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Abstract by the simultaneous determination of material distributio

and thickness variation. The method is labelled Discrete
This paper presents a gradient based topology optimiggaterial and Thickness Optimization (DMTO), being an
tion method for Discrete Material and Thickness Opfimmediate extension of the original DMO method by
mization of laminated composite structures, labelled tBegegmann and Lund (2005). Mass minimization reduces
DMTO method. The capabilities of the proposed methaghaterial expenses and issues related to the net weight of
are demonstrated on mass minimization, subject to c@fe structure. Mass is minimized subject to constraints
straints on the structural criteria; buckling load factorgn the following structural criteria; buckling load fac-
eigenfrequencies, and limited displacements. Furthgyrs, eigenfrequencies, and limited displacements. Fur-
more, common design guidelines or rules, referred totAgrmore, series of so-called manufacturing constraints
manufacturing constraints, are included explicitly in '[|”(W|C’s) are considered as a means to fulfill experience
optimization problem as series of linear inequalities. Thased design guidelines or rules for laminated composite
material selection and thickness variation are optimizggluctures.

simultaneously through interpolation functions with pe- As the DMTO name suggests, the laminate thickness

qalization._ _Numerical results for sever_al pa_rameterizgﬁould preferably add up to a discrete number of plies
tions of a finite element model of a generic main spar frQik, predefined thicknesses. The number of plies must
a wind turbine blade are presented. Theedent param- ot rally be able to vary throughout the structure to facil-

eterizations representftirent levels of complexity with jiase mass reduction. The material selection is conducted

respect to manufacturability. The results will thus give,ong 5 discrete set of material candidates, and should
insight into the relation between potential weight savingeterapy result in a distinct choice rather than a mixture

and design complexity. The results show that the DMTQveen two or more candidates. Intermediate valued,

method is capable of solving the problems robustly wifhyntinous variables, are penalized as the means to ob-

only few intermediate valued design variables. tain the preferred discreteness. This classical density ap
proach is elaborated in the following section. The candi-

1 Introduction da'Fes may COHSIS.t of any mat_erlal, as it is merely requ_lred
to input the &ective constitutive properties and density.

Today, laminated composites are used in a wide varietyos thus possible to choose among the same orthotropic
weight critical products, ranging from recreational itenfgaterial with diterent fiber orientations, biax-angle fiber
like badminton rackets and mountain bikes, to large ifaterials, foam and wood materials, or even customized
dustrial structures such as airplanes and wind turbinf§n Crimp Fabrics (NCF's) and prepregs. This selec-
Designing such structures is not a straightforward tagn among a discrete set of candidates resembles the cur-
as it requires considerations regarding e.g., available ffit production technology of several laminated compos-
terials, demands for performance, manufacturing mettg. structures. In the wind turbine industry, the material
ods, and common design guidelines or rules, referredcgdidates are typically placed, rolled out, or stacked in
as manufacturing constraints. As a consequence of th@deold where they are processed using vacuum infusing
criteria, the design process is typically iterative anadetinkechniques.

consuming. From an engineering perspective, one wayaterial optimization on basis of a discrete set of
of systematically addressing such a design process isdadidates for structures with constant laminate thick-
use a suitable optimization method. In this paper, wess has attracted much attention in the last decades.
present a gradient based topology optimization methiddst contributions on this topic have been summarized
for mass minimization of laminated composite structur@s Ghiasi et al. (2009). In the original DMO method, the



selection of a distinct material candidate was achieviglibst approaches on variable laminate thickness optimiza-
by balancing the dierent design variables such that aion divide the optimization process into multiple phases
increase in one would automatically decrease remainingere thickness and material determination are handled
ones, see Lund and Stegmann (2005). More recensigparately. Liu etal. (2011) presented a two phase or bi-
Hvejsel et al. (2011) considered alternative strategies fevel method for minimizing the mass of composite wing
discrete multi-material dfiness optimization and pro-panels subject to strain constraints. In the first phase, the
posed series of linear equality constraints to prevent tihenber of{—45°, 0°, 45°, 90°} plies was determined, and
total sum of the candidate design variables from exceé&uthe second phase a GA was utilized toffleithe place-
ing unity within each design domain. In order to obment of plies in order to accommodate common design
tain discrete designs, i.e., the distinct selection of #xacules used in the aerospace industry. The approach ap-
one of the candidates, the authors furthermore proposqdied by Altair Engineering in the commercial software
guadratic penalty constraint to gradually force the desi@ptiStruct relies on three distinct phases, see Zhou et al.
variables to their discrete bounds. As an alternative ® tf2011) and Zhou and Fleury (2012). Phase | concerns
non-linear penalty constraint, Hvejsel and Lund (201flje conceptual ply layout; Phase Il determines the spe-
formulated multi-material variations of the SIMP andific number of plies; Phase Ill determines the final stack-
RAMP interpolation schemes, see Bendsge (1989) amgl sequence of the laminate, taking into account perfor-
Stolpe and Svanberg (2001), respectively. As an altern@ance demands and the previously mentioned manufac-
tive to the DMO schemes, Bruyneel (2011) introduced th&ing constraints. The method proposed in this paper
Shape Functions with Penalization (SFP) scheme. Tdumsiders thickness and material determination simulta-
SFP scheme is based on the shape functions of a queabusly, explicitly taking into account performance de-
rangular first order finite element, using only two natmands and manufacturing constraints throughout the pro-
ral coordinates to interpolate between four material caress.
didates. The method was later extended to also includéhe addition of manufacturing constraints in laminate
three and eight node elements, see Bruyneel et al. (208i&kign optimization has attracted more attention as the
Gao et al. (2012) proposed a Bi-valued Coding Paranoptimization methods have evolved. Manufacturing con-
terization (BCP) scheme which distinguishes itself frostraints represent common design guidelines or rules for-
SFP schemes in that it does not have a limit on the numheulated to e.g., reduce the risk of local failure in the struc
of applied material candidates. SFP and BCP schemesuiee. These failure modes are typically associated with
duce the number of required design variables comparedte-of-plane stresses that are not captured with fa-su
DMO schemes. We finally mention Kennedy and Martirigent level of detail when using standard shell elements
(2013) that proposed a series of non-linear equality can-a finite element context. In order to capture these ef-
straints, which were added as a penalty term to the ébets, a 3D-solid finite element model could be applied.
jective function, thereby penalizing intermediate valuglch detailed modeling is, however, seldom applied in
design variables. The above mentioned methods are @atimization frameworks, given a substantial computa-
pable of optimizing the material distribution throughouttonal time. Hence, manufacturing constraints serve as
laminated composite with constant total thickness. Thuas, dfective way of implicitly considering thesefects,
allowing for determining either an optimum stacking sand thus obtain designs that require less time for man-
qguence or a sandwich design throughout the predefined post-processing. Generally, the constraints typicall
and fixed number of layers. Most methods have traditioiound in the literature have their origins in the aerospace
ally been demonstrated on mass constrained minimizatiodustry, see Kassapoglou (2010). Manufacturing con-
of compliance. However, recent advances within the figttaints can furthermore be used to limit the complexity of
have likewise been demonstrated on eigenfrequency prlg- optimized design, thus making it possible to achieve
lems, see e.g., Lund and Stegmann (2005) and Niu etaahigher degree of manufacturability. In this work, four
(2010), and also problems considering buckling load fassmmon manufacturing constraints, denoted MC1-MC4,
tors have been attracting more attention, see e.g., Lumgloduced in the previous work by Sgrensen and Lund
(2009) and Kennedy and Martins (2013). (2013), are considered. MC1 is not an explicit constraint
Literature concerning optimization of multilayereds it is related to the design parameterization. In short,
laminated composite structures with variable total thickdC1 concerns the possible arrangement or grouping of
ness is more limited. Ghiasi et al. (2010) reviews work amall finite element domains into larger domains, ade-
variable stifness designs, with only few references coguate for the allowable variation in both candidate selec-
cerning variable thickness. Manne and Tsai (1998) uibn and thickness. MC2 explicitly limits the thickness
lized plydrop tapering for thickness optimization of symsariation rate between adjacent design regions to reduce
metric layups to avoid warping. Toropov et al. (2005) afhe risk of delamination. Costin and Wang (1993) formu-
plied a Genetic Algorithm (GA) to minimize the mass of ted a similar constraint in the case where the individ-
monolithic composite wing rib model using discrete fiberal laminae thicknesses are applied as continuous design
orientations and the number of plies as design variableariables. MC3 limits the number of identical contiguous
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layers through the thickness to reduce the risk of matdgnsidering multi-material topology optimization. Like-
cracking. This type of constraint has been investigateise, we change focus from minimum compliance op-
by e.g., Le Riche and Haftka (1993), Liuetal. (1999imization to minimizing mass subject to the following
Toropov et al. (2005), and Liu etal. (2011) in the corstructural performance constraints; buckling load fagtor
text of stacking sequence optimization with GA's. Alsa@igenfrequencies, and limited displacements. Mass mini-
Bruyneel et al. (2012) included this constraint for diseremization is viewed as an industrially more relevant prob-
material optimization with constant thickness. MC4 préem, as the mass can be directly related to the cost of
vents intermediate void from appearing through the thidgke final product. Together with the manufacturing con-
ness of the laminate. MC1-MC4 are all formulated as ligtraints MC1-MC4, this is altogether constituting a far
ear constraints, which makes thetfi@ent to fulfill for more dificult problem. The additional fliculties arise
the optimizer. The constraints are elaborated in Sectfoom the presence of the non-linear and non-convex struc-
2.3. tural constraint functions. In order to manage these dif-
Several other manufacturing constraints occur in tfieulties, we present a new procedure for obtaining near
literature such as requirements for e.g., symmetric agidcrete design. The capabilities of the DMTO approach
balanced laminates, minimum proportion or presenage demonstrated on several parameterizations of a finite
of candidates, and so-called adjacency constraintset@ment model of a generic main spar from a wind turbine
blending rules to limit the in-plane change in fibdslade. The dierent parameterizations show the flexibility
orientation, see e.g., Seresta et al. (2007), Kassapogibthe proposed method, but also represeffedént lev-
(2010), Zeinetal. (2012), Bruyneel et al. (2012), arals of complexity with respect to manufacturability. The
Kennedy and Martins (2013). In spite of the clear relessults will thus give insight into the relation between po-
vance of the above mentioned manufacturing constrairtential weight saving and design complexity.
these particular constraints are not explicitly considere
in the DMTO method to be presented here. The for-
mulation and inclusion of such constraints are hence lefit is noticed that DMTO results should not be viewed
for future work on the DMTO method. Other potenas final designs, ready to manufacture, as the final design
tial manufacturing constraints which would be of intemay still need some amount of manual post-processing
est would be a type of sandwich constraint, ensuring tlagspite the inclusion of certain manufacturing constgaint
core material is always enclosed by layers of fiber mahere are several reasons for this, of which one is related
terial. The necessity of one such sandwich constraiatthe assumption that adjacent layers witfiedient fiber
is discussed in Section 5. As mentioned, manufactorientations are perfectly bonded. These regions are typ-
ing constraints are mainly included to reduce the rigtally manufactured by introducing a certain amount of
of out-of-plane failure modes. In-plane failure modés-plane overlap between the two fiber materials and re-
could potentially be monitored by including local strengttuire detailed analysis. Likewise, the optimized struetur
criteria such as e.g., max stress and max strain camay be part of a larger assembly of other sub-structures.
straints or other criteria such as the Tsai-Wu failure cktence, jointing and other detailed considerations with re-
terion, see Tsaiand Wu (1971), Kim etal. (1994), amghrds to assembly have to be done post to the optimization
Groenwold and Haftka (2006). In the context of topologyrocedure. Thus, the optimized results should rather serve
optimization with isotropic materials, stress consti®inas a vital source of inspiration for thickness variation and
have been investigated by Duysinx and Sigmund (19%8acking sequences throughout the entire structure, tak-
and more recently by Le et al. (2010), Paris et al. (2010)g into account the complexity of elastic couplings and
and Bruggi and Duysinx (2012). The formulation and imlemands on structural performance as well as manufac-
clusion of local constraints within gradient based, multidring constraints.
material topology optimization is currently being investi
gated by e.g., Lund et al. (2013), but is not yet a mature
technology. Despite of the obvious relevance, local crite-The paper is organized as follows. Section 2 explains
ria are not considered here but left for future work. the DMTO method in detail, covering areas regarding
The method proposed in this work is a continuation tfe design parameterization, the applied density approach
the work by Sgrensen and Lund (2013) who presentetha considered manufacturing constraints MC1-MC4, the
novel method for simultaneous determination of materialathematical formulation including sensitivity analysis
distribution and thickness variation of multilayered lanthe Sequential Linear Programming (SLP) approach, and
inated composite structures. The preceding method va@asimple rounding technique to finalize the optimized re-
demonstrated on simply parameterized monolithic lasults. Section 3 introduces several numerical examples
inated plates with various boundary conditions, whetencerning a finite element model of a generic main spar
the objective was to minimize compliance subject tofeom a wind turbine blade. Numerical results are pre-
masgvolume constraint and manufacturing constrainsented in Section 4 and discussed in Section 5. The paper
MC1-MC4. Compared to the preceding work, we are naw/finalized with conclusions in Section 6.
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Figure 1: The design parameterization takes place in 4 .s&fep 1 concerns the finite element discretization. Step
2 concerns the arrangement into sub-domaihg, Step 3 and Step 4 concern the parameterizations into ggomet
domainspj, and candidate domaing;c, respectively

2 The DMTO method in Step 2, where the designer must settle onfacently
detailed level for such variations and transitions, common
2.1 Design parameterization for all layers.

Out of generality, this work clearly distinguishes between H(im.:et’ Step 2|;:onc]:ernz ?e ar-ranger::.errw]t of f|(rjw|te ele-
the initial finite element discretization and following a;_nerlll S |rt110 a(rjn;m eﬁ? su Omaﬂjbwt;]c arg |den-
rangement into domains limiting the complexity of thgCa y shaped for all layers covered by the sub-domain,

d |
geometric outcome, and domains limiting the comple&’yhere indicesd = 1,2,...,n"andl = 1,2,...,n denote

ity of the possible candidate distribution. As the resuits ?Ub -domain number and Iayer number, respectlvely con-

Section 4 will demonstrate, the design parameterizatr%%quently’ the sub-domains are coincident with the bound-

significantly afects both performance and complexity ries of at least one of the finite elements and do not over-

the optimized designs. The designer must from the v each other. The sub-domains constitute the building
beginning keep in mind that the design parametenzaﬂ cks for the subsequent parameterization into domains

should reflect adequate limits of complexity in manufa%aat are directly associated with the design variables. For
turing, thereby making it possible to realize the optlmlzé ISI |IIust;at|\:e (;:ﬁ(amplljedflnltedflerr;entsdltﬁnd 2 have been
design given an acceptable level of post-processing. apsed into the sub-doma and the remaining

design parameterization takes place in four steps as %Igsr?ent; have beerld?ss%ned 6}[5 sub- donntlamszt3 4}f h
emplified in Fig. 1. Step 1 of Fig. 1 concerns the finlli €p 5 concerns the adequate parameterization for the

element (FE) discretization into an appropriate number(imm‘;:e thlckn”esds tva”?t'on Forbthls pgr[;oset\r/]v?hmtro-
Equivalent Single Layer (ESL) shell elements all with a uce the so-called topology variablese [0, 1] wi €

identical number of layers of uniform thickness. In th%eswable limit value interpretation
figure, five elements are shown, each having three lay- { 1 if there is material in geometry domain

ers of uniform thickness. The appropriate number of efé-= (1)
ments may be determined based on a convergence study,

considering all optimization criteria. The necessary éinitvhere the index = 1,2,...,n' denotes the so-called ge-
element discretization may, however, often be too fine fmmetry domain number. The geometry domains are co-
the acceptable level of the thickness variation and traneident with the boundaries of at least one of the sub-
sitions in fiber orientation or fierent material selectiondomains. The geometry domains may principally overlap

that is about to take place. This problem is consideredch other from layer to layer as seen in Fig. 1; itis up

0 otherwise
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to the manufacturing constraints to ensure e.g., preven-
tion of intermediate void. Application of a single topol-
ogy variable for the bottom layér= 1 ensures a constant
thickness throughout governed by the valugpf

In Step 4, the acceptable level for jointing adjacent fiber
mats with diferent orientations, €fierent biax-angle plies,
NCF's, or even diferent materials, is defined. For this
purpose we introduce the so-called candidate variables
Xjc € [0, 1] with the desirable limit value interpretation

)

~_ |1 ifcand.cis chosen in cand. domain
710 otherwise

where indexj = 1, 2,....nl denotes the so-called can-
didate domain number and index = 1,2,...,n° de-
notes the candidate number. A candidatepresents a X/0°
unique set of material properties for the constitutive ten-

6x6 : .

sor E; € R¥. Hence, some candidates may represgfiyre 2: Top: Potential outcome of an example, param-
differently oriented UniDirectional (UD) fiber mats, whilgterized as illustrated in Fig. Bottom: Any unique set
other candidates may represent biax-angle plies, NClyFmaterial properties for the constitutive tensgy may

or isotropic materials such as a lightweight foam in Cag&present a candidatesuch as for instance a foam type

of designing sandwich structures. Hence, the method sygft) or GFRP UD fiber mats (right), characterized by the
ports any set of physical constitutive properties. Sintdarfiper orientatiorg

the geometry domains, the candidate domaing; may

likewise overlap each other from layer to layer as seen in
II:i gwi veriap y y Ih (4), careful bookkeeping keeps track of proper associ-

Figure 2 illustrates a potential outcome of the consi@yon between finite element discretization versus design

ered example where the constitutive properties charjgriable location. We introduce a product of RAMP in-

terizing a Glass Fiber Reinforced Polymer (GFRER terpotl_atlon Zcherr;e_zds E[O ;qclllystf_ftmrer;]g;a n g;omgftrlc
biax-angle ply represents the material candidatel and variation and candidate distribution while making binary

henceE, an isotropic foam material represents candida{{%”ables attractive.

c = 2 (Ep), and a UD GFRP oriented a45° represents
candidatec = 3 (E3). The design parameterization of FigEq = Eg +
1 and the outcome illustrated in Fig. 2 are used to exem-

plify the formulation and fect of certain manufacturlngwhereAEC = E, - Eq with Eq representing void such

constraints in succeeding sections. Presence of exaﬁ;‘%’t E.— Eo > 0andEy > 0. In (5),p > 00 is a
one candidate must naturally ensure absence of remain-_ .. 0 0 ' P =

. . . ) .Renallzatlon power. Notice that variablgsand x;c are
ing ones. In this work we ensure this coherence epr|C|s¥I . . : o .

: . . . bject to identical penalization, found appropriate by ex
through the series of linear equality constraints

perience. We favor the RAMP interpolation scheme by
n° Stolpe and Svanberg (2001) after Rietz (2001) because of
Z Xig=1 V| (3) non-zero sensitivities even for zero valued design vari-
c=1 ables for all penalization powers. Other schemes exist
It is noticed that (3) is of no importance for obtaining thend are known to work as well; it is a matter of prefer-
desirable @1 designs; this is left for penalization of interence. Equivalent penalization between the RAMP scheme

Pi i Xjc
1+p(1-pi) & 1+ p(1 - Xic)

AE. ®)

mediate values through the density approach. and the well-known SIMP scheme by Bendsge (1989) is
treated in Hvejsel and Lund (2011).
2.2 Density approach Notice that the producis X;c ensure candidate continu-

_ _ o _ _ ity within the pre-defined candidate domains while hav-
The constraints (3) in combination with continuous Cafhg the freedom to introduce regions with void through

didate variables introduce the risk of non-manufacturablgnology variable scaling. This facilitates an outcome as
non-physical pseudo candidates if linearly summarizedjisirated in Fig. 2, subject to the parameterization of
describe the fective constitutive propertie&q for all gjg 1. Here, the candidate domats,, covering sub-
layers of all elements as domains{Q3, Qo3, Q33, Qu3}, has settled on the specific
n° biax-angle candidate = 1, but since the topology vari-
Eq = Z XjcEc (4) ablepg = 0, only sub-domaif2;3 whereps = 1 appears.
c=1 The association between sub-domaiqg, geometry do-



mainsp;, candidate domaingijc, and the corresponding2.3 Manufacturing constraints
design variable value distribution for the considered ex-

ample in Fig. 2 appears in (6) in case the number of Cgr{gctlcal design guidelines or rules, referred to as manu-

didates is limited to those three introduced in Fig. 2 (togicturmg constramtg n th_'s wor_k, oceur frequently in the
literature. As described in the introduction, manufactur-

H C _
Le. =3 ing constraints are typically associated witkfelient out-
of-plane failure modes and may be implemented in vari-

[Q11] (01 = 1] [Xx;c={ 0 1 0 }] ous ways. In this work, we explicitly include a variety of
Q1o p2=1 Xc={ 0 1 0} manufacturing constraints as linear inequalities to accom
Q13 ps=1 Xxsc={ 1 0 0 } modate demands on manufacturability. The linear formu-
Qo p1=1 Xc={ 0 0 1} lations are highly attractive and possible to achieve for
Qoo p2=1 Xc={ 0 1 0 } most manufacturing constraints. Explicit inclusion from
Qo3 pe=0 Xsc={ 1 0 0 } (©) the very beginning is the key to the simultaneous determi-
Qa1 p1=1 Xe={ 0 1 0 } nation of geometry, i.e., the variation in thicknessd
Q3o p3=1 X3e={ 0 1 0} the proper candidate choice from a predefined, distinct
Q33 pe=0 Xsc={ 1 0 0 } set. Formulations of the manufacturing constraints are
Qa1 p1=1 Xec={ 0 0 1} deemed most easily comprehensible when exemplified as
Qa2 pa=0 s, ={ 1 0 0} below with basis in the parameterization presented in Fig.

| Q43 o = O] I Xsc={ 1 0 0 }] 1 and the resulting outcome in Fig. 2. Correct formulation

relies on proper bookkeeping between the parameteriza-

. ) ) tions applied in Steps 2 4, exemplified in (6) for the
The star ornx;, denotes that the candidate material Sele&]tcome in Fig. 2.

tion in this particular case is insignificant because the as-
sociated geometry domain is empty, i@,= 0. The de-

sign variable value distribution fOch must comply with 2.3.1 Accommodations for allowable candidate and

(3) but could as such be,, = { % % % } or any other thickness variation (MC1)

combination with no influence on thefective constitu- MC1 concerns the possible arrangement or grouping of
tive properties, given (5) witpy = 0. small finite element domains into larger domains, ade-
With the stifness parameterization (5), one coulguate for the allowable variation in both candidate selec-
likewise determine how, for instance, the well-know#on and thickness. These latter domains are directly as-
Messerschmitt-Bglkow-Blohm (MBB) beam, see e.gociated with the design variables as part of the design
Olhoff etal. (1991) or Bendsge and Sigmund (200Farameterization, see Steps 3-4 in Fig. 1. Itis thus pos-
would appear, if the entire domain should settle on a sgéle to e.g., ensure ficiently large areas with identical
cific candidate from a distinct set while having the posandidate selection to support standard roll widths for fi-
sibility to mix with void through topology variable scalbrous material. Hence, MCL1 reflects adequate limits of
ing. The outcome would indeed be quite easily manufa@g@mplexity with regards to the available production meth-
turable. ods, thereby making it possible to realize the optimized

An approach as (5) where #hess is determineddes'gns with quite ittle post-processing.

through interpolation schemes with penalization, but

mass is not, making nory0 variable values uneconomi2.3.2 Constraints on thickness variation rate (MC2)

cal, is generally referred to as the density approach, and _ _

is used extensively throughout the literature on struttu tS eN dgnote the aIIowapIe fierence in the tOtaI,
topology optimization, see Bendsge and Sigmund (ZO(ﬁLf.mber of plies between adjacent geometry domains,

The density approach is known to work particularly wefi- ~ Constraints o govern the acceptable thickness
for mass constrained minimization of compliance, bﬁ'?”at'on rate e-merge on basis of systematical compar-

may nevertheless fail at obtaining purglOdesigns for ISon between topqlogy variqble summation t_hroggh the
various reasons. Thefilculties of obtaining binary de_thmkness of all adjacent design domaing, taking into

signs are increased in this work, primarily due to (Rgcount, hqwever, _possible reduction because certain
presence of sensitivities with both operational signs. I58P°r|1°g¥ Va”f]‘ble pairs maycclzancgl out each otlher, cause(IJI
this reason, we finalize the optimized designs with sim;ﬁg the agt that g.eorr.letry domains can overlap severa
rounding to binary values, elaborated in Section 2.6. %b-domaln_s. This gives rise to four linear inequalities

assess the quality of the optimized designs prior to tl’;% the considered example.

rounding, we will introduce so-called measures of non- .

discreteness in Section 2.5. The finite element formgy VS

lations of the considered criteria functions are treated in
Section 2.4. =S < (pr+ pz +ps) — (P + P2 +p6) <S (7a)



Qq Vs Qg : ensure that topology variable values of upper layers do

not exceed those of lower contiguous layers such as for
-S<(pr+p2+ps)—(pe+p3+pe) <S (7b) instanceps < p» < p1, see Fig. 1. In the preceding
work by Sgrensen and Lund (2013) it was, however,
concluded that series of such straightforward constraints
were instficient at preventing so-called density bands
~S<(pr+p2+p6) —(pa+pat+pa) <S (7€) where the topology variables settled on the same inter-
mediate value throughout the thickness regardless of the
penalization level. For this reason we apply the same
modified constraints to prevent intermediate void as sug-
gested in Sgrensen and Lund (2013), thereby ensuring an
The outcome in Fig. 2 is feasible for &I> 1. acceptable transition between contiguous topology vari-
ables throughout the thickness. The constraints emerge
systematically on basis of the sub-domain arrangement
Qq followed by removal of repeated constraints because
Let P?U D) denote the unique set of indiceshat concerns of potentially larger geometry domaips This gives rise

UD fiber material candidates. The constraints on conigrseven linear inequalities for the considered example.
guity impose a limit on the maximum allowable number

of contiguous identical UD fiber material candidatesoncerningy, :

to avoid e.g., matrix cracking failure. Hence, non UD
candidates are not subject to the following constraints. < f(o1,T) (9a)
Let CL € N denote the contiguity limit. In caseL = 1, 55 < f(pp, T) (9b)
the candidate selection for all contiguoQ2g pairs must

be constrained. However, since the candidate domdiicerningQy :

are larger than or equal to the sub-domains, we see that a

Qo VS Qy :

Q3 VS Qy :

-S<(pr+p3+pg)— (P +pa+pg) <S (7d)

2.3.3 Constraints on contiguity (MC3)

number of constraints repeat themselves for which reasen~ ’ (9c)
the redundant ones are erased fidicEncy. pe < f(o2,T) (9d)
ConcemningQy : ConcerningQg; :

p3 < (o1, T) (9e)
X1c + X3c < CL Vce 5 8a

to ¥ X0 = CL Ve € P B < 1oaT) (o)

Xsc + Xsc < CL V€€ Plyp, (8b)

ConcerningQy :
ConcerningQy, :

pa < f(p1,T) (99)
Xoc + X3c < CL Vce PE:U D) (8c) o6 < fog, T) (9h)

— C - . -

Yoo+ = CL—46<S (UD) (8d) In (9) the right-hand side$(o;i, T) denote functions de-

pending upon density values of contiguous lower layers

ConcerningQg : o )
L and a threshold valuE to control the transition, given as

C

*I(,—-I-%(?,L—_QGHQG—% (8e) o T) = %pi it pi<(1-T) (10)

Yor+Xer = EL—¥e- S8y, 8 T LTy L else

ConcerningQy : In Sgrensen and Lund (2013), the threshold value-
0.10 was found appropriate and is used in this work as

Xoc + Xac < CL - VC € Plyp, (89) well. Because the topology variakig = 0 for the exam-

Xac + Xsc < CL Ve PGp,) (8h) pleinFig. 2,p6 must likewise _be gqual to zero to fulfill
(9h), thereby #iciently preventing intermediate void.

For the example in Fig. 2, only = 3 is a UD fiber mate-

rial candidate; henc€f,, = {3}. 2.4 Mathematical formulation of the optimiza-

tion problem

2.3.4 Preventing intermediate void (MC4 . S
9 ( ) In this work, we want to minimize the total mass, sub-

Intermediate void must be prevented in order to suppj®tt to constraints on buckling load factors, eigenfrequen
common manufacturing techniques relying on vacuuies, displacements, and the linear manufacturing con-
infusion. To facilitate this, it principally dfices to straints presented in Section 2.3. We apply the Nested
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ANalysis and Design (NAND) approach, see for instaneemaximum allowable displacemeny. Elastic couplings
Arora and Wang (2005), to solve the optimization prolaay necessitate displacement constraints on several nodal

lem that appears in (11). DOF’s, contained in a corresponding set, denote@hy
' Given the NAND approach, the global displacement vec-
min - m (Mass) (112) tor u is determined prior to every optimization iteration
¢ h . ibri .
st /l(kb) > O k=12 ngb) (Buck) (11b) rom the static equilibrium equations
f f
A0 >a0k=12_...n" (Freq (11¢) Kou = f (15)
Ul Ty Voe P! (Disp) (11d)
written in residual form as
(MC's) (118) r(u,p, Xjc) = Kou—f =0 (16)
pi €[0,1] Vi (11f) where f denotes the load applied to the non-restrained
xjc € [0, 1]V (j. ) (11g) nodes anq is the reS|duaI.. Besides the _total m_amn
(12) that is clearly a function of the design variables
In (11a),m denotes the total mass, determined as and Xjc, it must by now be noticed that this is likewise
. the case for bottKy and K- due to the dependence on
d the dfective constitutive properties (5). It is neither trivial
m= ;:pivd' Z; XjcQc (12) nor obvious where to mosticiently penalize this design
Cc=

variable dependence. In this work, however, we reserve

taking into account proper association between inditespenalizationp for the linear stitness matrix parko only,
i, and j, as exemplified in (6).Vy denotes the volumei-€.,

of sub-domainQq, ando. is the material density of can-

didatec. In (11b),A® denotes the minimum allowableKo = f(p) . Ko # f(p) . m= f(p) (17)
buckling load factor./l(kb) denotes theh eigenvalue, i.e.,

buckling load factor, out of the consideregﬁ’) cigenval- The numerical results in Section 4 will demonstrate the

_ , efficiency of this approach, and alternative penalization is
ues, assumed ordered by magnitude SUCM&%S the left for future work. See for instance Lindgaard and Dahl

Icz\tg/est po(fs)'t'v_e elgenvalqe. The e_ld\(ant_age of mc'“g"@OlZ) for penalization approaches concerning topology
n,” andn’’ eigenvalues in the optimization problem in-

X i ) . optimization of geometric non-linear compliance and
stead of only including the lowest eigenvalue is that croﬁj—ck”ng_
ing eigenvalues (mode switching) during the optimization
process are taken into account. In the examples consid-
ered the lowest 10 buckling load factors and eigenfrd4.1 Design sensitivity analysis
guencies are included. Based on the displacement fi?_ld

the stress dfiening dfects due to the mechanical Ioadin%ﬁiﬁgrev%e(jzntthilIir?;esj'(g_n lvaérlablpr?sjnnccl XjTCh'inSt:jb];c;I;:

can be evaluated by computing the initial stresfrsss . . . .
tion describes how we conduct analytical, computation-

matrix, also termed the geometricfitiess matrix,K, . . . L .
and the linearized buckling problem can be establisheaagg efficient adjoint Design Sensitivity Analy5|(§) (BSA)

. - : da
of dlsplacementsg—;, and distinct elgenvaluesﬁ and

(Ko+ QK )0 =0, k=12....n (13) @ o _ _
&> concerning eigenfrequencies and buckling load fac-
fors, respectively. Notice that this work is limited to DSA
of distinct eigenvalues as opposed to the more compli-
cated case where two or several eigenvalues attain exactly

ing frequency. Hencewﬁ _ /l(kf) is the k" squared, un- the same value, known as repeated or multiple eigenval-

damped, free, natural eigenfrequency, determined frigs: For details on this latter case see e.g., seyraniap et al
the free vibration analysis problem (1994) or Lund (1994). DSA of the objective function

mass in (12),%‘, is straightforward and omitted.

(Ko- A(kf)M) o"=0, k=12....n" (14)  The displacement sensitiviti€j can be computed us-
ing the direct diferentiation approach, i.e., the static equi-

where (I>(kf) denotes the corresponding eigenvector, i.8brium equations (15) are fierentiated with respect to a

nodal amplitudes, andil is the consistent global masslesign variable; as

matrix. Eigenvalues are again assumed ordered by mag-

nitude. In (11d),uc| denotes the absolute displacemegg dU _ 9f Ko (18)

wherecb(kb) denotes the corresponding eigenvector of d
placements anig is the linear stthess matrix. The no-
tation in (11c) is similar but with superscript)( denot-

of the nodal degree of freedom (DOG) constrained by %dz ~ 9z 0z

8



where the load sensitivitiesf /dz are zero for the DMTO where the eigenvectors have bekp-orthonormalized,
design variables used, unless volume forces are consigch thai(cb(kb))T (—K(,)(D(kb) = 1. The first of the deriva-

ered which is not the case in this work. (18) is Writte{i\/es dKo(2) ig computed analytically as described before
alternatively in residual form as dz '

but the second terrﬂ%’T@ in (23) is more complicated
d_u - —Kalﬂ (19) because of the implicit dependence of the state variables
dz 0z u, i.e., Ko(z,u(z)). In this work an éicient analytical
For the DMTO parameterization proposed in this worRgdjoint method is introduced due to the many design vari-
the design domain is fixed. For this reason the derivables in the DMTO approach. The adjoint method is
tive % in the pseudo load vectét involves only the based on the work presented in Rodrigues et al. (1995)
derivative of the assembledfective constitute elementand Neves et al. (1995), but is nevertheless described here
matrix Ee, which is determined analytically. Howeverfor completeness. Applying the chain rule we have
the DMTO parameterization introduces many design Vagik . (z, u(z)) 0K,(z,u) K, (z,u) du

ables, and itis thus moréfigient to compute the displace-— g T 6z ou  dz (24)

ment sensitivity using the adjoint method. Noting that tI%\Egain, the first term is the partial derivative Kf- and this

. _ T .
displacement, can be expressed &g = | 'u, wherel is term is computed on the element level in the same way as

a vector with the value 1 at the DOF of interest, the S€llscribed for the terrfke@) The second term of (24) in-
sitivity of the displacementi, can be found analytically dz -

volving dK,-/du is the dificult and costly part to compute

as and still requires evaluation of state variable sensigsit
duo _ —w' ar (20) du/dz for all design variables. However, note that we are
dz 07, notreally interested in computing the term, but instead it
where the vectow is the solution to the adjoint load probis to be pre- and post-multiplied with some eigenvectors
lem in (23), i.e.,
Kow = | (21) (q)f(b))T wg_u(p(kb) =...

u Z
In this way, the factored sthess matrix{g is reused and onT Koz, U) (), 10" (25)
only a single forwartackward substitution is needed for-- ™~ ((I)k ) au @, Ko 0z

each displacement constrai before the displacement, o the right hand side is arrived at by inserting the

sensitivities in (20) are obtained analytically by VeCt%rxpression for state sensitivitielsi/dz from (19) and re-

multiplications. _ _ grouping terms exploiting symmetries. It is now conve-
The direct approach to obtain the eigenfrequency sensknt to introduce the adjoint vectovg given as
tivity is to differentiate (14) with respect to a design vari-
. (T T ()T 9K (2, U)
able z, premultiply by (@) , make use of (14), andv = () o
noting that the system matrices are symmetric. Hence Hle

. . . . otice thatvy is the same for all design variables, and
following expression is obtained for the eigenvalue senﬁ%-

R : . - . us only needs to be computed once for each iteration
tivity in case of a simple, i.e., distinct, eigenvalag see

. o of the optimization problem for each of tlﬂ’éb) buckling
€.g., Courantand Hilbert (1953) and Wittrick (1962). load factors included in the optimization problem (11).
dah
k

T (AKo (1 dM) () When solving the linear systems of equations in (26) for
d_zi = ( k ) (E - /11 a) @, (22) the adjoint vectowy, the factored sffiness matrixKg can

o . be reused. The terdK,/du is derived analytically for
Here it is assumed that the eTlgenvectors have bden the ESL shell elements used, and by using (26) and (24)
orthonormalized such thé@(kf)) Mo{" = 1. Again, the in (23) and regrouping terms, the buckling load factor sen-
derivativesd*fj"a@) andd'\gf) are computed analytically, assitivity can be computed analytically as

they involve only the derivative of the assembldtee- (b) T dK
tive constitute matrixEe and the material candidate mass—<— = (<I>(kb)) —°<I>(kb) +...

densityo. with respect ta;. Note that in a finite element dz dz

implementation, all of these computations are performed 1 ((q)(kb>)T wq)k _ V-Ii-kﬂ)

on the element level, such that derivatives are only com- 9z 9z

puted for elements depending on the given design varialilghis way the sensitivities of the buckling load factors

oKyt (26)

(27)

Z. are computed veryficiently. The described DSA re-

In a similar way the design sensitivity of a distinoguires full access to the finite element code used in or-
buckling load factor is given as der to implement analytical sensitivities of element ma-
a® trices and vectors, and for implementation of the term
_k _ (q,(b))T (% i A(b)dﬁ)q,(b) (23) 0K, /du needed for computing adjoint vectors in the ana-
dz kK7 \dz K dz )k lytical DSA of buckling load factors.



2.5 The SLP approach

Previous work by Sgrensen and Lund (2013) concludgf!"}, ®f (30a)
that an SLP approach outperformed various Sequenti@llt.
Quadratic Programming (SQP) approaches, primarily due
to the nature of the manufacturing constraints to prevent
intermediate void through the laminate thickness, i.e., (MC's) (30c)
MC4 from (10). As this work includes the same chal-

o) < g k=12 K (30b)

lenging manufacturing constraints, we rely on an SLP ap- ) ]

i - ML v 30d
proach once more, see for instance Arora (2004). The P '(n) c ' . (30d)
complexity of this work does, however, surpass that of Xic €MLY (], (30e)
Sgrensen and Lund (2013) given the presence of several yE(n) €[0,00] Yk (30f)

non-linear structural constraints. Hence, in order to pose

unconditionally feasible linearized programming prot? (30d) and (30e), the seMIL refers to the bounds of

lems, we introduce an elastic programming technigtiee design variables which may change in each iteration

with merit functions. due to the applied move limit strategy, described in the
following subsection. Notice that feasibility of the linea
manufacturing constraints can only be guaranteed if the

251 Introduction of merit functions initial linear problem is feasible, and if the move limits
ML repeatedly include the previous design point.

Merit functions®{) = f(xg';),pi(”),y(k”)), where the super-

script (n) denotes the iteration number ail = 1+ K 2.5.2 Move limit strategy

denotes an objective function akdnon-linear structural . . .
) - . o . Without precautions, any SLP approach is inherently sub-
inequalities, are introduced to ensure feasibility ofial | . A ; . .

t to oscillating function and design variable values.

) L : ec
earized optimization problqms. Inspired by Svanbergf-ﬁence a robust move limit strategy must be applied. In
\évork g?,;zﬁe'\femdgg; Mﬁg'&%rﬁjzgpiﬁfsogﬂegﬁ)é Srﬁ r}{s work, surveillance of a merit function is used to deem
fu.g;:,tion g ' ) Fhe validity range of the linearizations. An oscillating
merit function suggests that move limits should be re-

K duced, whereas monotonous progress suggests expansion.
q)én) -m" +a Z (Cy(kn) + } (y(kn))z) (28 In this work move Iimits are denotetland operate collec-

= 2 tively on all true variables such that

max(p{"” - 5,0.0) < o™V < min(p™ +6,1.0) Vi (31)
wherem® = f(xgg),pi(”)) is the original objective func- o 0 o _
tion, x(.? andpi(”) are the true optimization variables, Whilé'@lnd S|m|Iar_Iy_ for aIIxJ.C , but not the qrtlflmal variableg,

oW o L _ where the initial bounds are maintained throughout to en-
Y € [0.0,0[ are artificial optimization variables, alsqyre | p feasibility. Rather than the objective merit func-

known as slack variables, that are subtracted the striign (28), we monitor the oscillation merit function (32).

tural non-linear inequality constraingy” = f(x?, o),

resulting in the constraint merit functions 0= of (1+max(g” - gf*,0.0)) vk (32)
Contrary to (28), the merit function (32) maintains a direct
oV =g -y <gi* | k=12...,K (29) measure of infeasibility even for af” = 0.0 which is
found more €icient by experience. LeD™ denote the
that in combination with (28) ensure feasibility of th@scillation indicator for iterationr) such that

non-linear structural constraints. In (2&)js a positive o™ _ p-1)
penalization constant ensuring that the artificial vagablO™ = —5—>2— (33)
y(k”) become expensive when larger than the desired zero osc~ ~ Posc

values. In agreement with the practical considerations d@&kudo code for reduction or expansion of the move limits
recommendations in Svanberg (2004), all non-linear cah-depending on the oscillation indicator, appears in Fig.
straints are normalized with respectg@®, c is initially 3.

set to 100.0, and the constamnis set tom®, serving the In the pseudo code shown in Fig. 3, [0.0,1.0[ is the
purpose of proper scaling between the objective functiorove limit reduction factor? > 1.0 is the move limit ex-
and the non-linear constraints. With the introduction pansion or recovery factor, ar@scCheck prevents mod-
(28) and (29), the optimization problem which is to be linfication of move limits immediately upon reduction for
earized and solved sequentially in a number of iteratiostabilization, initialized ta@DscCheck = —1. In this work,

by an dficient LP optimizer is now defined as a = 0.5 andB = 4.0 are found appropriate.
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if (OscCheck > 0) then In case of satisfactory CC’s, whether or not to proceed

if (O(n) < O-O) then to the next continuation step, if any, depends on the
0 = oa obtained level of discreteness of the design variables.
OscCheck = 0 To this end we introduce two slightly modified mea-
else . sures of non-discreteness compared to those applied in
6 =min{éa # .6 ) Sgrensen and Lund (2013), taking into account e.g., dif-
end if ferent sizes of the sub-domain®g. The measureMgng
else andMcng denote the density() and candidatexc) non-
OscCheck = OscCheck + 1 discreteness, respectively.
end if
454 Va pi(1=pi
MO, 2. Vi fiu/( i) . 100% (38a)
Figure 3: Pseudo code for controlling the reduction or 2 Va X
expansion of the move limiis Vo 02 T (1—X1c)
MO = zo Y e \a g -100% (38b)
cnd 2.d) Vdi pi

2.5.3 Continuation strategy

Most places in (38) and the following, the iteration su-

Experience has shown iffigient to increase the penalyerscript @) is omitted for clarity. Proper association

ization powerp in a stepwise manner, known as a COlatween indicesll, i, and j, as exemplified in (6), is a

tinuation approach. Instead of starting out from the seefa e quisite for both measures. The measure of density
ingly obvious e_m_d cIasgcal case Wlthpl_Jt penalization, I.Ron-discretenes¥lgng is normalized to yield @% in case
from p = 0.0, !t is noticed tha_t the b_l-llnear prppluct be,bi € {0,1) Vi and 1000% in casey; = 0.5 Vi. The mea-
tween the variableg; and xjc in (5) is unconditionally g re of candidate non-discretendds, is linearly depen-

non-convex. An extensive parameter study has revealegyf upon the appurtenant valuesopsuch that it yields
to be dficient to start out from a limited but still notice-; 50 for Xjc = £ V(j,0) if pi = 1.0 ¥i and 500% if
nc ’ - .

able penalization level. The parameter study has sho/g}/n:

0.5 Vi, and so on. ThéMg measure yields.0%
the sequence

in casexjc € {0,1} Y(j,c) independent op;, or in case
p = {1.0,2.0,4.0} (34) pi = 0.0 ¥i independent okic. This linearp; dependence

_ . is fair in that a distinct candidate selection is insignifica
to be robust for all considered cases. Notice that the RS vanishing topology variables. Continuation to the next

quence (34) is allowed to finish prematurely in case gknajization step, if any, is found relevant only in case
achieving a satisfactory feasible, nedt @esign before

the last step. This is elaborated in Section 2.5.4. Mnd = maX(Mc(irr?d’ Mg?d) > €o/1 (39)
Pseudo code for the convergence requirements appears in

2.5.4 Convergence requirements Fig. 4.
A continuation step is converged when fulfilling three if (CCl< &) then
Convergence Criteria (CC): At first, we require afsu if (CCZ< ey) then
ciently small change in the merit function (28) (CC1). if (CC3< eg) then
This has been established to indicate if the optimization if (P < Pmax.and.Mng > €0/1) then
procedure has converged to a minimum. Secondly, we re- Increase penalization powpr
quire vanishing artificial variables (CC2), and thirdly, we 5= gn
require an acceptable level of feasibility (CC3). The pro- OscCheck = —1
cedure is outlined in the following. Ultimately, fulfilment else
comes down to comparison with appurtenant tolerances, Convergence
denoteck. end if

A sufficiently small, absolute change in the merit func- end if
tion (28) is defined as else
d)g‘) _ q)gl—l) Restart optimization
T < €p (CC].) (35) c=100c

P end if

Vanishing artificial variables are defined as end if
y L& Yk (CC2) (36) Figure 4: Pseudo code detailing the convergence require-
Lastly, acceptable feasibility is defined as ments

M _ max It is seen in Fig. 4, that in cag€C1l< &) but (CC2>
|gk %l < S vk (CC3) (37) &), it appears that the current penalization constamas
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insuficient to ensure near zero valued artificial variabldsotice that such simple rounding does not guarantee fea-

As Svanberg (2004) suggestsjs increased, here by asibility nor optimality of the posed optimization problem

factor 100, and the optimization problem is restarted. Ifi1), see Nemhauser and Wolsey (1988). However, as re-

case the convergence requirementggande, are met, it sults in Section 4 will demonstrate, obtained measures of

comes down to the requirement enwhether additional non-discretenesdl,q are mostlynear-zero, thereby indi-

iterations and move limit modifications are required tating only minor perturbations upon rounding. The ef-

facilitate final convergence. Otherwise, a new continufect of the suggested simple rounding appears in Section

tion step, if any, with increased penalization povpeis 4 and is discussed further in Section 5.

initiated, however, only in case of an unacceptable level

of non-discreteness, governed Myy. In case of con- )

tinuation with increaseg, the optimization problem at3 ~Numerical examples

hand has changed for which reason move linditand

the countelOscCheck are consistently relaxed to accoml'his section introduces several numerical optimization

modate this new problem. Experience has shown tR&@blems concerning a finite element model of a generic

ep = ¢ = 1073, ¢ = 10, andey; = 0.1% entail an Main spar used in many designs of wind turbine blades.

acceptable tradébbetween the required number of iteralh€ parameterization into candidate and geometry do-

tions and feasibility and discreteness of the results. ~ mains, directly associated with the design variable dis-
Resullts to follow are computed by use of our in-houédbution, is however unique for all problems, i.e., Steps

finite element and optimization framework, the so-calléd? are identical, but Steps 3-4fer for all problems, see

MUltidisciplinary Synthesis Tool (MUST), see MUSTFIg. 1.

(2013), which is compiled using Intel Visual Fortran to-

gether with the Intel MKL library. In order to cope withg 1 The finite element model

the large number of linear constraint equations stemming

from the candidate material formulation (3) and the mahhe geometry of the main spar is identical to the one ap-

ufacturing constraints (7), (8), and (9), version 7.2-9 pfied in Lindgaard and Lund (2010) where fiber orienta-

the Sparse Nonlinear OPTimizer (SNOPT) by Gill et dions were optimized with respect to buckling load fac-

(2005) is applied. For all results to follow, SNOPT hders applying geometric non-linear analysis. The con-

been configured with default settings to solve the matisédered main spar is truncated to a length of 14.0m and

matical programming problem (30) through the presente@s an inner diameter of 0.88m at the fixed root sec-

SLP approach. tion. The finite element model of the main spar appears

in Fig. 5 and consists of 1,792 degenerated 9-node ESL

shell elements with five DOF’s per node, resulting in a

total of 36,160 DOF’s. See e.g., Ahmad et al. (1970) or

The considered optimization problem (11) is challengifggnda and Natarajan (1981) for element details. All ESL
to drive to completely binary design variables with theshell elements represent 20 layers, each with a uniform
suggested density approach. This is primarily becausdfégkness. A ply thickness of 2.5mm has been selected as
structural sensitivities of both operational signs, bkedi @ traded between the number of design variables and the
wise due to the diicult manufacturing constraints. In thigotal thickness required in order to have a realistic load
work, we apply simple rounding of the design variabl&&Se- The finite element mesh discretization of Fig. 5 has
to finalize the obtained results into truly discrete desigi€en checked for convergence as follows: Modeling the
and leave for instance advanced finalization techniquéin spar entirely with Oplies oriented along the global

or explicit penalization of intermediate designs to futufeaxis (n = 275227kg), the mesh was refined until sta-
work. Letp? denote the topology variable value after sinfle values of the tip displacementi§ = 0.5846m) and

2.6 Simple §1 rounding

ple rounding, defined as the lowest buckling load factovlf)) = 8.810) and eigen-
frequency (1 = 4.378- 271%’) were obtained. The main
. 1 if p>05 spar is modeled with clamped boundary conditions at the
pi = {0 else (40) circular end of the root section and the applied tip load

resembles the most critical load case for the wind tur-

Let x:_ denote the candidate variable values after simpi&ie blade, a so-called 50 year gust scenario, subjecting
rounding, defined such that only the originally dominatd€ blade to a case of extreme flap-wise bending. The
ing candidate is rounded up for all candidate domaijs load is introduced as a uniform pressure, illustrated by

given as the hatched rectangle at the tip in Fig. 5. The distributed
load has an intensity of
1 for max{le > Xj2, oo, Xj(nC)}
Xi = 41 1647kN
e {o else @D q= B Im = o5%kPa (42)
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Figure 7: The longitudinally coinciding candidate and
geometry domain parameterization is referred to as the
Long-Long parameterization

the mandrel, blocks of lightweight foam or balsa material
are positioned. These steps are systematically repeated,
resulting in a structure with varying thickness atfeli-

Fi 5 Finite el t model of : : ent locations around the mandrel. Finally, the composite
Ilgure d. tt';" €e e:nen ;nof tf] 0 atgenirlc m?j”: SPructure is cured and the finished main spar can be pulled
clamped at the circuiar end of fhe root Section and tapeigfiy, » mangrel. with this production method in mind, an
towards the tip that is subjected to a uniform pressure Io&(ijious question crops up, namely where to most appro-
at the hatched rectangular area. Cross sections of the [0 ’

) I lately allocate the available material candidates, to ob
and the tip appear in Fig. 6. All ESL shell elemeng y

ST o L ) __fain a high-performance, manufacturable structure? The
have their first principal material direction aligned with . .
esign freedom, but hence also the potential level of struc-

the global z-axis, and their surface normals pointing Olﬂ&ral complexity, is directly linked to the parameteriza-

wards. At the tip, the node marked by the bottom dot is . . . .
. . . tion into geometry and candidate domains, see Fig. 1.
subjected to a displacement constraint

If, for instance, the manufacturer is accustomed to ap-
ply large rolls of fibrous material with a width of 1.0m,
The structural setup resembles testing of wind turbititen the parameterization into geometry and candidate
blades in a controlled environment, see Overgaard etdgimains should accommodate just this. In this work, we
(2010). Neither the geometry of the main spar nor tkempare the optimization outcomes on basis of nine rep-
applied load case introduce torsion into the model. Gesentative candidate and geometry parameterizations of
ometric linear analysis is used throughout this papertte generic main spar. This is done to give insight into the
limit the computational time. The proposed method doés|ation between potential weight saving and complexity,
however, allow for the use of geometric non-linear anaubject to identical structural criteria and manufactyirin
ysis, and the authors recognize the limitations associatedstraints. The constraint specifications are elaborated
with linear analyses. This is further discussed in SectighSection 3.2.2.

5.1. Lindgaard and Lund (2010) showed that geometricThe finite element mesh discretization of Fig. 5 (Step
linear analysis generally overestimates the critical limadl in Fig. 1) is deemed too fine for the arrangement into
buckling load optimization. sub-domaing)q (Step 2 in Fig. 1). The arrangement of
the main spar mesh into sub-domains appears in Fig. 6
that illustrates the main spar, cut along the longitudinal
direction of the upper surface (the dotted lines) and un-
Parameterization of the finite element model is an ifelded as a flat surface. The main spar mesh is arranged
portant step in the optimization procedure as structunaio a total of 28x 8 = 224 sub-domains, identical for
performance and manufacturability of the optimized daH layers. The sub-domains are equally spaced longitudi-
signs depend hereupon. The production method for tradly. Circumferentially, the sub-domains vary in width,
presented main spar relies on the application of a maee the bold line markings to the left and right of Fig. 6.
drel that essentially dictates the inner shape of the m&iancerning Steps 3-4 in Fig. 1, i.e., the parameteriza-
spar. The root of the mandrel is bolted to a rigid wall aritbn into geometry domains and candidate domains, as-
the mandrel is then covered by mats or blocks d@ifedi sociated with variables;c and pj, respectively, the fol-
ent materials and principally “built up” from the insiddowing nine parameterizations are considered. The nine
in a series of steps. First, GFRP biax fiber mats are typarameterizations are constructed on basis of Fig. 7 and
cally wrapped around the full length of the mandrel. Nex&jg. 8, where the sub-domains are parameterized into co-
full-length GFRP UD fiber mats are rolled along the tapciding candidate and geometry domains longitudinally
and bottom surfaces of the mandrel. On the gidebs of and circumferentially, respectively. Figure 7 represents

3.2 Parameterization of the generic main spar
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Figure 6:Left: Cross sectional view of the circular root section. Bolddigienote eight circumferential design domain
arrangementaMid: Unfolded surface view of the main spar, cut along the lomjital direction of the upper surface.
The cut is illustrated by the dotted lines. The generic mpar snesh is arranged into 28 = 224 sub-domaingq;.
Right: Cross sectional view of the tip section

Xjc » Pi

Table 1: The nine considered parameterizations into can-
didate domainsx;c, and geometry domaing;

Candidate domains«(c) Geometry domainso()
Long - Long
Long - Circ
Long - Grid
Circ - Long
Figure 8: The circumferentially coinciding candidate and C?VC - Cir_c
geometry domain parameterization is referred to as the Circ - Grid
Circ-Circ parameterization Grid - Long
Grid - Circ
Grid - Grid

a parameterization where both the candidate domgins
and the geometry domaing coincide longitudinally. For
this reason we denote this parameterization Long-Long
for candidate domainsjc, and geometry domaing,, re-
spectively. Similarly, Fig. 8 represents the so-callectcCir

Table 2: Properties of the considered candidates

Property  Units ubD Biax Foam

Circ parameterization with circumferentially coinciding 1 [GPa] 34.00 16.50 0.16

. . . Ez [GPa] 8.20 16.50 -
candidate domainsxjc, and geometry domaingy, re-

: . N Ea3 [GPa] 8.20 8.20 -
spectively. These particular parameterizations reptese (GPa] 450 950 i
a relatively low level of complexity, i.e., a high degree 12 (GPa] 4'00 4'00 i
of manufacturability. For this reason, exactly these two-2> ' '

- . ) L Gi3 [GPa] 4.50 4.50 -
parameterizations are considered in detail in the follow- . 0.29 0.29 0.45

ing sections. The low level of complexity associated with”*?
these particular parameterizations is in contrast to the <8
called Grid-Grid parameterization, where candidate and

geometry domains coincide with the sub-domain arranges 1 candidate materials

ment in Fig. 6. This parameterization is hence considered

quite complex and dlicult to manufacture. Allowing can-The numerical examples include sixtférent candidate
didate and geometry domains to be non-coinciding withimaterials commonly applied in the wind turbine industry,
the three described parameterization types, i.e., the loa-, n® = 6. Candidates one to four represent GFRP UD
gitudinal (Long), the circumferential (Circ), and the griglies with {-45°,0°,45°,90°} fiber orientations. The 5th
type (Grid) parameterizations, a total of nine uniquely deandidate represents a GRERI5’} biax ply with prop-
fined candidate-geometry domain parameterizations eaties obtained on basis of tle45°,45°} UD data. The

be defined, see Table 1. These nine parameterizations @itoand last candidate represents a lightweight isotropic
candidate domainsyjc, and geometry domaing;, give foam material such that a sandwich structure is a possible
insight into the relation between potential weight savirautcome of the optimization problem. Candidate proper-
and complexity. ties appear in Table 2. The void materi&y from (5),

[kg/m®] 1910.00 1910.00 130.00
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S|ble without candidate preference, fourfiaent by ex-
perlence This implies an initial mass = 232478kg
orm=m = 275227kg, including or excluding foam as
a candidate, respectively, wharedenotes the maximum
© T - © <n at_tainable mass. The potentigl to obtain a feasible ;miutio
4 w= \/47 u n° m° S CL T with an end mass lower thamis clear from a comparison
3.0 2t 10m 10 10 2 8 0.10 with the presented values from modeling the main spar
entirely with O’ plies oriented along the global z-axis, see
Section 3.1. Move limits are initialized a§' = 0.20. The

is modeled as a weightless isotropic material with 0fgove limit range @ < § < 6™ is adaptively modified as
millionth the stitness of the GFRP UD candidate, i.eprescribed in Section 2.5.

E11 = 34kPa, and identical Poisson'’s ratio. Because other

industries do not allow sandwich designs, results for the

nine parameterizations in Table 1 will also be listed with-

out foam as a candidate, in which case= 5. Conse- 4 Results

guently, the considered number of design variables varies

between 953 for the Long-Long parameterization withoTibles 4-5 provide detailed result overviews of the DMTO
foam to 31,137 for the Grid-Grid parameterization incluépproach of the nine fierent parameterizations intro-
ing foam. Notice that for all parameterizations, the entiticed in Section 3, both with and without foam as a can-
innermost layer of the generic main spar is modeled adidate. Table 4 presents the original, non-rounded results
single, unity valued topology variable to eliminate th&rison basis of the SLP approach presented in Section 2.5.
of holes through the thickness. A star = in front of the total number of iterationsl #
indicates that the SLP approach has been restarted once
with up-scaledc value to obtain vanishing artificial vari-
ables,yx. Table 5 presents the results upon finalization

In agreement with the main spar study in Overgaard etRY. the simple rounding described in Section 2.6. The
(2010), the representative bounds listed in Table 3 h&@gults in Table 4 and Table 5 are referred to as origi-
been chosen for the structural constraints in (11b)-(118¢! and rounded results, respectively. For easy compar-
In order to cope with potentially shifting eigenvalues, won, Fig. 9 provides a graphical overview of the original
consider the first ten buckling load factors and eigenfl@MTO results of the nine parameterizations with foam.
quencies, assumed ordered by magnitude. The displdBethe figure, measures of non-discretenely from
ment constraint limits the global y-displacement of tH89), above 0% have been truncated. See Table 4 for
bottom tip node, marked in Fig. 5, preventing collisiofietails. As mentioned previously in Section 3.2, rounded
between blade and tower. With respect to the manuf&esults of the Long-Long and Circ-Circ parameterizations
turing constraints (11e), see Section 2.3 for details, Wi&h and without foam, respectively, are picked out for
apply the limit values apparent rightmost in Table 3. ;zi‘etailed representations given their limited complexity.
thickness variation rate af2 plies § = 2) between adja- Apart from demonstrating the versatility and robustness
cent geometry domaing;, is used to ensure fiiciently of the DMTO method, results from the additional parame-
smooth external ply drop transitions for all parameteferizations primarily serve a comparative purpose in order
zations of the generic main spar. For the particular mashassess the relation between potential weight saving and
spar example considered in this work, we apply a contiggmplexity for the considered main spar example. Figure
ity limit as large as eight identical plies through the thickO illustrates an exploded view of the allocation of can-
ness CL = 8), being considerably more than the conglidates for the Long-Long parameterization with foam,
m0n|y app“ed limit of four, see e.g., Le Riche and Haftkggen from the fixed root end. Candidate allocation is iden-
(1993) or Toropov et al. (2005). Nevertheless, the witigal longitudinally. Notice that the allocation among the
turbine industry is less restrictive than the aerospace @andidates depicted to the right of Fig. 10 is given with
dustry; hence larger amounts of identical UD plies can gspect to a local coordinate axis, denoted-igure 11 il-
accepted. The influence of the applied contiguity limit lgstrates the allocation of candidates for the Circ-Circ pa
further scrutinized in the discussion of the results. Thegneterization without foam where bottom and top illus-
settings imply that the number of MC's vary betweelate the inner and outer surfaces, respectively. Carelidat
1,144 for the Long-Long parameterization without foaﬁ“OC&tiOﬂ is identical circumferentially Figure 12 show
to 20,800 for the Grid-Grid parameterization includinf)e design iteration history for the Long-Long parame-
foam with 21,584 and 182,016 non-zero fiméent ma- terization with foam, illustrating the evolution af, /l(l),

trix entries, respectively. The design variables aredhiti ﬂ(lf), Uol, Mcnds Mand, [1¥klleo 11k — 9 @leo, @NAA(Xjc, 0i);

ized asxjc = n—lc for all candidate variables ang = 1.0 see the caption for further explanations and normalization
for all topology variables to start out as feasible as padetails.

Table 3: Settings concerning structural criteria and ma
ufacturing constraints

3.2.2 Constraint specifications and initial settings
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Table 4: Tabular overview of the original DMTO results of pdrameterizations, both with and without foam as a
candidate. #. denotes the total number of iterations. A stam front of #lt. denotes that the SLP approach has been
restarted once with up-scaledralue

Parameterization With foam Without foam
O ul O u

(ch - Pi) m [kg] ﬁ ﬁ T Mend/Mdnd [%] #It. m [kg] ﬁ ﬁ T Mend/Mdnd [%] #t.
Long-Long 1249 1.000 2.969 1.000 0.282.672 41 1802 1.000 4.218 1.000 0.0079 49
Long-Circ 1240 1.037 2.938 1.000 0.06Q.000 28 1841 1.081 4.328 0.999 0.0@451 44
Long-Grid 1225 1.000 2.926 1.000 0.159.999 40 1807 1.118 4.378 1.000 0.0a0728 *142
Circ-Long 1431 0.999 5.008 1.000 0.180.000 41 1850 1.117 4.178 1.000 0.81®273 39
Circ-Circ 1519 1.001 4.690 0.999 0.316.305 *91 1854 1.069 4.334 1.001 0.829.971 44
Circ-Grid 1428 1.000 5.019 1.000 0.189.518 57 1746 1.014 4.466 1.000 0.559177 54
Grid-Long 1171 0.999 2.738 1.000 0.670.120 63 1818 1.148 4.205 0.999 3.51¥984 48
Grid-Circ 1181 0.999 2.787 1.000 0.940.196 84 1848 1.095 4.252 1.001 2.71h337 44
Grid-Grid 1163 0.999 2.789 1.000 1.053.408 81 1734 1.000 4.455 1.000 1.610446 64

Table 5: Tabular overview of the rounded DMTO results of altgmeterizations, both with and without foam as a
candidate

Parameterization With foam Without foam

G y _ CEC) u _
(Xjc = pi) m [Kg] ﬁ ﬁ T #Violated MC's  m[kq] ﬁ ﬁ T # Violated MC’s
Long-Long 1246 0.930 2.961 0.995 0 1832 1.138 4.282 0.953 0
Long-Circ 1242 1.081 2.951 0.999 0 1837 1.081 4.358 0.998 0
Long-Grid 1221 0.970 2.950 1.001 0 1805 1.143 4.396 0.994 0
Circ-Long 1431 0.964 5.006 0.999 0 1848 1.121 4.180 1.001 0
Circ-Circ 1520 0.970 4.656 0.994 0 1844 1.069 4.378 1.003 0
Circ-Grid 1429 0.935 5.054 0.994 0 1734 1.017 4.477 1.003 0
Grid-Long 1159 0.887 2.738 1.001 0 1832 1.185 4.249 0.967 29
Grid-Circ 1159 0.873 2.804 1.004 0 1846 1.101 4.280 0.994 41
Grid-Grid 1140 0.807 2.776 1.002 0 1733 1.028 4.478 0.995 0
5 Discussion flap-wise bending load case. With foam, the end mass

ranges from @12m < m < 0.55m as opposed to a range
The discussion of the results is done in the followirfgom 0.63m < m < 0.67m without foam. The lowest
steps. Initially, some general comments about the origass is 1163kg for the original Grid-Grid parameteriza-
inal non-rounded results are stated. Secondly, the ow@rn with foam, and the largest being 1854kg for the orig-
all effects of rounding are discussed. Thirdly, we di#al Circ-Circ parameterization without foam. It is not
cuss the results of the Long-Long and Circ-Circ paranmgirprising that the Grid-Grid parameterization with foam
terizations, respectively, with and without foam in detayields the lowest mass as this parameterization reflects ul-
Finally, general comments about the performance of tirmate design freedom, supporting rapid changes in both
DMTO method are stated. geometry and candidate preference. Hence, the Grid-Grid

result with foam should be the natural choice for a high-

o . performance design; that i$ manufacture is possible,

5.1 Original result tendencies which is doubtful due to the high degree of complexity.

It is clear from the results of Table 4 and Fig. 9 tth[he displacement constraint is active for all parameteri-
parameterizations with foam as a candidate significarfgtions: Most parameterizations do likewise end up with
outperform those without foam. The optimizer recoggl_ctlve constraints on buckling load factors, whereas the

nizes the foam candidate as a profitable means of obt&fnStraints on eigenfrequencies are inactive throughout a
ing high moments of inertia, beneficial for the considerdiconseauence of low mass and higfffiséss. Neverthe-
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Figure 9: Graphical result overview of the original DMTO uéts of the 9 parameterizations with foam. The star
marking at Circ-Cirt denotes that the SLP approach has been restarted once wsttalgolc value. M,y measures
are truncated at.0%, see Table 4 for details

1A analysis comparison revealed that the linear predictions
are up to 17% larger for parameterizations without foam,
and 10% larger for parameterizations with foam. In spite
- N e of these deviations, we maintain linear analyses to reduce
i the computational time. It is, however, stressed that the

L == Ma ()

— Ma () DMTO method supports non-linear analyses as well.
— ]l

IO In section 2.4, we state that includin@ buckling load
factors takes care of crossing eigenvalues (mode switch-
‘K S ; =" ™~ ing) during the optimization process. In all the numeri-
Q’_ . AL *7 cal examples, the ten lowest buckling load factors were
= = @ thus included as constraints in the optimization problem.
To check if including the ten lowest values hashsed,
Figure 12: Design iteration history for the Long-Longhe final ten buckling load factors have been analyzed for
parameterization with foam. The massis normalized a|| numerical examples. Here it has been found that the
with respect to the initial mass. The structural perfogiference in magnitude between the first and the 10th
mance constraints{”, 2", and|u,| are normalized with yajue is on average 17% and 28% for the parameteriza-
respect to their bounds, see Table 3. The measures of ARy with and without foam, respectively. The possibil-
discretenessMcng andMana, appear as decimal numbersgy for the 11th load factor changing more than 17% or
The values of the largest artificial variablgl, and 289, between two successive iterations is believed to be
the largest infeasibility among the structural constsinhegligible; hence including the ten lowest positive buck-
g — 9" *l, are shown in accordance with (36) anghg load factors has been adequate for controlling mode

(37), respectfully.A(xic, i) is the Euclidean norm of thesyitching for the applied numerical examples.
change in design variables between two successive ite

ations. A change in penalization is indicated with+& ”
sign next to the iteration number in which the penalizati
was increased
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Hhe measures of non-discretendds,q andMgng from
éﬁ8), are generally largest for the Grid-Long, Grid-Circ,
and the Grid-Grid parameterizations without foam. The
reason for this may be that this particular group of param-
eterizations represents the most challenging optimiaatio
less, one can only ensure demands on structural critgrieblems, considering the number of design variables, the
when present in the optimization problem. number of constraints, and the fact that those parameteri-
As highlighted in Section 3.1, the numerical exampleations without foam call for a larger extent of thickness
have been conducted using geometric linear finite elemeatiation than parameterizations with foam where sand-
analysis. In order to estimate thffexts of the geometricwich structures are natural outcomes. Experience has
non-linearity on the active constraints, a geometric nastiown that neither increasing penalization ndfedent
linear analysis of the two initial designs for the parancontinuation approaches improve the obtained levels of
eterizations with and without foam as a material candien-discreteness. One way of addressing this issue could
date, see Section 3.2.2, has been conducted. These abalyeo use explicit penalization of intermediate valued de-
ses show that the linear tip displacement is within 5% sifjn variables as suggested in e.g., Hvejsel et al. (2011)
the geometric non-linear tip displacement. The bucklimg Kennedy and Martins (2013). Modification or even re-
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Figure 10: Rounded DMTO result of the Long-Long paramegign with foam. The Long-Long parameterization
implies that candidate allocations and thicknesses of ithf& éongitudinal design domains, marked by [1]-[8], are
identical from the root to the tip of the main spar

moval of the troublesome constraints that prevent inté8 to 22. The DSA time of the Grid-Grid parameteriza-
mediate void (MC4), see (9), is likewise considered dion with foam exceeds that of the Long-Long parame-
tractive as it may facilitate application of highly robudkrization with foam by 22%. Given that these two pa-
SQP or interior point optimizers, see Sgrensen and Luadheterizations involve 31,137 and 953 design variables,
(2013) for further discussion on this issue. The obtainegkpectively, clearly demonstrates tffigagency of the ad-
levels of non-discreteness are all less than 4% whichast formulation when having many design variables.
found acceptable. Robust solutions for obtaining evenThe three-step continuation sequence (34) is found to
more discrete results at this stage, i.e., prior to theolloyield better results than applying a single, constant pe-
ing finalization by rounding, are left for future work. Nonalization value throughout. Likewise, the sequence is
tice that the Long-Circ parameterization with foam cofieund more robust than additional continuation steps or
verges before the last continuation step as a result aévan starting out from lower values pf Too many con-
suficiently near-zero measure of non-discreten@dg;, tinuation steps impose a risk of getting stuck at an inter-
see (39). mediate design point with no chance of getting rid of the

The total number of iterations ranges from 28-142 wiﬁ{t'f'c'al design variables.

an average of 59. The staiin front of the two parame- _
terizations in Table 4; Circ-Circ and Long-Grid, with an8.2 Rounded result tendencies
without foam, respectively, denotes that these particuk@

o : Csults upon finalization by the simple rounding de-
parameterizations were restarted once with up-sceled . : . )
. L e . Scribed in Section 2.6 appear in Table 5. Tlifee of
values to obtain vanishing artificial variableg, Expe-

: e ) [ he original i -23kg f
rience has shown that the initial valge= 1000 yields roundlpg on the origina mass varies between -23kg for
) the Grid-Grid parameterization with foam #80kg for
better results than = 10000 or more for which reason o :
T . : tpe Long-Long parameterization without foam. Changes
up-scaling is only applied if necessary in agreement with -
Svanberg (2004) in the original mass are generally reflected upon changes
9 ' in the criteria functions. Rounding generallffects the
The sequential time consumption associated with DpArameterizations with foam as a candidate significantly

exceeds the evaluation of structural criteria by a factormbre than those without. This is due to the larg@edi
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Figure 11: Rounded DMTO result of the Circ-Circ parametion without foam. The Circ-Circ parameterization
implies that the candidates are distributed .o wide circular belts, wrapped around the entire circuarfee of the
main spar, resulting in 28 unique candidate belts througtimulength

ence in the constitutive properties, see Table 2. The butke two sides [3] and [7] are free from material at the
ling criterion is particularly ffected, being more locallyoutermost two layers and otherwise predominantly con-
dependent upon change than e.g., the tip displacenstitted by the lightweight foam candidate. The bottom
constraint. Rounding of the Grid-Grid parameterizatiadomain [5] contains more°0GFRP UD plies than the
with foam yields a buckling load factor constraint viotop domain [1], probably to resist the first buckling loads,
lation of 19.3%. On average, however, rounding causisminant along the bottom pressure side [5]. Notice the
structural criteria constraint perturbations3%. presence of at most eight contiguous UD plies, thereby
Rounding of the two parameterizations; Grid-Long arsetisfying the imposed contiguity limit (MC3). In spite
Grid-Grid, both without foam, causes 29 and 41 violaf feasibility, it is, however, recognized that having too
tions of the manufacturing constraints, respectively. THéck regions with identical fiber orientation is typically
violations are in both cases associated solely with the conwanted; especially in the more conservative aerospace
straints on contiguity (MC3), see Section 2.3.3, allowirigdustry. Tightening the contiguity limit to the commonly
at most 8 identical contiguous candidates throughout thgplied value of four has been tested to result in additional
20 layers of the 224 candidate domains. Upon roundirigam plies in between the thick stacks ¢f GFRP UD
more than 8 GFRP UD plies oriented atdppear contigu- plies. Not surprisingly, a tighter contiguity limit increes
ously. As previously mentioned, infeasible constraintige final mass.
are a possible risk associated with this simple roundingFrom a manufacturing point of view, rapid encapsula-
scheme due to the decoupling of the optimizer. Neverthign of just a few plies of foam in between fibrous layers
less, it is stressed once more that DMTO results shosleth as occurring in [5], is undesirable. Multiple encapsu-
not be viewed as final designs, ready to manufacture, kitlons are nevertheless a perfectly feasible outcome with
rather as a vital source of inspiration for thickness varigre current DMTO formulation, and future work should
tion and stacking sequences throughout the entire stringpose the aforementioned sandwich constraints, forcing
ture. foam plies to be grouped together through the thickness of
the candidate domains. Such constraints should likewise
ensure the block of foam to be enclosed by fibrous mate-
rial from both sides, unlike the regions [3] and [4]. Man-
The rounded DMTO result of the Long-Long paramete[lil-facturing constraints ensuring minimum proportions or
zation with foam appears in Fig. 10. Candidate allocatigfesence of all material candidates as well as constraints
and domain thicknesses are inherently identical longitulimiting the change in fiber orientation between adjacent
nally, hence not allowing a tapered geometry towards tiReplane candidate domains could likewise be considered,
tip. Despite these inherent restrictions, the allocatibn @t are, however, left for future extensions of the DMTO
candidates agrees quite nicely with existing designs. Thethod.
moment of inertid is large in order to cope with the dis- Notice that the design is not entirely symmetric along
placement constrained, flap-wise bending load case. Tthisxzandyzcoordinate planes. This not entirely symmet-
is clear from the predominant stacking ¢f GFRP UD ric design across the verticg plane may be a beneficial
plies at the top and bottom domains, denoted by numbessy to exploit elastic couplings, obscure at first glance.
[1] and [5] in Fig. 10, respectively. °0GFRP UD plies Another explanation may be that the optimizer has set-
likewise appear at the outermost active layers around [@d on a sub-optimal minimum. Furthermore, due to the
[4], [6], and [8]. These plies contribute tigx as well. flap-wise bending load case, the solution does not con-

5.2.1 Long-Long with foam
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tain more than three GFRP plies with other orientatiofexence of the main spar. Consequently, the optimizer is
than O in total. Had the examples been formulated wiflerced to allocate the’0GFRP UD candidate on the webs
an additional torsion load case, other fiber orientatioofthe structure in order to also place them on the desirable
would probably occur in greater numbers. Neverthelegsp and bottom faces. The consequence of this is particu-
the rounded result appears to provide a soufiged for larly pronounced for the parameterization with foam as a
detailed post-processing. candidate material. In this case, the optimizer cannot allo
Figure 12 shows a typical iteration history graph; heeaite the same amount of foam on the webs as in the case
for the Long-Long parameterization with foam. At thef the Long-Long parameterization; ultimately resulting
initial design point, the displacement constraint is irfean a substantial increase of the final mass. Naturally sur-
sible, and the optimizer initially focuses on obtaining passed by the°0OGFRP UD candidate, the45* GFRP
feasible design at the expense of an increase in mass. Edacandidate is the second most present candidate. This
sibility is obtained in iteration number four; showing thatandidate may very well represent beneficial properties
the merit function approachffectively copes with infea- to constrain the risk of buckling. The45® GFRP UD
sibilities. The candidate non-discreteness is rapidly d@ndidate occurs in particular at the tip section where the
creasing in pace with the optimizer recognizing that U@essure load is introduced, hence making this area prone
material should be allocated on the top and bottom fad¢edocal buckling. The thickness is smallest at the tip sec-
of the main spar to achieve feasibility. The measure tadn and largest between the tip and the mid-section as
density non-discreteness reaches its maximum valuetho$ region is vulnerable to buckling along the pressure
3.6% in the 6th iteration and drops to a stable value arouside as well. Notice that the thickness is changed with at
1% at the 12th iteration. At the 7th iteration, the bucklingpost two ply thicknesses between neighboring geometry
constraint becomes infeasible and remains so until itdpmains, satisfying the constraints on thickness vanatio
ation number 11. However, it oscillates around the femte (MC2), see (7).
sibility limit until it becomes active at iteration number
_21 whigh then sgtisfies gon\{ergence.criteria CCQ, cags3  General performance of the DMTO ap-
ing an increase in penalization. Notice that during this proach
phase, the change in the design variables decreases for
each iteration; showing that the move-limit strategy id-he capabilities of the suggested DMTO approach have
deed responds to oscillating constraints. Up until the filgten demonstrated onfidirently parameterized numer-
increase in penalization, the mass has decreased.8%04lical examples of a main spar. The suggested SLP ap-
with respect to the initial mass. After this change in pproach is found robust, providing near-discrete designs
nalization both the displacement and buckling constraiitsan acceptable number of iterations. Simple rounding
become infeasible until activity is obtained in iteratiofinalizes the designs, causing average structural criteria
number 29. From this iteration until the next increas®nstraint perturbations 3%, which is deemed accept-
in penalization, the candidate non-discreteness deweadde. However, for the Grid-Long and Grid-Circ param-
from 5.2% to Q26%, and the mass decreases as well umierizations with foam, rounding causes infeasible manu-
CC1 is finally satisfied. From iteration 38 to 41, the ma&acturing constraints on contiguity.
is increased from 1247kg to 1249kg. However, the mea-The considered parameterizations with and without
sure of density non-discreteness is reduced frallto foam as a candidate do indeed give an insight into the
0.67%. Final convergence is facilitated by satisfying CG2lation between weight saving and design complexity. In
and CC3 in iteration number 40 followed by CC1 in 41he considered load case, foam is consistently an advanta-
Overall, the presented iteration history demonstratets thaous candidate. The lightest design, weighing 1163kg
the SLP approach with merit functions is quitgi@ent prior to rounding, occurred on basis of the quite com-
at obtaining a feasible and near discrete design in spitgptafx Grid-Grid parameterization with foam, fidcult if
great non-linearity of the involved structural criteria.  not impossible to realize with today’s manufacturing tech-
niques. In contrast, the simple Circ-Circ parameteri-
zation with foam proved inadequate for the considered
load case, weighing 30.6% more than the Grid-Grid pa-
The rounded DMTO result of the Circ-Circ parameterrameterization. Nevertheless, the least complex result
zation without foam as a candidate appears in Fig. iith foam of all, being the Long-Long parameterization,
Generally, the combination of the flap-wise bending lo@ded up weighing 1250kg prior to rounding, i.e., merely
case together with the displacement constraint calls for.&% more than the complex Grid-Grid parameterization.
high moment of inertidx and hence predominantly’ O The relation between weight saving and complexity is
GFRP UD plies on the top and bottom faces. This is alsence not straightforward. Complex parameterizations
clear from the results of the Long-Long parameterizationith great design freedom result in the largest weight sav-
For the Circ-Circ parameterization the candidate domaings, but are hardly manufacturable. However, fairly sim-
are grouped together in circular belts around the circupie, but well-parameterized, designs may likewise per-

5.2.2 Circ-Circ without foam
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form well. The results in general appear to provide grdatund as a great source of inspiration for manufacturable

inspiration for detailed post-processing. This is the exdhickness variation and stacking sequences throughout

intention of the suggested DMTO method. the structure; inspiration for detailed post-processhag t
may very well outperform intuition, exploiting elastic
couplings that may appear obscure at first glance.
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