fig. D.2. Subsequently, we proceed by changing to spherical coordinates. Then with
r , ‖r̃‖ the vector r̃ has coordinates

r̃ =

r̃1
r̃2
r̃3

 =

r sin θ cosφ
r sin θ sinφ
r cos θ

 (D.37)

and by (D.36) and (D.37) we have r̃ · u = r‖u‖ cos θ. Accordingly, our change to
spherical coordinates allows for the expectation in (D.32) to be recast as (still, assuming
that u 6= 0)

I(u) =
∫∫∫

exp
(
j2πr‖u‖ cos θ

)
f(r)r2 sin θ dr dθ dφ

= 2π
∫ ∞

0

[∫ π

0
exp

(
j2π‖u‖r cos θ

)
sin θ dθ

]
r2f(r) dr

= 2
‖u‖

∫ ∞
0

sin
(
2π‖u‖r

)
rf(r) dr. (D.38)
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(a) (b)

Fig. D.3: (a) Representation of the real LMS scenario considered with a vehicle passing by a tree.
The tree canopy is represented as a spherical volume (in gray). The red curve x2(t) denotes the real
trajectory driven by the vehicle, while the dashed curve x1(t) represents a straight-line approximation
with constant velocity of x2(t). (b) Photograph of the scenario taken from the vehicle’s front camera.

As expected, the isotropy condition (D.35) implies that I(u) only depends on the norm
of u.

We now consider the special case of a uniform power spatial density on a ball.
Specifically, we assume that γ(r) is defined as in (D.35) with

f
(
‖r̃‖
)

= f(r) = 3
4πζ3 1 {0 ≤ r ≤ ζ}. (D.39)

By substituting (D.39) directly in (D.38) and solving we obtain

I(u) = 3
[

sin
(
2π‖u‖ζ

)(
2π‖u‖ζ

)3 − cos
(
2π‖u‖ζ

)(
2π‖u‖ζ

)2
]
, (D.40)

which inserted in (D.30) together with Σγ = 1
5ζ

2I yields the approximation ofR(f, f ′, t, t′)
for the case when (on average) equally much power is re-radiated from everywhere in a
ball with radius ζ.

4 Numerical Results
In this section we verify the proposed channel model by applying it to a common LMS
scenario where a vehicle equipped with a GNSS receiver drives past a roadside tree with
almost constant velocity vector. This situation is typical for ranging to one satellite of
a GNSS in rural environments. Such a scenario was experimentally investigated in a
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Table D.1: Parameter setting used in the measurement campaign

Parameter Value

Carrier frequency [GHz] 1.51
Bandwidth [Mhz] 100

Receiver antenna pattern Hemispherical
Signal transmission power [W EIRP] 10

Polarization RHCP
Delay resolution [ns] 10

Channel resp. update rate fCR [Hz] 1/3.072 ≈ 325.5
Transmitter’s approx. location T [m] (−618.6,−603.3, 912.7)T

Transmitter’s elevation ≈ 46.5°

measurement campaign. It is sketched in Fig. D.3a with a photo shown in Fig. D.3b.
Subsection 4.1 outlines the measurement campaign. Subsection 4.2 describes the pa-
rameter setting characterizing the scenario.

We report three different investigations in the considered scenario. Firstly, in Subsec-
tion 4.3 the proposed model is used to investigate the dynamic change of the component
contributed by the tree canopy in the time-variant response and the time-variant transfer
function of the channel when the mobile drives past the tree. Secondly, in Subsection 4.4
the model is experimentally validated by contrasting the synthetically generated time-
variant response and delay-Doppler spread function with estimates of these functions
obtained from the measurement data. Finally, in Subsection 4.5 the closed-form ap-
proximation (D.30) of the time-frequency correlation function of the component in the
system response contributed by the tree is validated by comparing it with an estimate
computed by means of Monte Carlo simulations.

4.1 Measurement Campaign
In 2002, DLR conducted channel sounding measurements in a rural area approximately
30 km south-west of Munich, Germany. The transmitter of the channel sounder was
mounted on a Zeppelin and the receiver was installed in a van with its antenna assembled
on the vehicle’s roof. This configuration allowed for reproducing realistic LMS radio
channel conditions for varying transmitter elevations.

Tab. D.1 summarizes the parameter setting used in the measurement campaign that
is relevant to the subsequent investigations. The transmitter was hovering at a height
of approximately 912m, around 618m south and 603m east of the starting point of the
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Table D.2: Parameter setting used for the simulated scenario

Parameter Value

Transmitter location T as in Tab. D.1
Estimated van trajectory x2(t)

Straight-line approximation x1(t) = (0, 0, 2.5)T + t(‖v‖, 0, 0)T

Receiver speed ‖v‖ [m/s] 18
Scattering volume V

{
b ∈ R3 : ‖b− bc‖ ≤ ζ

}
Center and radius of V [m] (bc, ζ) =

(
(90.67,−2.76, 8.25)T, 5

)
Intensity height %0 0.038

Per-scatterer power Q0 0.19

vehicle’s trajectory. The elevation angle was thus approximately 46.5°. Notice that the
measurement set-up was equipped with right-hand circularly polarized (RHCP) transmit
and receive antennas, as used in satellite navigation applications. Further information
on the measurement campaign is given in [15].

4.2 Modeling Details and Simulation Setup
As indicated in Fig. D.3a we employ a spherical scattering volume V to represent the
treetop in Fig. D.3b. For simplicity, we assume the point-source scatterers to be uni-
formly distributed in V with location independent average power contributions from
the associated scattering coefficients. In the terminology of Section 2 we thus have
%(r) = %01 {r ∈ V} and Q(r) = Q0. Tab. D.2 lists the setting of the parameters used
for the simulations.

Two different trajectories are considered in the numerical investigations: the esti-
mated trajectory x2(t) that the measurement vehicle actually drove and a straight-line
approximation x1(t) of it, see Tab. D.2. As depicted in Fig. D.3b the real vehicle’s
trajectory leads very close to the tree. It deviates slightly from a straight line since
the road is bent a little. The receive antenna is 2.5m above the driven trajectory, see
Fig. D.3a.

We consider a generic bandlimited system that mimics actual GNSS receivers. The
bandwidth limitation leads to a smearing of the Dirac impulses in (D.7) in the delay
domain. We imitate this behavior by employing the Hann function

whann(t;B) = 1
2
[
1 + cos(2πBt)

]
1

{
|t| < 1

2B

}
(D.41)
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Fig. D.4: Amplitude of the filtered version of an example realization of hs(t, τ) in (D.12). The solid
line shows the signal flight time of the direct component τd(t). Fig. D.4b is a zoom of Fig. D.4a to
the time interval 4.4 s ≤ t ≤ 6 s (Phase II). The trajectory of the delays of the multipath components
contributed by the 20 point-source scatterers in V are shown as dotted lines.

as the impulse response of the system. Modern GNSSs use bandwidths ranging from
1MHz up to 60MHz. We compute an approximation of the time-variant response
of the concatenated system made of the radio channel and the generic band-limited
system by convolving hs(t, τ) for any t (considered fixed) with the Hann function. Since
hs(t, τ) changes slowly with time with respect to the extent of its support in delay, this
approximation is almost indistinguishable from the true concatenated response. In the
sequel we refer to this approximation as the filtered version of hs(t, τ). We choose the
same bandwidth B = 100 MHz as used in the measurement campaign.

4.3 Dynamic Change of the Component in the System Functions
Contributed by the Tree Canopy

In this investigation we use the proposed channel model to generate a realization of the
contribution by the tree canopy to the time-variant response and the time-frequency
transfer function of the radio channel, i.e. hs(t, τ) in (D.12) and Hs(t, f) in (D.13).
We consider the straight-line trajectory x1(t). Since only one realization is generated,
we choose Π as a binomial point process with 20 points in V. Hence, %0|V| = 20.
Furthermore, the associated scattering coefficients (the marks) have identical determin-
istic amplitude and random independent phases. More specifically βr =

√
Q0 exp(jθr),

where each θr is uniformly distributed on the interval [0, 2π).
Fig. D.4 depicts the amplitude of the filtered version of a realization of hs(t, τ) for

two different time intervals. The solid line in the figure represents the direct signal
flight time from transmitter to receiver τd(t) in (D.6). It is remarkable that, although
all scattering coefficients have the same modulus, a high level of interference can be
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Fig. D.5: Amplitude of an example realization of Hs(t, f) in (D.13). Fig. D.5b is a zoom of Fig. D.5a
to the time interval 4.9 ≤ t ≤ 5.1 (Phase II).

observed in Fig. D.4. This is due to the individual phase changes of the weights caused
by the receiver’s relative movement, recall (D.11) and (D.12). The effect of the variation
of the time-dispersion in hs(t, τ) has also a direct impact on the frequency selectivity of
Hs(t, f). The amplitude of the latter function is reported in Fig. D.5.

As evidenced in Fig. D.4a and Fig. D.5a, three dominant phases can be distinguished
as the vehicle moves along the trajectory x1(t):

• Phase I: The vehicle approaches V (t < 4.5 s):
We observe that hs(t, τ) exhibits a large delay spread yet varies relatively slowly.
Accordingly, Hs(t, f) is slowly-varying versus time but exhibits a relatively high
frequency selectivity which can be seen as the bright notch-like structures in
Fig. D.5a.

• Phase II: The vehicle drives alongside V (4.5 s < t < 5.5 s):
We observe that the delay spread of hs(t, τ) becomes smaller. As a result Hs(t, f)
is almost flat with respect to frequency but its variations over time become more
pronounced as can be seen in Fig. D.5b.

• Phase III: The vehicle drives away from V (t > 5.5 s):
The delays of the scatterers are all close to τd(t) resulting in a smaller delay spread
and a weaker frequency selectivity as compared to that observed in Phase I.

4.4 Experimental Validation of the Channel Model
In this example the system functions estimated from the measurement data are con-
trasted with those generated using the proposed channel model with the parameter
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Fig. D.6: Amplitude of the filtered version of the time-variant channel response: (a) estimated; (b)
simulated.
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Fig. D.7: Amplitude of the delay-Doppler spread function: (a) estimated; (b) simulated.

setting in Tab. D.2. The real trajectory driven by the receiving mobile, i.e. x2(t), is
used in these investigations, see also Fig. D.3a.

The recorded time-variant response is filtered as already described using the Hann
function with B = 100 MHz. The result is pictured in Fig. D.6a. The estimated delay-
Doppler spread function is shown in Fig. D.7a. It is computed as the discrete Fourier
transform (DFT) of the recorded channel response with respect to the time variable t.
The vertical axes of all figures are in decibels. Since the vehicle is driving away from the
transmitter, the strong LOS component in Fig. D.7a has a negative Doppler frequency of
approximately −50 Hz. We can easily relate the shape of the estimated delay-Doppler
spread function to the three distinct phases identified in Subsection 4.3. In Phase I,
when the vehicle is approaching the tree, the electromagnetic waves scattered by the
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Fig. D.8: Comparison of the amplitudes of (a) the approximate correlation function (D.30) and (b)
the approximation (D.42) computed from K = 1000 channel realizations; the amplitudes are depicted
versus t and f with t′ and f ′ fixed to 2.5 s and 0 Hz, respectively.

tree are impinging at the receiver’s antenna from the front with respect to the vehicle’s
velocity vector. Their positive Doppler frequencies have values around 80 Hz. This
can be seen in Fig. D.7a for delays larger than 200 ns. In Phase II, when the vehicle
drives alongside the tree, the waves’ Doppler frequencies are spread from −80 Hz to
80 Hz. Finally, in Phase III, when the vehicle drives away from the tree, the Doppler
frequencies lie around −80 Hz.

We verify the proposed channel model by applying it with the geometric setting in
Tab. D.2 to generate a realization of the time-variant response and the delay-Doppler
spread function. The point-source scatterers in the tree are modeled again as a binomial
point process with 20 points but this time the scattering coefficients are drawn indepen-
dently according to the complex normal distribution CN

(
0, Q0

)
. We calibrate the model

by setting the number of scatterers and the parameter Q0 so that a good agreement
between simulation and measurement can be observed. The filtered realization of the
time-variant response is depicted in Fig. D.6b, while Fig. D.7b shows the delay-Doppler
spread function. By visual inspection of the plots in Fig. D.6 and in Fig. D.7 we observe
a remarkable similarity between the simulated and estimated results.

4.5 Validation of the Closed-Form Approximation (D.30)
In this investigation we compare the closed-form approximation (D.30) of R(f, f ′, t, t′)
with a numerical approximation computed by means of Monte Carlo simulations.

We choose Π to be a Poisson point process. For each r ∈ Π we let βr ∼ CN
(
0, Q0

)
as

in the previous example. With the parameter setting in Tab. D.2 we get Γ = %0Q0|V| ≈
3.78 and Σγ = 1

5ζ
2I = 5I. The characteristic function I(u) is evaluated using (D.40)

since V is spherical with a uniform average power re-radiation. Note that since Π is a
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Fig. D.9: Comparison of the amplitudes of (a) the approximate correlation function (D.30) and (b)
the approximation (D.42) computed from K = 1000 channel realizations; the amplitudes are depicted
versus t and f with t′ and f ′ fixed to 5 s and 0 Hz, respectively.

Poisson point process, the number of point-source scatterers in the spherical volume V
changes from realization to realization with an average of %0 |V| = 20 points per realiza-
tion. We have now all the elements to evaluate (D.30). The amplitude of this expression
is reported versus (f, t) in Fig. D.8a and Fig. D.9a for (f ′, t′) fixed to (0 Hz, 2.5 s) and
(0 Hz, 5 s) respectively.

We use Monte Carlo simulations to compute an approximation of the integral expres-
sion in (D.15): K independent realizations of the time-variant transfer function, denoted
by Hs,k(t, f), k = 1, 2, ...,K, are generated; the approximation of the right-hand side in
(D.15) is computed from these K realizations as

R̂(f, f ′, t, t′) = 1
K

K−1∑
k=0

H∗s,k(t, f)Hs,k(t′, f ′). (D.42)

The amplitude of the approximation obtained with K = 1000 realizations is depicted in
Fig. D.8b and Fig. D.9b.

By visual inspection of Fig. D.8 and Fig. D.9 we observe a very good visual agreement
between the amplitudes of the closed-form approximation (D.30) and the Monte Carlo
approximation. To provide a quantitative analysis of the accuracy of the approximation,
we report in Fig. D.10 the approximation and the estimated correlation function versus
the frequency f with the other arguments set to f ′ = 0 Hz, t = t′ = 2.5 s (a) and
t = t′ = 5 s (b). Overall, we observe a good agreement. As expected, the fit is better
when the vehicle is far away from the canopy (Phase I). We also observe that the depicted
curves are in accordance with the wide-sense stationarity property (D.17), namely, they
are symmetric around f = 0.
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Fig. D.10: Comparison between the amplitudes of the closed-form approximation (D.30) and the
Monte Carlo (MC) estimation (D.42) of the correlation function (D.15) versus the frequency f with
the other arguments kept fixed to f ′ = 0 Hz, t = t′ = 2.5 s (a) and t = t′ = 5 s (b). The Monte Carlo
approximations are computed from K = 100000 channel realizations.

5 Conclusions and Outlook
In this contribution we presented a non-stationary model describing the system functions
of the radio channel that result in a scenario with an elevated transmitter and a mobile
receiver moving nearby a scattering volume. The model is generic in the sense that
it can be applied to many scenarios with a receiver moving past a scattering object
by appropriately setting the parameters describing the geometry and the scattering
property of this object. An LMS application is considered where the object is a tree, or
more specifically, a treetop.

The virtue of the model is threefold:

• It includes the delay and Doppler dispersion induced by the volume due to its
geometric extent and the receiver’s movement.

• It incorporates the non-stationary behavior due to the steady change of the prop-
agation constellation as the receiver moves.

• Scattering by the tree canopy is described by point-source scatterers that form a
marked spatial point process.

Three different phases were evidenced where the system functions exhibit distinct
behaviors when the receiving vehicle drives past an isolated tree: approaching, passing
by, and departing the tree. An integral-form of the time-frequency correlation function
of the component in the system response scattered by the tree was derived by invoking
Campbell’s Theorem. A tractable approximation of this function, for time lags corre-
sponding to displacements along the trajectory for which the plane wave assumption
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holds, was derived and validated by means of Monte Carlo simulations. The model
was also validated by means of experimental results. Overall, visual inspections of the
results show a very good agreement, despite the simplifying assumptions underlying the
model derivation.

Future work will comprise the determination of the attenuation caused by the canopy.
Additional wideband measurements of individual trees will be evaluated to accomplish
this task. Additionally, the scattered power by treetops will be quantified based on these
measurement data.

Appendix A: Approximation for E1

We derive the approximation for E1 as defined in (D.21). Initially, by using the approx-
imation (D.25) we get

E1 , Eγ

{
1

d2(t, r)d2(t′, r)

}
≈ 1
dx,µ(t)dx,µ(t′)Eγ

{[
1+ e(x(t),µγ) · r̃

dx,µ(t)

]−1[
1+ e(x(t′),µγ) · r̃

dx,µ(t′)

]−1}
.

With x in the vicinity of zero we apply (1 + x)n ≈ 1 + nx to both terms within the
above expectation and get

E1 ≈
1

dx,µ(t)dx,µ(t′)Eγ
{(

1− e(x(t),µγ) · r̃
dx,µ(t)

)(
1− e(x(t′),µγ) · r̃

dx,µ(t′)

)}
.

Next, we expand the product in the expectation and apply the expectation operator.
Using that Eγ {r̃} = 0, since µγ is the center of gravity of the pdf γ(r), we get

E1 ≈
1

dx,µ(t)dx,µ(t′)

[
1 + e(x(t),µγ)TΣγe(x(t′),µγ)

dx,µ(t)dx,µ(t′)

]
,

with Σγ = Eγ

{
r̃r̃T} as defined in (D.23) in Section 3.

Appendix B: Approximation for E2

We seek the approximation for E2 as defined in (D.21). Initially, we approximate the
distances d1(r), d2(t, r) and d2(t′, r) via (D.24) and (D.25). From these approximate
distances we straightforwardly approximate the inner product[

d1(r), d2(t, r), d2(t′, r)
]
· f̄ (D.43)
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as a sum of two inner products, namely[
dT ,µ, dx,µ(t), dx,µ(t′)

]
· f̄ − c0r̃ · u (D.44)

with u = u(t, t′, f, f ′) as defined in (D.31). Note that the first term in (D.44) is not
random. Replacing (D.43) by (D.44) in the expression for E2 yields the approximation

E2 , Eγ

{
exp

(
–j2πc−1

0
[
d1(r), d2(t, r), d2(t′, r)

]
· f̄
)}

≈ exp
(
–j2πc−1

0
[
dT ,µ, dx,µ(t), dx,µ(t′)

]
· f̄
)
I(u),

with I(u) = Eγ

{
exp

(
j2πr̃ · u

)}
as defined in (D.32).
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Appendix E

Study Note: Point Processes in 2D

Morten Lomholt Jakobsen

This study note has been created to be part of the reading material used by master
students in the course “Stochastic Processes” at Department of Electronic Systems.
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In this study note we introduce the concept of a two-dimensional (2D) point process. We
cover only the simplest classes of point processes, namely binomial point processes and
Poisson point processes. If you are interested in getting to know about other classes of
point processes (or perhaps point processes in more than 2D), then browse the literature
listed at the end of this note or ask the lecturer for recommendations on books, papers,
tutorials, etc.

1 Observing “random” point patterns
Assume that yesterday’s weather was horrible with lots of rain, strong winds and light-
ning (fair assumption in Denmark!). Meteorologists have equipment for monitoring and
recording the exact locations of individual lightning strikes. A certain meteorologist
creates a map with the locations of all lightning strikes recorded yesterday within some
fixed geographical region (rectangular, 10km by 5km). The complete map is shown in
Figure E.1.
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Fig. E.1: Locations of lightning strikes within a fifty square kilometer region. A total of 613 lightning
strikes were recorded.

The meteorologist wonders if it makes sense to think of this particular point pattern as
being random. More precisely, he wonders if the observed point pattern in Figure E.1
can be thought of as a realization of some random mechanism.

Exercise 1. What do you think, is the meteorologist on the right track? Assume that
in two months from now the weather will turn out similar as yesterday (i.e. rain, wind,
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and lightning). What will happen if the meteorologist creates a new map for the same
rectangular region? Where will lightning strike exactly? How many strikes in total?

The meteorologist is particularly interested in the following type of questions: Do the
locations of lightning strikes tend to cluster or do they spread out regularly? Are certain
regions more likely to be hit than others (e.g. if a region contains tall metallic obstacles
or hills)? How likely is it that some single square kilometer sub-region is not going to
be hit at all?
Now, replace the meteorologist with a biologist and replace the locations of lightning
strikes with locations of trees of some particular type. The biologist is similarly inter-
ested in knowing if the locations of trees tend to cluster (local seed spreading) or if there
is some kind of repulsion going on (survival of the fittest). Are there certain pronounced
regions which do not contain any trees at all? If so, why could that be?
Finally, replace the biologist with a telephone network operator and replace the loca-
tions of trees with the locations of active mobile users within some fixed communication
cell.

Exercise 2. What kind of questions do you think a network operator would like to
ask? Think in terms of system operability, connectivity, coverage, throughput rates,
interference levels, user quality of service, etc. Next, think of examples of random point
patterns which you would be likely to encounter within your own field of study. What
questions would you be interested in being able to answer?

Point patterns show up everywhere and so far we have mentioned three examples. In
most applications the observer of such point patterns is not directly interested in the
exact point locations themselves. The observer is more likely to be interested in what
can be inferred from these locations about some underlying mechanism that governs
where the points occur. In a nutshell, this has to do with statistical estimation theory.
However, in order to apply such statistical tools we need a mathematical modeling
framework for random point patterns. In fact, as we shall see in Section 8, stochastic
models of point patterns are very important in their own right. In particular, they can
be used as building blocks for generating ordinary random processes (our goal in this
note).

2 Mathematical framework for point processes
We desire a simple and convenient mathematical theory for our random point patterns.
To achieve this we restrict ourselves along the way. For example, we cannot handle if
there are so many points that we can no longer count them. Moreover, the theory is
simpler if points cannot fall directly on top of each other.

Definition 1. A two-dimensional (2D) point process is a random countable collection
of points in the cartesian plane R2.
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After having read the above definition we would probably like to ask the following
questions. What does it really mean that a collection is random and what does it mean
that a collection is countable?

Example 1. The collection of natural numbers N = {1, 2, 3, . . .} is countable. An
arbitrary collection is countable if each of its members can be associated uniquely with
a number in N. The idea is that the members of a countable collection can be counted
one at a time. The counting procedure is allowed to never end but every member must
eventually be associated with a natural number. �

Exercise 3. Is Z = {. . . ,−2,−1, 0, 1, 2, . . .} a countable collection? What about the
closed interval [0, 1] ⊂ R, is this a countable collection?

Exercise 4. Consider a collection of points obtained by drawing 75 points uniformly
in the square [−5, 5]× [−5, 5]. Is it a random collection? Is it countable? Think about
how to simulate such collections and write a (Matlab) script for this purpose.

Exercise 5. Now, consider a collection of points constructed as follows. First draw a
Poisson distributed random number L with mean 75. Given L, then draw L points uni-
formly in the square [−5, 5]×[−5, 5]. Is this a random collection? Is it countable? Think
about what happens from one realization to another. Compare with the construction
from the previous exercise.

Historically, one-dimensional (1D) point processes were the first to be considered. The
1D space was almost exclusively used to represent time, e.g. the entire real line R or
the set of positive reals [0,∞).

Exercise 6. Qualitatively, how does a 1D point process realization look like? Is there
something very special about the 1D case, something that is not really possible in 2D?
Sketch a few figures with your own example realizations of 1D point processes. Discuss
where such a 1D random point pattern could happen to emerge in practice. What do
you think a 1D point process could be used to represent? Occurrences of earthquakes
for instance?

3 Convenient restrictions and notation
From a mathematical point of view it is convenient to add a few restrictions to Definition
1 on page 143. Specifically, we limit ourselves to consider only point processes which
are locally finite and simple. These two conditions are of technical kind and by default
we assume that they are fulfilled with probability one. That a point process is locally
finite means that only a finite number of points are falling in every bounded region of
R2. That a point process is simple means that no two points of the process coincide.
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Example 2. The square region [−1, 1] × [−1, 1] ⊂ R2 is bounded. The first quadrant
[0,∞) × [0,∞) ⊂ R2 is an unbounded region. The diagonal

{
(x1, x2) : x1 = x2

}
⊂ R2

is also not bounded. �

Example 3. The collection
{(

cos(n)√
n , sin(n)√

n

)
: n ∈ N

}
⊂ R2 is countable but indeed not

random. However, it is not locally finite either. Do you see why? If not, try drawing it.
�

In the rest of this chapter we use X to denote a locally finite and simple point process
defined on a space S ⊆ R2. Do not confuse X with a random variable or a random
process. Now, X is a random countable collection of points in S. The 2D space S could
be the whole R2, the unbounded subset R × [0,∞) or perhaps the bounded rectangle
[a, b] × [c, d]. Since the point process X is assumed to be simple it follows that X has
no repetitions of points. Accordingly, the individual realizations of X can be seen as
countable sets of points {

x1,x2,x3, . . .
}

xi ∈ S. (E.1)

In (E.1) we use boldface notation for the individual points to stress the fact that each
point xi is a 2D vector. The set in (E.1) can be either finite or countably infinite.
The dummy index i is used only to distinguish points and to indicate countability. We
emphasize that the dummy index i is not used to indicate any ordering of the points.
Notice also that we now make use of the term “set” instead of collection. If X had
not been a simple point process the set notation in (E.1) would be useless and mis-
leading since occurrences of multiple points would be disregarded. For example, the set
{4, 1, 1, 2, 1, 3, 3} is the same as the set {1, 2, 3, 4}. Right?

4 Region counts
A natural and intuitively appealing way of exploring the properties of a point process
X is to count the number of points falling in different regions. Accordingly, for any set
B ⊆ S consider the region count

N
X

(B) = "the number of points from X falling in B" (E.2)
= |X ∩B| (E.3)

=
∑
x∈X

1[x ∈ B], (E.4)

where | · | in (E.3) denotes set cardinality (not absolute value) and where 1[ · ] in (E.4)
denotes an ordinary indicator function. For fixed and bounded B ⊆ S, the region count
N

X
(B) is a discrete random variable with range {0, 1, 2, 3, . . .}. This property is due to

our default assumption of X being locally finite. The interplay between X and N
X

is
illustrated in Figure E.2.
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Fig. E.2: Two realizations of a point process X inducing different values of the associated region count
NX (B). Here, B is a fixed potato-shaped region.

The probability distribution of N
X

(B) depends on the region B via its overall area, its
location, its orientation, and so on. The region B can be very complicated but certain
general properties of the region counts are easily established.

Exercise 7. Let X be a point process on S ⊆ R2. Show that N
X

(∅) = 0 where ∅
denotes the empty set. Furthermore, show that if A,B ⊆ S are disjoint then N

X
(A ∪

B) = N
X

(A)+N
X

(B). Hint: Make a drawing at first and use your intuition to argue for
the two properties of N

X
. Afterwards, show that the properties are satisfied by direct

use of (E.4).

In general, various complicated regions can be build up by simpler ones by use of set
operations for which the behavior of N

X
is well-understood.

5 Intensity measures and intensity functions
We have just learned that for any fixed and bounded region B ⊆ S, the region count
N

X
(B) is a non-negative integer-valued random variable. By forming the expected value

of this random variable we get a deterministic function of the region B (i.e. a function
which takes as input a set and outputs a number).

Definition 2. The intensity measure µ
X

of X is defined as

µ
X

(B) := E
[
N

X
(B)

]
= E

[ ∑
x∈X

1[x ∈ B]
]
, B ⊆ S. (E.5)

Using the definition of expected values, the intensity measure in (E.5) can “in principle”
be computed as

µ
X

(B) = E
[
N

X
(B)

]
=
∞∑
n=0

nPr
(
N

X
(B) = n

)
.
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The snag is just that this approach is often not possible. In most cases we simply don’t
know the probability distribution of N

X
(B). Luckily, the intensity measure µ

X
(B) can

nearly always be expressed in terms of integrating another non-negative function across
the region B.

Definition 3. If the intensity measure µ
X

in (E.5) can be written as

µ
X

(B) =
∫
B

%
X

(x)dx, B ⊆ S, (E.6)

for some locally integrable function %
X

: S → [0,∞), then %
X

is called the intensity
function of X.

Definition 4. If the intensity function %
X

is constant across the entire space S, then
X is called a homogeneous point process. If %

X
is not constant on S, then X is said to

be inhomogeneous.

By now we have introduced something called the intensity measure as well as the inten-
sity function of a point process. Do not confuse these two quantities with one another,
the former is simply obtained by integrating the latter. The shape of the intensity func-
tion %

X
indicates where points from X are more likely to occur. The integral of %

X

across some region B ⊆ S gives the expected number of points from X falling within B,
i.e. the intensity function specifies the mean value structure of the region count N

X
(B).

If X is a homogeneous point process such that %
X

(x) = %0 for all x ∈ S, then the
non-negative constant %0 has a plain and simple interpretation: The average number of
points per unit area.

Exercise 8. As mentioned above, the shape of the intensity function %
X
indicates where

points from X are more likely to occur. This is very similar to the interpretation of an
ordinary probability density function (pdf) of a random variable. Apart from a shift
in notation, does (E.6) look familiar to you? Discuss the similarities as well as the
distinctions between the intensity function of a point process and the pdf of an ordinary
random variable.

6 The binomial point process
Definition 5. Let f be a pdf on S ⊆ R2 and fix an integer k ∈ N. A point process X
consisting of k points drawn i.i.d. according to f is called a binomial point process. We
denote this by writing X ∼ binomialPP

(
S, k, f

)
.

Let’s start out by looking at a simple example.
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Example 4. Let S be the bounded rectangle [a, b] × [c, d] and let f be the uniform
density on S, i.e. f(x) = 1

(b−a)(d−c) for every x ∈ S. We fix k = 75 and plot two
different example realizations in Figure E.3. We have used the parameters a = c = −5
and b = d = 5. Does the construction seem familiar? Recall Exercise 4 on page 144. �
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Fig. E.3: Two example realizations of X ∼ binomialPP
(
[−5, 5]2, 75, 1

100

)
.

At a first glance, one may wonder why the construction in Definition 5 is called a
binomial point process. The answer has to do with the probability distribution of an
arbitrary region count.

Exercise 9. Let X ∼ binomialPP
(
S, k, f

)
where S ⊆ R2 and f is some arbitrary pdf

on S. Argue that the region count N
X

(B), B ⊆ S, has a binomial distribution (think of
a coin tossing experiment) and identify the two parameters of this discrete probability
distribution. Does it make sense that the success probability depends on B?

Exercise 10. Determine the intensity function %
X
for a general binomial point process

X ∼ binomialPP
(
S, k, f

)
. Hint: Recall and make use of (E.5) and (E.6).

Exercise 11. Let X ∼ binomialPP
(
S, k, f

)
and let B ⊂ S be some fixed region. Argue

whether or not the two region counts N
X

(B) and N
X

(S\B) are independent random
variables (draw it). Intuitively, are N

X
(B) and N

X
(S\B) positively correlated, nega-

tively correlated or uncorrelated?
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7 The Poisson point process
In the following, the binomial point process enters directly in a two-step definition of
the Poisson point process. This two-step definition is convenient since it gives a direct
procedure for simulation of Poisson point processes, e.g. in Matlab.

Definition 6. A point process X on S ⊆ R2 is called a Poisson point process with
intensity function %

X
if:

i) For any region B ⊆ S with µ
X

(B) =
∫
B
%

X
(s)ds <∞ the associated region count

N
X

(B) has a Poisson distribution with parameter µ
X

(B), i.e.

Pr
(
N

X
(B) = k

)
= exp

(
− µ

X
(B)

)(µ
X

(B)
)k

k! , k = 0, 1, 2, . . .

ii) Given that N
X

(B) = k ∈ N, then these k points form a binomial point process on
B such that

X ∩B ∼ binomialPP
(
B, k, f

B

)
, f

B
(x) = 1[x ∈ B] %X

(x)
µ

X
(B) .

We denote this by writing X ∼ PoissonPP
(
S, %

X

)
.

For a Poisson point process the individual region counts are Poisson distributed random
variables. Hence the name of the process. An important property of the Poisson point
process is that if B1, B2, . . . , Bn ⊂ S are fixed disjoint regions, then the corresponding re-
gion counts N

X
(B1), N

X
(B2), . . . , N

X
(Bn) are mutually independent random variables.

This property could as well have been used instead of part ii) in Definition 6, but the
definition would then not directly tell us how to simulate the Poisson point process.

Example 5. Recall Exercise 5 on page 144. This construction is in fact a homogeneous
Poisson point processX on S = [−5, 5]×[−5, 5] with %

X
(x) = %0 = 3

4 . With our notation
from above we have X ∼ PoissonPP

(
[−5, 5]× [−5, 5], 3

4
)
. �

Exercise 12. Consider part i) in Definition 6. What happens with the region count
N

X
(B) if µ

X
(B) = 0? Will it affect part ii) and how?

Exercise 13. Let X ∼ PoissonPP
(
[0, 2]× [0, 1], %0

)
for some constant %0 > 0. That is,

X is a homogeneous Poisson point process on the bounded rectangle S = [0, 2]× [0, 1].
What is the expected number of points from X falling in the region B = [0, 1]× [0, 1]?
What is the probability that X has no points in S at all?

Exercise 14. Let’s think in terms of computer simulation. In principle, what steps do
you need to carry out if you want to simulate the point process X ∼ PoissonPP

(
R2, 1

)
?

What is µ
X

(S) in this case?
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8 Applications of point processes
In this section we show how point process models such as those from the previous
two sections can be used as building blocks for generating ordinary random processes.
Numerous text books on probability theory and random processes cover topics like the
Poisson counting process and queuing theory. In the following we cover these topics as
well but our treatment is most likely different from what you will find in standard text
books.

The Poisson counting process
Let Y ∼ PoissonPP

(
[0,∞), %0

)
be a one-dimensional (1D) homogeneous Poisson point

process. We use the symbol Y to stress the fact that we are now dealing with a 1D
point process. Then, consider an ordinary random process Z(·) defined as

Z(t) :=
∑
y∈Y

1[y ≤ t], t ≥ 0. (E.7)

By definition, Z(·) is a continuous-time staircase alike random process with jumps at
every point of Y . It is often referred to as a Poisson counting process. When writing
Z(·) we mean the entire random process and when writing Z(t) it means that time t is
considered fixed. Hence, Z(t) is a random variable.

Exercise 15. Sketch a few different example realizations of the 1D point process Y .
Sketch the corresponding realizations of Z(·), e.g. in the range t ∈ [0, 20]. Explain what
will happen if %0 is selected larger. Express Z(t) as a certain region count N

Y
(Bt) for

some suitably chosen region Bt and argue that Z(t) is Poisson distributed with mean
parameter %0t. Is Z(·) a wide-sense stationary (WSS) process?

Queuing theory
Queuing theory deals with arrival times of customers and service times at counters, e.g.
humans at checkout lines in supermarkets. Stochastic models of queues are widely used
for analyzing the behavior of time-shared computer and communication systems.

Exercise 16. What kind of questions do you think are typically sought to be answered
in applications involving queues? Hint: Think of concepts such as queue lengths and
customer waiting times.

Denote by p the pdf of some non-negative continuous random variable (exponential,
gamma, Weibull, chi-square, etc.). Then, consider the 2D inhomogeneous Poisson point
process X ∼ PoissonPP

(
R× [0,∞), %

X

)
where the intensity function has the form

%
X

(x) = %
X

(x1, x2) = λp(x2), (x1, x2) ∈ R× [0,∞).
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Each random point x = (x1, x2) ∈ X has two components and the interpretation of
each component is as follows:

x1 = the random time instance where a new customer enters
x2 = the random service time needed to process this customer.

Notice that the intensity function %
X
is such that it does not vary with its first argument

x1. This means that customers keep arriving with constant intensity λ all day long. On
the other hand, %

X
has a functional dependency on its second argument x2 such that

the average service time of any customer is given by the expected value associated with
the pdf p.

Exercise 17. For each random point x = (x1, x2) ∈ X, what is the interpretation of
the random time instance x1 + x2?

We now use the 2D point process X to form a random process similar to the one in
(E.7). Specifically, our construction now reads

Z(t) :=
∑
x∈X

1[x1 ≤ t, x1 + x2 > t], t ∈ R. (E.8)

and this continuous-time random process is jumping both up and down. It models
the behavior of the so-called M/G/∞ queue. The random variable Z(t) gives the
instantaneous queue length at time t (do you see why?). Thus, E

[
Z(t)

]
is the average

queue length at time t.

Exercise 18. Sketch one example realization of the 2D point process X. Sketch the
corresponding realization of Z(t), e.g. in the range t ∈ [−20, 20]. Look carefully at
(E.8) and express Z(t) as a certain region count N

X
(Bt) for some1 appropriately chosen

region Bt ⊂ R× [0,∞). Recall Definition 6 and argue that Z(t) is a Poisson distributed
random variable. Finally, try to calculate

E
[
Z(t)

]
= E

[
N

X
(Bt)

]
= µ

X
(Bt) =

∫
Bt

%
X

(x)dx =
∫∫
Bt

λp(x2)dx1dx2,

and discuss whether you find it reasonable that this mean function does not depend on
time t.

Final remark: It can be shown that the random process Z(·) in (E.8) is in fact strict-
sense stationary (SSS).

1The correct region Bt has an unbounded triangular shape.
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9 Final remark: 1D versus 2D
In section 2 we mentioned that 1D point processes were the first to be considered (histor-
ically). Indeed, the 1D approach may at first glance appear more attractive and simpler
compared to our 2D approach (and compared to higher dimensional generalizations as
well). However, there is one very peculiar feature of R which has no straightforward
analogue in R2, R3 and Rd in general. The real line has a natural ordering of its mem-
bers. For this single reason it is highly recommended to always think of (and relate to)
the 2D case when dealing with point processes. Despite the peculiar ordering feature in
1D, it is crucial to keep in mind that this setup comprises a very important special case.
However, the general theory of point processes is easier to comprehend if we initially
develop it without relying on features which are valid only for the 1D case. This is the
very reason why we have chosen the 2D case as our reference approach.

10 Further reading
• David R. Cox and Valerie Isham, "Point Processes", Chapman & Hall, 1980.
• John F. C. Kingman, "Poisson Processes", Oxford University Press, 1993.
• Adrian J. Baddeley, "Spatial Point Processes and their Applications" (in "Stochastic

Geometry - Lecture Notes in Mathematics"), Springer, 2007.
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