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Abstract

This paper presents a gradient based topology optimiza-
tion method for Discrete Material and Thickness Opti-
mization of laminated composite structures, labelled the
DMTO method. The capabilities of the proposed method
are demonstrated on mass minimization, subject to con-
straints on the structural criteria; buckling load factors,
eigenfrequencies, and limited displacements. Further-
more, common design guidelines or rules, referred to as
manufacturing constraints, are included explicitly in the
optimization problem as series of linear inequalities. The
material selection and thickness variation are optimized
simultaneously through interpolation functions with pe-
nalization. Numerical results for several parameteriza-
tions of a finite element model of a generic main spar from
a wind turbine blade are presented. The different param-
eterizations represent different levels of complexity with
respect to manufacturability. The results will thus give
insight into the relation between potential weight saving
and design complexity. The results show that the DMTO
method is capable of solving the problems robustly with
only few intermediate valued design variables.

1 Introduction

Today, laminated composites are used in a wide variety of
weight critical products, ranging from recreational items
like badminton rackets and mountain bikes, to large in-
dustrial structures such as airplanes and wind turbines.
Designing such structures is not a straightforward task
as it requires considerations regarding e.g., available ma-
terials, demands for performance, manufacturing meth-
ods, and common design guidelines or rules, referred to
as manufacturing constraints. As a consequence of these
criteria, the design process is typically iterative and time
consuming. From an engineering perspective, one way
of systematically addressing such a design process is to
use a suitable optimization method. In this paper, we
present a gradient based topology optimization method
for mass minimization of laminated composite structures

by the simultaneous determination of material distribution
and thickness variation. The method is labelled Discrete
Material and Thickness Optimization (DMTO), being an
immediate extension of the original DMO method by
Stegmann and Lund (2005). Mass minimization reduces
material expenses and issues related to the net weight of
the structure. Mass is minimized subject to constraints
on the following structural criteria; buckling load fac-
tors, eigenfrequencies, and limited displacements. Fur-
thermore, series of so-called manufacturing constraints
(MC’s) are considered as a means to fulfill experience
based design guidelines or rules for laminated composite
structures.

As the DMTO name suggests, the laminate thickness
should preferably add up to a discrete number of plies
with predefined thicknesses. The number of plies must
naturally be able to vary throughout the structure to facil-
itate mass reduction. The material selection is conducted
among a discrete set of material candidates, and should
preferably result in a distinct choice rather than a mixture
between two or more candidates. Intermediate valued,
continuous variables, are penalized as the means to ob-
tain the preferred discreteness. This classical density ap-
proach is elaborated in the following section. The candi-
dates may consist of any material, as it is merely required
to input the effective constitutive properties and density.
It is thus possible to choose among the same orthotropic
material with different fiber orientations, biax-angle fiber
materials, foam and wood materials, or even customized
Non Crimp Fabrics (NCF’s) and prepregs. This selec-
tion among a discrete set of candidates resembles the cur-
rent production technology of several laminated compos-
ite structures. In the wind turbine industry, the material
candidates are typically placed, rolled out, or stacked in
a mold where they are processed using vacuum infusing
techniques.

Material optimization on basis of a discrete set of
candidates for structures with constant laminate thick-
ness has attracted much attention in the last decades.
Most contributions on this topic have been summarized
in Ghiasi et al. (2009). In the original DMO method, the
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selection of a distinct material candidate was achieved
by balancing the different design variables such that an
increase in one would automatically decrease remaining
ones, see Lund and Stegmann (2005). More recently,
Hvejsel et al. (2011) considered alternative strategies for
discrete multi-material stiffness optimization and pro-
posed series of linear equality constraints to prevent the
total sum of the candidate design variables from exceed-
ing unity within each design domain. In order to ob-
tain discrete designs, i.e., the distinct selection of exactly
one of the candidates, the authors furthermore proposed a
quadratic penalty constraint to gradually force the design
variables to their discrete bounds. As an alternative to this
non-linear penalty constraint, Hvejsel and Lund (2011)
formulated multi-material variations of the SIMP and
RAMP interpolation schemes, see Bendsøe (1989) and
Stolpe and Svanberg (2001), respectively. As an alterna-
tive to the DMO schemes, Bruyneel (2011) introduced the
Shape Functions with Penalization (SFP) scheme. The
SFP scheme is based on the shape functions of a quad-
rangular first order finite element, using only two natu-
ral coordinates to interpolate between four material can-
didates. The method was later extended to also include
three and eight node elements, see Bruyneel et al. (2011).
Gao et al. (2012) proposed a Bi-valued Coding Parame-
terization (BCP) scheme which distinguishes itself from
SFP schemes in that it does not have a limit on the number
of applied material candidates. SFP and BCP schemes re-
duce the number of required design variables compared to
DMO schemes. We finally mention Kennedy and Martins
(2013) that proposed a series of non-linear equality con-
straints, which were added as a penalty term to the ob-
jective function, thereby penalizing intermediate valued
design variables. The above mentioned methods are ca-
pable of optimizing the material distribution throughout a
laminated composite with constant total thickness. Thus,
allowing for determining either an optimum stacking se-
quence or a sandwich design throughout the predefined
and fixed number of layers. Most methods have tradition-
ally been demonstrated on mass constrained minimization
of compliance. However, recent advances within the field
have likewise been demonstrated on eigenfrequency prob-
lems, see e.g., Lund and Stegmann (2005) and Niu et al.
(2010), and also problems considering buckling load fac-
tors have been attracting more attention, see e.g., Lund
(2009) and Kennedy and Martins (2013).

Literature concerning optimization of multilayered
laminated composite structures with variable total thick-
ness is more limited. Ghiasi et al. (2010) reviews work on
variable stiffness designs, with only few references con-
cerning variable thickness. Manne and Tsai (1998) uti-
lized plydrop tapering for thickness optimization of sym-
metric layups to avoid warping. Toropov et al. (2005) ap-
plied a Genetic Algorithm (GA) to minimize the mass of a
monolithic composite wing rib model using discrete fiber
orientations and the number of plies as design variables.

Most approaches on variable laminate thickness optimiza-
tion divide the optimization process into multiple phases
where thickness and material determination are handled
separately. Liu et al. (2011) presented a two phase or bi-
level method for minimizing the mass of composite wing
panels subject to strain constraints. In the first phase, the
number of{−45◦, 0◦, 45◦, 90◦} plies was determined, and
in the second phase a GA was utilized to shuffle the place-
ment of plies in order to accommodate common design
rules used in the aerospace industry. The approach ap-
plied by Altair Engineering in the commercial software
OptiStruct relies on three distinct phases, see Zhou et al.
(2011) and Zhou and Fleury (2012). Phase I concerns
the conceptual ply layout; Phase II determines the spe-
cific number of plies; Phase III determines the final stack-
ing sequence of the laminate, taking into account perfor-
mance demands and the previously mentioned manufac-
turing constraints. The method proposed in this paper
considers thickness and material determination simulta-
neously, explicitly taking into account performance de-
mands and manufacturing constraints throughout the pro-
cess.

The addition of manufacturing constraints in laminate
design optimization has attracted more attention as the
optimization methods have evolved. Manufacturing con-
straints represent common design guidelines or rules for-
mulated to e.g., reduce the risk of local failure in the struc-
ture. These failure modes are typically associated with
out-of-plane stresses that are not captured with a suffi-
cient level of detail when using standard shell elements
in a finite element context. In order to capture these ef-
fects, a 3D-solid finite element model could be applied.
Such detailed modeling is, however, seldom applied in
optimization frameworks, given a substantial computa-
tional time. Hence, manufacturing constraints serve as
an effective way of implicitly considering these effects,
and thus obtain designs that require less time for man-
ual post-processing. Generally, the constraints typically
found in the literature have their origins in the aerospace
industry, see Kassapoglou (2010). Manufacturing con-
straints can furthermore be used to limit the complexity of
the optimized design, thus making it possible to achieve
a higher degree of manufacturability. In this work, four
common manufacturing constraints, denoted MC1-MC4,
introduced in the previous work by Sørensen and Lund
(2013), are considered. MC1 is not an explicit constraint
as it is related to the design parameterization. In short,
MC1 concerns the possible arrangement or grouping of
small finite element domains into larger domains, ade-
quate for the allowable variation in both candidate selec-
tion and thickness. MC2 explicitly limits the thickness
variation rate between adjacent design regions to reduce
the risk of delamination. Costin and Wang (1993) formu-
lated a similar constraint in the case where the individ-
ual laminae thicknesses are applied as continuous design
variables. MC3 limits the number of identical contiguous
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layers through the thickness to reduce the risk of matrix
cracking. This type of constraint has been investigated
by e.g., Le Riche and Haftka (1993), Liu et al. (1999),
Toropov et al. (2005), and Liu et al. (2011) in the con-
text of stacking sequence optimization with GA’s. Also,
Bruyneel et al. (2012) included this constraint for discrete
material optimization with constant thickness. MC4 pre-
vents intermediate void from appearing through the thick-
ness of the laminate. MC1-MC4 are all formulated as lin-
ear constraints, which makes them efficient to fulfill for
the optimizer. The constraints are elaborated in Section
2.3.

Several other manufacturing constraints occur in the
literature such as requirements for e.g., symmetric and
balanced laminates, minimum proportion or presence
of candidates, and so-called adjacency constraints or
blending rules to limit the in-plane change in fiber
orientation, see e.g., Seresta et al. (2007), Kassapoglou
(2010), Zein et al. (2012), Bruyneel et al. (2012), and
Kennedy and Martins (2013). In spite of the clear rele-
vance of the above mentioned manufacturing constraints,
these particular constraints are not explicitly considered
in the DMTO method to be presented here. The for-
mulation and inclusion of such constraints are hence left
for future work on the DMTO method. Other poten-
tial manufacturing constraints which would be of inter-
est would be a type of sandwich constraint, ensuring that
core material is always enclosed by layers of fiber ma-
terial. The necessity of one such sandwich constraint
is discussed in Section 5. As mentioned, manufactur-
ing constraints are mainly included to reduce the risk
of out-of-plane failure modes. In-plane failure modes
could potentially be monitored by including local strength
criteria such as e.g., max stress and max strain con-
straints or other criteria such as the Tsai-Wu failure cri-
terion, see Tsai and Wu (1971), Kim et al. (1994), and
Groenwold and Haftka (2006). In the context of topology
optimization with isotropic materials, stress constraints
have been investigated by Duysinx and Sigmund (1998)
and more recently by Le et al. (2010), Parı́s et al. (2010),
and Bruggi and Duysinx (2012). The formulation and in-
clusion of local constraints within gradient based, multi-
material topology optimization is currently being investi-
gated by e.g., Lund et al. (2013), but is not yet a mature
technology. Despite of the obvious relevance, local crite-
ria are not considered here but left for future work.

The method proposed in this work is a continuation of
the work by Sørensen and Lund (2013) who presented a
novel method for simultaneous determination of material
distribution and thickness variation of multilayered lam-
inated composite structures. The preceding method was
demonstrated on simply parameterized monolithic lam-
inated plates with various boundary conditions, where
the objective was to minimize compliance subject to a
mass/volume constraint and manufacturing constraints
MC1-MC4. Compared to the preceding work, we are now

considering multi-material topology optimization. Like-
wise, we change focus from minimum compliance op-
timization to minimizing mass subject to the following
structural performance constraints; buckling load factors,
eigenfrequencies, and limited displacements. Mass mini-
mization is viewed as an industrially more relevant prob-
lem, as the mass can be directly related to the cost of
the final product. Together with the manufacturing con-
straints MC1-MC4, this is altogether constituting a far
more difficult problem. The additional difficulties arise
from the presence of the non-linear and non-convex struc-
tural constraint functions. In order to manage these dif-
ficulties, we present a new procedure for obtaining near
discrete design. The capabilities of the DMTO approach
are demonstrated on several parameterizations of a finite
element model of a generic main spar from a wind turbine
blade. The different parameterizations show the flexibility
of the proposed method, but also represent different lev-
els of complexity with respect to manufacturability. The
results will thus give insight into the relation between po-
tential weight saving and design complexity.

It is noticed that DMTO results should not be viewed
as final designs, ready to manufacture, as the final design
may still need some amount of manual post-processing
despite the inclusion of certain manufacturing constraints.
There are several reasons for this, of which one is related
to the assumption that adjacent layers with different fiber
orientations are perfectly bonded. These regions are typ-
ically manufactured by introducing a certain amount of
in-plane overlap between the two fiber materials and re-
quire detailed analysis. Likewise, the optimized structure
may be part of a larger assembly of other sub-structures.
Hence, jointing and other detailed considerations with re-
gards to assembly have to be done post to the optimization
procedure. Thus, the optimized results should rather serve
as a vital source of inspiration for thickness variation and
stacking sequences throughout the entire structure, tak-
ing into account the complexity of elastic couplings and
demands on structural performance as well as manufac-
turing constraints.

The paper is organized as follows. Section 2 explains
the DMTO method in detail, covering areas regarding
the design parameterization, the applied density approach,
the considered manufacturing constraints MC1-MC4, the
mathematical formulation including sensitivity analysis,
the Sequential Linear Programming (SLP) approach, and
a simple rounding technique to finalize the optimized re-
sults. Section 3 introduces several numerical examples
concerning a finite element model of a generic main spar
from a wind turbine blade. Numerical results are pre-
sented in Section 4 and discussed in Section 5. The paper
is finalized with conclusions in Section 6.
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Figure 1: The design parameterization takes place in 4 steps. Step 1 concerns the finite element discretization. Step
2 concerns the arrangement into sub-domains,Ωdl. Step 3 and Step 4 concern the parameterizations into geometry
domains,ρi, and candidate domains,x jc, respectively

2 The DMTO method

2.1 Design parameterization

Out of generality, this work clearly distinguishes between
the initial finite element discretization and following ar-
rangement into domains limiting the complexity of the
geometric outcome, and domains limiting the complex-
ity of the possible candidate distribution. As the results in
Section 4 will demonstrate, the design parameterization
significantly affects both performance and complexity of
the optimized designs. The designer must from the very
beginning keep in mind that the design parameterization
should reflect adequate limits of complexity in manufac-
turing, thereby making it possible to realize the optimized
design given an acceptable level of post-processing. The
design parameterization takes place in four steps as ex-
emplified in Fig. 1. Step 1 of Fig. 1 concerns the finite
element (FE) discretization into an appropriate number of
Equivalent Single Layer (ESL) shell elements all with an
identical number of layers of uniform thickness. In the
figure, five elements are shown, each having three lay-
ers of uniform thickness. The appropriate number of ele-
ments may be determined based on a convergence study,
considering all optimization criteria. The necessary finite
element discretization may, however, often be too fine for
the acceptable level of the thickness variation and tran-
sitions in fiber orientation or different material selection
that is about to take place. This problem is considered

in Step 2, where the designer must settle on a sufficiently
detailed level for such variations and transitions, common
for all layers.

Hence, Step 2 concerns the arrangement of finite ele-
ments into a number of sub-domainsΩdl, which are iden-
tically shaped for all layers covered by the sub-domain,
where indicesd = 1, 2, . . . , nd andl = 1, 2, . . . , nl denote
sub-domain number and layer number, respectively. Con-
sequently, the sub-domains are coincident with the bound-
aries of at least one of the finite elements and do not over-
lap each other. The sub-domains constitute the building
blocks for the subsequent parameterization into domains
that are directly associated with the design variables. For
this illustrative example, finite elements 1 and 2 have been
collapsed into the sub-domaind = 1, and the remaining
elements have been assigned as sub-domainsd = {2, 3, 4}.

Step 3 concerns the adequate parameterization for the
laminate thickness variation. For this purpose we intro-
duce the so-called topology variablesρi ∈ [0, 1] with the
desirable limit value interpretation

ρi =















1 if there is material in geometry domaini

0 otherwise
(1)

where the indexi = 1, 2, . . . , ni denotes the so-called ge-
ometry domain number. The geometry domains are co-
incident with the boundaries of at least one of the sub-
domains. The geometry domains may principally overlap
each other from layer to layer as seen in Fig. 1; it is up
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to the manufacturing constraints to ensure e.g., preven-
tion of intermediate void. Application of a single topol-
ogy variable for the bottom layerl = 1 ensures a constant
thickness throughout governed by the value ofρ1.

In Step 4, the acceptable level for jointing adjacent fiber
mats with different orientations, different biax-angle plies,
NCF’s, or even different materials, is defined. For this
purpose we introduce the so-called candidate variables
x jc ∈ [0, 1] with the desirable limit value interpretation

x jc =















1 if cand.c is chosen in cand. domainj

0 otherwise
(2)

where index j = 1, 2, . . . , n j denotes the so-called can-
didate domain number and indexc = 1, 2, . . . , nc de-
notes the candidate number. A candidatec represents a
unique set of material properties for the constitutive ten-
sor Ec ∈ R

6×6. Hence, some candidates may represent
differently oriented UniDirectional (UD) fiber mats, while
other candidates may represent biax-angle plies, NCF’s,
or isotropic materials such as a lightweight foam in case
of designing sandwich structures. Hence, the method sup-
ports any set of physical constitutive properties. Similarto
the geometry domainsρi, the candidate domainsx jc may
likewise overlap each other from layer to layer as seen in
Fig. 1.

Figure 2 illustrates a potential outcome of the consid-
ered example where the constitutive properties charac-
terizing a Glass Fiber Reinforced Polymer (GFRP)±45◦

biax-angle ply represents the material candidatec = 1 and
henceE1, an isotropic foam material represents candidate
c = 2 (E2), and a UD GFRP oriented at−45◦ represents
candidatec = 3 (E3). The design parameterization of Fig.
1 and the outcome illustrated in Fig. 2 are used to exem-
plify the formulation and effect of certain manufacturing
constraints in succeeding sections. Presence of exactly
one candidate must naturally ensure absence of remain-
ing ones. In this work we ensure this coherence explicitly
through the series of linear equality constraints

nc
∑

c=1

x jc = 1 ∀ j (3)

It is noticed that (3) is of no importance for obtaining the
desirable 0/1 designs; this is left for penalization of inter-
mediate values through the density approach.

2.2 Density approach

The constraints (3) in combination with continuous can-
didate variables introduce the risk of non-manufacturable,
non-physical pseudo candidates if linearly summarized to
describe the effective constitutive propertiesEel for all
layers of all elementse as

Eel =

nc
∑

c=1

x jcEc (4)

(Foam) (GFRP)

y/90◦

x/0◦
θ

c = 1 (E1)

c = 2 (E2)

c = 3 (E3)

Figure 2:Top: Potential outcome of an example, param-
eterized as illustrated in Fig. 1.Bottom: Any unique set
of material properties for the constitutive tensorEc may
represent a candidatec such as for instance a foam type
(left) or GFRP UD fiber mats (right), characterized by the
fiber orientationθ

In (4), careful bookkeeping keeps track of proper associ-
ation between finite element discretization versus design
variable location. We introduce a product of RAMP in-
terpolation schemes to facilitate difference in geometric
variation and candidate distribution while making binary
variables attractive.

Eel = E0 +
ρi

1+ p(1− ρi)

nc
∑

c=1

x jc

1+ p(1− x jc)
∆Ec (5)

where∆Ec = Ec − E0 with E0 representing void such
that Ec − E0 ≻ 0 and E0 ≻ 0. In (5), p ≥ 0.0 is a
penalization power. Notice that variablesρi and x jc are
subject to identical penalization, found appropriate by ex-
perience. We favor the RAMP interpolation scheme by
Stolpe and Svanberg (2001) after Rietz (2001) because of
non-zero sensitivities even for zero valued design vari-
ables for all penalization powers. Other schemes exist
and are known to work as well; it is a matter of prefer-
ence. Equivalent penalization between the RAMP scheme
and the well-known SIMP scheme by Bendsøe (1989) is
treated in Hvejsel and Lund (2011).

Notice that the productsρix jc ensure candidate continu-
ity within the pre-defined candidate domains while hav-
ing the freedom to introduce regions with void through
topology variable scaling. This facilitates an outcome as
illustrated in Fig. 2, subject to the parameterization of
Fig. 1. Here, the candidate domainx5c, covering sub-
domains{Ω13, Ω23, Ω33, Ω43}, has settled on the specific
biax-angle candidatec = 1, but since the topology vari-
ableρ6 = 0, only sub-domainΩ13 whereρ5 = 1 appears.
The association between sub-domainsΩdl, geometry do-

5



mainsρi, candidate domainsx jc, and the corresponding
design variable value distribution for the considered ex-
ample in Fig. 2 appears in (6) in case the number of can-
didates is limited to those three introduced in Fig. 2 (top),
i.e.,nc = 3.
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x1c = { 0 1 0 }
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(6)

The star onx∗4c denotes that the candidate material selec-
tion in this particular case is insignificant because the as-
sociated geometry domain is empty, i.e.,ρ4 = 0. The de-
sign variable value distribution forx∗4c must comply with

(3) but could as such bex∗4c =
{

1
3

1
3

1
3

}

or any other
combination with no influence on the effective constitu-
tive properties, given (5) withρ4 = 0.

With the stiffness parameterization (5), one could
likewise determine how, for instance, the well-known
Messerschmitt-Bølkow-Blohm (MBB) beam, see e.g.,
Olhoff et al. (1991) or Bendsøe and Sigmund (2003),
would appear, if the entire domain should settle on a spe-
cific candidate from a distinct set while having the pos-
sibility to mix with void through topology variable scal-
ing. The outcome would indeed be quite easily manufac-
turable.

An approach as (5) where stiffness is determined
through interpolation schemes with penalization, but
mass is not, making non 0/1 variable values uneconomi-
cal, is generally referred to as the density approach, and
is used extensively throughout the literature on structural
topology optimization, see Bendsøe and Sigmund (2003).
The density approach is known to work particularly well
for mass constrained minimization of compliance, but
may nevertheless fail at obtaining pure 0/1 designs for
various reasons. The difficulties of obtaining binary de-
signs are increased in this work, primarily due to the
presence of sensitivities with both operational signs. For
this reason, we finalize the optimized designs with simple
rounding to binary values, elaborated in Section 2.6. To
assess the quality of the optimized designs prior to this
rounding, we will introduce so-called measures of non-
discreteness in Section 2.5. The finite element formu-
lations of the considered criteria functions are treated in
Section 2.4.

2.3 Manufacturing constraints

Practical design guidelines or rules, referred to as manu-
facturing constraints in this work, occur frequently in the
literature. As described in the introduction, manufactur-
ing constraints are typically associated with different out-
of-plane failure modes and may be implemented in vari-
ous ways. In this work, we explicitly include a variety of
manufacturing constraints as linear inequalities to accom-
modate demands on manufacturability. The linear formu-
lations are highly attractive and possible to achieve for
most manufacturing constraints. Explicit inclusion from
the very beginning is the key to the simultaneous determi-
nation of geometry, i.e., the variation in thickness,and
the proper candidate choice from a predefined, distinct
set. Formulations of the manufacturing constraints are
deemed most easily comprehensible when exemplified as
below with basis in the parameterization presented in Fig.
1 and the resulting outcome in Fig. 2. Correct formulation
relies on proper bookkeeping between the parameteriza-
tions applied in Steps 2− 4, exemplified in (6) for the
outcome in Fig. 2.

2.3.1 Accommodations for allowable candidate and
thickness variation (MC1)

MC1 concerns the possible arrangement or grouping of
small finite element domains into larger domains, ade-
quate for the allowable variation in both candidate selec-
tion and thickness. These latter domains are directly as-
sociated with the design variables as part of the design
parameterization, see Steps 3-4 in Fig. 1. It is thus pos-
sible to e.g., ensure sufficiently large areas with identical
candidate selection to support standard roll widths for fi-
brous material. Hence, MC1 reflects adequate limits of
complexity with regards to the available production meth-
ods, thereby making it possible to realize the optimized
designs with quite little post-processing.

2.3.2 Constraints on thickness variation rate (MC2)

Let S ∈ N denote the allowable difference in the total
number of plies between adjacent geometry domains,
ρi. Constraints to govern the acceptable thickness
variation rate e-merge on basis of systematical compar-
ison between topology variable summation through the
thickness of all adjacent design domainsΩdl, taking into
account, however, possible reduction because certain
topology variable pairs may cancel out each other, caused
by the fact that geometry domains can overlap several
sub-domains. This gives rise to four linear inequalities
for the considered example.

Ω1l vsΩ2l :

−S ≤ (✚✚ρ1 +✚✚ρ2 + ρ5) − (❩❩ρ1 +❩❩ρ2 + ρ6) ≤ S (7a)
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Ω1l vsΩ3l :

−S ≤ (✚✚ρ1 + ρ2 + ρ5) − (❩❩ρ1 + ρ3 + ρ6) ≤ S (7b)

Ω2l vsΩ4l :

−S ≤ (✚✚ρ1 + ρ2 +✚✚ρ6) − (❩❩ρ1 + ρ4 +❩❩ρ6) ≤ S (7c)

Ω3l vsΩ4l :

−S ≤ (✚✚ρ1 + ρ3 +✚✚ρ6) − (❩❩ρ1 + ρ4 +❩❩ρ6) ≤ S (7d)

The outcome in Fig. 2 is feasible for allS ≥ 1.

2.3.3 Constraints on contiguity (MC3)

LetPc
(UD) denote the unique set of indicesc that concerns

UD fiber material candidates. The constraints on conti-
guity impose a limit on the maximum allowable number
of contiguous identical UD fiber material candidates
to avoid e.g., matrix cracking failure. Hence, non UD
candidates are not subject to the following constraints.
Let CL ∈ N denote the contiguity limit. In caseCL = 1,
the candidate selection for all contiguousΩdl pairs must
be constrained. However, since the candidate domains
are larger than or equal to the sub-domains, we see that a
number of constraints repeat themselves for which reason
the redundant ones are erased for efficiency.

ConcerningΩ1l :

x1c + x3c ≤ CL ∀c ∈ Pc
(UD) (8a)

x3c + x5c ≤ CL ∀c ∈ Pc
(UD) (8b)

ConcerningΩ2l :

x2c + x3c ≤ CL ∀c ∈ Pc
(UD) (8c)

x3c + x5c ≤ CL ∀c ∈ Pc
(UD) (8d)

ConcerningΩ3l :

x1c + x3c ≤ CL ∀c ∈ Pc
(UD) (8e)

x3c + x5c ≤ CL ∀c ∈ Pc
(UD) (8f)

ConcerningΩ4l :

x2c + x4c ≤ CL ∀c ∈ Pc
(UD) (8g)

x4c + x5c ≤ CL ∀c ∈ Pc
(UD) (8h)

For the example in Fig. 2, onlyc = 3 is a UD fiber mate-
rial candidate; hencePc

(UD) = {3}.

2.3.4 Preventing intermediate void (MC4)

Intermediate void must be prevented in order to support
common manufacturing techniques relying on vacuum
infusion. To facilitate this, it principally suffices to

ensure that topology variable values of upper layers do
not exceed those of lower contiguous layers such as for
instanceρ5 ≤ ρ2 ≤ ρ1, see Fig. 1. In the preceding
work by Sørensen and Lund (2013) it was, however,
concluded that series of such straightforward constraints
were insufficient at preventing so-called density bands
where the topology variables settled on the same inter-
mediate value throughout the thickness regardless of the
penalization level. For this reason we apply the same
modified constraints to prevent intermediate void as sug-
gested in Sørensen and Lund (2013), thereby ensuring an
acceptable transition between contiguous topology vari-
ables throughout the thickness. The constraints emerge
systematically on basis of the sub-domain arrangement
Ωdl followed by removal of repeated constraints because
of potentially larger geometry domainsρi. This gives rise
to seven linear inequalities for the considered example.

ConcerningΩ1l :

ρ2 ≤ f (ρ1, T ) (9a)

ρ5 ≤ f (ρ2, T ) (9b)

ConcerningΩ2l :

ρ2 ≤ f (ρ1, T ) (9c)

ρ6 ≤ f (ρ2, T ) (9d)

ConcerningΩ3l :

ρ3 ≤ f (ρ1, T ) (9e)

ρ6 ≤ f (ρ3, T ) (9f)

ConcerningΩ4l :

ρ4 ≤ f (ρ1, T ) (9g)

ρ6 ≤ f (ρ4, T ) (9h)

In (9) the right-hand sidesf (ρi, T ) denote functions de-
pending upon density values of contiguous lower layers
and a threshold valueT to control the transition, given as

f (ρi, T ) =















T
1−T ρi if ρi < (1− T )
1−T

T ρi +
2T−1

T else
(10)

In Sørensen and Lund (2013), the threshold valueT =
0.10 was found appropriate and is used in this work as
well. Because the topology variableρ4 = 0 for the exam-
ple in Fig. 2,ρ6 must likewise be equal to zero to fulfill
(9h), thereby efficiently preventing intermediate void.

2.4 Mathematical formulation of the optimiza-
tion problem

In this work, we want to minimize the total mass, sub-
ject to constraints on buckling load factors, eigenfrequen-
cies, displacements, and the linear manufacturing con-
straints presented in Section 2.3. We apply the Nested
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ANalysis and Design (NAND) approach, see for instance
Arora and Wang (2005), to solve the optimization prob-
lem that appears in (11).

min
ρi,x jc

m (Mass) (11a)

s.t. λ
(b)
k ≥ λ

(b) k = 1, 2, . . . , n(b)
λ

(Buck) (11b)

λ
( f )
k ≥ λ

( f ) k = 1, 2, . . . , n( f )
λ

(Freq) (11c)

|uo| ≤ uo ∀o ∈ Pu (Disp) (11d)

(MC’s) (11e)

ρi ∈ [0, 1] ∀ i (11f)

x jc ∈ [0, 1]∀ ( j, c) (11g)

In (11a),m denotes the total mass, determined as

m =
∑

d,l

ρiVdl

nc
∑

c=1

x jc̺c (12)

taking into account proper association between indicesdl,
i, and j, as exemplified in (6).Vdl denotes the volume
of sub-domainΩdl, and̺c is the material density of can-
didatec. In (11b),λ(b) denotes the minimum allowable
buckling load factor.λ(b)

k denotes thekth eigenvalue, i.e.,

buckling load factor, out of the consideredn(b)
λ

eigenval-

ues, assumed ordered by magnitude such thatλ
(b)
1 is the

lowest positive eigenvalue. The advantage of including
n(b)
λ

andn( f )
λ

eigenvalues in the optimization problem in-
stead of only including the lowest eigenvalue is that cross-
ing eigenvalues (mode switching) during the optimization
process are taken into account. In the examples consid-
ered the lowest 10 buckling load factors and eigenfre-
quencies are included. Based on the displacement field,
the stress stiffening effects due to the mechanical loading
can be evaluated by computing the initial stress stiffness
matrix, also termed the geometric stiffness matrix,Kσ,
and the linearized buckling problem can be established as
(

K0 + λ
(b)
k Kσ

)

Φ
(b)
k = 0 , k = 1, 2, . . . , n(b)

λ
(13)

whereΦ(b)
k denotes the corresponding eigenvector of dis-

placements andK0 is the linear stiffness matrix. The no-
tation in (11c) is similar but with superscript (f ) denot-
ing frequency. Hence,ω2

k = λ
( f )
k is thekth squared, un-

damped, free, natural eigenfrequency, determined from
the free vibration analysis problem
(

K0 − λ
( f )
k M

)

Φ
( f )
k = 0 , k = 1, 2, . . . , n( f )

λ
(14)

whereΦ( f )
k denotes the corresponding eigenvector, i.e.,

nodal amplitudes, andM is the consistent global mass
matrix. Eigenvalues are again assumed ordered by mag-
nitude. In (11d),|uo| denotes the absolute displacement
of the nodal degree of freedom (DOF)o, constrained by

a maximum allowable displacementuo. Elastic couplings
may necessitate displacement constraints on several nodal
DOF’s, contained in a corresponding set, denoted byPu.
Given the NAND approach, the global displacement vec-
tor u is determined prior to every optimization iteration
from the static equilibrium equations

K0u = f (15)

written in residual form as

r(u, ρi, x jc) = K0u − f = 0 (16)

where f denotes the load applied to the non-restrained
nodes andr is the residual. Besides the total massm in
(12) that is clearly a function of the design variablesρi

and x jc, it must by now be noticed that this is likewise
the case for bothK0 and Kσ due to the dependence on
the effective constitutive properties (5). It is neither trivial
nor obvious where to most efficiently penalize this design
variable dependence. In this work, however, we reserve
penalizationp for the linear stiffness matrix partK0 only,
i.e.,

K0 = f (p) , Kσ , f (p) , m , f (p) (17)

The numerical results in Section 4 will demonstrate the
efficiency of this approach, and alternative penalization is
left for future work. See for instance Lindgaard and Dahl
(2012) for penalization approaches concerning topology
optimization of geometric non-linear compliance and
buckling.

2.4.1 Design sensitivity analysis

Let zi represent all design variablesρi and x jc in the fol-
lowing, where the indexi = 1, 2, . . . , nin jnc. This subsec-
tion describes how we conduct analytical, computation-
ally efficient adjoint Design Sensitivity Analysis (DSA)

of displacements,du
dzi

, and distinct eigenvalues,
dλ( f )

k
dzi

and
dλ(b)

k
dzi

, concerning eigenfrequencies and buckling load fac-
tors, respectively. Notice that this work is limited to DSA
of distinct eigenvalues as opposed to the more compli-
cated case where two or several eigenvalues attain exactly
the same value, known as repeated or multiple eigenval-
ues. For details on this latter case see e.g., Seyranian et al.
(1994) or Lund (1994). DSA of the objective function
mass in (12),dm

dzi
, is straightforward and omitted.

The displacement sensitivitiesdu
dzi

can be computed us-
ing the direct differentiation approach, i.e., the static equi-
librium equations (15) are differentiated with respect to a
design variablezi as

K0
du
dzi
=
∂ f
∂zi
−
∂K0

∂zi
u (18)
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where the load sensitivities∂ f/∂zi are zero for the DMTO
design variables used, unless volume forces are consid-
ered which is not the case in this work. (18) is written
alternatively in residual form as

du
dzi
= −K−1

0
∂r
∂zi

(19)

For the DMTO parameterization proposed in this work,
the design domain is fixed. For this reason the deriva-
tive ∂K0(zi)

∂zi
in the pseudo load vector∂r

∂zi
involves only the

derivative of the assembled effective constitute element
matrix Ee, which is determined analytically. However,
the DMTO parameterization introduces many design vari-
ables, and it is thus more efficient to compute the displace-
ment sensitivity using the adjoint method. Noting that the
displacementuo can be expressed asuo = lT u, wherel is
a vector with the value 1 at the DOF of interest, the sen-
sitivity of the displacementuo can be found analytically
as

duo

dzi
= −wT ∂r

∂zi
(20)

where the vectorw is the solution to the adjoint load prob-
lem

K0w = l (21)

In this way, the factored stiffness matrixK0 is reused and
only a single forward/backward substitution is needed for
each displacement constraintuo before the displacement
sensitivities in (20) are obtained analytically by vector
multiplications.

The direct approach to obtain the eigenfrequency sensi-
tivity is to differentiate (14) with respect to a design vari-

able zi, premultiply by
(

Φ
( f )
k

)T
, make use of (14), and

noting that the system matrices are symmetric. Hence the
following expression is obtained for the eigenvalue sensi-
tivity in case of a simple, i.e., distinct, eigenvalueλ j, see
e.g., Courant and Hilbert (1953) and Wittrick (1962).

dλ( f )
k

dzi
=

(

Φ
( f )
k

)T
(

dK0

dzi
− λ

( f )
j

dM
dzi

)

Φ
( f )
k (22)

Here it is assumed that the eigenvectors have beenM-

orthonormalized such that
(

Φ
( f )
k

)T
MΦ( f )

k = 1. Again, the

derivativesdK0(zi)
dzi

and dM(zi)
dzi

are computed analytically, as
they involve only the derivative of the assembled effec-
tive constitute matrixEe and the material candidate mass
density̺c with respect tozi. Note that in a finite element
implementation, all of these computations are performed
on the element level, such that derivatives are only com-
puted for elements depending on the given design variable
zi.

In a similar way the design sensitivity of a distinct
buckling load factor is given as

dλ(b)
k

dzi
=

(

Φ
(b)
k

)T
(

dK0

dzi
+ λ

(b)
k

dKσ
dzi

)

Φ
(b)
k (23)

where the eigenvectors have beenKσ-orthonormalized,

such that
(

Φ
(b)
k

)T
(−Kσ)Φ

(b)
k = 1. The first of the deriva-

tives dK0(zi)
dzi

is computed analytically as described before,

but the second termdKσ(zi)
dzi

in (23) is more complicated
because of the implicit dependence of the state variables
u, i.e., Kσ(zi, u(zi)). In this work an efficient analytical
adjoint method is introduced due to the many design vari-
ables in the DMTO approach. The adjoint method is
based on the work presented in Rodrigues et al. (1995)
and Neves et al. (1995), but is nevertheless described here
for completeness. Applying the chain rule we have

dKσ(zi, u(zi))
dzi

=
∂Kσ(zi, u)
∂zi

+
∂Kσ(zi, u)
∂u

du
dzi

(24)

Again, the first term is the partial derivative ofKσ and this
term is computed on the element level in the same way as
described for the termdK0(zi)

dzi
. The second term of (24) in-

volving ∂Kσ/∂u is the difficult and costly part to compute
and still requires evaluation of state variable sensitivities
du/dzi for all design variables. However, note that we are
not really interested in computing the term, but instead it
is to be pre- and post-multiplied with some eigenvectors
in (23), i.e.,
(

Φ
(b)
k

)T ∂Kσ(zi, u)
∂u

du
dzi
Φ

(b)
k = . . .

. . . −
(

Φ
(b)
k

)T ∂Kσ(zi, u)
∂u

Φ
(b)
k K−1

0
∂r
∂zi

(25)

where the right hand side is arrived at by inserting the
expression for state sensitivitiesdu/dzi from (19) and re-
grouping terms exploiting symmetries. It is now conve-
nient to introduce the adjoint vectorsvkk given as

vT
kk =

(

Φ
(b)
k

)T ∂Kσ(zi, u)
∂u

Φ
(b)
k K−1

0 (26)

Notice thatvkk is the same for all design variables, and
thus only needs to be computed once for each iteration
of the optimization problem for each of then(b)

λ
buckling

load factors included in the optimization problem (11).
When solving the linear systems of equations in (26) for
the adjoint vectorvkk, the factored stiffness matrixK0 can
be reused. The term∂Kσ/∂u is derived analytically for
the ESL shell elements used, and by using (26) and (24)
in (23) and regrouping terms, the buckling load factor sen-
sitivity can be computed analytically as

dλ(b)
k

dzi
=

(

Φ
(b)
k

)T dK0

dzi
Φ

(b)
k + . . .

. . . λ
(b)
k

(

(

Φ
(b)
k

)T ∂Kσ(zi, u(zi))
∂zi

Φk − vT
kk
∂r
∂zi

)
(27)

In this way the sensitivities of the buckling load factors
are computed very efficiently. The described DSA re-
quires full access to the finite element code used in or-
der to implement analytical sensitivities of element ma-
trices and vectors, and for implementation of the term
∂Kσ/∂u needed for computing adjoint vectors in the ana-
lytical DSA of buckling load factors.
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2.5 The SLP approach

Previous work by Sørensen and Lund (2013) concluded
that an SLP approach outperformed various Sequential
Quadratic Programming (SQP) approaches, primarily due
to the nature of the manufacturing constraints to prevent
intermediate void through the laminate thickness, i.e.,
MC4 from (10). As this work includes the same chal-
lenging manufacturing constraints, we rely on an SLP ap-
proach once more, see for instance Arora (2004). The
complexity of this work does, however, surpass that of
Sørensen and Lund (2013) given the presence of several
non-linear structural constraints. Hence, in order to pose
unconditionally feasible linearized programming prob-
lems, we introduce an elastic programming technique
with merit functions.

2.5.1 Introduction of merit functions

Merit functionsΦ(n)
M = f (x(n)

jc , ρ
(n)
i , y

(n)
k ), where the super-

script (n) denotes the iteration number andM = 1 + K
denotes an objective function andK non-linear structural
inequalities, are introduced to ensure feasibility of all lin-
earized optimization problems. Inspired by Svanberg’s
work on the Method of Moving Asymptotes (MMA), see
e.g., Svanberg (1987), we introduce the objective merit
function

Φ
(n)
0 = m(n) + a

K
∑

k=1

(

cy(n)
k +

1
2

(

y(n)
k

)2
)

(28)

wherem(n) = f (x(n)
jc , ρ

(n)
i ) is the original objective func-

tion, x(n)
jc andρ(n)

i are the true optimization variables, while

y(n)
k ∈ [0.0,∞[ are artificial optimization variables, also

known as slack variables, that are subtracted the struc-
tural non-linear inequality constraintsg(n)

k = f (x(n)
jc , ρ

(n)
i ),

resulting in the constraint merit functions

Φ
(n)
k = g(n)

k − y(n)
k ≤ gmax

k , k = 1, 2, . . . ,K (29)

that in combination with (28) ensure feasibility of the
non-linear structural constraints. In (28),c is a positive
penalization constant ensuring that the artificial variables
y(n)

k become expensive when larger than the desired zero
values. In agreement with the practical considerations and
recommendations in Svanberg (2004), all non-linear con-
straints are normalized with respect togmax

k , c is initially
set to 100.0, and the constanta is set tom(1), serving the
purpose of proper scaling between the objective function
and the non-linear constraints. With the introduction of
(28) and (29), the optimization problem which is to be lin-
earized and solved sequentially in a number of iterations
by an efficient LP optimizer is now defined as

min
ρi,x jc,yk

Φ
(n)
0 (30a)

s.t. Φ
(n)
k ≤ gmax

k k = 1, 2, . . . ,K (30b)

(MC’s) (30c)

ρ
(n)
i ∈ ML ∀ i (30d)

x(n)
jc ∈ ML ∀ ( j, c) (30e)

y(n)
k ∈ [0,∞[ ∀ k (30f)

In (30d) and (30e), the setML refers to the bounds of
the design variables which may change in each iteration
due to the applied move limit strategy, described in the
following subsection. Notice that feasibility of the linear
manufacturing constraints can only be guaranteed if the
initial linear problem is feasible, and if the move limits
ML repeatedly include the previous design point.

2.5.2 Move limit strategy

Without precautions, any SLP approach is inherently sub-
ject to oscillating function and design variable values.
Hence, a robust move limit strategy must be applied. In
this work, surveillance of a merit function is used to deem
the validity range of the linearizations. An oscillating
merit function suggests that move limits should be re-
duced, whereas monotonous progress suggests expansion.
In this work move limits are denotedδ and operate collec-
tively on all true variables such that

max
(

ρ
(n)
i − δ, 0.0

)

≤ ρ
(n+1)
i ≤ min

(

ρ
(n)
i + δ, 1.0

)

∀i (31)

and similarly for allx(n)
jc , but not the artificial variablesyn

k
where the initial bounds are maintained throughout to en-
sure LP feasibility. Rather than the objective merit func-
tion (28), we monitor the oscillation merit function (32).

Φ
(n)
osc= Φ

(n)
0

(

1+max
(

g(n)
k − gmax

k , 0.0
))

∀k (32)

Contrary to (28), the merit function (32) maintains a direct
measure of infeasibility even for ally(n)

k = 0.0 which is
found more efficient by experience. LetO(n) denote the
oscillation indicator for iteration (n) such that

O(n) =
Φ

(n)
osc− Φ

(n−1)
osc

Φ
(n−2)
osc − Φ

(n−1)
osc

(33)

Pseudo code for reduction or expansion of the move limits
δ, depending on the oscillation indicator, appears in Fig.
3.
In the pseudo code shown in Fig. 3,α ∈ [0.0, 1.0[ is the
move limit reduction factor,β ≥ 1.0 is the move limit ex-
pansion or recovery factor, andOscCheck prevents mod-
ification of move limits immediately upon reduction for
stabilization, initialized toOscCheck = −1. In this work,
α = 0.5 andβ = 4.0 are found appropriate.
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if (OscCheck > 0) then
if

(

O(n) < 0.0
)

then
δ = δα

OscCheck = 0
else
δ = min

(

δα
− 1
β , δini

)

end if
else

OscCheck = OscCheck + 1
end if

Figure 3: Pseudo code for controlling the reduction or
expansion of the move limitsδ

2.5.3 Continuation strategy

Experience has shown it efficient to increase the penal-
ization powerp in a stepwise manner, known as a con-
tinuation approach. Instead of starting out from the seem-
ingly obvious and classical case without penalization, i.e.,
from p = 0.0, it is noticed that the bi-linear product be-
tween the variablesρi and x jc in (5) is unconditionally
non-convex. An extensive parameter study has revealed it
to be efficient to start out from a limited but still notice-
able penalization level. The parameter study has shown
the sequence

p = {1.0, 2.0, 4.0} (34)

to be robust for all considered cases. Notice that the se-
quence (34) is allowed to finish prematurely in case of
achieving a satisfactory feasible, near 0/1 design before
the last step. This is elaborated in Section 2.5.4.

2.5.4 Convergence requirements

A continuation step is converged when fulfilling three
Convergence Criteria (CC): At first, we require a suffi-
ciently small change in the merit function (28) (CC1).
This has been established to indicate if the optimization
procedure has converged to a minimum. Secondly, we re-
quire vanishing artificial variables (CC2), and thirdly, we
require an acceptable level of feasibility (CC3). The pro-
cedure is outlined in the following. Ultimately, fulfilment
comes down to comparison with appurtenant tolerances,
denotedǫ.

A sufficiently small, absolute change in the merit func-
tion (28) is defined as
∣

∣

∣

∣

∣

∣

∣

Φ
(n)
0 − Φ

(n−1)
0

Φ
(n−1)
0

∣

∣

∣

∣

∣

∣

∣

< ǫΦ (CC1) (35)

Vanishing artificial variables are defined as
∥

∥

∥

∥

y(n)
k

∥

∥

∥

∥

∞
< ǫy ∀k (CC2) (36)

Lastly, acceptable feasibility is defined as
∥

∥

∥

∥

g(n)
k − gmax

k

∥

∥

∥

∥

∞
< ǫg ∀k (CC3) (37)

In case of satisfactory CC’s, whether or not to proceed
to the next continuation step, if any, depends on the
obtained level of discreteness of the design variables.
To this end we introduce two slightly modified mea-
sures of non-discreteness compared to those applied in
Sørensen and Lund (2013), taking into account e.g., dif-
ferent sizes of the sub-domains,Ωdl. The measuresMdnd

andMcnd denote the density (ρi) and candidate (x jc) non-
discreteness, respectively.

M(n)
dnd =

4
∑

d,l Vdl ρi(1− ρi)
∑

d,l Vdl
· 100% (38a)

M(n)
cnd =

∑

d,l Vdl ρ
2
i

∏nc

c=1

(

1−x jc

1− 1
nc

)2

∑

d,l Vdl ρi
· 100% (38b)

Most places in (38) and the following, the iteration su-
perscript (n) is omitted for clarity. Proper association
between indicesdl, i, and j, as exemplified in (6), is a
prerequisite for both measures. The measure of density
non-discretenessMdnd is normalized to yield 0.0% in case
ρi ∈ {0, 1} ∀i and 100.0% in caseρi = 0.5 ∀i. The mea-
sure of candidate non-discretenessMcnd is linearly depen-
dent upon the appurtenant values ofρi such that it yields
100.0% for x jc =

1
nc ∀( j, c) if ρi = 1.0 ∀i and 50.0% if

ρi = 0.5 ∀i, and so on. TheMcnd measure yields 0.0%
in casex jc ∈ {0, 1} ∀( j, c) independent ofρi, or in case
ρi = 0.0 ∀i independent ofx jc. This linearρi dependence
is fair in that a distinct candidate selection is insignificant
for vanishing topology variables. Continuation to the next
penalization step, if any, is found relevant only in case

Mnd = max
(

M(n)
dnd,M

(n)
cnd

)

> ǫ0/1 (39)

Pseudo code for the convergence requirements appears in
Fig. 4.

if (CC1< ǫΦ) then
if

(

CC2< ǫy
)

then

if
(

CC3< ǫg
)

then
if (p < pmax .and.Mnd > ǫ0/1) then

Increase penalization powerp
δ = δini

OscCheck = −1
else

Convergence
end if

end if
else

Restart optimization
c = 10.0c

end if
end if

Figure 4: Pseudo code detailing the convergence require-
ments

It is seen in Fig. 4, that in case(CC1< ǫΦ) but (CC2>
ǫy), it appears that the current penalization constantc was
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insufficient to ensure near zero valued artificial variables.
As Svanberg (2004) suggests,c is increased, here by a
factor 10.0, and the optimization problem is restarted. In
case the convergence requirements onǫΦ andǫy are met, it
comes down to the requirement onǫg whether additional
iterations and move limit modifications are required to
facilitate final convergence. Otherwise, a new continua-
tion step, if any, with increased penalization powerp is
initiated, however, only in case of an unacceptable level
of non-discreteness, governed byMnd. In case of con-
tinuation with increasedp, the optimization problem at
hand has changed for which reason move limitsδ and
the counterOscCheck are consistently relaxed to accom-
modate this new problem. Experience has shown that
ǫΦ = ǫg = 10−3, ǫy = 10−4, andǫ0/1 = 0.1% entail an
acceptable tradeoff between the required number of itera-
tions and feasibility and discreteness of the results.

Results to follow are computed by use of our in-house
finite element and optimization framework, the so-called
MUltidisciplinary Synthesis Tool (MUST), see MUST
(2013), which is compiled using Intel Visual Fortran to-
gether with the Intel MKL library. In order to cope with
the large number of linear constraint equations stemming
from the candidate material formulation (3) and the man-
ufacturing constraints (7), (8), and (9), version 7.2-9 of
the Sparse Nonlinear OPTimizer (SNOPT) by Gill et al.
(2005) is applied. For all results to follow, SNOPT has
been configured with default settings to solve the mathe-
matical programming problem (30) through the presented
SLP approach.

2.6 Simple 0/1 rounding

The considered optimization problem (11) is challenging
to drive to completely binary design variables with the
suggested density approach. This is primarily because of
structural sensitivities of both operational signs, but like-
wise due to the difficult manufacturing constraints. In this
work, we apply simple rounding of the design variables
to finalize the obtained results into truly discrete designs,
and leave for instance advanced finalization techniques,
or explicit penalization of intermediate designs to future
work. Letρ∗i denote the topology variable value after sim-
ple rounding, defined as

ρ∗i =















1 if ρi ≥ 0.5

0 else
(40)

Let x∗jc denote the candidate variable values after simple
rounding, defined such that only the originally dominat-
ing candidatec is rounded up for all candidate domainsj,
given as

x∗jc =















1 for max
{

x j1 , x j2 , . . . , x j(nc)

}

0 else
(41)

Notice that such simple rounding does not guarantee fea-
sibility nor optimality of the posed optimization problem
(11), see Nemhauser and Wolsey (1988). However, as re-
sults in Section 4 will demonstrate, obtained measures of
non-discretenessMnd are mostlynear-zero, thereby indi-
cating only minor perturbations upon rounding. The ef-
fect of the suggested simple rounding appears in Section
4 and is discussed further in Section 5.

3 Numerical examples

This section introduces several numerical optimization
problems concerning a finite element model of a generic
main spar used in many designs of wind turbine blades.
The parameterization into candidate and geometry do-
mains, directly associated with the design variable dis-
tribution, is however unique for all problems, i.e., Steps
1-2 are identical, but Steps 3-4 differ for all problems, see
Fig. 1.

3.1 The finite element model

The geometry of the main spar is identical to the one ap-
plied in Lindgaard and Lund (2010) where fiber orienta-
tions were optimized with respect to buckling load fac-
tors applying geometric non-linear analysis. The con-
sidered main spar is truncated to a length of 14.0m and
has an inner diameter of 0.88m at the fixed root sec-
tion. The finite element model of the main spar appears
in Fig. 5 and consists of 1,792 degenerated 9-node ESL
shell elements with five DOF’s per node, resulting in a
total of 36,160 DOF’s. See e.g., Ahmad et al. (1970) or
Panda and Natarajan (1981) for element details. All ESL
shell elements represent 20 layers, each with a uniform
thickness. A ply thickness of 2.5mm has been selected as
a tradeoff between the number of design variables and the
total thickness required in order to have a realistic load
case. The finite element mesh discretization of Fig. 5 has
been checked for convergence as follows: Modeling the
main spar entirely with 0◦ plies oriented along the global
z-axis (m = 2752.27kg), the mesh was refined until sta-
ble values of the tip displacement (utip = 0.5846m) and
the lowest buckling load factor (λ(b)

1 = 8.810) and eigen-
frequency (ω1 = 4.378 · 2π rad

s ) were obtained. The main
spar is modeled with clamped boundary conditions at the
circular end of the root section and the applied tip load
resembles the most critical load case for the wind tur-
bine blade, a so-called 50 year gust scenario, subjecting
the blade to a case of extreme flap-wise bending. The
load is introduced as a uniform pressure, illustrated by
the hatched rectangle at the tip in Fig. 5. The distributed
load has an intensity of

q =
164.7kN
0.3m · 1m

= 559kPa (42)
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Figure 5: Finite element model of a generic main spar,
clamped at the circular end of the root section and tapered
towards the tip that is subjected to a uniform pressure load
at the hatched rectangular area. Cross sections of the root
and the tip appear in Fig. 6. All ESL shell elements
have their first principal material direction aligned with
the global z-axis, and their surface normals pointing out-
wards. At the tip, the node marked by the bottom dot is
subjected to a displacement constraint

The structural setup resembles testing of wind turbine
blades in a controlled environment, see Overgaard et al.
(2010). Neither the geometry of the main spar nor the
applied load case introduce torsion into the model. Ge-
ometric linear analysis is used throughout this paper to
limit the computational time. The proposed method does,
however, allow for the use of geometric non-linear anal-
ysis, and the authors recognize the limitations associated
with linear analyses. This is further discussed in Section
5.1. Lindgaard and Lund (2010) showed that geometric
linear analysis generally overestimates the critical loadin
buckling load optimization.

3.2 Parameterization of the generic main spar

Parameterization of the finite element model is an im-
portant step in the optimization procedure as structural
performance and manufacturability of the optimized de-
signs depend hereupon. The production method for the
presented main spar relies on the application of a man-
drel that essentially dictates the inner shape of the main
spar. The root of the mandrel is bolted to a rigid wall and
the mandrel is then covered by mats or blocks of differ-
ent materials and principally “built up” from the inside
in a series of steps. First, GFRP biax fiber mats are typi-
cally wrapped around the full length of the mandrel. Next,
full-length GFRP UD fiber mats are rolled along the top
and bottom surfaces of the mandrel. On the sides/webs of

x jc , ρi

Figure 7: The longitudinally coinciding candidate and
geometry domain parameterization is referred to as the
Long-Long parameterization

the mandrel, blocks of lightweight foam or balsa material
are positioned. These steps are systematically repeated,
resulting in a structure with varying thickness at differ-
ent locations around the mandrel. Finally, the composite
structure is cured and the finished main spar can be pulled
off the mandrel. With this production method in mind, an
obvious question crops up, namely where to most appro-
priately allocate the available material candidates, to ob-
tain a high-performance, manufacturable structure? The
design freedom, but hence also the potential level of struc-
tural complexity, is directly linked to the parameteriza-
tion into geometry and candidate domains, see Fig. 1.
If, for instance, the manufacturer is accustomed to ap-
ply large rolls of fibrous material with a width of 1.0m,
then the parameterization into geometry and candidate
domains should accommodate just this. In this work, we
compare the optimization outcomes on basis of nine rep-
resentative candidate and geometry parameterizations of
the generic main spar. This is done to give insight into the
relation between potential weight saving and complexity,
subject to identical structural criteria and manufacturing
constraints. The constraint specifications are elaborated
in Section 3.2.2.

The finite element mesh discretization of Fig. 5 (Step
1 in Fig. 1) is deemed too fine for the arrangement into
sub-domainsΩdl (Step 2 in Fig. 1). The arrangement of
the main spar mesh into sub-domains appears in Fig. 6
that illustrates the main spar, cut along the longitudinal
direction of the upper surface (the dotted lines) and un-
folded as a flat surface. The main spar mesh is arranged
into a total of 28× 8 = 224 sub-domains, identical for
all layers. The sub-domains are equally spaced longitudi-
nally. Circumferentially, the sub-domains vary in width,
see the bold line markings to the left and right of Fig. 6.
Concerning Steps 3-4 in Fig. 1, i.e., the parameteriza-
tion into geometry domains and candidate domains, as-
sociated with variablesx jc and ρi, respectively, the fol-
lowing nine parameterizations are considered. The nine
parameterizations are constructed on basis of Fig. 7 and
Fig. 8, where the sub-domains are parameterized into co-
inciding candidate and geometry domains longitudinally
and circumferentially, respectively. Figure 7 represents
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(Root) (Tip)

Ωdl

Figure 6:Left: Cross sectional view of the circular root section. Bold lines denote eight circumferential design domain
arrangements.Mid: Unfolded surface view of the main spar, cut along the longitudinal direction of the upper surface.
The cut is illustrated by the dotted lines. The generic main spar mesh is arranged into 28× 8 = 224 sub-domains,Ωdl.
Right: Cross sectional view of the tip section

x jc , ρi

Figure 8: The circumferentially coinciding candidate and
geometry domain parameterization is referred to as the
Circ-Circ parameterization

a parameterization where both the candidate domainsx jc

and the geometry domainsρi coincide longitudinally. For
this reason we denote this parameterization Long-Long
for candidate domains,x jc, and geometry domains,ρi, re-
spectively. Similarly, Fig. 8 represents the so-called Circ-
Circ parameterization with circumferentially coinciding
candidate domains,x jc, and geometry domains,ρi, re-
spectively. These particular parameterizations represent
a relatively low level of complexity, i.e., a high degree
of manufacturability. For this reason, exactly these two
parameterizations are considered in detail in the follow-
ing sections. The low level of complexity associated with
these particular parameterizations is in contrast to the so-
called Grid-Grid parameterization, where candidate and
geometry domains coincide with the sub-domain arrange-
ment in Fig. 6. This parameterization is hence considered
quite complex and difficult to manufacture. Allowing can-
didate and geometry domains to be non-coinciding within
the three described parameterization types, i.e., the lon-
gitudinal (Long), the circumferential (Circ), and the grid
type (Grid) parameterizations, a total of nine uniquely de-
fined candidate-geometry domain parameterizations can
be defined, see Table 1. These nine parameterizations into
candidate domains,x jc, and geometry domains,ρi, give
insight into the relation between potential weight saving
and complexity.

Table 1: The nine considered parameterizations into can-
didate domains,x jc, and geometry domains,ρi

Candidate domains (x jc) Geometry domains (ρi)

Long - Long
Long - Circ
Long - Grid
Circ - Long
Circ - Circ
Circ - Grid
Grid - Long
Grid - Circ
Grid - Grid

Table 2: Properties of the considered candidates

Property Units UD Biax Foam
E11 [GPa] 34.00 16.50 0.16
E22 [GPa] 8.20 16.50 -
E33 [GPa] 8.20 8.20 -
G12 [GPa] 4.50 9.50 -
G23 [GPa] 4.00 4.00 -
G13 [GPa] 4.50 4.50 -
ν12 - 0.29 0.29 0.45
̺ [kg/m3] 1910.00 1910.00 130.00

3.2.1 Candidate materials

The numerical examples include six different candidate
materials commonly applied in the wind turbine industry,
i.e., nc = 6. Candidates one to four represent GFRP UD
plies with {−45◦, 0◦, 45◦, 90◦} fiber orientations. The 5th
candidate represents a GRFP{±45◦} biax ply with prop-
erties obtained on basis of the{−45◦, 45◦} UD data. The
6th and last candidate represents a lightweight isotropic
foam material such that a sandwich structure is a possible
outcome of the optimization problem. Candidate proper-
ties appear in Table 2. The void material,E0 from (5),
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Table 3: Settings concerning structural criteria and man-
ufacturing constraints

λ(b) ω =

√

λ( f ) u n(b)
λ

n( f )
λ

S CL T

3.0 2π rad
s 1.0m 10 10 2 8 0.10

is modeled as a weightless isotropic material with one
millionth the stiffness of the GFRP UD candidate, i.e.,
E11 = 34kPa, and identical Poisson’s ratio. Because other
industries do not allow sandwich designs, results for the
nine parameterizations in Table 1 will also be listed with-
out foam as a candidate, in which casenc = 5. Conse-
quently, the considered number of design variables varies
between 953 for the Long-Long parameterization without
foam to 31,137 for the Grid-Grid parameterization includ-
ing foam. Notice that for all parameterizations, the entire
innermost layer of the generic main spar is modeled as a
single, unity valued topology variable to eliminate the risk
of holes through the thickness.

3.2.2 Constraint specifications and initial settings

In agreement with the main spar study in Overgaard et al.
(2010), the representative bounds listed in Table 3 have
been chosen for the structural constraints in (11b)-(11d).
In order to cope with potentially shifting eigenvalues, we
consider the first ten buckling load factors and eigenfre-
quencies, assumed ordered by magnitude. The displace-
ment constraint limits the global y-displacement of the
bottom tip node, marked in Fig. 5, preventing collision
between blade and tower. With respect to the manufac-
turing constraints (11e), see Section 2.3 for details, we
apply the limit values apparent rightmost in Table 3. A
thickness variation rate of±2 plies (S = 2) between adja-
cent geometry domains,ρi, is used to ensure sufficiently
smooth external ply drop transitions for all parameteri-
zations of the generic main spar. For the particular main
spar example considered in this work, we apply a contigu-
ity limit as large as eight identical plies through the thick-
ness (CL = 8), being considerably more than the com-
monly applied limit of four, see e.g., Le Riche and Haftka
(1993) or Toropov et al. (2005). Nevertheless, the wind
turbine industry is less restrictive than the aerospace in-
dustry; hence larger amounts of identical UD plies can be
accepted. The influence of the applied contiguity limit is
further scrutinized in the discussion of the results. These
settings imply that the number of MC’s vary between
1,144 for the Long-Long parameterization without foam
to 20,800 for the Grid-Grid parameterization including
foam with 21,584 and 182,016 non-zero coefficient ma-
trix entries, respectively. The design variables are initial-
ized asx jc =

1
nc for all candidate variables andρi = 1.0

for all topology variables to start out as feasible as pos-

sible without candidate preference, found efficient by ex-
perience. This implies an initial massm = 2324.78kg
or m = m = 2752.27kg, including or excluding foam as
a candidate, respectively, wherem denotes the maximum
attainable mass. The potential to obtain a feasible solution
with an end mass lower thanm is clear from a comparison
with the presented values from modeling the main spar
entirely with 0◦ plies oriented along the global z-axis, see
Section 3.1. Move limits are initialized asδini = 0.20. The
move limit range 0.0 ≤ δ ≤ δini is adaptively modified as
prescribed in Section 2.5.

4 Results

Tables 4-5 provide detailed result overviews of the DMTO
approach of the nine different parameterizations intro-
duced in Section 3, both with and without foam as a can-
didate. Table 4 presents the original, non-rounded results
on basis of the SLP approach presented in Section 2.5.
A star ∗ in front of the total number of iterations #It.
indicates that the SLP approach has been restarted once
with up-scaledc value to obtain vanishing artificial vari-
ables,yk. Table 5 presents the results upon finalization
by the simple rounding described in Section 2.6. The
results in Table 4 and Table 5 are referred to as origi-
nal and rounded results, respectively. For easy compar-
ison, Fig. 9 provides a graphical overview of the original
DMTO results of the nine parameterizations with foam.
In the figure, measures of non-discreteness,Mnd from
(39), above 1.0% have been truncated. See Table 4 for
details. As mentioned previously in Section 3.2, rounded
results of the Long-Long and Circ-Circ parameterizations
with and without foam, respectively, are picked out for
detailed representations given their limited complexity.
Apart from demonstrating the versatility and robustness
of the DMTO method, results from the additional parame-
terizations primarily serve a comparative purpose in order
to assess the relation between potential weight saving and
complexity for the considered main spar example. Figure
10 illustrates an exploded view of the allocation of can-
didates for the Long-Long parameterization with foam,
seen from the fixed root end. Candidate allocation is iden-
tical longitudinally. Notice that the allocation among the
candidates depicted to the right of Fig. 10 is given with
respect to a local coordinate axis, denotedy′. Figure 11 il-
lustrates the allocation of candidates for the Circ-Circ pa-
rameterization without foam where bottom and top illus-
trate the inner and outer surfaces, respectively. Candidate
allocation is identical circumferentially. Figure 12 shows
the design iteration history for the Long-Long parame-
terization with foam, illustrating the evolution ofm, λ(b)

1 ,

λ
( f )
1 , |uo|, Mcnd, Mdnd, ‖yk‖∞, ‖gk − gmax

k ‖∞, and∆(x jc, ρi);
see the caption for further explanations and normalization
details.
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Table 4: Tabular overview of the original DMTO results of allparameterizations, both with and without foam as a
candidate. #It. denotes the total number of iterations. A star∗ in front of #It. denotes that the SLP approach has been
restarted once with up-scaledc value

Parameterization With foam Without foam

(x jc − ρi) m [kg]
λ

(b)
1

λ(b)

λ
( f )
1

λ( f )
|u|
u Mcnd/Mdnd [%] #It. m [kg]

λ
(b)
1

λ(b)

λ
( f )
1

λ( f )
|u|
u Mcnd/Mdnd [%] #It.

Long-Long 1249 1.000 2.969 1.000 0.282/ 0.672 41 1802 1.000 4.218 1.000 0.000/ 3.079 49
Long-Circ 1240 1.037 2.938 1.000 0.062/ 0.000 28 1841 1.081 4.328 0.999 0.001/ 0.451 44
Long-Grid 1225 1.000 2.926 1.000 0.159/ 0.999 40 1807 1.118 4.378 1.000 0.000/ 1.728 *142

Circ-Long 1431 0.999 5.008 1.000 0.180/ 0.000 41 1850 1.117 4.178 1.000 0.815/ 0.273 39
Circ-Circ 1519 1.001 4.690 0.999 0.316/ 0.305 *91 1854 1.069 4.334 1.001 0.829/ 0.971 44
Circ-Grid 1428 1.000 5.019 1.000 0.139/ 1.518 57 1746 1.014 4.466 1.000 0.559/ 2.177 54

Grid-Long 1171 0.999 2.738 1.000 0.671/ 0.120 63 1818 1.148 4.205 0.999 3.517/ 0.984 48
Grid-Circ 1181 0.999 2.787 1.000 0.947/ 0.196 84 1848 1.095 4.252 1.001 2.715/ 0.337 44
Grid-Grid 1163 0.999 2.789 1.000 1.053/ 1.408 81 1734 1.000 4.455 1.000 1.619/ 1.446 64

Table 5: Tabular overview of the rounded DMTO results of all parameterizations, both with and without foam as a
candidate
Parameterization With foam Without foam

(x jc − ρi) m [kg]
λ

(b)
1

λ(b)

λ
( f )
1

λ( f )
|u|
u # Violated MC’s m [kg]

λ
(b)
1

λ(b)

λ
( f )
1

λ( f )
|u|
u # Violated MC’s

Long-Long 1246 0.930 2.961 0.995 0 1832 1.138 4.282 0.953 0
Long-Circ 1242 1.081 2.951 0.999 0 1837 1.081 4.358 0.998 0
Long-Grid 1221 0.970 2.950 1.001 0 1805 1.143 4.396 0.994 0

Circ-Long 1431 0.964 5.006 0.999 0 1848 1.121 4.180 1.001 0
Circ-Circ 1520 0.970 4.656 0.994 0 1844 1.069 4.378 1.003 0
Circ-Grid 1429 0.935 5.054 0.994 0 1734 1.017 4.477 1.003 0

Grid-Long 1159 0.887 2.738 1.001 0 1832 1.185 4.249 0.967 29
Grid-Circ 1159 0.873 2.804 1.004 0 1846 1.101 4.280 0.994 41
Grid-Grid 1140 0.807 2.776 1.002 0 1733 1.028 4.478 0.995 0

5 Discussion

The discussion of the results is done in the following
steps. Initially, some general comments about the orig-
inal non-rounded results are stated. Secondly, the over-
all effects of rounding are discussed. Thirdly, we dis-
cuss the results of the Long-Long and Circ-Circ parame-
terizations, respectively, with and without foam in detail.
Finally, general comments about the performance of the
DMTO method are stated.

5.1 Original result tendencies

It is clear from the results of Table 4 and Fig. 9 that
parameterizations with foam as a candidate significantly
outperform those without foam. The optimizer recog-
nizes the foam candidate as a profitable means of obtain-
ing high moments of inertia, beneficial for the considered

flap-wise bending load case. With foam, the end mass
ranges from 0.42m ≤ m ≤ 0.55m as opposed to a range
from 0.63m ≤ m ≤ 0.67m without foam. The lowest
mass is 1163kg for the original Grid-Grid parameteriza-
tion with foam, and the largest being 1854kg for the orig-
inal Circ-Circ parameterization without foam. It is not
surprising that the Grid-Grid parameterization with foam
yields the lowest mass as this parameterization reflects ul-
timate design freedom, supporting rapid changes in both
geometry and candidate preference. Hence, the Grid-Grid
result with foam should be the natural choice for a high-
performance design; that isif manufacture is possible,
which is doubtful due to the high degree of complexity.
The displacement constraint is active for all parameteri-
zations. Most parameterizations do likewise end up with
active constraints on buckling load factors, whereas the
constraints on eigenfrequencies are inactive throughout as
a consequence of low mass and high stiffness. Neverthe-
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Figure 9: Graphical result overview of the original DMTO results of the 9 parameterizations with foam. The star
marking at Circ-Circ∗ denotes that the SLP approach has been restarted once with up-scaledc value. Mnd measures
are truncated at 1.0%, see Table 4 for details
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Figure 12: Design iteration history for the Long-Long
parameterization with foam. The massm is normalized
with respect to the initial mass. The structural perfor-
mance constraintsλ(b)

1 , λ( f )
1 , and|uo| are normalized with

respect to their bounds, see Table 3. The measures of non-
discreteness,Mcnd andMdnd, appear as decimal numbers.
The values of the largest artificial variable,‖yk‖∞, and
the largest infeasibility among the structural constraints,
‖gk − gmax

k ‖∞, are shown in accordance with (36) and
(37), respectfully.∆(x jc, ρi) is the Euclidean norm of the
change in design variables between two successive iter-
ations. A change in penalization is indicated with a ”+”
sign next to the iteration number in which the penalization
was increased

less, one can only ensure demands on structural criteria
when present in the optimization problem.

As highlighted in Section 3.1, the numerical examples
have been conducted using geometric linear finite element
analysis. In order to estimate the effects of the geometric
non-linearity on the active constraints, a geometric non-
linear analysis of the two initial designs for the param-
eterizations with and without foam as a material candi-
date, see Section 3.2.2, has been conducted. These analy-
ses show that the linear tip displacement is within 5% of
the geometric non-linear tip displacement. The buckling

analysis comparison revealed that the linear predictions
are up to 17% larger for parameterizations without foam,
and 10% larger for parameterizations with foam. In spite
of these deviations, we maintain linear analyses to reduce
the computational time. It is, however, stressed that the
DMTO method supports non-linear analyses as well.

In section 2.4, we state that includingn(b)
λ

buckling load
factors takes care of crossing eigenvalues (mode switch-
ing) during the optimization process. In all the numeri-
cal examples, the ten lowest buckling load factors were
thus included as constraints in the optimization problem.
To check if including the ten lowest values has sufficed,
the final ten buckling load factors have been analyzed for
all numerical examples. Here it has been found that the
difference in magnitude between the first and the 10th
value is on average 17% and 28% for the parameteriza-
tions with and without foam, respectively. The possibil-
ity for the 11th load factor changing more than 17% or
28% between two successive iterations is believed to be
negligible; hence including the ten lowest positive buck-
ling load factors has been adequate for controlling mode
switching for the applied numerical examples.

The measures of non-discreteness,Mcnd andMdnd from
(38), are generally largest for the Grid-Long, Grid-Circ,
and the Grid-Grid parameterizations without foam. The
reason for this may be that this particular group of param-
eterizations represents the most challenging optimization
problems, considering the number of design variables, the
number of constraints, and the fact that those parameteri-
zations without foam call for a larger extent of thickness
variation than parameterizations with foam where sand-
wich structures are natural outcomes. Experience has
shown that neither increasing penalization nor different
continuation approaches improve the obtained levels of
non-discreteness. One way of addressing this issue could
be to use explicit penalization of intermediate valued de-
sign variables as suggested in e.g., Hvejsel et al. (2011)
or Kennedy and Martins (2013). Modification or even re-

17



replacements

zx

y

y′

y′

y′

y′

y′

y′

y′

y′

y′

[1]
[2]

[3]

[4]
[5]

[6]

[7]

[8]

−45◦ (UD)

0◦ (UD)

+45◦ (UD)

90◦ (UD)

±45◦ (Biax)

Foam (Iso)

Void

Figure 10: Rounded DMTO result of the Long-Long parameterization with foam. The Long-Long parameterization
implies that candidate allocations and thicknesses of the eight longitudinal design domains, marked by [1]-[8], are
identical from the root to the tip of the main spar

moval of the troublesome constraints that prevent inter-
mediate void (MC4), see (9), is likewise considered at-
tractive as it may facilitate application of highly robust
SQP or interior point optimizers, see Sørensen and Lund
(2013) for further discussion on this issue. The obtained
levels of non-discreteness are all less than 4% which is
found acceptable. Robust solutions for obtaining even
more discrete results at this stage, i.e., prior to the follow-
ing finalization by rounding, are left for future work. No-
tice that the Long-Circ parameterization with foam con-
verges before the last continuation step as a result of a
sufficiently near-zero measure of non-discreteness,Mnd,
see (39).

The total number of iterations ranges from 28-142 with
an average of 59. The star∗ in front of the two parame-
terizations in Table 4; Circ-Circ and Long-Grid, with and
without foam, respectively, denotes that these particular
parameterizations were restarted once with up-scaledc
values to obtain vanishing artificial variables,yk. Expe-
rience has shown that the initial valuec = 100.0 yields
better results thanc = 1000.0 or more for which reason
up-scaling is only applied if necessary in agreement with
Svanberg (2004).

The sequential time consumption associated with DSA
exceeds the evaluation of structural criteria by a factor of

18 to 22. The DSA time of the Grid-Grid parameteriza-
tion with foam exceeds that of the Long-Long parame-
terization with foam by 22%. Given that these two pa-
rameterizations involve 31,137 and 953 design variables,
respectively, clearly demonstrates the efficiency of the ad-
joint formulation when having many design variables.

The three-step continuation sequence (34) is found to
yield better results than applying a single, constant pe-
nalization value throughout. Likewise, the sequence is
found more robust than additional continuation steps or
even starting out from lower values ofp. Too many con-
tinuation steps impose a risk of getting stuck at an inter-
mediate design point with no chance of getting rid of the
artificial design variables.

5.2 Rounded result tendencies

Results upon finalization by the simple rounding de-
scribed in Section 2.6 appear in Table 5. The effect of
rounding on the original mass varies between -23kg for
the Grid-Grid parameterization with foam to+30kg for
the Long-Long parameterization without foam. Changes
in the original mass are generally reflected upon changes
in the criteria functions. Rounding generally affects the
parameterizations with foam as a candidate significantly
more than those without. This is due to the large differ-
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Figure 11: Rounded DMTO result of the Circ-Circ parameterization without foam. The Circ-Circ parameterization
implies that the candidates are distributed in 0.5m wide circular belts, wrapped around the entire circumference of the
main spar, resulting in 28 unique candidate belts throughout the length

ence in the constitutive properties, see Table 2. The buck-
ling criterion is particularly affected, being more locally
dependent upon change than e.g., the tip displacement
constraint. Rounding of the Grid-Grid parameterization
with foam yields a buckling load factor constraint vio-
lation of 19.3%. On average, however, rounding causes
structural criteria constraint perturbations< 3%.

Rounding of the two parameterizations; Grid-Long and
Grid-Grid, both without foam, causes 29 and 41 viola-
tions of the manufacturing constraints, respectively. The
violations are in both cases associated solely with the con-
straints on contiguity (MC3), see Section 2.3.3, allowing
at most 8 identical contiguous candidates throughout the
20 layers of the 224 candidate domains. Upon rounding,
more than 8 GFRP UD plies oriented at 0◦ appear contigu-
ously. As previously mentioned, infeasible constraints
are a possible risk associated with this simple rounding
scheme due to the decoupling of the optimizer. Neverthe-
less, it is stressed once more that DMTO results should
not be viewed as final designs, ready to manufacture, but
rather as a vital source of inspiration for thickness varia-
tion and stacking sequences throughout the entire struc-
ture.

5.2.1 Long-Long with foam

The rounded DMTO result of the Long-Long parameteri-
zation with foam appears in Fig. 10. Candidate allocation
and domain thicknesses are inherently identical longitudi-
nally, hence not allowing a tapered geometry towards the
tip. Despite these inherent restrictions, the allocation of
candidates agrees quite nicely with existing designs. The
moment of inertiaIxx is large in order to cope with the dis-
placement constrained, flap-wise bending load case. This
is clear from the predominant stacking of 0◦ GFRP UD
plies at the top and bottom domains, denoted by numbers
[1] and [5] in Fig. 10, respectively. 0◦ GFRP UD plies
likewise appear at the outermost active layers around [2],
[4], [6], and [8]. These plies contribute toIxx as well.

The two sides [3] and [7] are free from material at the
outermost two layers and otherwise predominantly con-
stituted by the lightweight foam candidate. The bottom
domain [5] contains more 0◦ GFRP UD plies than the
top domain [1], probably to resist the first buckling loads,
dominant along the bottom pressure side [5]. Notice the
presence of at most eight contiguous UD plies, thereby
satisfying the imposed contiguity limit (MC3). In spite
of feasibility, it is, however, recognized that having too
thick regions with identical fiber orientation is typically
unwanted; especially in the more conservative aerospace
industry. Tightening the contiguity limit to the commonly
applied value of four has been tested to result in additional
foam plies in between the thick stacks of 0◦ GFRP UD
plies. Not surprisingly, a tighter contiguity limit increases
the final mass.

From a manufacturing point of view, rapid encapsula-
tion of just a few plies of foam in between fibrous layers
such as occurring in [5], is undesirable. Multiple encapsu-
lations are nevertheless a perfectly feasible outcome with
the current DMTO formulation, and future work should
impose the aforementioned sandwich constraints, forcing
foam plies to be grouped together through the thickness of
the candidate domains. Such constraints should likewise
ensure the block of foam to be enclosed by fibrous mate-
rial from both sides, unlike the regions [3] and [4]. Man-
ufacturing constraints ensuring minimum proportions or
presence of all material candidates as well as constraints
limiting the change in fiber orientation between adjacent
in-plane candidate domains could likewise be considered,
but are, however, left for future extensions of the DMTO
method.

Notice that the design is not entirely symmetric along
thexz andyz coordinate planes. This not entirely symmet-
ric design across the verticalyz plane may be a beneficial
way to exploit elastic couplings, obscure at first glance.
Another explanation may be that the optimizer has set-
tled on a sub-optimal minimum. Furthermore, due to the
flap-wise bending load case, the solution does not con-
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tain more than three GFRP plies with other orientations
than 0◦ in total. Had the examples been formulated with
an additional torsion load case, other fiber orientations
would probably occur in greater numbers. Nevertheless,
the rounded result appears to provide a sound offset for
detailed post-processing.

Figure 12 shows a typical iteration history graph; here
for the Long-Long parameterization with foam. At the
initial design point, the displacement constraint is infea-
sible, and the optimizer initially focuses on obtaining a
feasible design at the expense of an increase in mass. Fea-
sibility is obtained in iteration number four; showing that
the merit function approach effectively copes with infea-
sibilities. The candidate non-discreteness is rapidly de-
creasing in pace with the optimizer recognizing that UD
material should be allocated on the top and bottom faces
of the main spar to achieve feasibility. The measure of
density non-discreteness reaches its maximum value of
3.6% in the 6th iteration and drops to a stable value around
1% at the 12th iteration. At the 7th iteration, the buckling
constraint becomes infeasible and remains so until iter-
ation number 11. However, it oscillates around the fea-
sibility limit until it becomes active at iteration number
21 which then satisfies convergence criteria CC3, caus-
ing an increase in penalization. Notice that during this
phase, the change in the design variables decreases for
each iteration; showing that the move-limit strategy in-
deed responds to oscillating constraints. Up until the first
increase in penalization, the mass has decreased by 41.6%
with respect to the initial mass. After this change in pe-
nalization both the displacement and buckling constraints
become infeasible until activity is obtained in iteration
number 29. From this iteration until the next increase
in penalization, the candidate non-discreteness decreases
from 5.2% to 0.26%, and the mass decreases as well until
CC1 is finally satisfied. From iteration 38 to 41, the mass
is increased from 1247kg to 1249kg. However, the mea-
sure of density non-discreteness is reduced from 1.1% to
0.67%. Final convergence is facilitated by satisfying CC2
and CC3 in iteration number 40 followed by CC1 in 41.
Overall, the presented iteration history demonstrates that
the SLP approach with merit functions is quite efficient
at obtaining a feasible and near discrete design in spite of
great non-linearity of the involved structural criteria.

5.2.2 Circ-Circ without foam

The rounded DMTO result of the Circ-Circ parameteri-
zation without foam as a candidate appears in Fig. 11.
Generally, the combination of the flap-wise bending load
case together with the displacement constraint calls for a
high moment of inertiaIxx and hence predominantly 0◦

GFRP UD plies on the top and bottom faces. This is also
clear from the results of the Long-Long parameterization.
For the Circ-Circ parameterization the candidate domains
are grouped together in circular belts around the circum-

ference of the main spar. Consequently, the optimizer is
forced to allocate the 0◦ GFRP UD candidate on the webs
of the structure in order to also place them on the desirable
top and bottom faces. The consequence of this is particu-
larly pronounced for the parameterization with foam as a
candidate material. In this case, the optimizer cannot allo-
cate the same amount of foam on the webs as in the case
of the Long-Long parameterization; ultimately resulting
in a substantial increase of the final mass. Naturally sur-
passed by the 0◦ GFRP UD candidate, the−45◦ GFRP
UD candidate is the second most present candidate. This
candidate may very well represent beneficial properties
to constrain the risk of buckling. The−45◦ GFRP UD
candidate occurs in particular at the tip section where the
pressure load is introduced, hence making this area prone
to local buckling. The thickness is smallest at the tip sec-
tion and largest between the tip and the mid-section as
this region is vulnerable to buckling along the pressure
side as well. Notice that the thickness is changed with at
most two ply thicknesses between neighboring geometry
domains, satisfying the constraints on thickness variation
rate (MC2), see (7).

5.3 General performance of the DMTO ap-
proach

The capabilities of the suggested DMTO approach have
been demonstrated on differently parameterized numer-
ical examples of a main spar. The suggested SLP ap-
proach is found robust, providing near-discrete designs
in an acceptable number of iterations. Simple rounding
finalizes the designs, causing average structural criteria
constraint perturbations< 3%, which is deemed accept-
able. However, for the Grid-Long and Grid-Circ param-
eterizations with foam, rounding causes infeasible manu-
facturing constraints on contiguity.

The considered parameterizations with and without
foam as a candidate do indeed give an insight into the
relation between weight saving and design complexity. In
the considered load case, foam is consistently an advanta-
geous candidate. The lightest design, weighing 1163kg
prior to rounding, occurred on basis of the quite com-
plex Grid-Grid parameterization with foam, difficult if
not impossible to realize with today’s manufacturing tech-
niques. In contrast, the simple Circ-Circ parameteri-
zation with foam proved inadequate for the considered
load case, weighing 30.6% more than the Grid-Grid pa-
rameterization. Nevertheless, the least complex result
with foam of all, being the Long-Long parameterization,
ended up weighing 1250kg prior to rounding, i.e., merely
7.5% more than the complex Grid-Grid parameterization.
The relation between weight saving and complexity is
hence not straightforward. Complex parameterizations
with great design freedom result in the largest weight sav-
ings, but are hardly manufacturable. However, fairly sim-
ple, but well-parameterized, designs may likewise per-
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form well. The results in general appear to provide great
inspiration for detailed post-processing. This is the exact
intention of the suggested DMTO method.

6 Conclusion

In this work, we have presented a gradient based topology
optimization method for minimizing the mass of large-
scale laminated composite structures. The method is la-
belled DMTO for Discrete Material and Thickness Opti-
mization. The DMTO method enables minimum mass de-
signs by simultaneously determining an optimum material
distribution and thickness variation. This is done while
also considering industrially relevant constraints on struc-
tural performance i.e., buckling load factors, eigenfre-
quencies, and limited displacements. Furthermore, com-
mon design guidelines or rules, referred to as manufactur-
ing constraints, are included explicitly as series of linear
inequalities.

The capabilities of the method have been demonstrated
on a generic main spar used in many designs of wind tur-
bine blades. In order to give insight into the relation be-
tween potential weight saving and design complexity, the
main spar was parameterized in different ways ranging
from simple to complex to manufacture with today’s pro-
duction techniques in mind. The results show that some
parameterizations can indeed obtain significant weight
savings while also being simple to manufacture. It is thus
stressed that the initial parameterization is of great impor-
tance as both the performance and the manufacturability
depend hereupon.

The design of the main spar together with the applied
flap-wise bending load case makes foam material an at-
tractive candidate. The results showed that, on average,
examples with foam as a candidate obtained a final mass,
nearly 30% lower than those without foam as a candidate.

The preceding work by Sørensen and Lund (2013) sug-
gests that SLP methods are favorable compared to e.g.,
SQP formulations. This is mainly due to the nature of
the manufacturing constraint for preventing intermediate
void through the thickness of the laminate. Compared to
the preceding work, we are now dealing with a far more
difficult problem given structural performance constraints
with sensitivities of both operational signs. An SLP merit
function approach, based on Svanberg (2004), was ap-
plied to pose unconditionally feasible LP problems. The
SLP approach was found robust and effective, emphasized
by the fact that all of the numerical examples converged
to feasible designs within 28-142 iterations.

A three-step continuation approach with increasing pe-
nalization in a product of RAMP interpolation schemes
was found efficient for obtaining near-discrete designs.
Strictly binary designs were obtained through finalization
by simple rounding, resulting in constraint perturbations
< 3% in most cases. In general, the DMTO method is

found as a great source of inspiration for manufacturable
thickness variation and stacking sequences throughout
the structure; inspiration for detailed post-processing that
may very well outperform intuition, exploiting elastic
couplings that may appear obscure at first glance.
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