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Abstract—In a DC microgrid, several paralleled conversion 

systems are installed in distributed substations for transferring 
power from external grid to a DC microgrid. Droop control is 
used for the distributed load sharing among all the DC/DC 
converters. Considering the typical efficiency feature of power 
electronic converters, optimization method can be implemented 
in tertiary level for improving the overall system efficiency. 
However, optimization purposes usually require centralized 
communication, data acquisition and computation which might 
be either impractical or costly for dispersed systems. 
Accordingly, this paper proposes a dynamic consensus algorithm 
based distributed optimization method aiming at improving the 
system efficiency while offering higher expandability and 
flexibility when compared to centralized control. Hardware-in-
the-loop (HIL) results are shown to demonstrate the effectiveness 
of the method. 
Keywords: DC microgrid, dynamic consensus algorithm, 
distributed optimization, droop control, dc/dc converter. 
 

I. INTRODUCTION 
In a direct current (DC) microgrid, as shown in Fig. 1, four 

distributed substations are established for extracting power 
from energy resources to supply the load in the microgrid.  In 
this paper, the energy resources are assumed to be alternate 
current (AC) grids. Four two-stage conversion systems are 
working in parallel. The AC/DC converter stage uses 
uncontrolled rectifier for transferring AC power to DC power 
from external AC grids. A DC/DC converter stage is 
implemented in cascade with the front AC/DC stage. The 
DC/DC converters can be regulated so as to control the power 
flow between the external grid and the microgrid. The power 
sharing among converters becomes critical issue in this case 
where droop control method can be applied so as to achieve 
communication-less automatic power sharing [1]–[5].   

Conventionally, the converters are assigned static droop 
coefficients, which realize the fixed proportion of load current 
sharing [1], [2]. However, taking into account that the 
efficiency of the converters is typically changing with their 
output currents [6], the global efficiency optimum is not 
guaranteed by applying static droop method [4]. Instead, a 
more convenient solution can be to adjust the current sharing 
proportion among converters under different load conditions 
so as to ensure the maximized overall efficiency. In line with  

 
Fig. 1.  Case study: DC microgrid system 

this, centralized optimization was implemented in [4] for 
system overall efficiency enhancement. 

However, for distributed systems it is either impractical or 
costly to have a central control system with communication 
links connected to each local unit [7]–[9]. Besides, there are 
several well-known pitfalls associated with centralized 
optimization, i.e. single point of failure, limited flexibility and 
difficult expandability [9]. In order to avoid these drawbacks, 
a distributed decision-making and optimization scheme is 
needed. Distributed algorithms [10], such as consensus 
algorithms [11], can be possible solutions for global 
information discovery in a distributed fashion.  

The general purpose of consensus algorithms is to allow a 
set of agents to reach an agreement on a quantity of interest by 
exchanging information through communication network [11]. 
These kinds of agents are only required to communicate with 
their neighbors. A distributed decision-making based on a 
dynamic consensus algorithm was implemented in this paper 
[12] for automatic load restoration. The global information is 
discovered by each agent knowing the current state of the 
generation and consumption in all the buses. Local decision 
for loads restoration can be made according to the priority of 
the loads. In addition, the plug-and-play function for seamless 
connection of new units was designed. Similar approach is 
applied also in [13] for balancing the generation and 
consumption by coordinating the operation of doubly-fed 
induction generators. Considering the localized generation, 
storage and consumption feature of future smart grid, wireless 
communication network is generally accepted as highly 
flexible and low cost way for facilitating the control and 
monitoring in microgrids. Accordingly, a consensus theory 
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based distributed coordination scheme for microgrid via 
wireless communication is proposed in [14] for coordinating 
the generation, storage and consumption. 

In order to perform distributed optimization, this paper 
applies a dynamic consensus algorithm for global information 
sharing. The paper is organized as follows. The distributed 
hierarchical control structure is described in Section II with 
information consensus layer, tertiary control layer, secondary 
control layer and primary control layer differentiated. Section 
III introduces the dynamic consensus algorithm applied in this 
paper for obtaining the information about the total load 
current. Stability of the algorithm is also analyzed. Based on 
the analysis of system overall efficiency the optimization 
problem is formulated in Section IV. In order to adjust the 
current sharing ratio, an adaptive virtual resistance method is 
introduced in Section V with small signal stability analysis. 
HiL results are shown in Section VI to verify the effectiveness 
of the method. 

II. DISTRIBUTED HIERARCHICAL CONTROL 
Hierarchical control was proposed for proper control of 

microgrid systems [1], [2]. The three layers, namely tertiary, 
secondary and primary, are designed to achieve control 
objectives in different time scales and with different 
significances. As power electronic equipment is widely used 
for interfacing energy resources into microgrid system, power 
sharing methods, such as droop control, are usually applied in 
primary level for controlling the power injection of each 
energy resource. Secondary control deals with power quality 
issues, such as voltage and frequency restoration, unbalance 
and harmonics compensation. Tertiary control takes care of 
system level regulation issues, such as optimal power flow, 
economic operation, scheduling and so forth. Tertiary control 
has much slower control speed compared with secondary and 
primary control. 

Primary control is commonly installed at each local 
controller, while the way of implementing secondary and 
tertiary can be centralized or distributed [1], [5], [7], [15], [16]. 
They both have advantages and disadvantages. Centralized 
secondary and tertiary controls are usually installed in 
microgrid central controller (MGCC). It provides a strong 
supervision over the whole system and facilitates the function 
of global regulation and optimization. However, this option 
needs extensive communication infrastructure which causes 
higher cost and lower reliability. Also the flexibility and 
expandability of centralized control is limited since the 
supervisory controller needs to be reprogrammed for every 
new unit. It is more suitable for centralized or small scale 
systems [8], [9]. On the other hand, decentralized control 
tends to perform secondary and tertiary control in each local 
controller. Communication links are then only required 
between neighboring units. Information sharing and consensus 
algorithm is needed for each local controller to obtain 
environment information so as to perform decision-making 
functions, also named multi-agent systems [8], [9], [17], [18]. 
Compared with centralized control, this option saves the cost 
of implementing large length of communication links, avoids 
the halt of the whole system caused by a single point failure in 
MGCC or communication links, and improves the system 
flexibility and expandability. However, the system security is 
sacrificed because of the lack of strong centralized supervision. 
Also it is more difficult to perform decentralized optimization 
for each local controller to achieve a global objective. It is 
more suitable for largely dispersed system and each of the 
local units has its own goals, e.g. cost and profit. 

In order to implement optimization method in a system 
with largely dispersed units for achieving the enhancement of  

 
Fig. 2.  Distributed hierarchical control and communication structure 
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Fig. 3. Typical converter efficiency curve 

overall system efficiency, this paper proposes distributed 
hierarchical control architecture as shown in Fig. 2. A number 
of converters and its local control systems (index number 1, 
2, …, m, …, NoC, NoC is the total number of units) exist in the 
system and they communicate only with neighboring units. 

The inner voltage and current control loops as well as the 
droop control loop are integrated in primary level. Droop 
control loop appears as a virtual impedance (VR, Rd) over 
voltage control loop [2]: 

 _ _dc ref d m o mv v R i= − ⋅  (1) 
where io_m and Rd_m are the output current and VR value of the 
mth unit, and vref  is the output voltage reference at no load. 
Usually VR is fixed by the maximum allowed voltage 
deviation εv and maximum output current imax: 

 max/d vR i= ε  (2) 
This paper applies a dynamic VR shifting method for 

changing the output current of each converter to a desirable 
value [4].  

Secondary control loops deals with the restoration of 
voltage deviation caused by droop control. Distributed 
secondary control [15], [16] is required for this system which 
is out of the scope of this paper. 

Optimization method is implemented in tertiary level for 
optimizing the operation of each converter so as to achieve 
enhancement of overall system efficiency [4]. An operation 
scheduling block is also included in tertiary level for 
distributing the workload among all the converters. 

However, as the overall system efficiency is a global 
objective, the total load current is required for performing the 
optimization function. A dynamic consensus algorithm (DCA) 
[11], [19] is applied in this paper for obtaining the total load 
current. The optimization method and consensus algorithm are 
introduced in the following sections. 

III. SYSTEM EFFICIENCY ANALYSIS AND OPTIMIZATION 
For paralleled DC/DC converter system, the losses are 

mainly related with conversion losses which are caused by 
switching, driver and filter parasitic elements in each 
converter [6]. Even if constant input and output voltages are 
assumed, efficiency of each converter changes with its output 
current, as shown in Fig. 3. Two paralleled 1kW DC/DC 
converters are taken as example here, their maximum output 
current is 20A with nominal input/output voltage of 100/48V. 
As the efficiency is usually relatively much lower in light load 
conditions, there exists a room for optimization, which is to  

 
Fig. 4. System power loss PTL changing with sharing proportion 

find the power sharing proportion under different load 
conditions where the losses of the system are minimized. 

A. System Efficiency Analysis and Optimization Problem 
Formulation 

A typical theoretical efficiency curve is shown in Fig. 3. 
Matlab Curve Fitting Tool is used to transform data into 
function: 

 
32 10 0.30.975 0.1257i ii e e
−− × ⋅ − ⋅η( ) = ⋅ − ⋅  (3) 

where η is converter efficiency and i is converter output 
current. Then, the power conversion losses of a system with n 
paralleled converters may be calculated as follows: 

 _
1

N
m

TL DC o m
mm

P V i
=

1−η
= ⋅ ⋅

η∑  (4) 

where VDC is dc bus voltage, io_m is the output current of jth 
converter, and ηm is the efficiency of mth converter. 
Minimization of total conversion losses, PTL, is taken as the 
objective in the following optimization problem. 

Assuming two converters share the load current as the 
green and red points shown in Fig. 3. In light load conditions, 
it is more efficient to differentiate the sharing proportion so as 
to enhance the system efficiency. A sharing gain is defined as: 
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o
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 Fig. 4 shows the changing of system power losses with 
regard to logarithm of sharing proportion k under different 
load conditions. It can be seen that, under light load conditions 
(Iload<12A), the system losses are much lower when the 
sharing proportion k is larger. It means that it is more efficient 
to differentiate the load current sharing proportion of 
operating converters under light load conditions. 

B. Adaptive Virtual Resistance Method 
In order to change the output current of each converter, the 

VR, Rd, can be adjusted as shown in Fig. 5. From (1), the 
output current of each converter can be calculated as: 

 _
_

ref dc
o m

d m

v v
i

R
−

=  (6) 
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Fig. 5. System power loss PTL changing with sharing proportion 

As vref and vdc are the same for all the converters, the ratio 
of the output current of converters is proportional to the 
reciprocal of VRs: 

 _1 _ 2 _
_1 _ 2 _

1 1 1: : ... : : : ... :
oC

oC

o o o N
d d d N

i i i
R R R

=  (7) 

Accordingly, the optimization objective is to find an 
optimal sharing proportion among all the converters so as to 
minimize the system losses (PTL). VRs can be used as decision 
variables for adjusting the relative sharing proportion of load 
current among all the converters. 

However, the change of VRs certainly has influence on 
common DC bus voltage and control system dynamics. The 
voltage deviation caused by droop control and VR shifting can 
be fast restored by secondary control, and this part is out of 
the scope of this paper.  

The small signal stability analysis is necessarily needed for 
properly set the shifting range of VRs so as to ensure the 
system stability. The dynamic model of a paralleled buck 
converter system (4 converters) is shown in Fig. 6. Voltage 
and current loops can be accomplished by conventional PI 
controllers. VR appears as a proportional current feedback 
over inner control loops. Each converter along with its 
primary control system can be described as following model: 

 

* *

*( )

( ) ( )

1

DC DC d L

Iv
ref Pv DC

Ic
Pc ref L

L
in DC p L
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L DC

load

v V V v R i
K

i K v
s

K
D K i i

s
diL v D v R i
dt
dv

C i v
dt R

δ

 = + − − ⋅



= + ⋅

 = + ⋅ −



= ⋅ − − ⋅

 = − ⋅


∑

 (8) 

 
where V* is the fixed voltage reference, δV is the voltage 
deviation compensating reference given by secondary  
controller, iL and vDC are the converter inductor current and 
capacitor voltage respectively. KPv, KPc, KIv and KIc are the 
control parameters of voltage and current loop PI controllers. 
L and C are inductance and capacitance of the converter 
output filter, Rp is the parasitic resistance of the filter, Rload is  
 

 
Fig. 6. Dynamic model of paralleling converter system 

 
Fig. 7. Dynamic model of paralleling converter system 

the equivalent resistance of the total load, vin is the source 
voltage, D is the duty ratio.  

Eq. (8) can be rewritten in a more compact state space 
model defined as: 

 s s s sx A x B u= ⋅ + ⋅  (9) 
where all the modules share the common part of  capacitor 
and load. In the state space model, there are two state 
variables in each primary controller, one state variable in each 
converter stage, and one common state variable in the 
capacitor and load part. As a result, in the system with NoC 
converters, the total number of state variables is (3*NoC+1), 
This number is also the number of eigenvalues of the state 
matrix As. 

Assume a study case in which four 1kW buck converters 
are working in parallel supplying a microgrid, the eigenvalues 
of the state matrix are plotted as shown in Fig. 7. The total 
number of eigenvalues is 13. The shifting range of VR is set 
to 0.25 to 5, and four different load conditions are considered 
in this analysis: Pload=500W, 1000W, 1500W, 2000W. At 
light load condition (Pload=500W), the VRs of the four 
converters are set to Rd1=0.25Ω, Rd2=Rd3=Rd4=5Ω, which 
means at light load conditions one of the four converters 
supplies most part of the total load current. It can be seen from 
Fig. 7 (a) that all the eigenvalues are located at the left half 
plane, the system is assumed to be stable. Similar conclusion 
can be obtained under the other load conditions according to 
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Fig. 7 (b)~(d). Accordingly, it is feasible to adjust the VRs 
between 0.25~5 while the system stability is also ensured. 

C. Optimization Problem Formulation 
Based on the analysis above, the optimization problem can 

be formulated as: 
 { }. : TLobj Min P  (10) 

 { }_1 _ 2 _ _. . : , ,..., ,...,
oCd d d m d Ndec var R R R R  (11) 

 
{ }

{ }
_1 _ 2 _ _

_1 _ 2 _ _

0.25 , ,..., ,..., 5
. . :

, ,..., ,...,

oC

oC

d d d m d N

o o o m o N MAX

R R R R
s t

i i i i I

 ≤ ≤


≤

 (12) 

where the objective is the minimization of PTL, the decision 
variables are VRs of the , IMAX is the maximum conversion 
current limit of each converter. The ratio of output current 
among converters is equal to the ratio of reciprocal of their 
VRs. The implementation and parameter tuning which 
guarantee the convergence of the optimization algorithm were 
introduced in [4]. 

D. Operation Scheduling 
As it is shown in above analysis, the optimization is 

actually to find an optimal sharing proportion among all the 
converters. However, the converter which is always turned on 
may experience more rapid wear&tear than the other ones. 
Accordingly, a scheduling procedure is added in this paper so 
as to distribute the workload in a given time range. Each 
converter is assigned a priority number (Sq_m=1,2,…,NoC) at 
the beginning when it is connected to the system. The 
optimization results are given as an array RD=[Rd_1, Rd_2, …, 
Rd_Noc]. A sorting procedure is also included which makes the 
elements of RD in ascending sequence. The priority number of 
the local converter decides which element in the optimal array 
RD will be sent to primary controller. In addition, Sq_m is 
shifted after each given time range so as to distribute the 
workload among all the converters. Also Sq_m can be used to 
inform the system the total number of online converters. This 
is introduced in the next section. 

IV. MULTI-AGENT BASED INFORMATION CONSENSUS 
The distributed generation, conversion and consumption 

improve the efficiency, reliability and flexibility of future grid. 
However, this new paradigm also introduces obstacles for 
performing optimization functions, especially, to achieve 
global objectives such as system overall efficiency. 
Centralized optimization provides reliable and stable solutions, 
but it also brings higher cost for communication and data 
acquisition.  

This section introduces the application of a DCA so as to 
achieve distributed information sharing. Low bandwidth 
communication links (LBCL) [20] are required only between 
neighboring units. The local conversion current of each unit 
(io_m) and the priority number (Sq_m) are transmitted by each 
agent to their neighbors. The total load current and the total 
number of online converters are obtained by using DCA so 
that each local controller can perform optimization function. 

A. Dynamic Consensus Algorithm 

The discrete form of information discovery algorithm can 
be presented as [11]: 

 ( 1) ( ) ( ( ) ( ))
m

m m mn n m
n N

x k x k a x k x k
∈

+ = + ⋅ −∑  (13) 

where m=1,2,…,NoC, NoC is the total number of agent nodes. 
( )mx k  and ( 1)mx k +  are the information obtained by agent m 

at iteration k and k+1 respectively. amn is the edge weight 
between node m and node n, amn=0 if the nodes m and n are 
not neighboring nodes. Nm is the set of indexes of the agents 
that are connected with agent m. 

From a system point of view, the vector form of the 
iteration algorithm can be expressed as [11]: 

 ( 1) ( )X k W X k+ = ⋅  (14) 
with 1 2( ) [ ( ), ( ),..., ( )]oC

T
NX k x k x k x k=  and W is the weight 

matrix of the communication network: 
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1 1
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j N
j N
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The final consensus equilibrium Xeq reached is: 

 1lim ( ) lim (0) (0)k T
eq

k k oC
X X k W X X

N→∞ →∞

 
= = = ⋅ 

 
1 1  (16) 

where 1 2(0) [ , ,..., ,..., ]oCm NX z z z z=  is the vector of the initial 
values hold by each agent, 1 denotes the vector with all the 
elements 1. The detailed proof of the convergence can be 
found in [11]. 

In addition, in order to ensure the accurate and dynamical 
information consensus, a modified dynamic consensus 
algorithm [21] is applied in this paper. With this modification, 
the algorithm (13) can be rewritten as: 

 ( 1) ( 1)
m

m m mn mn
n N

x k z a kδ
∈

+ = + ⋅ +∑  (17) 

 ( 1) ( ) ( ) ( )mn mn n mk k x k x kδ δ+ = + −  (18) 
where ( )mn kδ  stores the cumulative difference between two 
agents, and (0) 0mnδ = . Based on (17) and (18), it is explicit 
that the final consensus value depends on zm, and regardless of 
any changes to zm, the algorithm will converge to appropriate 
average. Also, the precise consensus can also be achieved 
even under dynamic change of communication topology or 
adding/reducing number of nodes.  

B. Communication Algorithm Dynamics 
The communication topology applied in this paper, and its 

Laplacian matrix (L) and weight matrix (W) are shown in Fig. 
8. Constant edge weight ( ε ) is used in this case, where: 

 W I Lε= − ⋅  (19) 
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Fig. 8. Communication topology and its Laplacian matrix 

In order to ensure the stable and fastest convergence of the 
communication algorithm, ε  has to be properly chosen. As 
bidirectional communication links are considered, it is 
referred to as the symmetric fastest distributed linear 
averaging (symmetric FDLA) problems. The symmetric FDLA 
problem is actually the minimization of spectral radius of 

( )1/ T
oCW N− ⋅ ⋅1 1  with certain constraints on weight matrix 

W. The fastest convergence is ensured when [19]: 

 
1 1

2
( ) ( )nL L

ε
λ λ −

=
+

 (20) 

where λj(·) denotes the jth largest eigenvalue of a symmetric 
matrix. Based on the topology of Fig. 8, the eigenvalues of L 
are [0 2 2 4]T  which gives the optimal ε =1/3. The 
converging speed is compared in Fig. 9. Considering the 
limitation of communication speed, the time step of the 
consensus algorithm is set to 100ms which means 100ms 
communication time delay is considered. The system starts 
with 1 2 3 4(0) [ , , , ] [1,3,5,7]X z z z z= =  and converges to 
average value 4. At 3s, z1 changes from 1 to 5, the new 
average value is 5. According to the comparison, the weight 
ε =1/3 is demonstrated to have minimized spectral radius

( )( 1/ )T
oCW Nρ − ⋅ ⋅1 1  and fastest converging speed.  

Furthermore, when the communication topology is forced 
to change, the algorithm should be able to tolerate the 
topology change and ensure the accurate averaging, as shown 
in Fig. 10. At 4s, one communication link is broken which 
causes oscillation of average value in each node. Around 6s, 
the new steady state is reached with correct average value. At 
7s, z1 changes from 5 to 3. The algorithm helps each agent 
discover the new average value 4.5. The above results 
demonstrate that the algorithm can provide accurate average 
value for each agent even under dynamic state change and 
topology change conditions. 

C. Implementation of DCA 
In order to perform optimization, it is necessary to know 

the global information of: (1) the total load current (Iload) and 
(2) the total number of online converters (NoC). The total load 
current can be obtained by each agent node by sending the 
output current of the local converter to neighboring units. The 
equilibrium of load current calculation achieve in each agent 
node is the average value of the total load current: 

 
_

1

oCN

o m
m

eq
oC

i
i

N
==
∑

 (21) 

 
Fig. 9. Converging speed comparison under different constant weight ɛ. 

 
Fig. 10. Information consensus under topology change. 

based on which the total load current can be calculated by 
multiply NoC to the averaged value ieq. 

In order to know the number of online converters, the 
priority number of each converter (Sq_m=1,2,…,NoC) is used 
and sent to neighboring units. The equilibrium of the priority 
information can be obtained as: 

 
_

1

( 1)
12

2

oCN

oC oCq m
oCm

eq
oC oC

N NS
NS

N N
=

⋅ +
+

= = =
∑

 (22) 

based on which NoC can be calculated as: 
 2 1oC eqN S= −  (23) 

V. HARDWARE-IN-LOOP RESULTS 
In order to verify the effectiveness of the proposed method, 

simulation models are established in Simulink and compiled 
to dSPACE for HiL simulation. The lower level controllers 
and averaged converter model are shown in Fig. 6. The 
Genetic Algorithm is implemented using Matlab-Function.  
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Fig. 11. One load cycle simulation results. 

DCA is implemented using Simulink blocks. The control 
speed is differentiated in different layers considering the 
hardware limitations. The simulation model time-step is set to 
0.1ms. The tertiary optimization is executed every 0.5s, and 
the DCA is executed every 100ms which means a 100ms 
communication delay is considered. 

A. One load profile cycle 
A load profile is input to the simulation model so as to 

obtain the response of the control system and verify the results. 
The load power is changing between 500W to 2200W. As the 
DC common bus voltage is always kept at 48V, the total load 
current is changing between 10A to 46A.  

Fig. 11 (b) shows the total load current discovered by each 
agent which demonstrates that the consensus algorithm is able 
to help each agent obtain the accurate information. The 
detailed consensus dynamics are shown in Fig. 12. 

The comparison between optimized and non-optimized 
system regarding the system overall power losses and  
efficiency are shown in Fig. 11 (c) and (d). It is demonstrated 
that the optimized system has relative lower power losses and 
higher system overall efficiency especially under light load 
conditions. Fig. 11 (e) indicates the strategy of employing  
 

 
Fig. 12. Information consensus dynamics. 

 
Fig. 13. 4 load cycles simulation results. 

converters under different load conditions. In light load 
conditions, less converters are supplying. 

B. Consensus dynamics 
The dynamics of the consensus algorithm during changing 

of number of supplying converters are shown in Fig. 12. At 
this point, the optimization and decision making process 
decides to put one converter into standby mode because it is 
more efficiency to employ less converters. It can be seen in 
Fig. 11 (e) that at 401s, the current generation of converter 3 is 
decreased to a low level. During this process, the state of 
agent 3 is changed which causes an oscillation on the states of 
other agents as shown in Fig.12. But within 2 seconds, the 
algorithm is able to help all the agents re-converge to the right 
consensus even the load is dynamically changing at the same 
time. Accordingly, the system is able to adapt to this change 
and keeps normal operation. 

C. Four load profile cycle 
According to the simulation results presented in Fig. 11, 

one converter is undertaking most of the load current in light 
load conditions which may cause fast wear and tear for this 
converter after long term operating. An operation scheduling 
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and priority shifting method is necessarily needed so as to 
distribute the total workload. Considering that in real world 
system, the load profile feature is similar from day to day, the 
priority number (Sq_m) can be shifted after each cycle so as to 
ensure the near equalized workload distribution among all the 
converters. The simulation results of 4 load cycles are shown 
in Fig. 13. The priority number of each converter is shifted 
from cycle to cycle. Also this priority number can be used to 
obtain the information of total number of online converters as 
shown in (22) and (23). 

Fig. 13 (b) shows the output current of each converter 
during different cycles. As their priority number is shifted, 
different converter is undertaking most of the load current in 
different cycle. Fig. 13 (c) demonstrates that after 4 cycle of 
operation, the total energy converted are equally shared 
among the four converters. 

Fig. 13 (d) indicates that compared with non-optimized 
system, 10% energy losses are reduced by applying the 
proposed method. 

VI. CONCLUSION 
In a DC microgrid, several droop controlled paralleled 

DC/DC converters are installed in distributed substations for 
transferring power from external grid to the microgrid. 
Although centralized optimization and decision-making 
methods can realize power loss reduction and energy 
efficiency improvement, it may be impractical or costly for 
dispersed system to have a centralized control system. In order 
to actualize distributed optimization purposes, this paper 
proposes a dynamic consensus algorithm based distributed 
optimization method so as to enhance the overall efficiency of 
a droop regulated DC microgrid.  

Consensus algorithm is used in each local agent for 
obtaining the global information of total load current and 
number of online converters. Based on this information, 
genetic algorithm is applied for decision-making procedure 
which gives the optimal VR to local controller. Adaptive VR 
method is applied in primary level so as to follow the VR 
reference from tertiary level. 

HiL results are presented which demonstrate that the 
proposed method achieves distributed optimization for system 
overall efficiency enhancement. Consensus algorithm is able 
to provide accurate and reliable information to each local 
agent. The priority shifting method realizes the equal 
workload distribution among converters.  

REFERENCES 
[1] A. Bidram and A. Davoudi, “Hierarchical Structure of Microgrids 

Control System,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963–1976, 
Dec. 2012. 

[2] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. 
Castilla, “Hierarchical Control of Droop-Controlled AC and DC 
Microgrids—A General Approach Toward Standardization,” IEEE 
Trans. Ind. Electron., vol. 58, no. 1, pp. 158–172, Jan. 2011. 

[3] T. L. Vandoorn, B. Meersman, J. D. M. De Kooning, and L. 
Vandevelde, “Analogy Between Conventional Grid Control and 
Islanded Microgrid Control Based on a Global DC-Link Voltage 
Droop,” IEEE Trans. Power Deliv., vol. 27, no. 3, pp. 1405–1414, Jul. 
2012. 

[4] L. Meng, T. Dragicevic, J. M. Guerrero, and J. C. Vasquez, 
“Optimization with system damping restoration for droop controlled 

DC-DC converters,” in 2013 IEEE Energy Conversion Congress and 
Exposition, 2013, pp. 65–72. 

[5] T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, 
“Supervisory Control of an Adaptive-Droop Regulated DC Microgrid 
With Battery Management Capability,” IEEE Trans. Power Electron., 
vol. 29, no. 2, pp. 695–706, Feb. 2014. 

[6] P. Klimczak and S. Munk-Nielsen, “Comparative study on paralleled vs. 
scaled dc-dc converters in high voltage gain applications,” in 2008 13th 
International Power Electronics and Motion Control Conference, 2008, 
pp. 108–113. 

[7] T. Dragicevic, J. Guerrero, and J. C. Vasquez, “A Distributed Control 
Strategy for Coordination of an Autonomous LVDC Microgrid Based 
on Power-Line Signalling,” IEEE Trans. Ind. Electron., vol. PP, no. 99, 
pp. 1–1, 2013. 

[8] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, “Microgrid 
Management,” IEEE Power Energy Mag., pp. 54–65, 2008. 

[9] W. Su and J. Wang, “Energy Management Systems in Microgrid 
Operations,” The Electricity Journal. 2012. 

[10] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 
vol. 60. 2003, pp. 269–72. 

[11] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and 
Cooperation in Networked Multi-Agent Systems,” Proc. IEEE, vol. 95, 
2007. 

[12] Y. Xu and W. Liu, “Novel Multiagent Based Load Restoration 
Algorithm for Microgrids,” IEEE Trans. Smart Grid, vol. 2, pp. 140–
149, 2011. 

[13] W. Zhang, Y. Xu, W. Liu, F. Ferrese, and L. Liu, “Fully Distributed 
Coordination of Multiple DFIGs in a Microgrid for Load Sharing,” 
IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 806–815, Jun. 2013. 

[14] H. Liang, B. Choi, W. Zhuang, X. Shen, A. A. Awad, and A. Abdr, 
“Multiagent coordination in microgrids via wireless networks,” IEEE 
Wireless Communications, vol. 19. pp. 14–22, 2012. 

[15] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, “Distributed Secondary 
Control for Islanded Microgrids—A Novel Approach,” IEEE Trans. 
Power Electron., vol. 29, no. 2, pp. 1018–1031, Feb. 2014. 

[16] X. Lu, J. M. Guerrero, and K. Sun, “Distributed secondary control for 
dc microgrid applications with enhanced current sharing accuracy,” in 
2013 IEEE International Symposium on Industrial Electronics, 2013, 
pp. 1–6. 

[17] S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. 
D. Hatziargyriou, F. Ponci, and T. Funabashi, “Multi-Agent Systems 
for Power Engineering Applications—Part I: Concepts, Approaches, 
and Technical Challenges,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 
1743–1752, Nov. 2007. 

[18] S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. 
D. Hatziargyriou, F. Ponci, and T. Funabashi, “Multi-Agent Systems 
for Power Engineering Applications—Part II: Technologies, Standards, 
and Tools for Building Multi-agent Systems,” IEEE Trans. Power Syst., 
vol. 22, no. 4, pp. 1753–1759, Nov. 2007. 

[19] L. X. L. Xiao and S. Boyd, “Fast linear iterations for distributed 
averaging,” 42nd IEEE Int. Conf. Decis. Control (IEEE Cat. 
No.03CH37475), vol. 5, 2003. 

[20] S. Sučić, J. G. Havelka, and T. Dragičević, “A device-level service-
oriented middleware platform for self-manageable DC microgrid 
applications utilizing semantic-enabled distributed energy resources,” 
Int. J. Electr. Power Energy Syst., vol. 54, pp. 576–588, 2014. 

[21] M. Kriegleder, “A Correction to Algorithm A2 in ‘Asynchronous 
Distributed Averaging on Communication Networks’,” vol. PP, no. 99. 
p. 1, 2013.  

 


