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Abstract:
The First-Order-Plus-Dead-Time (FOPDT) or Second-Order-Plus-Dead-Time (SOPDT) model
approximation to a complicated process system can be carried out through either a kind of
model reduction approach or a kind of system identification approach. This paper investigates
this model approximation problem through an identification approach using the real coded
Genetic Algorithm (GA). The desired FOPDT/SOPDT model is directly identified based on
the measured system’s input and output data. In order to evaluate the quality and performance
of this GA-based approach, the proposed method is compared with two typical model reduction
methods, namely Skogestad’s rules and Sung et al method. The obtained results exhibit a very
promising capability of GA in handling the data-driven time-delay system approximation.

Keywords: Time-delay system, genetic algorithms, model reduction, FOPDT and SOPDT

1. INTRODUCTION

There is no doubt that a simple but proper mathematical
approximation of a complicated process system can lead to
many positive aspects (Ljung (1999); Skogestad (2003)),
such as to effectively sketch the key dynamic feature(s) of
the considered system so as to make the control develop-
ment more efficient and reliable for complicated systems
(Åström and Hägglund (1995)).

As a type of most common process models, the FOPDT
and SOPDT have been extensively used in modeling and
control of diverse process systems. For a considered sys-
tem, the FOPDT/SOPDT model can be derived accord-
ing to some analytic rules (Skogestad (2003)) or some
computation algorithms (Sung et al (1998)) based on the
model reduction principle (Mehrmann and Stykel (2005)).
However, these model reduction approaches often require
a reasonably precise model to be known beforehand. Nor-
mally this detailed model is much more complicated than
the desired model, at least in terms of system orders.
Alternatively, the desired FOPDT/SOPDT model can
be estimated through a system identification approach
(Åström and Hägglund (1995); Yang et al (1996)). This is
a straightforward one-step solution, however, the quality
of the obtained model heavily depends on a lot of on-site
issues, such as the excitation condition, measured data
quality, selected identification algorithm, and the type of
desired model etc. (Ljung (1999); Richard (2003)).

The time-delay system identification is always a chal-
lenging task. Due to the unknown time-delay, this kind
of identification problem often turns to be non-convex

(Richard (2003)). A lot of of interesting research and
results focusing on time-delay systems identification have
been committed in recent decades, such as using the
filter technique for continuous parameter identification
(Wang and Zhang (2001)) and combining Genetic Algo-
rithm (GA) and Recursive Least Square (RLS) for online
identification (Yang et al (1996)). However, the non-
convex issue has not yet been well solved or even discussed
in many existing methods and solutions.

If the time-delay can be discretized as some integer which
value is relevant to the (fixed) sampling frequency pre-
selected for data collection, the time-delay system identifi-
cation could be solved by combining the exhaustive search
(w.r.t. the time-delay coefficient) with some conventional
system identification methods. However, the performance
of this kind of approach is heavily limited by the noise
impact (Yang Seested (2013)). In order to handle the
potential non-convex influence and meanwhile keep some
sense of robustness, the GA technique has caused more
and more attention for time-delay system identification or
model reduction (Pedersen and Yang (2008)). for instance,
the acquisition of FOPDT and SOPDT model from a
system’s step response using GA is proposed in (Shin et
al (2007)), even though this proposed method is only
oriented for using step responses.

In this work, we will investigate the development of
FOPDT/SOPDT model approximation to complicated
process systems through a real encoded GA approach. Dif-
ferent evaluation criteria and different excitation are tested
accordingly. Different from the precise FOPDT/SOPDT
estimation case discussed in Yang Seested (2013), where
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the estimation quality of the proposed method can be
evaluated by comparing the obtained results with the true
system values, the approximation quality of the proposed
method here is compared with those obtained through two
well-known model reduction methods (Skogestad (2003);
Sung et al (1998)) subject to two conditions: (a) the
detailed model is known beforehand; and (b) the detailed
model is unknown but the measured data is available.
The achieved results illustrate that the GA can conduct
a quite reliable and efficient FOPDT/SOPDT model ap-
proximation to complicated process systems as long as the
considered system is reasonably excited.

The rest of the paper is organized in the following: Section
2 formulates the FOPDT/SOPDT approximation into a
discrete-time model identification problem; Section 3 briefs
the chosen real coded GA and two well-known model
reduction methods; Section 4 illustrates and discusses the
obtained results; and we concludes the paper in Section 5.

2. PROBLEM FORMULATION

Consider the FOPDT and SOPDT models described by
their transfer functions as

Gf (s)=̂
K

τs+ 1
e−Tds, (1)

Gs(s)=̂
K

(s2 + as+ b)
e−Tds. (2)

where K is the system’s DC-gain, Td is the dead-time
coefficient, τ is the FOPDT’s time constant and a,b are
SOPDT’s parameters.

For a considered system, the FOPDT/SOPDT approxima-
tion problem is to determine the parameters K, τ, Td for a
FOPDT model (1) or parameter K, a, b, Td for a SOPDT
model (2) based on either an available system model or
the available system’s input and output (sampled) mea-
surements, so as to minimize a predefined approximation
criterion.

2.1 Discrete Prediction Models

Denote the sampling period as Ts and the sampled input
and output sequences as {y(k)}Nk=0 and {u(k)}Nk=0, respec-
tively. The considered FOPDT model (1) can be converted
into a discrete prediction model as

ŷ(k) = αŷ(k − 1) + βu(k − l − 1). (3)

where α=̂e−
Ts
τ , β=̂K(1 − α) and integer l satisfies (l −

1)Ts ≤ Td < lTs.

Similarly, the SOPDT model (2) can also be converted into
its equivalent discrete version as

Hs(z)=̂
m1z +m0

n2z2 + n1z + n0
z−l, (4)

where parameters m0,m1 and n0, n1, n2 are determined
according to original parametersK, a, b, and l has the some
feature as the discretized FOPDT model does. Thereby, a
prediction model can be achieved as well:

ŷ(k) = −n1

n2
ŷ(k − 1)− n0

n2
ŷ(k − 2)

+
m1

n2
u(k − l − 1) +

m0

n2
u(k − l − 2).

(5)

2.2 Approximation Criteria

Time-Domain Criterion By using (3) and (5) to esti-
mate the system’s output sequence based on measured
system input and previous output signals, a quadratic cost
function for FOPDT case is defined as:

Ct(α, β, l)=̂
1

N

N∑
k=1u+1

(y(k)− ŷα,β,l(y(k − 1), u(k − l − 1)))2, (6)

where lu indicates the maximal potential delay steps and
assume lu � N , ŷα,β,l(y(k−1), u(k−l−1)) is the predicted
output at kth step, based on measurements y(k − 1) and
u(k− l− 1) for lu+1 ≤ k ≤ N according to (3). Similarly,
the cost function for SOPDT case is defined as

Ct(θ, l)=̂
1

N

N∑
k=lu+2

(y(k)− ŷθ,l(y(k − 1), y(k − 2),

u(k − l − 1), u(k − l − 2)))2,

(7)

where θ is the stack of m0/n2,m1/n2, n0/n2, n1/n2, and
ŷθ,l(., .) represents the estimated system’s output based on
measured previous inputs and outputs according to (5).

Frequency-Domain Criterion By converting the mea-
sured data into its DFT format using the FFT algorithm 1 ,
denote the unknown parameter θ̄=̂(K, τ) for FOPDT case
and θ̄=̂θ for SOPDT case, then a quadratic cost function
in frequency-domain is constructed as

Cf (θ̄)=̂
1

Nf

Nf∑
k=1

W (k)(|Y (k)| − |Ŷθ̄(k)|)2, (8)

where W (k) is a frequency weighting sequence. The ampli-

tude of the kth estimated output Ŷθ̄(k), which is a function
of θ̄, for FOPDT case, is calculated according to

|Ŷθ̄(k)| =
K√

(ωkτ)2 + 1
|U(k)|. (9)

For SOPDT case, it is calculated according to

|Ŷθ̄(k)| =
K√

ω2
ka

2 + b2 − 2ω2b+ ω4
|U(k)|, (10)

where ωk=̂
2πfsk
Nf

for 1 ≤ k ≤ Nf and Nf is the length of

signal’s DFT sequence 2 .

2.3 Optimal Approximation Problem

The considered optimal approximation problem can be de-
fined as a mixed integer nonlinear programming problem:

min
ll ≤ l ≤ lu
θ̄ ∈ Θ

E{φtCt(θ̄, l) + φfCf (θ̄)}, (11)

where E{.} represents the expectation operator, ll and
lu are the potential lower and upper boundaries of delay
1 The following discussions are also suitable for cases that this
frequency information is directly available or it can be derived from
some other available resource.
2 In the frequency domain, the length of DFT sequence(s) needs
to be large enough in order to avoid aliasing problem, i.e., there is
Nf ≥ 2(N − lu)− 3.
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steps, and Θ represents the admissible set of the unknown
parameters θ̄. φt and φf are weighting factors for time-
domain and frequency-domain costs, respectively.

Once the problem (11) is solved, the system parameters of
original system (1)/(2) can be derived from the solution
of (11), where the precision of the dead-time estimation is
pre-determined by the sampling period. In the following,
the GA-based method is investigated to cope with this
non-convex optimization problem.

3. SELECTED GA AND TWO MODEL REDUCTION
METHODS

3.1 Real-coded GA with Niching

The real coded GA adopted in our Part-one work
(Yang Seested (2013)) is employed here again. The bi-
nary tournament selection is used according to the com-
bined cost function (11). The selected chromosomes gen-
erate the offsprings according to the Simulated Binary
Crossover (SBX) operator and the polynomial mutation
(Deb (2000)). The fitness sharing is applied to main-
tain the population diversity. For further more details
about the adopted GA, we refer to Glen (2013) and
Yang Seested (2013).

As discussed in Yang Seested (2013), the GA coded
variables, except the dead-time coefficient, are the original
parameters of (1)/(2) in the application of GA identifica-
tion, i.e., to solve the constraint optimization problem (11)

subject to changing the variable vector θ̄ ∈ Θ by θ̆ ∈ Θ̆,

where θ̆ represents the stack of (K, τ) for FOPDT case (1)
and (K, a, b) for SOPDT case (2).

3.2 Skogestad’s Analytic Model Reduction Rules

A set of simple rules for reducing a high-order LTI system
model into a FOPDT or SOPDT model is proposed in Sko-
gestad (2003). In order to keep our paper’s continuity for
reading, hereby we summarize these rules in the following:

Consider a high-order time-delay system described as

Gh(s) =

K
∏
j

(−Tjs+1)
∏
m

(Tms+1)

∏
i

(τis+1)
e−Th

d s with assumption

that all parameters are positive valued. The first step is
that all left-side zero(s) will be one-to-one canceled by
their neighboring denominator term(s), according to the
following rules: Ts+1

τs+1
≈⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T/τ when T ≥ τ ≥ Td Rule T1
T/Td when T ≥ Td ≥ τ Rule T1a
1 when Td ≥ T ≥ τ Rule T1b
T/τ when τ ≥ T ≥ 5Td Rule T2

τ̂ /τ

(τ̂ − T )s+ 1
when τ̂=̂min{τ, 5Td} ≥ T Rule T3

(12)

where Td is the final effective time delay, i.e., the time delay
Td in the approximated FOPDT/SOPDT model. There
are also some tips about how to select the neighboring
denominator term and get the initial guess of Td, we refer
to Skogestad (2003) for more details.

For the FOPDT approximation, theK ofGf (s) is the same
K from Gh(s). Assume the parameters {τi} in Gh(s) has

the order: τ0 ≥ τ1 ≥ τ2 · · ·, then the effective time constant
(τ in FOPDT approximation) can be approximated by
τ = τ0 + τ1

2 , and the effective delay by Td = Th
d + τ1

2 +∑
i≥2

τi +
∑
j

Tj +
Ts

2 . For SOPDT using the formulation

Gs(s) =
Ke−Td

(a1s+ 1)(a2s+ 1)
, (13)

there is ⎧⎪⎨
⎪⎩

a1 = τ0, a2 = τ1 +
τ2

2
,

Td = Th
d +

τ2

2
+
∑
i≥3

τi +
∑
j

Tj +
Ts

2
. (14)

3.3 Sung et al. Method

A FOPDT/SOPDT model reduction method is proposed
in Sung et al (1998). The considered high-order system is
described as

Gs(s) =
nmsm + nm−1s

m−1 + · · ·+ n1s+ n0

dnsn + dn−1sn−1 + · · ·+ d1s+ 1
. (15)

A FOPDT approximation (1) of the considered system
(15) can be determined according to

K = n0, τ =
√

(ΦTΦ)−1ΦTΨ, Td =
π − arctan(τωu)

ωu
, (16)

where
Φ=̂[|Gs(jω1)|2ω2

1 |Gs(jω2)|2ω2
2 · · · |Gs(jωNs )|2ω2

Ns
]T ,

Ψ=̂[K2 − |Gs(jω1)|2 K2 − |Gs(jω2)|2 · · · K2 − |Gs(jωNs )|2]T .

where ωu is the system’s ultimate frequency, i.e., the
phase crossover frequency. {ωi}Ns

i=1 is a stack of frequency
samples within the period [0, ωu] with the property 0 <
ω1 < · · · < ωNs ≤ ωu.

Regarding to the specific formula for SOPDT model ap-
proximation, we refer to Sung et al (1998) for the de-
tails. In general, the Sung et al method is a LS solution
by minimizing the accumulated squared amplitude errors
between the original system’s and approximated model’s
frequency responses over a sampled frequency period up
to the system’s ultimate frequency. This is similar to the
frequency domain criterion (8), but one is defined on
systems’ frequency responses while the other is on signals’
DFTs.

4. TESTINGS RESULTS AND DISCUSSIONS

One system used in Skogestad (2003) is picked up to
test the GA-based FOPDT/SOPDT approximation. The
GA-based solution is compared with those obtained from
Skogestad’s and Sung et al methods subject to the case,
either the original system model is precisely known be-
forehand, or only the measured data with reasonable SNR
is available. Two types of input excitations, named chirp
and pulse sequences, are employed, respectively. The con-
sidered system has the concrete formulation as

G(s) =
(−0.3s+ 1)(0.08s+ 1)

(2s+ 1)(s+ 1)(0.4s+ 1)(0.2s+ 1)(0.05s+ 1)3
. (17)

The system bandwidth is about 0.414rad/sec. The chirp
signal uniformly sweeps the frequency from 0Hz to 0.5Hz
during the simulation period and the sampling frequency
is 20Hz.
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Fig. 1. Frequency comparison of estimated FOPDTs by
GA/ELMS/E-IV-LMS subject to chirp excitation

Fig. 2. Deviations of step responses of different FOPDTs
estimated from GAt, ELMS and E-IV-LMS

4.1 Time-domain Criterion Based FOPDT Estimation

If we set the weighting φf = 0 in the optimization prob-
lem (11), then all methods studied in our part-one work
(Yang Seested (2013)) can also be directly employed to
handle this FOPDT model identification problem. The
obtained results excited by a chirp sequence are illustrated
in Table 1 (ELMS, E-IV-LNS and GAt). The frequency
response comparison within the original system’s band-
width is illustrated in Figure 1, where clear deviations
in amplitudes and phases from all three methods can be
easily observed. The deviations of step response of each
estimated system from the original system are illustrated
in Figure 2. The largest transient deviation is less than 8%
from the E-IV-LMS method (abbr. IV), The GA method
(abbr. GAt) is slightly better than the ELMS (abbr. LS).
But all three methods lead to steady state errors. That
is mainly due to the imprecise estimation of K. These
estimation results need to be definitely improved.

Table 1. Estimated FOPDT parameters via
different methods subject to chirp excitation

ELMS E-IV-LMS GAt GA Skogestad Sung

K 1.04 0.98 1.05 1.0 1.0 1.0
τ 3.28 2.99 3.34 2.4 2.5 2.86
Td 1.4 1.45 1.4 1.55 1.47 1.57

Fig. 3. Frequency comparison of approximated FOPDTs
subject to chirp excitation

Fig. 4. Deviations of step responses of different FOPDTs
(known original system)

4.2 Combined Freq-Time-domain FOPDT Approximation

By tuning the weighting factors in (11), the FOPDT
approximation model of system (17) is obtained by using
the GA-based identification and the results are listed in
Table 1 (GA column). Correspondingly, the parameters
of the reduced FOPDT models obtained through the
Skogestad’s method and Sung et al method are also listed
in Table 1 (Skogestad, Sung). The frequency response
comparison within the original system’s bandwidth of
the approximated models with the original system are
illustrated in Figure 3. It can be noticed that the GA
method results the best FOPDT approximation in terms of
frequency fitness within the bandwidth. The comparison
of step responses of different obtained models with that
of the original system is shown in Figure 4. GA-based
approximation also plays quite as good as Skogestad’s
model, and both are better than the model derived from
Sung et al method in terms of converging rates.

4.3 Combined Freq-Time-domain SOPDT Approximation

The SOPDT approximation using GA, Skogestad’s and
Sung et al methods are also studied subject to chirp and
(two-different) pulse excitations. In order to make the
results comparable, all obtained SOPDT models are re-
formulated into (13) orientation. The results are listed in
Table 2. The (amplitude) frequency response comparison
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Fig. 5. Frequency comparison of different SOPDT models

Fig. 6. Deviations of step responses of different SOPDT
models

is illustrated in Figure 5. It is noticed that all concerned
methods result a good frequency matching within the
system’s bandwidth. The comparison of step responses
with that of the original system are shown in Figure 6. It
can be seen that all GA-induced models also play good jobs
in time-domain. From the Nyquist plots shown in Figure 7,
all developed models keep the quite similar phase features
with the original system.

Table 2. Estimated SOPDT parameters via
diff. methods subject to diff. excitations

Chirp Pulse-1 Pulse-2 model based

GA GA GA Skogestad Sung

K 1.0 1.0 1.0 1.0 1.0
a1 0.74 1.34 1.29 1.2 1.29
a2 2.2 1.74 1.8 2.0 1.99
Td 1.0 0.85 0.85 0.77 0.9

4.4 Tuning Weighting Factors

The tuning of weighting factors φt and φf in (11) is very
important in acquisition of a good approximation model.
A proper selection of the frequency weighting sequence
{W (k)} used in (8) is also quite necessary. All these
tunings depends on how the quality of the measurement
data is and how it is distributed, SNR, the type of
excitation signals, as well as the purpose of this modeling
etc. We refer to Glen (2013) for more details.

Fig. 7. Nyquist curve comparison of different SOPDT
models

4.5 Approximation Subject to Unknown Original System

So far, all above results and analysis are based on the
assumption that the original system (17) is known before-
hand. Of course, there is no influence to GA based method
if the original system is unknown, since GA based method
directly estimates a FOPDT/SOPDT model based on the
measurements. However, the skogestad’s and Sung et al
methods can not be employed if the original system is un-
known. One possible way to solve this problem is to firstly
estimate a detailed model based on the measurements
by using some standard system identification techniques
(Ljung (1999)), afterwards derive the corresponding low-
order model using one of these methods based on the
estimated high-order system (obtained from first step).
This kind of bootstrap approach could have some risks
to result in some poor model reduction quality if the
high-order system is estimated not precise enough. In the
following, we will illustrate this potential problem by using
the same exampled system.

By using Matlab System Identification Toolbox based on
the measured data excited by the chirp signal, firstly,
a high-order system (in transfer function) is estimated.
Afterwards, the Skogestad’s and Sung et al methods are
employed to obtain the corresponding FOPDT/SOPDT
models. The results are listed in Table 3. From the bode
plots shown in Figure 8, it is quite clear that the GA-based
result has a much super frequency fitness than these boot-
strapped results do. From the step response analysis shown
in Figure 9, it is also observed that both FOPDTs obtained
through these bootstrapped approaches can cause much
large deviations in time-domain operations. It has been
proved that by using the pulse excitation does not help
improve the poor approximation situation (Glen (2013)).

Table 3. Estimated FOPDT & SOPDT param-
eters via model reduction subject to chirp

FO- PDT SO- PDT

K τ Td K a1 a2 Td

Skog-2 1.0 4.63 2.23 1.0 1.6 3.56 0.9
Sung2 1.0 5.88 1.4 1.0 2.9-0.5j 2.9+0.5j 0.79
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Fig. 8. Frequency comparison of different FOPDT models
(incl the Skogestad2 and Sung2 models derived from a
estimated original system) subject to chirp excitation

Fig. 9. Deviations of step responses of different FOPDT
models (unknown original system)

5. CONCLUSION

The main benefits of using this GA-based model approx-
imation lie in the following perspectives: (i) the direct
model estimation avoids the pre-requisition of a (com-
plicated) detailed model of the considered system, which
is often requested by available model reduction methods;
(ii) The GA-based approach minimizes the local optimum
risk caused by the non-convexity in time-delay system
identification; (iii) The GA-based method has much more
direct flexibility in handling different cost functions, as
well as variable constraints, compared with conventional
optimization methods; (iv) The GA’s computation and
evolution are direct conducted in the random domain,
thereby some robustness subject to noise influence could
be kept.

All in all, the so-far achieved results illustrate that the GA
can conduct a quite reliable and efficient FOPDT/SOPDT
model approximation to complicated process systems as
long as the considered system is reasonably excited. Fur-
thermore, some of our undergoing work has already evi-

denced that once the computation time is not a problem,
the proposed method can also be extended to handle on-
line model identification/approximation problem. We will
report these results in the near future.

REFERENCES
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