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A Learning Based Precool Algorithm for Utilization of Foodstuff as
Thermal Energy Storage

Kasper Vinther1, Henrik Rasmussen1, Roozbeh Izadi-Zamanabadi1,2, Jakob Stoustrup1, and Andrew G. Alleyne3

Abstract— Maintaining foodstuff within predefined temper-
ature thresholds is important due to legislative requirements
and to sustain high foodstuff quality. This is achieved using
a refrigeration system. However, these systems might not be
dimensioned for hot summer days or possible component per-
formance degradation. A learning based algorithm is proposed
in this paper, which precools the foodstuff in an anticipatory
manner based on the saturation level in the system on recent
days. The method is evaluated using a simulation model
of a supermarket refrigeration system and simulations show
that thermal energy can be stored in foodstuff to cope with
saturation in refrigeration equipment. Additional hardware or
a system model is not required, making it easy to implement
the method in existing systems.

I. INTRODUCTION

Cooling equipment is installed in many places to preserve
foodstuff/goods and to maintain room temperatures within
desired bounds on hot days. Usually foodstuff must be
maintained at temperatures determined by legislative re-
quirements and divergence of room temperatures from a set
point leads to discomfort for occupants. Saturation in the
cooling equipment can result in violation of the predefined
temperature bounds and can occur if e.g. the installed system
is too small to deal with very hot outside temperatures, if a
component fails (e.g. a compressor in a compressor rack),
if the refrigerant charge in the system changes, or due to
component wear leading to degradation of performance.

Sizing up equipment in order to have spare capacity to deal
with any thinkable outside temperature and possible compo-
nent malfunction is costly. Also, more extreme weather due
to global warming could make a perfectly sized system in-
adequate in the future. Finally, higher peak power demand is
costly and could require expansion of transmission lines and
transformers for large systems such as supermarket refrig-
eration systems, warehouses, and office buildings. Thermal
storage tanks could be installed to overcome this problem
and to utilize changes in utility price, which provides the
possibility of shifting loads to off peak hours where energy
is cheaper and outside temperatures are lower.
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In [1], [2], [3], [4], to reference a few, building thermal
capacity and/or thermal storage tanks are used to store energy
for later use. However, adding a thermal storage tank adds
an additional capital investment.

Research has also been invested in precooling of foodstuff
and the use of foodstuff as thermal storage. Load shifting
strategies are investigated for four different low temperature
warehouses in [5], where the authors show significant cost
savings, possible due to the relatively large thermal capacity
of these buildings and the large quantity of foodstuff. The
use of Model Predictive Control (MPC) for precooling of
foodstuff in supermarkets is investigated in [6] and [7]. They
showed the potential of storing energy in the individual
display cases in order to cope with high loads on hot summer
days, but also to provide ancillary services to the Smart Grid.
Furthermore, [6] and [8] have looked at food quality loss as
a function of temperature and the thermal storage potential
of different foodstuffs.

All references, known to the authors, either use a MPC
approach, due to its ability to handle constraints, or just
a predefined schedule. However, deriving a suitable model
and parameters for prediction purposes can be cumbersome
and costly, especially since each refrigeration system is often
composed of different components and has different sizes.
As with the heuristically chosen schedule, a model based
MPC approach is often tailored to a specific system and
lack modularity, flexibility, and robustness towards changes.
These changes can be large changes in operating conditions,
changes in load patterns, changes in system parameters due
to e.g. component wear or reduction in refrigerant charge,
and faulty components. Furthermore, the amount and type
of foodstuff changes the storage capacity for each individual
display case and could change during the year.

Instead, we have investigated the possibility of using a
learning based control method to precool, with the objec-
tive of reducing the risk of having to discard refrigerated
foodstuff on hot days due to system saturation, which can
be very costly. A certain amount of precooling might even
be favorable cost-wise when the system is not saturated,
because energy consumption can be shifted to a time with
lower outdoor temperature and energy price. However, there
will also be a higher heat loss from the precooled foodstuff
and the general practice today is not to precool. This paper
therefore only considers avoiding system saturation.

Iterative Learning Control (ILC) and Repetitive Control
(RC) are two examples of learning based control, see e.g.



[9], [10], [11] for more details. These methods are often
used in batch processes where the same task is repeated,
which makes it possible to learn a performance improving
feedforward signal or a reference modifying signal for the
next repetition of the same task referred to as a trial (see
parallel and serial ILC in [10]). The relation to refrigeration
systems is that there is a certain amount of repeatability on
a daily basis, e.g. a good estimate of the weather tomorrow
is the weather today and the load from customers in a su-
permarket or occupants in an office will also be similar. The
repeatability can be checked by calculating the repeatable-to-
nonrepeatable ratio for different frequencies as done in e.g.
[12], [13]. However, this is not included in this paper.

Changing the reference signal to force the refrigeration
system to precool when the system is already saturated does
not help. An optimization based constrained ILC is proposed
in [14] to handle constrained linear systems. However, this
method does not try to reduce the saturation by precooling,
it only ensured that the ILC converges. In this paper we
propose a precool algorithm inspired by ILC, which learns
how much precool is needed and when it is needed based on
previous experience and does not require extra hardware or
system model knowledge as MPC. The method is tested on
a realistic simulation model of a supermarket refrigeration
system, where it is possible to change the air temperature
thresholds for the display cases controlled by on/off relay
feedback on the refrigerant inlet valve. In other words, pre-
cooling is performed by lowering the temperature thresholds
for a while. This also ensures that we will never precool the
foodstuff to a temperature lower than what we allow.

The paper is organized in the following way. Section II
describes the learning based precool algorithm and provides
a simple simulation example. A simulation model of a
supermarket refrigeration system is then presented in Section
III. Automatic tuning procedures for refrigeration systems
are then provided in Section IV followed by simulation
results without precooling, with constant precooling and
with the proposed precool algorithm in Section V. Finally,
conclusions are drawn in Section VI.

II. LEARNING BASED PRECOOL ALGORITHM

We have a system controlled with the relay feedback

u(k) =


u if y(k) > y(k)
u if y(k) < y(k)

u(k − 1) otherwise,
(1)

where u(k) is the control input at time k in the discrete
time domain taking the value u if the system output y(k)
reaches an upper threshold y(k) and u if the output reaches
a lower threshold y(k). This is a very simple controller and
also a widely used method of maintaining the temperature
of a medium within predefined bounds.

We will in the following assume that both thresholds can
be modified by a learning controller, which at the end of
each trial updates a vector of threshold modifying values to
be used in the next trial allowing us to precool if necessary.

The threshold vectors are given as

yj =yo + ym,j (2)

y
j

=y
o

+ y
m,j

, (3)

where yo and y
o

are the initial time invariant thresholds and
ym,j and y

m,j
are the threshold modifying vectors for the

trial denoted by j. The modifiers are generated based on the
length of the current precool period ∆j and the specified
end time for the precool period tend. For simplicity it is
assumed that each ym(k) can only take the value 0 (do not
precool) or α (precool) and that the end time tend is chosen
manually. An automatic way of determining tend for each
trial is proposed later in Section IV. The controlled system
in the trial domain is shown in Fig. 1.
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Fig. 1. Trial domain representation of a relay feedback controlled system
P with learning based adaption of the thresholds.

The length of the precool period at trial j is determined
based on an ILC inspired learning algorithm given as

∆j =∆j−1 + δj−1, (4)

where ∆j−1 is the length of the previous precool period and
δj−1 is the update. This update is determined by

δj−1 =

{
k1∆ if ||ûj−1||∞ ≥ û
k2∆ otherwise,

(5)

where ûj−1 is the estimated capacity of the control input
(or duty cycle) during the previous trial j − 1 and û is a
threshold that indicates if precooling is needed or not. k1

and k2 are the learning and de-learning gains, respectively. A
gain k1 < 1 means that the full precool period ∆ (maximum
allowed precool time) is not reached in one trial and low
values gives slower convergence.

The estimated capacity ûj−1 can be calculated by filtering
the control input;

ûj−1 =Fuj−1, (6)

where F can be a zero phase low pass filter that provides
a mean value or duty cycle of the on/off based input vector
uj−1 during the previous trial.

If the system output settles between the new modified
thresholds within the precool period, then it does not make
sense to extend the precool period anymore, as it will
only increase the power consumption. The precool period
is therefore limited by a predefined maximum length ∆;

∆j =

∆ if ∆j > ∆
0 if ∆j < 0

∆j otherwise.
(7)



The maximum length should depend on the storage potential
of the system and is therefore further treated in Section IV.

In the serial ILC the error in the previous trial is used to
update the reference. The proposed precool algorithm instead
uses the saturation level of the input to determine how long
to precool the system and consequently how much energy to
store in the system before the saturation.

A. Simple Thermal Storage Example

The learning based precool algorithm is demonstrated
using a simple thermal storage example. Assume that the
temperature Tgoods of a lumped mass of foodstuff has to
be controlled indirectly by controlling the heat transfer rate
Q̇e out of an air volume surrounding the foodstuff. Q̇e
is controlled with relay feedback between Q̇

e
if the air

temperature Tair < 2◦C and Q̇e if Tair > 5◦C. The load
on the system Q̇amb−air is a square signal which repeats
itself on a daily basis and has a maximum value above Q̇e.
This means that the system goes into saturation and the
temperature of the foodstuff will go above 5◦C if energy
in the form of coldness is not stored in the foodstuff before
the saturation occurs.

The system is illustrated in Fig. 2. The governing differ-

Qamb-air
.

Qe
.

Qair-goods
.

Tgoods

Tair Foodstuff
Air volume

Fig. 2. Example system with goods surrounded by an air volume. The
controllable input to the system is the heat transfer rate out of the system Q̇e

and the disturbance load is the heat transfer rate into the system Q̇amb−air .

ential equations for the temperature of the goods Tgoods and
the air Tair are

dTgoods
dt

=
Q̇air−goods

mgoodsCp,goods
, (8)

dTair
dt

=
Q̇amb−air − Q̇air−goods − Q̇e

mairCp,air
, (9)

Q̇air−goods =UAair−goods(Tair − Tgoods) (10)

where UAair−goods is the overall heat transfer coefficient
between the air and the goods, mair is the mass of the air,
mgoods is the mass of goods, Cp,air is the specific heat of
the air, and Cp,goods is the specific heat of the goods. These
equations can be formulated in state space as[

Ṫair
Ṫgoods

]
=

[ −UAair−goods

mairCp,air

UAair−goods

mairCp,air
UAair−goods

mgoodsCp,goods

−UAair−goods

mgoodsCp,goods

] [
Tair
Tgoods

]
+

[ −1
mairCp,air

0

]
Q̇e +

[ 1
mairCp,air

0

]
Q̇amb−air. (11)

For simplicity the load Q̇amb−air is assumed to be state
independent. However, in a more elaborate model it should
be a function of the temperature difference between the
ambient and the air. Table I shows the system and control

TABLE I
PARAMETER VALUES USED IN THERMAL STORAGE EXAMPLE.

System par. Value Ctrl par. Value
UAair−goods 300 (W

K
) ∆ 4 (hours)

mair 50 (kg) k1
1
4

(-)
Cp,air 1 ( kJ

kgK
) k2

1
12

(-)
mgoods 500 (kg) ωF 8.7e−4 ( rad

s
)

Cp,goods 4 ( kJ
kgK

) ˆ̇Qe 0.99Q̇e (W )

Q̇e 2850 (W ) tend 9 (hours)
Q̇

e
0 (W ) ym -3 (◦C)

y
m

-2 (◦C)

parameters used in the simulation. The filter F is imple-
mented as a zero phase Butterworth low pass filter with the
Matlab commands butter and filtfilt and a cutoff
frequency ωF = 8.7e−4 rads−1. This gives an estimate of
the required cooling ˆ̇Qe and the precool period is increased
when ˆ̇Qe > 0.99Q̇e and decreased otherwise.

Fig. 3 shows the simulation results with a max load of
3000 W. Without precooling the temperature increases to
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Fig. 3. Heat transfer rates and goods temperature with and without precool
algorithm applied. Limit is the upper bound on the controllable input.

6.6◦C because of the saturation kicking in at 9 in the morn-
ing every day. With precooling the maximum temperature is
lowered to 4.5◦C after four days, which is the time it takes to
reach the maximum allowed precool period with the chosen
learning gain k1.

Fig. 4 shows the simulation results with a max load of
2800 W. The algorithm shifts between ∆ = {0, 60, 120,
100, 80, 60, 120, 100, 80, 60, ...} minutes of precool time in
this second simulation with smaller saturation. The precool
time that eliminates saturation in the simulation is approxi-
mately 70 minutes.

B. Convergence of ∆ in the Trial Domain

Fig. 4 showed that the precool algorithm will cycle be-
tween levels of precool time. These levels are determined by
k1 and k2. If we decrease the learning and de-learning rates
then the jump between levels will be smaller, but we will
also converge slower. Let the repeatability between trials be
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perfect and ∆∗ be the smallest possible precool time that
avoids saturation, i.e. ∆∗ = inf

{
∆ : ||û||∞ < û

}
, then the

precool time ∆j at trial j will converge to the interval

∆∗ − k2∆ <∆j ≤ ∆∗ + k1∆, (12)

when ∆∗ − k2∆ ≥ 0 and ∆∗ + k1∆ ≤ ∆. If ∆∗ ≤ 0
then ∆j → 0 (no precooling) and if ∆∗ > ∆ then ∆j → ∆
(max precooling). Furthermore, increasing k1 and decreasing
k2 improves robustness towards hot days. On the other hand,
decreasing k1 and increasing k2 optimizes the cost of running
the system (assuming that no precool is cheapest).

III. SUPERMARKET REFRIGERATION SYSTEM MODEL
AND CONTROL

A supermarket refrigeration system model with control is
presented in this section and illustrated in Fig. 5. The purpose
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Fig. 5. Supermarket refrigeration system with multiple fridge display cases,
a cold storage room, and additional mass flow from freezers ṁfreeze.
The compressor rack controls the suction pressure Psuc, the condenser fan
controls the condenser pressure Pc, and finally the temperature of the display
cases are controlled with hysteresis control and learning based adaption of
the thresholds.

of this model is to provide a realistic simulation to be able
to evaluate the performance of the precool algorithm and

compare it with other control strategies under the same con-
ditions, which would not be possible on a real system. The
first version of the model was derived in [15] and has been
slightly modified in [16], [17], [18]. The model presented in
this paper is again a slightly modified version that also takes
into account the effect of changes in outside air temperature
and corresponding condenser pressure, which can saturate
the system on hot days due to higher required compressor
work. The model is implemented in Matlab Simulink R© and
available for download at www.es.aau.dk/projects/
refrigeration/simulation-tools.

A. Simplified Supermarket Refrigeration System model with
Display Cases

The display cases are assumed to be of the open shelf type
with night covers as shown in Fig. 6. A lumped temperature
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Fig. 6. Model of an open shelf type display case with night cover.

model is used and the constant circulation of air provides the
heat transfer rates between the air and the evaporator wall
Q̇air−wall and the air and the goods Q̇air−goods. Further-
more, heat is transferred between the evaporator wall and the
refrigerant Q̇e and between the ambient air and the air inside
the display case Q̇amb−air. Heat transfer from infiltration of
air is assumed to be included in Q̇amb−air by choosing a
higher overall heat transfer coefficient.

The differential equations for the temperatures are

dTgoods
dt

=
Q̇air−goods

mgoodsCp,goods
, (13)

dTwall
dt

=
Q̇air−wall − Q̇e
mwallCp,wall

, (14)

dTair
dt

=
Q̇amb−air − Q̇air−goods − Q̇air−wall

mairCp,air
, (15)

where m and Cp denotes mass and specific heat capacity,



respectively. The heat transfer rates are

Q̇air−goods =UAair−goods(Tair − Tgoods), (16)

Q̇air−wall =UAair−wall(Tair − Twall), (17)

Q̇e =UAwall−r(Twall − Te), (18)

Q̇amb−air =UAamb−air(Tamb − Tair). (19)

The heat transfer coefficient between the wall and the
refrigerant UAwall−r is a function of the amount of liquid
refrigerant in the evaporator mr given as

UAwall−r =UAwall−r
mr

mr
. (20)

where UAwall−r is the maximum value of the heat transfer
coefficient when the evaporator is fully filled (it is assumed
that the superheat is controlled separately and maintained at
an average value of Tsh = 10K) and mr is the maximum
mass of the liquid refrigerant. The rate of change of the mass
of the refrigerant mr is

dmr

dt
=


mr−mr

τfill
if valve = 1,

− Q̇e

∆hlg
if valve = 0 and mr > 0,

0 otherwise.

(21)

where ∆hlg is the specific latent heat of the remaining
refrigerant, τfill is the time it takes to fill the evaporator
from empty, and valve is the control signal to the valve
(either on or off).

The flow of refrigerant out of the evaporator of display
case i into the suction manifold is approximated by

ṁi =
Q̇e

∆hlg
. (22)

Since the suction pressure Psuc should be a state in the
model to enable suction pressure control, we define the time
derivative of the suction pressure as

dPsuc
dt

=

∑n
i=1 ṁi + ṁfreeze − V̇compρsuc

Vsuc
dρsuc

dPsuc

, (23)

where ṁfreeze is additional unmodeled mass flow from
freezers, V̇comp is the volume flow out of the suction mani-
fold due to the compressor work, Vsuc is the volume of the
manifold, and ρsuc is the density in the manifold.

The compressor power Ẇcomp is approximated by

Ẇcomp =
Ccap
100

Ẇcomp,max =
V̇compρsuc (his − hoe)

η
(24)

where Ccap is the requested capacity in %, Ẇcomp,max is
the power consumed when the compressor runs at maximum
capacity, his is the specific enthalpy out of the compressor
with isentropic efficiency, hoe is the specific enthalpy out
of the evaporator, and η is the efficiency from an isentropic
process to the electrical power consumed by the compressor.

In order to solve the above equations a set of refrigerant
specific relations are needed. They can be computed using
e.g. the software RefEqns [19]. However, (25)-(29) are poly-
nomial and regression fits to the tables provided in RefEqns

for the refrigerant R404A (all-round refrigerant good for both
fridge and freezer) and the toolbox is therefore not needed.

ρsuc =4.669Psuc + 0.3672, (25)
dρsuc
dPsuc

=4.669, (26)

his =(3.6436− 0.00968Psuc + 0.0343Pc

− 0.0000495PsucPc + 0.000373P 2
suc

− 0.000629P 2
c )105, (27)

hoe =(0.000332P 3
suc − 0.00853P 2

suc + 0.0953Psuc

+ 3.3467)105 + ∆hTsh
, (28)

∆hTsh
=9 (Tsh = 10K assumption),

Pc =0.00307T 2
c + 0.1839Tc + 6.0826, (29)

Tc =Ta,out + 5.

The condenser unit and the condenser control dynamics are
assumed stable and fast compared to the rest. They are
therefore approximated by the static relation given in (29),
where the condensation pressure Pc is held at a reference
corresponding to a temperature Tc which is 5◦C above the
outside air temperature Ta,out.

B. On/Off Hysteresis Based Temperature Control of Refrig-
erated Display Cases

The temperature in each display case is controlled with an
on/off valve and the relay feedback control is given as

valve(k) =

 1 if Tair(k) > T air,
0 if Tair(k) < T air,

valve(k − 1) otherwise,
(30)

where T air and T air are the upper and lower thresholds for
the temperature of the air in the display case.

C. Compressor Rack Control

The suction pressure typically track a reference pressure
Psuc,ref with a PI controller on the compressor rack. The
control equations with anti-windup and dead-band DB are
provided in (31)-(36) (see also [16]).

e(k) =Psuc,ref − Psuc, (31)

eDB(k) =

{
e(k) if |e(k)| > DB,

0 otherwise, (32)

I(k) =I(k − 1) +
Kp,compts
τi,comp

eDB(k) + w(k), (33)

Ccap(k) =Kp,compeDB(k) + I(k), (34)

Ccap,s(k) =

 Ccap if Ccap(k) > Ccap,
Ccap if Ccap(k) < Ccap,
Ccap(k) otherwise,

(35)

w(k + 1) =
ts

τi,comp
(Ccap,s(k)− Ccap(k)). (36)

D. Weather Data

A yearlong weather data file for Phoenix, Arizona with 1
minute samples is used to simulate real outdoor temperatures.
Fig. 7 shows the seasonal change in temperature.
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Fig. 7. Outdoor air temperature Tair,out from 1st of January to 31st of
December in Phoenix Arizona based on typical meteorological year (TMY)
2 weather data.

E. Foodstuff Storage Potential Considerations

Refrigerated foodstuff has different thermal storage poten-
tial mainly determined by the overall heat transfer coefficient,
total surface area, mass, and specific heat capacity of the
product. Another important quantity is the Biot number,
which indicates if a lumped or nonlumped temperature
analysis is appropriate. The Biot number B is the ratio
of internal temperature difference required to move energy
within a product to temperature difference required at the
surface to add or remove the same energy given as [20]

B =
U V
A

k
, (37)

where U is the surface heat transfer coefficient, V is the
volume, A is the surface area exposed to convective heat
transfer, and k is the products thermal conductivity. A small
number (< 0.1) means that the temperature will not vary
significantly in space inside the body [20]. However, a
nonlumped analysis would be more appropriate if it is large.

Biot numbers for different foodstuffs are provided based
on experiments in [8]. Even though they in general are above
0.1, a lumped analysis is often performed, because it does not
require solving complex multidimensional partial differential
equations. The lumped approach is also taken here. However,
it is possible to activate the entire mass of the foodstuff
during precooling and the system also gradually becomes
more saturated, due to increasing outside temperature, which
means that the average air temperature in the display case
only changes slowly over several hours.

Due to the night cover in open shelf type display cases
there will be a large increase in the overall heat transfer
coefficient between the ambient air and the air inside the dis-
play case during the opening hours of the supermarket. This
is also when there is customer activity and it gives a high
increase in heat load and will be modeled in the simulations
conducted in Section V. Furthermore, in order to evaluate
the thermal storage potential of different foodstuffs, different
combinations of mass times specific heat mCp and overall
heat transfer coefficient times surface area UA are used in
the simulated display cases. These parameters determine the
main time constant for the foodstuff temperature and a step
in air temperature is made from 3.5◦C to 1◦C using (13)
to determine how long it takes to precool the foodstuff from

the initial value to 90% of the step size. The time is 166 min
for Display Case 1, 250 min for Display Case 2, 500 min
for Display Case 3, and 300 min for the cold storage room.

IV. PRECOOL ALGORITHM TUNING GUIDELINE FOR
REFRIGERATION SYSTEMS

Learning gains k1 and k2: These are tuning parameters
with a value between 0 and 1 and they are also discussed
in Subsection II-B. The choice should be relative to how
changeable the weather is expected to be. The safest option
is k1 = 1 and k2 small. However, this will also result in
more precooling than necessary. Simulations have shown that
k1 = 1

4 and k2 = 1
12 are suitable with the representative

weather data presented in Subsection III-D.
Filter parameters ωF and ˆvalve: The low pass filter that

converts the on/off signal to the valve to a duty cycle (utilized
capacity) will depend on the switching times. The switching
period usually lie somewhere between 5-15 minutes for
display cases and the cutoff frequency ωF = 8.7e−4 rad

s
is chosen, which correspond to a frequency period of about
two hours. The threshold duty cycle ˆvalve is set to 0.99,
which means that if the utilized capacity of the display case
reaches 99% of maximum we will start to precool.

Max precool time ∆: This value is individual for each
display case and should correspond to the time it takes to
cool the foodstuff from an initial temperature using normal
temperature thresholds to the steady state temperature using
precool thresholds, see Subsection III-E. It can either be
chosen based on experience or experiments. In cases where
the foodstuff temperature is not measured, a step down in
the air temperature thresholds can reveal the time constant of
the foodstuff. This can be achieved by monitoring how long
it takes the valve duty cycle to settle again after the step,
which happens when the foodstuff temperature has settled
(longer precool will not store any additional thermal energy).
The experiment could potentially be performed automatically
during the night or once just after the controller is installed.

Precool end time tend: This could be set manually based
on supermarket opening hours, energy tariff, experience, etc.
It can also be set and updated automatically based on the
estimated duty cycle output from the filter F , which indicates
when the system went into saturation on the previous day.
The precooling should take place before this saturation.
In the simulation results presented in Section V, tend is
determined as the time when the longest saturation period
started the day before. The low thresholds in the precool
period are also extended beyond tend to include the saturation
period. This ensures that the stored thermal energy is not lost
immediately but kept for as long as possible.

V. SIMULATION RESULTS

Table II shows the parameter values used in the simulation.
The compressor size is dimensioned so that the foodstuff
temperature stays below 5◦C the whole year with the repre-
sentative weather data, if the thresholds are constantly kept
on low settings. No precool would result in some days where
the foodstuff goes above 5◦C, which is used as a benchmark



and precooling all the time is expensive energy wise. The
precool algorithm is therefore compared with these two
extremes in terms of energy consumption and temperature.

TABLE II
PARAMETER VALUES USED IN SUPERMARKET SYSTEM SIMULATION.

SUBSCRIPT 1 − 3 DENOTES DISPLAY CASES AND cs IS COLD STORAGE.

System par. Value Ctrl par. Value
UAamb−air,l 75 (W

K
) ∆1 166+60 (min)

UAamb−air,h 150 (W
K

) ∆2 250+60 (min)
UAamb−air,cs 110 (W

K
) ∆3 500+60 (min)

UAair−goods,1 450 (W
K

) ∆cs 300+60 (min)
UAair−goods,2 300 (W

K
) ωF 8.7e−4 ( rad

s
)

UAair−goods,3 150 (W
K

) ˆvalve 0.99 (−)
UAair−goods,cs 600 (W

K
) k1

1
4

(−)
UAair−wall 500 (W

K
) k2

1
12

(−)
UAwall−r 900 (W

K
) Tm -3 (◦C)

Cp,goods 3917 ( J
kgK

) Tm -2 (◦C)
Cp,air 1000 ( J

kgK
) T o 5 (◦C)

Cp,wall 385 ( J
kgK

) T o 2 (◦C)
mwall 180 (kg) Psuc,ref,l 4.4 (bar)
mair,1−3 50 (kg) Psuc,ref,h 4.1 (bar)
mair,cs 125 (kg) DB 0.1 (bar)
mr 0.6 (kg) Kp -10 (−)

mgoods,1−3 500 (kg) Ti 220 (s)
mgoods,cs 1200 (kg) ts,comp 60 (s)
τfill 40 (s) ts,ilc 5 (s)
Tamb 22 (◦C)
η 0.5 (−)

Ẇ comp 7985 (W )
ṁfreeze 0.05 ( kg

s
)

The heat transfer coefficient UAamb−air,l is used for
the display cases when the night cover is on when the
supermarket is closed and UAamb−air,h is used when the
night cover is off in the opening hours from 9 am to 9 pm.
A variation with a factor of two is used and this also includes
the extra load due to exchange of foodstuff during the day.
Zero mean Gaussian noise is also added to the simulation.
The standard deviation for the noise added to UAamb−air,l,
UAamb−air,h, and UAamb−air,cs during the opening hours
is 5 and 1 during closed hours. Noise is also added to the
mass flow from freezers ṁfreeze with a standard deviation of
0.0032. It is assumed that the supermarket is open the same
hours all week and all year and that the customer load is
even during the day. Individual learning controllers could be
activated for each day or maybe for weekdays and weekends,
if some days look different. Finally, note that one hour is
added to ∆ to account for uncertainties and the sample time
for the precool algorithm ts,ilc is set to 5 seconds.

Fig. 8 shows the simulation result with and without
precool algorithm activated for four days during the summer
period out of the 365 day long simulation. The compresser
capacity Ccap saturates during the supermarket opening
hours. This results in an increase in the suction pressure,
which gets worse as the outside temperature increases. The
valve duty cycle also saturates and the air and foodstuff
temperature goes up. The foodstuff temperature goes beyond
5◦C during day 177 and 178, if precooling is not performed.

Fig. 9 shows the precool time for each day during the
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Fig. 8. Compressor capacity, suction pressure, valve duty cycle (approxi-
mated), air temperature (filtered), and foodstuff temperature in Display Case
2 with and without precool algorithm applied for selected days.

simulation with the precool algorithm. Precool is mostly
activated during the hot summer period as expected and goes
to ∆ for each of the storages. By defining the accumulated
errors in temperature constraint satisfaction γcon as

γcon =

n∑
i=1

εTi
ts (38)

εTi
=

Ti − T i if Ti > T i
T i − Ti if Ti < T i

0 otherwise,

we get a measure of how much the constraints 0 and
5◦C for the foodstuff are violated during the simulations.
Furthermore, the energy charge is calculated based on a
2010 time-of-use tariff for Phoenix, Arizona [21]. Table III
sums up the results. The temperature threshold is violated in
Display Case 1 in five days and in Display Case 2 in four
days when precooling is not used. The cost increase from
no precool to constant precool is 4.24% and 1.21% from no
precool to variable precool, which shows the advantage of
the precool algorithm. Even though the precool algorithm
costs 1.21% more to run, it also approximately maintains a
0.3◦C lower average foodstuff temperature, which will result
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Fig. 9. Precool time in hours for each day in the simulation with precool.

TABLE III
SUMMARY OF CASE STUDY RESULTS FOR SIMULATION FROM 1ST OF

JANUARY TO THE 31ST OF DECEMBER.

Quantity No Variable Constant
precool precool precool

γcon (Tgoods,1) 7481 0 0
γcon (Tgoods,2) 3679 0 0
γcon (Tgoods,3) 0 0 0
γcon (Tgoods,cs) 0 0 0

Avg. Tgoods,1 (◦C) 3.44 3.12 1.33
Avg. Tgoods,2 (◦C) 3.35 2.97 1.31
Avg. Tgoods,3 (◦C) 3.24 2.68 1.31
Avg. Tgoods,3 (◦C) 3.26 2.93 0.88

Tgoods,1 above lim. (days) 5 0 0
Tgoods,2 above lim. (days) 4 0 0
Tgoods,3 above lim. (days) 0 0 0
Tgoods,cs above lim. (days) 0 0 0

Total energy (kWh) 54742 55401 57235
Energy charge (U.S. $) 3089 3126 3220

in a small decrease in bacteria growth.

VI. CONCLUSION

Foodstuff has thermal storage capabilities. A learning
based algorithm has been proposed that automatically starts
to precool the foodstuff at the appropriate time if the refriger-
ation system becomes saturated during hot days or because
of component performance degradation and can thus help
prevent deterioration of foodstuff. A model of a supermarket
refrigeration system with multiple display cases was derived
and simulations for an entire year showed that precooling
could prevent violation of an upper temperature threshold
during the hottest days. The cost of running the algorithm
was also less than if precool was applied all the time.

The learning based algorithm does not require any ad-
ditional hardware nor a system model. Furthermore, the
experience based approach ensures that the precool control
adapts to load changes, e.g. due to the seasonal temperature
differences and to system changes, e.g. component wear.
This means that it can easily be plugged into existing
systems and thus provides an interesting alternative to model
based approaches such as MPC and precooling based on
fixed schedules. The method could potentially be used in
other applications as well such as warehouses, refrigerated
transports, freezers, ice production, building air conditioning,
etc. The only requirement is that there is enough repeatability
in the load pattern to allow the learning to converge. The

precool might not last all day, but it is considerably better
than doing nothing.
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