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Abstract—We derive low complexity versions of a wide range
of algorithms for sparse Bayesian learning (SBL) in underdeter-
mined linear systems. The proposed algorithms are obtained by
applying the generalized mean field (GMF) inference framework
to a generic SBL probabilistic model. In the GMF framework,
we constrain the auxiliary function approximating the posterior
probability density function of the unknown variables to factorize
over disjoint groups of contiguous entries in the sparse vector
- the size of these groups dictates the degree of complexity
reduction. The original high-complexity algorithms correspond
to the particular case when all the entries of the sparse vector
are assigned to one single group. Numerical investigations are
conducted for both a generic compressive sensing application and
for channel estimation in an orthogonal frequency-division mul-
tiplexing receiver. They show that, by choosing small group sizes,
the resulting algorithms perform nearly as well as their original
counterparts but with much less computational complexity.

I. INTRODUCTION

Compressive sensing and sparse signal representation have

proven to be very useful tools in a large variety of engineering

areas. One application in wireless communications, which we

address in this paper, is the estimation of the radio channel by

exploiting its inherent sparse nature. The high practicability

of compressive sensing has sparked the development of a

growing number of techniques for recovering sparse signals

in underdetermined linear systems. The classical signal model

assumes that a vector y consisting of M observations is

obtained from the N > M dimensional sparse weight vector

w according to

y = Φw + n, (1)

where Φ = [φ1, . . . ,φN ] is referred to as the M × N
dictionary matrix and n is additive white Gaussian noise with

covariance matrix λ−1I . The vector w is K-sparse in the

canonical basis and is assumed to have statistically indepen-

dent nonzero entries. Due to N > M , classical (penalized)

least-squares estimates will produce non-sparse solutions for

w. As a result, many convex [1], [2], greedy [3], and Bayesian

methods aiming at finding sparse estimates of the weight

vector have been proposed in the literature in recent years.

In this paper, we focus on methods based on sparse Bayesian

learning (SBL).

One popular SBL algorithm is the relevance vector machine

(RVM) [4]. Recovering w using RVM is, nevertheless, of

substantial computational complexity and is often disregarded

even though the performance is on par with many state-

of-the-art algorithms. In order to lower the computational

requirements of RVM, a greedy-based inference scheme is

proposed in [5] and later applied in [6], [7].

In this paper, we develop iterative, low complexity SBL

algorithms, which have a computational complexity per al-

gorithmic iteration that is lower than that of the methods in

[5]–[7] while being non-greedy. The inference framework is

valid for the estimation of real- and complex-valued signals.

Our approach is based on generalized mean field (GMF)

inference [8]–[10]. Roughly speaking, GMF approximates the

posterior probability density function (pdf) of a set of unknown

variables with an auxiliary function, which is constrained to

factorize over groups of said unknown variables. In our appli-

cation, we select disjoint groups of G ≤ N independent entries

in w; the larger the group size the more dependency structure

is retained and, in general, the more accurate the achieved

approximation will be. On the other hand, by selecting groups

with dimension G << N , we are able to significantly reduce

the computational complexity of the resulting SBL algorithm.

Our goal is, thus, to investigate if small group sizes can be

selected without reducing the recovery performance of the

SBL algorithm. We test our proposed algorithms by applying

them to the generic signal model (1) and for the estimation

of the wireless channel in an orthogonal frequency-division

multiplexing (OFDM) receiver. Our reported numerical results

show that a significant reduction in complexity can be achieved

with no significant penalization in performance with respect

to both mean-squared error (MSE) of the channel estimates

and bit-error-rate (BER).

II. GMF FOR SBL

In this section we present the GMF-based SBL algorithms.

The first step is to state the joint pdf for the signal model (1).

Based on this probabilistic model, we derive the update rules

for GMF inference. The approach presented is general in the

sense that it can be used with a large variety of prior models.

In the end of the section we show how, by appropriately

setting the parameters of the chosen prior model, we can

obtain different low complexity versions of a variety of SBL

algorithms.

A. Probabilistic Model

We make use of a two-layer hierarchical representation

of the prior p(w) involving a conditional prior p(w|γ) and

a hyperprior p(γ). The joint pdf for the signal model (1)
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augmented with this prior model then reads:

p(y,w,γ, λ) = p(λ)

M
∏

m=1

p(ym|w, λ)

N
∏

i=1

p(wi|γi)p(γi). (2)

The hierarchical representation of p(w) effectively circum-

vents possible intractable computation of the posterior p(w|y)
as we are free to select “simple” pdfs for p(wi|γi) and p(γi).
We follow our approach in [7] and consider the hierarchical

representation of the Bessel K pdf by letting p(wi|γi) =
N(wi|0, γi) and p(γi) = Ga(γi|ǫ, η).1 For the noise precision

λ, we select the noninformative Jeffreys prior, p(λ) ∝ 1/λ.

Finally, due to (1), p(ym|w, λ) = N(ym|∑i φmiwi, λ
−1).

B. GMF Approximation

Let θ = {w,γ, λ} be the set of unknown parameters

to be estimated. The mean field (MF) approximation refers

to variational methods that attempt to approximate the true

density p(θ|y) with an auxiliary pdf b(θ) by minimizing the

Kullback-Leibler (KL) divergence KL(b(θ)‖p(θ|y)), see e.g.,

[11]. We are free to select a structure of b(θ) that allows for

a simple and computationally efficient update of b(θ). As we

will see, the key to achieve this is to define disjoint groups

of entries in w. We define our auxiliary pdf as a structured

factorization [8]–[10] according to

b(θ) =
∏

k

b(θk) = b(λ)
N
∏

i=1

b(γi)

Q
∏

q=1

b(wq) (3)

with the vector wq , [wi|i ∈ {(q − 1)G + 1 : qG}]T,

q ∈ {1 : Q}, representing disjoint groups of G contiguous

entries in w and N = QG. From (3), we obtain the naive

MF approximation – i.e., with b(θ) being a fully factorized

function – by setting G = 1 and having, thus, Q = N
groups of a single entry. Conversely, the fully structured MF

approximation is obtained with G = N and, thus, Q = 1.

Notice that, due to the construction of the prior model for

p(w), the inferred form of b(γ), which we detail later in this

section, factorizes according to b(γ) =
∏

i b(γi), regardless

of whether this factorization is explicitly imposed in (3) or

not. However, this is not the case for b(w) because of the

1For a real (complex) random vector x, N(x|a,B) denotes the real
(complex) multivariate normal pdf with mean a and covariance matrix B.

Similarly, Ga(x|a, b) = ba

Γ(a)
xa−1 exp(−bx) is a Gamma density.

factors p(ym|w, λ), m = 1, . . . ,M . The factor graph depicted

in Fig. 1 visualizes the statistical dependency of the variables

in the probabilistic model (2).

Our goal is to analyze the effect of different factorizations of

(3) on the accuracy and computational complexity of different

SBL algorithms. Generally speaking, one would expect the

accuracy of the estimates to degrade with finer factorizations

(decreasing G), as the space of functions over which the

KL divergence is minimized becomes more restricted; on the

other hand, finer factorizations often yield algorithms with

lower computational complexity than the algorithms based on

coarser factorizations.

The update rule for the kth factor of the GMF approximation

(3) can be written in the simple form [12]

b(θk) ∝ exp
(

〈log p(y,θ)〉∏
l 6=k

b(θl)

)

, (4)

where the expression 〈f(x)〉p(x) denotes the expectation of

a function f(x) with respect to a density p(x). After an

initialization procedure, each algorithmic iteration consists of

sequentially computing all individual factors b(θk) of b(θ).
From (4), the factor b(wq) is a normal pdf with mean µq

and covariance Σq given by

µq = Σq〈λ〉b(λ)ΦH
q (y −

∑

q′ 6=q

Φq′µq′), (5)

Σq =
(

〈λ〉b(λ)ΦH
q Φq + 〈Γ−1

q 〉b(γ)
)−1

, (6)

where Γq = diag(γq) with γq defined analogously to wq

and Φq , [φi|i ∈ {(q − 1)G + 1 : qG}]. We define

µ , [µT
1 , . . . ,µ

T
Q]

T and Σ as the block diagonal matrix

Σ , diag(Σ1, . . . ,ΣQ). From b(w) =
∏

q b(wq), we pro-

duce a point estimate of w as ŵ = µ.

The computational complexity of the GMF-based SBL

algorithms is determined by the updates (5) and (6). In big-

O notation the complexity is max{O(K̂G2), O(K̂2)} per

algorithmic iteration, where K̂ denotes the nonzero entries

in µ. Naturally, the algorithm can remove a vector φi once

the corresponding 〈γ−1
i 〉b(γi) becomes large enough [4], which

drastically reduces the computational complexity of the update

(6). However, in the first iterations K̂ = N . This emphasizes

the importance of grouping entries in w in order to reduce

the computational complexity of the initial iterations of the

algorithm.

The auxiliary function b(λ) can be shown to be a gamma

pdf with mean

〈λ〉b(λ) =
M

〈‖y −Φw‖22〉∏q
b(wq)

. (7)

Note that the update of λ is often neglected in other inference

schemes, such as belief propagation, since a simple, tractable

expression cannot be achieved.

In the following, we particularize our GMF algorithm by

specifying the parameters of the prior model in (2) (cor-

responding to the selection of the parameters ǫ and η in

p(γi)). We select the parameters appropriately to obtain low

complexity versions of different SBL algorithms. Selecting a



group size of G = N for b(w) leads to the original algorithms

found in [4], [7], [13]. These inference methods only differ

from each other in the update of b(γ) =
∏

i b(γi). Observe

that the computation of Σ requires evaluating 〈γ−1
i 〉b(γi) for

all i = 1, . . . , N . We review these updates in the following.

GMF-RVM: The RVM algorithm [4] (G = N ) results from

selecting the noninformative Jeffreys prior for each γi [12]. By

selecting ǫ = η = 0, p(γi) reduces to this improper prior. In

this way, b(γ) becomes a product of N inverse gamma pdfs.

The update of 〈γ−1
i 〉b(γi) then follows as

〈γ−1
i 〉b(γi) =

1

Σii + |µi|2
, i = 1, . . . , N. (8)

GMF-BPDN: Basis pursuit denoising (BPDN) [1], [2]

refers to the solution of

argmin
w

{

ρ‖y −Φw‖22 + κ‖w‖1
}

, (9)

where κ is some positive regularization constant. We have

introduced the parameter ρ to distinguish between two cases:

ρ = 1/2 when y,Φ,w,n in (1) are all real and ρ = 1 when

they are complex. We can solve the optimization problem

(9) using iterative Bayesian inference by selecting the prior

model of p(w) as a hierarchical representation of N Laplace

pdfs and formulating an algorithm based on the expectation-

maximization algorithm with complete data {y,γ}. The for-

mer corresponds to setting ǫ = ρ + 1/2 in (2) [7], while the

latter can be achieved by constraining the approximating factor

b(w) in the GMF framework to represent the point estimate

ŵ = µ, i.e., setting b(w) = δ(w− ŵ) with δ(·) denoting the

Dirac delta function [14]. By doing so, we obtain

〈γ−1
i 〉b(γi) =

√

η/ρ

|µi|
, i = 1, . . . , N. (10)

Selecting G = N and ρ = 1/2 yields the algorithm proposed

in [13].

GMF-BesselK: In this SBL algorithm, proposed in [7]

(G = N ), we solve for b(γ) without setting the parameters

ǫ and η of p(γi) a priori. This makes b(γ) a product of N
generalized inverse Gaussian (GIG) pdfs. The moments of a

GIG pdf can be computed in closed form that involves the

modified Bessel function of the second kind. As we target

low complexity algorithms, we compute the mode instead by

restricting b(γ) = δ(γ − γ̂):

〈γ−1
i 〉b(γi) =

(ρ+ 1− ǫ) +
√
∆i

2ρ(Σii + |µi|2)
, (11)

with ∆i = (ρ + 1 − ǫ)2 + 4ρη(Σii + |µi|2) and ρ defined as

in (9).

III. NUMERICAL RESULTS

We perform Monte Carlo simulations to investigate the

impact of different factorizations of b(w) =
∏

q b(wq) on

the performance of the proposed GMF-based SBL algorithms

described in Section II. We first consider a generic signal

model (1) commonly used in sparse signal representation. We
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Fig. 2. Comparison of the NMSE achieved by GMF-RVM with different
group sizes G and SNR as a parameter. We have N = 128, (a) M = 64,
and (b) K = 10. The SNR values: 30 dB and 80 dB.

then apply the GMF-based algorithms for the estimation of

the wireless channel in an OFDM system.

In all setups, the GMF-based SBL algorithms are initialized

with 〈λ〉b(λ) = 1/Var(y) and 〈γ−1
i 〉b(γi) = 1, i = 1, . . . , N .

As the iterations proceed, an entry µi is set to zero when

〈γ−1
i 〉b(γi) exceeds a fixed threshold set at 106, and the corre-

sponding vector φi is removed from the dictionary matrix Φ.

Once the initialization is completed, the algorithm sequentially

updates the auxiliary pdfs b(wq), q = 1, . . . , Q, b(γ), and b(λ)
until ‖µ+ −µ‖∞ ≤ 10−8, where µ+ and µ denote the mean

of b(w) for two consecutive iterations.

A. Sparse Signal Representation

For the signal model (1), the entries in Φ are independent

and identically distributed (iid) zero-mean complex normal

with variance M−1. Similarly, the K nonzero entries in w

are iid zero-mean complex normal with variance one, with

their indices being uniformly drawn from the range {1 : N}.

As a reference, we include the performance of the oracle

estimator that “knows” the indices of the K nonzero entries in

w and computes a least-squares estimate of these entries (grey

dashed curve in the subsequent figures). All reported results

are computed based on a total of 1000 Monte Carlo runs.

We will see that the impact of the group size G on the

estimation performance strongly depends on the prior model

(selection of ǫ and η) used to derive the corresponding GMF-

based SBL algorithm. To demonstrate this, we evaluate the

performance for different signal-to-noise-ratios (SNRs), num-

ber of observations M , and number of nonzero entries K.

Fig. 2 compares the normalized mean-squared error

(NMSE), NMSE , 〈‖w− ŵ‖22〉/〈‖w‖22〉, achieved by GMF-

RVM(G) with different group sizes G ∈ {1, N/4, N/2, N}
versus (a) K and (b) M . The dimension of w is N = 128. In

(a), we have M = 64 and in (b) K = 10. The SNR is set to

30 dB and 80 dB. Interestingly, the conditions with respect to

K and M under which the signal w can be recovered seem

to be independent of the SNR and no significant difference

in performance is observed between the chosen group sizes.

Thus, GMF-RVM(G = 1) exhibits a performance similar to

that of the “traditional” RVM (G = N ) [4] but with a reduction

in complexity from O(K̂3) to O(K̂2).
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Fig. 3. Comparison of the NMSE achieved by GMF-BesselK with different
group sizes G and SNR as a parameter. We have N = 128, (a) M = 64,
and (b) K = 10. The SNR values: 30 dB and 80 dB.

We perform the same experiment for GMF-BesselK with

ǫ = 1/2 and η = 1 in Fig. 3. Again we observe the

same threshold-like behavior in the NMSE curves that is

independent of the SNR, but a performance loss is incurred

when G is reduced. However, if the signal is sparse enough and

the number of measurements M , is sufficiently large, we can

significantly reduce G with no penalization in performance.

The analogous simulations were also conducted for GMF-

BPDN with similar conclusions made as for GMF-RVM. For

the sake of brevity, we have omitted the results.

Finally, it is important to check whether the reduction in

complexity per algorithm iteration comes at the expense of

a higher iteration count before convergence is reached. For

this comparison, we also include Fast-RVM [5]2 and Fast-

BesselK [7] (with ǫ = 1/2 and η = 1). These greedy

methods have a complexity of O(MNK̂) per algorithmic

iteration. The stopping criterion used is identical to that of

the GMF algorithms. Fig. 4 shows the result as a function

of the problem size: N ∈ {128, 256, 512, 1024}, M = N/2,

and K = ⌈N/10⌉. Several remarks are worth noting. First,

by construction, the iteration count for greedy algorithms

inherently depends on K. In high SNR regime (Fig. 4(a)), we

observe that the GMF-based algorithms do not suffer from this.

For G = 1 the count is of the same order as that of the high

complexity algorithms with G = N . Second, by comparing

Figs. 4(a)-4(b), we observe that the iteration count is heavily

affected by the SNR. This is especially true for the GMF-

RVM algorithms: GMF-RVM(G = 1) experiences a slow

convergence rate.3 On the other hand, GMF-BesselK(G = 1)

achieves the lowest iteration count of all algorithms. This

indicates that the rate of convergence of a particular algorithm

is dominated by the prior model used to derive it rather than

the choice of a specific group size G.

B. Sparse Channel Estimation in an OFDM Receiver

We next apply the GMF-based algorithms to the problem

of pilot-assisted channel estimation in OFDM systems. We

2We experienced that Fast-RVM overestimates the noise precision which

produces non-sparse estimates. As a result, we let λ̂ = λ.
3The algorithms terminate if a maximum of 1000 iterations are reached.
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Fig. 4. Comparison of the convergence rate achieved by GMF-RVM
and GMF-BesselK with different group sizes G. We have N ∈
{128, 256, 512, 1024}, M = N/2, and K = ⌈N/10⌉.

only consider GMF-BesselK for these investigations as our

previously reported numerical results show that GMF-BesselK

clearly outperforms the other GMF-based algorithms with

respect to speed of convergence.

A single-input–single-output OFDM system is considered

with a cyclic prefix (CP) inserted to eliminate inter-symbol

interference. The channel response is assumed static during

the transmission of each OFDM block. The received baseband

signal r ∈ C
Mu is given by

r = Xh+ n. (12)

Here, X = diag(x) contains the complex-modulated symbols

x ∈ C
Mu and the entries in n ∈ C

Mu are iid zero-mean

complex normal with variance λ−1. The vector h contains

the samples of the channel frequency response at all Mu

subcarriers. Let the set P ⊆ {1, . . . ,Mu} contain the in-

dices of the subcarriers reserved for pilot transmission. The

M , |P| < Mu pilot observations used for estimating h are

then

y , (XP)
−1rP = hP + ñ, (13)

where rP = [rm : m ∈ P]T and hP = [hm : m ∈ P]T. The

statistics of the noise term ñ , (XP)
−1nP remain unchanged

as the pilot symbols hold unit power.

In order to apply sparse methods for estimating h in (12) we

must assume some basis in which h is sparse or approximately

so and then recast the OFDM pilot observation model (13)

into the form of (1). Hence, a dictionary Φ for h must be

constructed. For doing so, we follow the common assumption

that the wireless multipath channel is sparse in the delay

domain and consider a frequency-selective wireless channel

with impulse response modeled as a sum of specular multipath

components:

g(τ) =

K
∑

k=1

βkδ (τ − τk) . (14)

The entries of the vectors β = [β1, . . . βK ] and τ =
[τ1, . . . , τK ] are respectively the complex weights and the

delays of the K multipath components. Given (14), h can

be written as h = Φ(τ )β with Φ(τ )m,k = exp (−j2πfmτk)



TABLE I
PARAMETER SETTINGS FOR THE SIMULATIONS.

Sampling time, Ts 32.55 ns

CP length 4.69 µs / 144 Ts

Subcarrier spacing 15 kHz

Pilot pattern Evenly spaced, QPSK

Modulation QPSK (Md = 2)

Subcarriers, Mu 1200

OFDM symbols 1

Information bits 1091

Channel interleaver Random

Convolutional code (133, 171, 165)8
Decoder BCJR algorithm [15]

and fm denoting the frequency of the mth subcarrier, m =
1, . . . ,Mu. However, as the delays are unknown, Φ(τ ) is

unknown to the algorithms. We therefore construct a dictionary

according to Φ(τ d)m,i = exp (−j2πfmτdi
), i = 1, . . . , N ,

where the entries in τ d ∈ R
N
+ are delay samples uniformly-

spaced in the interval [0, τmax]:

τ d =
[

0,
Ts

ζ
,
2Ts

ζ
, . . . , τmax

]T

(15)

with ζ > 0 such that N = ζτmax/Ts + 1 is an integer. The

symbols τmax and Ts denote respectively the maximum excess

delay of the channel and the sampling time.

We can now apply sparse representation methods to the

approximate signal model

y = hP + ñ ≈ ΦP(τ d)w + ñ (16)

with ΦP(τ d) containing the rows of Φ(τ d) corresponding to

the indices in P . The final estimate of h is then ĥ , Φ(τ d)ŵ.

Hence, we seek to accurately represent h in (12) using the

sparse approximation ĥ.

We consider an OFDM transmission scenario inspired by

the 3GPP LTE standard [16] with the settings specified in

Table I. In all conducted investigations we fix the spectral

efficiency to Md(Mu−M)R/Mu = 0.92 information bits per

subcarrier, which corresponds to a rate R = 1/2 code obtained

through puncturing. Unless otherwise specified, we set the

number of rows in ΦP(τ d) to M = 100 (pilot subcarriers)

and the number of columns to N = 200, which corresponds

to a delay resolution of Ts/ζ = 0.72 Ts (≈ 23.4 ns) and

τmax = 144 Ts (the CP length).

GMF-BesselK is tested with three group sizes G ∈
{1, 10, N}. For comparison we include two non-Bayesian

methods, BPDN and orthogonal matching pursuit (OMP), see

e.g., [3]. We also conducted experiments with Fast-BesselK

but we obtained similar performance as GMF-BesselK(G =
N), so these results are not shown. For BPDN, we use the

sparse reconstruction by separable approximation (SpaRSA)

algorithm [17]. The required regularization parameter is cho-

sen as 5
√

log(N)/λ. For OMP we set the number of multipath

components to search for to 20. These settings empirically led

to satisfactory results. The commonly employed robustly de-
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Fig. 5. Comparison of the BER of the OFDM receiver incorporating the
different algorithms using M = 100 pilot symbols. The channel parameters
are 1/V = 300 ns, 1/v = 5 ns, U = 60 ns, and u = 20 ns.

signed Wiener filter (RWF) [18] for OFDM channel estimation

is also included as a reference.

The above channel estimators are embedded in an OFDM

receiver that decodes the transmitted information bits using a

BCJR algorithm. The performance of the channel estimators

(in terms of MSE) and of the corresponding receiver (in terms

of BER) are assessed by means of Monte Carlo simulations.

Channel impulse responses are generated independently using

the model proposed by Saleh and Valenzuela [19] for indoor

environments:

g(τ) =

∞
∑

l=0

∞
∑

k=0

βk,lδ (τ − (Tl + τk,l)) . (17)

Here, {Tl}l (cluster delays) and {τk,l}k (within cluster delays)

are both homogeneous Poisson processes with rate parameter

V and v respectively. Conditioned on {Tl}l and {τk,l}k,

{βk,l}k,l are independent zero-mean complex normal dis-

tributed with variance

σ2(Tl, τk,l) = Q exp(−Tl/U) exp(−τk,l/u). (18)

We compute Q such that 〈∑l

∑

k |βk,l|2〉 = 1. It is important

to stress that the specular channel model (14) has inspired the

design of the dictionary matrix, while the Saleh and Valenzuela

model (17) is used in the performance assessment.

We follow [19] and select the channel parameters accord-

ing to 1/V = 300 ns, 1/v = 5 ns, U = 60 ns, and

u = 20 ns. From this, we have on average a spacing of

300 ns between cluster delays and 5 ns between within cluster

delays. The parameters U and u ensures that the power of the

multipath components exhibits a fast decay relatively to the

CP length typically encountered in an indoor scenario. The

BER performance is depicted in Fig. 5. Clearly, the GMF-

BesselK algorithms lead to better performance than the other

channel estimators. At 1 % BER, the gain is 2 dB over OMP

and SpaRSA, and 3 dB over RWF. No performance drop is

observed for GMF-BesselK when decreasing the group size G
as the GMF-BesselK algorithms reconstruct h properly from

only approximately 5-10 column vectors in Φ(τd) across SNR

(results not shown). We also evaluated the MSE performance

of the channel estimators, defined as MSE , 〈‖h−ĥ‖22〉/Mu,
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Fig. 6. Comparison of the MSE achieved by the different algorithms versus
(a) number of pilot symbols M and (b) cluster rate 1/V . In (a) the channel
parameters are 1/V = 300 ns, 1/v = 5 ns, U = 60 ns, and u = 20 ns. In
(b) M = 100, and we have 1/v = 5 ns, U = 900 ns, and u = 20 ns.

versus the number of pilots M . The results depicted in

Fig. 6(a) show the superior performance of GMF-BesselK and

illustrate that, even though the model (17) is not sparse, it is

compressible such that a proper sparse approximation can be

achieved by the estimators.

Based on the above results, we next compare the algorithms

versus the number of cluster components. To ensure a longer

maximum excess delay, we set U = 900 ns. The parameters

v and u are selected as before. In Fig. 6(b) we show the MSE

versus the cluster rate parameter 1/V = 1 : 1000 ns.4 When

1/V ≥ 800 ns, the performance of GMF-BesselK(G = 1) is

on par with GMF-BesselK(G = N ), but for 1/V ≤ 800 the

performance of GMF-BesselK(G = 1) drops as compared to

GMF-BesselK(G = N ). However, this break in performance

is mitigated using only a group size of G = 10. This setting

allows for a significant decrease in computational complexity

as compared to using G = N .

IV. CONCLUSION

We have proposed the use of generalized mean field (GMF)

inference for low complexity implementations of a wide range

of sparse Bayesian learning (SBL) algorithms. More specifi-

cally, we use the GMF approach to approximate the posterior

probability density function (pdf) of the sparse weight vector

with a simpler auxiliary pdf, which factorizes over disjoint

groups of entries in this vector. The approach presented in

this paper yields simple and low complexity expressions for

the parameter updates, is valid for the estimation of real- and

complex-valued signals, and is general in the sense that it

can be applied to many SBL algorithms. At the expense of

less dependency structure in the auxiliary pdf, the resulting

GMF-based SBL algorithms lead to a significant reduction in

the computational complexity as compared to their original

counterparts.

The numerical assessment shows that the complexity reduc-

tion can be achieved with no significant performance degra-

dation. The investigations were conducted for two scenarios:

application to a generic compressive sensing signal model and

4For OMP we decreased the number of components to search for as 1/V
increased; specifically, we selected: {50, 48, . . .}.

estimation of the wireless channel in an orthogonal frequency-

division multiplexing receiver. They revealed that the impact

of the factorizations of the auxiliary pdf on the algorithms’

performance highly depends on the underlying prior model of

the sparse weight vector. For the latter scenario, the numerical

results show that the proposed algorithms outperform state-of-

the-art non-Bayesian inference algorithms for sparse channel

estimation.
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