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Simple Model for Describing and Estimating Wind Turbine Dynamic
Inflow.

Torben Knudsen and Thomas Bak

Abstract— Wind turbines operate with sudden change in
pitch angle, rotor or wind speed. In such cases the wake behind
the turbine, achieve steady state conditions only after a certain
delay. This phenomenon is commonly called dynamic inflow.
There are many models for dynamic inflow. The most accurate
use a method that can be characterised as the blade element
momentum method plus a dynamic equation for the induction
factor. This method then needs calculations along the blade for
a number of sections including numerical solution of equations.
This is numerical demanding. The simplest models amounts to
placing a lead-lag filter after rotor torque and thrust calculated
from static tables of the power and thrust coefficients. The
filter constants will then vary with average wind speed. The
filtered versions of torque and thrust are then an approximate
modelling of the dynamic inflow. The dynamic inflow model
suggested here places itself in between the most complex and the
most simple both in accuracy, numerical demands and physical
appeal. The suggested models behavior is demonstrated by
simulation and the usefulness for extended Kalman filtering is
assessed both via simulated data and real full scale turbine
data.

I. INTRODUCTION

Dynamic inflow (DI) modelling has normally been ignored
in connection with control design. A very common approach
in wind turbine control engineering is to assume the gains
from blade pitch to be given as the gradient found from the
power coefficient, Cp function. This function is really based
on blade element momentum (BEM) theory which is a static
model and the DI is consequently ignored.

There has been research on DI for wind turbines the last
20 years. Still, only one reference indicating a successful
usage for control design [1]. Here a simple lead lag linear
transfer function is used as a filter where the input is the
static rotor torque or thrust and the output should then be
the torque or thrust accounting for the DI. This is a rather
simple black box type model. Also very complicated models
based on BEM theory are suggested e.g. in [2]. These can
be categorized as first principles or white box models.

The above models seems to be either to simple or to
complex for wind turbine control.

The complex are too nonlinear and numerical demanding
and the simple do not describe the behavior accurately
enough.

In the following a model is presented which is a com-
promise in both complexity, physical interpretability and
accuracy.

Torben Knudsen and Thomas Bak is with section of Automation and
Control, Aalborg University, Fredrik Bajers Vej 7C2-212 DK-9220 Aalborg,
Denmark tk@es.aau.dk

First the aerodynamics including DI is introduced. This is
followed by a discussion leading to the suggested simplifi-
cation. The expected qualitative behavior for the simplified
model are verified by simulations where it is compared
to a model with no DI included. A quantitative success
criteria is that the one step output prediction errors (also
called residuals) from a model including DI is smaller than
the one step output prediction errors from a similar model
without DI. To produce the predictions needed for this an
extended Kalman filter (EKF) is developed. The prediction
error assessment is made for both simple simulation model
data and for full scale experimental data. Notice that the
EKF has a significant value on its own as it also estimates the
effective wind speed (EWS) which is used for single turbine
control [3]–[6].

The main contributions are: 1) The simplified DI model.
2) The extended Kalman filter which also estimates EWS.
3) The assessment on full scale experimental data.

II. AERODYNAMIC MODELLING

The aerodynamic forces on a blade section is given by the
local wind velocity i.e. the wind speed and angle of attack
as illustrated in figure 1. To be able to relate to the physical
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Fig. 1. Illustration of basic aerodynamics for a wind turbine blade section
at radius r.

environments the turbine is placed in, it is standard to use
the ambient wind speed va which can be interpreted as the
wind speed which is at the turbine location if the turbine
was not there. The local velocity seen by a blade section at
radius r has the speed vb

vb =
√
v2ba + v2bt , (1)
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vba = va(1− aa) , vbt = ωrr(1 + at) , (2)

where aa and at are axial and tangential induction factors.
The angle of attack θb is

θb = φ− β , (3)

φ = arctan

(
vba
vbt

)
, (4)

where β is the blade pitch angle and φ is the local inflow
angle. The axial Fa and tangential Ft forces per length on
the blade section is then given from the lift Cl and drag Cd

coefficients

Fa = cos(φ)L+ sin(φ)D , (5)
Ft = sin(φ)L− cos(φ)D , (6)

L =
1

2
ρv2b cCl(θb) , D =

1

2
ρv2b cCd(θb) (7)

where ρ is air density and c is the blade cord length.
The total thrust and torque from the rotor can now be

calculated by integrating the above over the rotor. When
rotor speed ωr, pitch angle β and ambient wind speed va is
given there are still the induction factors aa and at missing.
Using stationary values found from BEM theory [2], the
the total stationary forces on the rotor can be conveniently
expressed by the precalculated Cp and Ct tables which only
depends on pitch and tip speed ratio λ as follows

Tr,s =
1

2
ρv3aACp(λ, β)

1

ωr
, (8)

Fr,s =
1

2
ρv2aACt(λ, β) , (9)

λ =
ωrR

va
, (10)

The inductions can also be tabulated but in contrast to Cp

and Ct the induction also depends on the local radius r

aa = Aa(λ, β, r) , (11)
at = At(λ, β, r) . (12)

All the above, however, only holds under stationary flow
conditions which are given by ωr, pitch angle β and ambient
wind speed va. These signals will typically vary smoothly
and slowly compared to the aerodynamic time constant
which is often approximated by

τ =
3D

2vm
, (13)

where a typical value would be τ = 3 90/2/10 = 13.5 sec.
Rotor speed and ambient wind speed varies slowly due to
rotor inertia and inertia in the wind mass flow, but pitch angle
can vary very quickly because of powerful actuators e.g. 10
deg/sec can easily be achieved. For these fast pitch variations
the dynamic inflow becomes significant especially close to
rated wind speed. The necessary modelling suggested by
many authors [2], [7]–[9] is to include a first order dynamic
model governing the changes in induction coefficients at
radius r as follows

ȧf =
1

τ(vm)
(as − af ) , (14)

where as is the stationary values from the tables and af are
the filtered dynamic values used in the calculation of vb and
θb and the rest of the many calculations leading to the rotor
forces. This model is complex and numerical demanding.
At every time sample and for every blade section from root
to tip the BEM calculations has to be performed including
the dynamic induction (14) which is specific for a section.
This also means that the model structure is expanded with as
many states as there are blade sections e.g. 3 × 10 to cover
the dynamic inductions.

III. A SIMPLIFIED DYNAMIC INFLOW MODEL

The ambition is to simplify compared to the above BEM
based method but still base it on physics. Furthermore it
would be practical if it could work as an addition to the
simple static model based only on Cp and Ct table.

In figure 2 the situation where the pitch is suddenly moved
towards higher power is illustrated. The vectors shown are
the static solutions which can be found from tables. Assume
the ambient wind speed is constant and that the stationary
situation is the blue one. Then the pitch instantaneously
jumps to the red position. At this instant the blue flow will
still persist and give a higher angle of attack with increased
forces and power. After a while the flow will change from
blue to red with increased inductions. Using stationary
aerodynamics means that the flow changes instantly from
blue to red.

va(1− a+a )

va(1− a−a )

ωrr(1 + a+t )

ωrr(1 + a−t )

Fig. 2. Illustration of dynamic inflow from a fast pitch change from blue
to red. The vectors are stationary speeds before in blue and after the change
in red.

The change in tangential induction at is ignored for
simplicity and as it is assumed less important compared to
the axial induction aa i.e. a−t ∼ a+t . Then the static red wind
flow just after the change can be turned into the dynamic blue
one by introducing the “fictive” ambient wind speed vf given
by

vf = va
1− a−a
1− a+a

, (15)

To avoid doing more than one calculation one rotor radius
re is used to represent all sections of the blade. This gives the
following equations for including the DI in the calculations
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of rotor torque and thrust

λ =
ωrR

va
(16a)

as = aa(λ, β) (16b)

τ =
3D

2vm
(16c)

ȧf = κ(as − af ) , κ =
1

τ
(16d)

vf = va
1− af
1− as

(16e)

Tr ∼
1

2
ρv3fACp(λ, β)

1

ωr
(16f)

Fr ∼
1

2
ρv2fACt(λ, β) (16g)

Essentially this means that the only change to models ignor-
ing dynamic inflow is the introduction of the fictive ambient
wind speed vf given by (16d)–(16e). However, above not
only Cp and Ct are used, which are standard, but also
the additional table with the induction aa is needed 16b.
This table is normally possible to extract from the (BEM)
software calculating Cp and Ct. To avoid this and make the
model even simpler, actuator disc theory gives the following
induction factor approximation:

Ct = 4a(1− a) ∧ 0 ≤ a ≤ 1

2
⇔ (17)

a =
1

2

(
1−

√
1− Ct

)
. (18)

Then a can be calculated directly from the Ct table by using
(18) in place of (16b). This will work for normal pitch to
feather turbines where a will be in the range [0, 13 ] in non
stalled operation.

IV. SIMULATION STUDIES

To test if the above DI model gives the expected behavior,
the behavior of a simulated turbine with and without the DI
is studied. The widely used NREL 5MW virtual turbine [10]
is ideal for this purpose. This turbine serves as a test turbine
for many investigation and a Simulink version has been
developed which is useful here. The Simulink version has a
“standard” complexity which is suitable for control purposes.
It consist of static aerodynamics using Cp and Ct tables and
the mechanics include two inertia drive train and tower fore
aft dynamics. The pitch and generator torque actuators are
modelled with simple first order models. For control there is
a controller developed by NREL. More details can be found
in [10], [11] and [12]. A second version of this Simulink
NREL 5MW has been made with the simple DI included as
described above in (16) and (18).

To test the qualitative behavior two test cases are selected.
The first case is where the significance of DI is expected to
be largest. This is close to rated wind speed where Cp is flat
and the static rotor torque does not change much. Including
dynamic inflow should then show a relatively larger change
in rotor torque. The second case is where the pitch is larger
and the Cp is not so flat. Here a relatively smaller change
is expected when including the dynamic inflow. These two

cases are shown in the figures 3–4 below. The figures shows
the results of simulations with constant wind speed and a
pitch angle stepping between two values. In this way it is
easier to see the principal behavior compared to cases with
fluctuating wind.
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Dynamic inflow model, wind speed: 10.5 m/s

Fig. 3. Simulation close to rated wind speed with constant wind and
stepping pitch angle. In the plots the blue line is without dynamic inflow
and the green is with dynamic inflow except in the plot of induction factors
where blue is the static and green is the filtered induction factor. W.Scale
is the wind scaling factor in (16e), Rot.Tor is the rotor torque and Tow.Tor
is the tower tilting torque.

As expected figure 3 shows that dynamic inflow has a
significant effect when operating close to rated. Clearly the
main shaft torque and the tower torque oscillations increase
which will add to fatigue when including DI. However, a
significant effect for normal operation in varying wind can
not be concluded from this. Figure 4 shows only little effect
as the induction is low for high pitch angles. This behavior
is in good agreement with the full scale experimental test
made earlier [13].

V. EXPERIMENTAL VALIDATION METHODS

An appealing and intuitive way to make quantitative vali-
dation is to make pitch steps on a real turbine and simulate
the same steps with the model. If the results compare
well the model is validated. This is the approach taken
in [14], [15]. The disadvantages with the step response
approach is that it is not easy to get access to pitch step
experiments on standard industrial size turbines, this has not
been possible for this investigation. Further, step responses
are only possible below rated power where the pitch are
not reserved for speed control. Also it is difficult, actually
impossible, to expose the model to exactly the same wind
field as the real turbine.

A second method is to use a high fidelity turbine simulator
in place of the real wind turbine. This is certainly an option
which has the advantage that it gives access to signals which
are not measurable for real turbines as e.g. induction factors
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Dynamic inflow model, wind speed: 15 m/s

Fig. 4. Simulation for wind speed 15 m/s and average pitch at 12 deg.
Otherwise similar to figure 3.

and EWS. However, the problem is to what extend the
turbine simulator fits reality regarding the investigated model
issue.

A third method is to use data from a real turbine in normal
operation where data are easier to obtain. Then it is not
possible to directly measure signals like induction factors
and EWS. The only way is to evaluate model performance by
prediction capability: if adding a model component reduces
the optimal output prediction errors the component should
be added.

This last approach will be used here. As the models
involved has non linearities a truly optimal predictor does
not exist. The best predictor is obtained by an EKF. This
will also provide useful state estimates for e.g. EWS and the
induction factor.

VI. EXTENDED KALMAN FILTER

The EKF is based on a state space model. For convenience
all the needed equations are collected in (19) starting with
the state dynamics and ending with the static relations. The
separate equations are described in detail below.

Irω̇r = Tr − Tg , (19a)

Mnd̈n = Fr − ktdn − dtḋn , (19b)
v̇t = −γ(vm)vt + n1 , (19c)
v̇m = n2 , (19d)
ȧf = κ(vm)(as − af ) , (19e)

κ(vm) =
2vm
3D

, (19f)

γ(vm) =
πvm
2L

, (19g)

V1(vm) =
πv3mt

2
i

L
, (19h)

vr = vt + vm − ḋn , (19i)

vf = vr
1− af
1− as

, (19j)

as =
1

2

(
1−

√
1− Ct(λ, β)

)
, (19k)

Tr =
1

2
ρv3fArCp(λ, β)

1

ωr
, (19l)

Fr =
1

2
ρv2fArCt(λ, β) , (19m)

λ =
ωrRr

vr
, (19n)

Tg =
p

µωr
. (19o)

The mechanical part is quite standard and are discussed
in several text books [16], [17]. It is relatively simple and
consists of a one inertia drive train (19a) where Ir is total
inertia and a one degree of freedom tower for aft part (19b)
where Mn is total nacelle mass and dn is nacelle/tower
displacement.

The wind model is important for the estimator and is not
standard. It is however well described in [3]. In brief, vt
(19c) is the turbulence and vm (19d) is the slower (mean)
part of the wind. The turbulence part is time varying by the
dependence on vm both in dynamics (19g) and incremental
variance (19h). The parameters in the wind model are fixed
with turbulence intensity ti = 0.1, turbulence length scale
L = 170.1 and incremental variance off n2 V2= 22/600.
Notice that the only process noise entering the model is
the noise driving the wind states (19c) and (19d). The
term “incremental variance” is really for the corresponding
Wiener process in a proper stochastic formulation but it still
measures the size of the variation. For more details on
stochastic differential equations and Wiener processes see,
e.g. [18, sec. 10-1].

The DI inflow part (19e), (19j) and (19k) is new while
the rest of the aerodynamics (19l)– (19n) is standard except
that the fictive wind vf is used for rotor torque and thrust.
Finally, the generator torque Tg is given by (19o) where p
is the generator power and µ is the efficiency.

The measurement part (20) simply adds white measure-
ment noise to the rotor speed ωr, the wind speed seen by
the nacelle vr and the nacelle acceleration an.

ωm = ωr + v1 , (20a)
vn = vr + v2 , (20b)
am = an + v3 . (20c)

The state space model with state, input and output is given
below in condensed form.

x =
[
ωr ḋn dn vt vm af

]T
, (21)

u =
[
β p

]T
, (22)

y =
[
ωm vn am

]T
(23)

Notice that the noise enters linearly as shown in (24).

ẋ = f(x, u) + n , (24a)
y = h(x, u) + v (24b)
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Notice that pitch and generator power are considered to
be noise free inputs as these normally are very precise.
This means that the only parameter left is the measurement
variance for the measurements in (20). This depends on the
specific wind turbine.

The EKF is implemented as a continuous discrete EKF.
The details can be found in [3].

VII. PROOF OF CONCEPT FROM SIMULATED NREL 5MW
DATA

As stated in section V the final validation is done using
real data. However, in contrast to a KF, the EKF can not be
proven to be neither optimal nor stable. Therefore it makes
sense to start by proofing the concept on a simple simulation
model before using real data. For this a Simulink model of
the NREL 5MW virtual turbine has been used. The simulator
is a Simulink implementation of the mathematical model (19)
in section VI except it is a two inertia model instead of the
one inertia model in (19a). The turbine is controlled by
the controller supplied by NREL. For details on the specific
NREL 5MW turbine refer to to [10]. The measurement
noise v1, v2, v3 in (20) are simulated as independent white
noise with the standard deviations 0.01, 2, and 0.01 for rotor
speed, nacelle wind speed and tower fore aft acceleration
respectively. This amount to approximately 1% of nominal
speed, 2m/s wind and 4% of standard deviations on tower
accelerations. Experience with real multi MW machines tells
that these are reasonable values. The sampling rate is set to
10 Hz as this is a typical value used for the turbine main
controller. The mean wind speed is chosen as 10.5 m/s as
this covers the switching region where there are pitching
activity close to minimum pitch. Here the induction factor
is the highest and the changes largest which results in the
most pronounced effect of dynamic inflow. The inputs and
outputs used by the EKF are shown in figure 5.
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Fig. 5. Simulated data for NREL 5MW virtual turbine for mean wind
speed 10.5 m/s.

Using these data it is possible to obtain good results with
the EKF. As seen in the figure there is good excitation of
both pitch and generator power. In this case the residuals
will only be white noise if the model used for the EKF is
perfect and the non-linearities do not spoil the optimality of
the EKF too much. As seen in figure 6 only residuals related
to the acceleration does not pass the whiteness test. Notice
that the reason for not passing this test is the large number
of samples, 5220, not because the auto correlations are large.
Notice though that there have been simulations, especially at
higher wind speeds, where these residual tests where not as
convincing.
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Fig. 6. Output prediction errors auto correlations based on NREL5MW
simulated data. The “p” in the plot is a p-value from a Portmanteau
whiteness test [19].

It has also been verified that the residuals decreases when
including useful model component. The EKF has been made
in 3 versions one based on the model described in section VI
i.e. a one inertia model including tower and DI, one where
DI is not included and one where neither DI nor tower is
included. The resulting root mean squares (RMS) values are
seen in table I. In the first tree columns it is seen that the
RMS for residuals is only reduced very little. In contrast the
EWS is reduced 12% by including the tower and further 22%
by including DI which is a substantial improvement. Also
notice, that RMS on EWS can only be assessed because this
is a simulation where the “real” EWS is available.

Model Omega Nac WS T. Acc EWS
One I, Tower, DI 0.0108 2.04 0.0156 0.3370

(1.00) (1.00) (1.00) (1.00)
One I, Tower 0.0109 2.06 0.0172 0.429

(1.01) (1.01) (1.10) (1.27)
One I, 0.0111 2.07 0.489

(1.03) (1.01) (1.45)

TABLE I
RMS OUTPUT PREDICTION ERRORS BASED ON NREL5MW SIMULATED

DATA SAMPLES 581:5800. THE FIGURES IN PARENTHESIS IS

NORMALISED WITH THE TOP ROW.
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VIII. VALIDATION FROM MEASURED NREL CART3
DATA

This investigation has benefited from having data from the
NREL CART3 turbine including all necessary parameters
for the EKF. This turbine is of medium size at 600 Kw
with a rotor diameter of 40 m and a hub height of 34.7 m.
The turbine has been selected because it is large enough
to be useful and it is a non commercial turbine with no
confidentiality issues. Also there has been plenty of different
data sets to choose between. All of them last for 300 second
with is sufficient even though longer series would be nice.
For more information about the turbine see [20]. The original
data is sampled at 400 Hz which is down sampled to 10 Hz
using appropriate anti aliasing filters.

The model, which the EKF is based on, covers frequencies
up to and including the tower frequency around 0.9 Hz.
Above this frequency the data, especially generator speed,
has a significant spectral peak at the 3P frequency 1.85 Hz
where P is the rotation frequency. This peak is removed
by filtering all data by a second order notch filter. A much
smaller peak is also seen at the drive train frequency 2.7 Hz.
Furthermore, the acceleration signal is detrended and the
wind speed measurement is scaled to fit the meteorology
mast wind speed on average. Finally, the site measured air
density 1.00 is used instead of the standard 1.22 Kg/m3.
This is important as the rotor torque otherwise will be over
estimated by 22%. The resulting data, which will be used
for the EKF, is shown in figure 7. Notice that the the wind
turbine is operating on and above rated wind speed such that
there is a good pitching activity at low pitch values where
the effect of dynamic inflow is must pronounced.
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Fig. 7. Input output data for NREL CART3 turbine.

Data was filtered with exactly the same EKF as was used
for the NREL 5MW data in section VII. However, the filter
could only process half of the data before going unstable.
For this first half of the data the RMS on acceleration errors

where more than 3 times the expected value calculated by
the EKF. Therefore the measurement standard deviation on
accelerations where increased from 0.01 m/s2 used for NREL
5MW data to 0.07 which made the EKF performance better
and the RMS on residuals more in line with the expected.
Notice that this one parameter change was the only necessary
to make the EKF used for the NREL 5MW data work for
the CART3 data.

The results from EKF of the CART3 data are seen below.
The autocorrelations using the full model including one
inertia drive train, tower and DI is shown in figure 8.
Clearly, the residuals are not as white as for the simulated
NREL 5MW data in figure 6. The residuals for rotor speed
and tower accelerations are not too far from white noise
even though there are both fast and slow variations. The
residuals for the wind speed differs significantly from white
noise which is also expected as this is a very disturbed
measurement of wind speed.
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Fig. 8. Output prediction errors auto correlations based on NREL CART3
data for roor speed, wind speed and accelerations.

The RMS values for residuals from the EKF based on the
tree different models are seen in table II. Clearly there is no
significant difference so none of the models turns out to be
superior. Based on this the dynamic inflow model suggested
here can not be proven to be a significant model component
but neither can it be claimed to be “wrong”. Notice that this
is actually similar to the picture for NREL 5MW simulation
data. And for these data the improvement for EWS was
significant even though the improvement for EKF residuals
was not.

After all, the induction factor is the new component in this
work. Therefore it is concluded as shown in figure 9 that the
induction factor estimate at least is high when the pitch is
low and visa verse as it is supposed to.

IX. CONCLUSION

A new simplified model for dynamic inflow is presented.
It is demonstrated by simple simulation of a NREL 5MW
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Model Omega Nac WS T. Acc
One I, Tower, DI 0.00899 1.10 0.0799

(1.00) (1.00) (1.00)
One I, Tower 0.00860 1.14 0.0782

(0.96) (1.04) (0.98)
One I, 0.00861 1.13

(0.96) (1.03)

TABLE II
RMS OUTPUT PREDICTION ERRORS BASED ON CART3 DATA SAMPLES

296:2950. THE FIGURES IN PARENTHESIS IS NORMALISED WITH THE

TOP ROW.
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Fig. 9. Estimated induction factor and blade pitch angle.

virtual turbine that it behaves in accordance with the expected
and with pitch step responses measured on real turbines re-
ported in the literature. The assessment is done by comparing
RMS for residuals from the EKF based on a model with
and without the dynamic inflow component. Based on data
from the simple simulations it is possible to show that the
EKF works and gives slightly smaller RMS on residuals
when the dynamic inflow component is included. For the
simulated data the RMS on effective wind speed estimation
error can also be calculated and this improved significantly.
The same assessment is made based on real data from the
NREL CART3 turbine. Here there were no clear effect of
including the dynamic inflow judged from the measurement
residual RMS. Notice that this is not to different from the
simulated results where the improvement were very small.
Comparing based on effective wind speed can unfortunately
only be done from simulated data as the effective real wind
speed can not be measured precisely. Based on this the
dynamic inflow model suggested here, can not be proven
useful for real data but neither does it prove to be wrong.
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