Aalborg Universitet

Hydrothermal Liquefaction and Product Characterization of Barley Straw in Sub- and Super Critical Water

Zhu, Zhe; Rosendahl, Lasse Aistrup; Toor, Sagib Sohail; Chen, Guanyi

Publication date: 2013

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Zhu, Z., Rosendahl, L., Toor, S., & Chen, G. (2013). Hydrothermal Liquefaction and Product Characterization of Barley Straw in Sub- and Super Critical Water. Poster session presented at The International Conference on Thermochemical Biomass Conversion Science 2013, Chicago, United States.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Table 2. Elemental analysis of bio-oil

GROUTE Hydrothermal Liquefaction and Product Characterization of Barley Straw in Sub- and Supercritical Water

Zhe Zhu^{1,2}, Lasse Rosendahl^{2*}, Saqib Sohail Toor², Guanyi Chen¹ ¹ School of Environmental Science and Engineering, Tianjin University, China ² Department of Energy Technology, Aalborg University, Denmark

renewable liquid transportation fuels, which can be obtained by hydrothermal liquefaction (HTL).

HTL is a wet thermal conversion process that performed under relatively mild reaction conditions (temperature less than 400 °C, pressure between 10 and 25 MPa), often in the presence of catalysts and sometimes with reducing gases such as CO and H_{2} .

Energy-consuming drying process is avoided in this process. In addition, better quality bio-oil with low oxygen content and consequently a higher heating value can be produced under carefully control of operation conditions.

Bio-oil yield increased slightly from 280 °C to 300 °C and peaked at 300 °C (35.24 wt%) and then declined as the temperature increased further, while the yield of solid residues showed the opposite trend.
High conversion of straw between 87.13 and 91.97 wt% could be reached under tested conditions.

Elemental Analysis of Bio-oil

The carboxylic acids were the most abundant (30.82%), followed by phenolic compounds and its derivatives (19.18%), ketones (16.12%) and aldehydes (9.11%).

Elemental Recovery and Energy Recovery

Sample	Carbon recovery (%)	Hydrogen recovery (%)	Energy densification	Energy recovery (%)	
O-1	51.59	39.90	1.54	52.90	
O-2	53.57	42.35	1.57	55.33	
O-3	51.20	40.12	1.65	54.77	
O-4	45.90	34.33	1.75	50.74	
O-5	41.92	31.35	1.85	47.57	
O-6	37.48	26.18	1.99	44.27	

 Investigate the effect of final reaction temperature on product distribution and yield.

OBJECTIVE

•Characterize HTL bio-oils and solid residues obtained from different temperatures in order to have a better understanding of the reaction process.

•Evaluate the elemental content and distribution and energy recovery in these products.

MATERIALS AND METHODS

The Characteristic of Barley Straw

C (wt%)	H (wt%)	N (wt%)	S (wt%)	O (wt%)	H/C	O/C	Water Content (wt%)	HHV (MJ/kg)
44.66	6.34	0.46	0.57	47.97	1.70	0.81	6.21	17.38

Sample	T (°C)	C (wt%)	H (wt%)	N (wt%)	S (wt%)	O (wt)	H/C	O/C	HHV (MJ/kg)
O-1	280	67.03	7.36	0.77	0.54	24.30	1.32	0.27	26.75
O-2	300	67.89	7.62	0.75	0.56	23.18	1.35	0.26	27.29
O-3	320	68.77	7.65	0.80	0.65	22.13	1.33	0.24	28.63
O-4	340	70.84	7.52	0.71	0.54	20.39	1.27	0.21	30.47
O-5	360	72.81	7.73	0.78	0.54	18.14	1.27	0.19	32.16
O-6	380	75.23	7.46	0.78	0.49	16.05	1.19	0.16	34.58
0-7	400	77.22	7.36	0.79	0.56	14.07	1.14	0.14	35.48
Petroleum	-	83-87	10-14	0.1-1.0	0.1-8	0.1-3	-	-	42.7

The C content of bio-oil generally increased with the increase in temperature, while a decrease in O content was observed.

Van Krevelen Diagram of Barley Straw and Solids

	0-7	35.19	23.62	2.04	41.54
	S-1	9.50	5.80	0.99	7.93
	S-2	10.05	5.58	0.99	8.24
	S-3	10.88	5.61	0.98	8.74
	S-4	12.62	6.17	1.04	10.31
	S-5	15.58	6.91	1.20	13.43
	S-6	18.27	7.97	1.29	16.20
	S-7	18.95	8.30	1.32	17.00

CONCLUSIONS

*HTL of barley straw is an effective method to produce liquid fuels, which has the potential to be used as renewable fuels and a source of chemical materials.

Both yield and characteristics of products (bio-oil and solid residues) were strongly dependent on final reaction temperature.

Reaction conditions: 1L batch reactor Temperature: $280-400 \,^{\circ}C$ Catalyst: $10wt\% K_2CO_3$ based on the straw Retention time: 15min

Bio-oil

Gas

Aqueous Phase

Solid Residues

Data suggested that dehydration and decarboxylation occurred in this process, and dehydration was the dominant reaction. A maximum bio-oil yield of 35.25 wt% of dry feedstock with
75.51 % of carbon plus hydrogen content, representing 55.33
% of the energy recovery of the feedstock was obtained at temperature of 300 °C.

FUTURE WORK

*Carry out high resolution **parametric study** (heating rate, amount and type of catalyst, reaction time, DM content) to study effect on the product yield and properties.

> FLEXIFUEL Sino-Danish Collaboration Danish Council for Strategic Research

* Corresponding author: lar@et.aau.dk, phone: +45 9940 9263