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Figure 1.    Structure of an example of hybrid AC-DC microgrid 
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Abstract— The AC-DC hybrid microgrid is an effective form of 

utilizing different energy resources and the analysis of this 

system requires a proper power flow algorithm. This paper 

proposes a suitable power flow algorithm for LV hybrid AC-DC 

microgrid based on droop control and virtual impedance. Droop 

and virtual impedance concepts for AC network, DC network 

and interlinking converter are reviewed so as to model it in the 

power flow analysis. The validation of the algorithm is verified 

by comparing it with steady state results from detailed time 

domain simulation. The effectiveness of the proposed algorithm 

makes it a potential method for planning, dispatching and 

operation of droop controlled LV hybrid AC-DC.   

Index Terms—hybrid AC-DC microgrid, droop control, virtual 

impedance, power flow.  

I. INTRODUCTION 

Recent technology development and practice in power 
system has witnessed increasing interests on the concept of 
“direct DC”, from the adoption of High-voltage direct-current 
(HVDC) transmission  systems  when connecting offshore 
wind farms or large distance interconnected grids, to energy 
efficient applications in distribution system that utilize DC 
power directly from the source residentially or commercially 
for the purpose of avoiding DC-AC-DC power conversions. 
Among these applications, DC microgrid, which comprises 
distributed generation, energy storage systems  and local  
loads  as a local grid, is gaining more interests due to its 
potential to integrate increasing DC renewable source and 
load, such as , electrical  vehicles,  photovoltaic  systems,  fuel  
cells,  or  LEDs , with high efficiency. The application of DC 
microgrids have increasingly been found its way in data 
centers, telecom system, and some buildings and offices.  

   DC microgrids are, however, not likely to fully replace 
an existing AC microgrid due to the long historical 
development of the AC power system.  The architecture of the 
coexistence of AC and DC subgrids intertied by an 
electronically controlled power converter is here to stay [1]-
[5]. The structure of an example of hybrid AC-DC microgrid 
is shown in Fig. 1.  This hybrid network consists of two DC 
subgrids and one AC subgrid, and the main grid is connected 
with it by an intelligent bypass switch.  

One of the main purposes of the management for the 
microgrid is the control of the power flow. To achieve this 
goal, among many control strategies, hierarchical control 

methodology is proposed in [1] as a generalized and even 
standard way for AC microgrid and DC microgrid. The steady 
state power distribution is the direct control outcome of the 
primary control of the hierarchical control. 

To make the planning, dispatch and operation more 
economical and reliable, a steady state power flow analysis for 
a microgrid is always desired.  For this purpose, a lot of work 
has been done [6]−[8], but they all aimed at the AC microgrid 
only. Moreover, to a certain extent, none of them is suitable 
for Low voltage AC microgrid, either because they use 
conventional  concepts of PQ, PV and slack buses in the 
modelling or due to that they overlooked the effect of the 
virtual impedance[7].  Power flow analysis for AC-DC power 
system is not a new topic, yet many of them are addressed for 
HVDC system thus not suitable for a hybrid microgrid with its 
unique power flow control based on droop and virtual 
impedance[9]-[11]. 

This paper, a power flow for hybrid AC-DC microgrid is 
proposed considering the droop control with virtual 
impedance and power flow among microgrids through 
interlinking converter control. The paper is organized as 
follows. In the second section, power flow control strategy 
based on the droop control and virtual impedance for single 
microgrid and intertied microgrids are reviewed as 
background knowledge to justify the choice of modelling 
method in the next section. In the third section, mathematical 
model of proposed power flow analysis is presented based on 
the control discussed previously. The verification of the 
proposed algorithm by comparing the results from calculation 
and the steady state results from time domain simulation is 
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provided in the fourth section which shows the effectiveness 
of the algorithm.  Finally, section five gives the conclusions 
and the future work. 

II. DROOP CONTROL AND VIRTUAL IMPEDANCE SCHEME IN 

MICROGRIDS 

A.  For a single LV AC microgrid 

The concept of the droop control with virtual impedance is 
illustrated in Fig.2. As is shown in it, when the virtual 
impedance Zv equals zero, i.e., virtual impedance is not used, 
the output characteristic of generation is controlled by the 
droop equation as (1) and (2) to mimic the synchronous 
generator in the bulk grid.  

 *

0i Pi Gif f K P    (1) 

 0| | | |Gi G i Qi GiV V K Q    (2) 

Being f0i, KPi, PGi,VG0i, KQi, QGi the nominal frequency, 
proportional frequency droop parameter, real power 
generation, nominal voltage, proportional voltage amplitude 
droop parameter, and reactive power at generator i, 
respectively. 

But when the virtual impedance is added in the control so 
as to decouple real and reactive power when the line 
impedance is not inductive enough, it changes the output 
voltage characteristics of the generation as is shown in (3). 
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Where the 
droopV is the voltage matrix of the virtual droop 

bus, 
GlineI  the injection current matrix in the generation bus, 

GbusY  the admittance matrix of the network directed connected 

to the generation buses, vZ  the virtual impedance matrix of 

the controller and GV  the voltage matrix of generation bus 

(assume all the generation buses are droop controlled). 

B. For a single  LV DC microgrid 

The principle of the droop control for LV DC microgrid is 
illustrated in Fig. 3. In fact, the realization of droop control in 
DC microgrid is through the use of the virtual resistance RD. 
DC sources in a network cannot work as stiff voltage sources 
for there will be circulating current. The droop concept has 
thus come into being by multiplication of measured voltage 
deviation to a value reciprocal to the virtual resistance. The 
concept is illustrated by (4).  

 
(DC) 0 (DC) (DC)Gi i Di GiV V R i    (4) 

Where VGi(DC) is the voltage reference to DC source which 

should be equal to the measured voltage value in a stable 

system in the steady state, 0 (DC)iV  is the output reference at no 

load which is usually modified from secondary control to 

achieve voltage regulation, 
DiR is the virtual impedance of the 

droop controller, and (DC)Gii is the output current of the DC 

source.  

C. For intertied microgrids 

Droop concepts can also be applied to two different 
microgrids by controlling the interlinking converter as are 
proposed in [1]-[4].  Although the droop concept is used in the 
control of the interlinking converter, the interlinking converter 
cannot be seen as a droop controlled converter to each 
interconnected side as in a single microgrid. There are mainly 
two control objectives which are realized by using droop 
concepts. One is aiming at making the two intertied connected 
microgrids being studied share all the load equally [2], another 
is aiming at making the two intertied microgrids equally 
stressed and minimize the interlinking energy flow by 
controlling the power transferred according to the load 
condition of the two microgrids [3]. Despite different control 
objectives, to make the droop coefficients comparable, the 
variables used for sharing the real power as the signals need to 
be normalized to common per unit range. Moreover, despite 
different control strategy the ultimate given to the interlinking 
converter is the transferred power through it. To make the 
model of the interlink converter control strategy independent, 
the generalized form of the power flow control in the 
interlinking converter can be show in fig. 4. The direction of 
the arrow indicates the positive direction of the power. 
Reactive power cannot be transferred through the interlinking 
converter and that is why there is only Qc1 in the AC side. The 
transferred real power satisfies the following equations 
consider the converter power loss and the possible energy 
storage system in the DC link of the converter.  

                    2 1c c loss storageP P P P                            (5) 
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Figure 5. Single line diagram of test hybrid micogrid 

 

 

III. MATHEMATICAL MODEL OF POWER FLOW IN LV 

HYBRID AC-DC MICROGRID 

For the AC buses, taking into account that the frequency is 
a global variable for all the DG buses throughout the 
microgrid, from (1) we can obtain: 

 0 0i Pi Gi g Pg Ggf K P f K P     (6) 

where i=1,…, g-1, being g the number of the buses. 

The network equations that all buses should obey are 
given by: 

( cos sin )i i j ij ij ij ijP V V G B     (7) 

 ( cos sin )i i j ij ij ij ijQ V V G B          (8) 

Where θij，Gij and Bij are the bus admittance angle, the 

conductance and the susceptance, respectively.  

For DC buses, it is possible to assume the network is pure 
resistive in its steady state model. According to the Kirchhoff's 
current law, that current injected at the bus i equals to the 
current flowing to other buses, the network equation can be 
written as follows: 
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  Where (DC)iI  is the DC injection current in bus i, (DC)ijY  is 

the admittance between the bus i and bus j, and (DC)iV is the 

voltage magnitude in bus i; 
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 Additionally, for the Droop-buses, there is one more 
constraint they have to follow: 

 (DC) 0 (DC) (DC)Gi i Di GiV V R i    (11) 

Where  (DC)Gii  can be written as,  
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      Considering the virtual impedance constraint (3) for AC 

buses, and assuming there is no energy storage in the DC link 

and the power loss in the converter is not significant which is 

reasonable in LV small microgrid system, the overall 

mathematical model of power flow analysis for a hybrid 

microgrid is as follows: 
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IV. ALGORITHM VERIFICATION ON A TEST HYBRID 

MICROGRID 

  The validity of the algorithm is verified using a 10-bus 
hybrid microgrid by comparing the results from calculation 
and the steady state results from time domain simulation with 
the toolbox SimPowerSystems of Matlab as is shown in Fig.5. 
According to [3], it defines four basic rules for the control of 
transferred power, the real power flow will have three 
different cases: scenario 1, real power flows from AC side to 
DC side; scenario 2, real power flows form DC side to AC 
side; and scenario 3, no power flows in between. Since the last 
case is equivalent to calculate two separated AC network and 
DC network, only first two cases are tested. The network data 
and control parameters are listed in Table I. 

 

TABLE I.  THE NETWORK DATA AND CONTROL PARAMETERS OF TEST 

HYBRID MICROGRID 

paramaters symbol value  units 

frequency droop for DG1 KP1 0.001 rad/(W · s) 

amplitude droop for DG1 KQ1 0.02 V/Var 

frequency droop for DG2 KP2 0.0005 rad/(W · s) 

amplitude droop for DG2 KQ2 0.01 V/Var 

frequency droop for DG3 KP3 0.004 rad/(W · s) 



amplitude droop for DG3 KQ3 0.002 V/Var 

Virtual resistor  Rv_i(i=1,2,3) 0.1 Ω 

Virtual inductor Lv_i(i=1,2,3) 0.004 H 

reference voltage in DC 
bus 1 

Vref1 48 V 

reference voltage in DC 
bus 2 

Vref2 48 V 

Virtual resistance for DC 
source 1 

Rd1 0.2 Ω 

Virtual resistance for DC 
source 2 

Rd2 0.5 Ω 

bus number Rload(Ω) Lload(mH)  

DC bus 2 5 0  

DC bus 4 3 0  

AC bus 4 100 0  

AC bus 5 100 0  

AC bus 6 100 0.25136H  

from bus to bus Line 
resistance(Ω) 

line 
inductance
(mH) 

DC bus 1 DC bus 2 0.05 0 

DC bus 2 DC bus 3 0.04 0 

DC bus 3 DC bus 4 0.08 0 

DC bus 4 DC bus 1 0.03 0 

AC bus 1 AC bus 4 0.15 0. 062 

AC bus 2 AC bus 5 0.21 0.096 

AC bus 3 AC bus 6 0.11 0.048 

AC bus 4 AC bus 5 0.12 0.031 

AC bus 5 AC bus 6 0.15 0.062 

In scenario 1, real power 200W and 300W is flowing from 
AC network to DC network through interlinking converter 1 
and 2 respectively. The comparison results of generation buses 
are shown in Table II. 

TABLE II.  COMPARISON RESULTS WHEN REAL POWER FROM AC TO DC 

Node 
SimPowerSystem results Power Flow Results 

Mag.(p.u.) Power(W) Mag.(p.u.) Power(W) 

DC bus 1 0.99541 525.76 0.99993 520.79 

DC bus 3 0.99597 184.812 0.99994 182.4 

AC bus 1 0.97680 1289.07 0.97661 1287.94 

AC bus 2 0.97947 2578.13 0.97921 2575.87 

AC bus 3 0.97562 644.532 0.97547 643.97 

 

     In scenario 2, the real power 200W and 300W is flowing 
from DC network to AC network. The comparison results of 
generation buses are shown in Table III. 

TABLE III.  COMPARISON RESULTS WHEN REAL POWER FROM DC TO AC 

Node 
SimPowerSystem results Power Flow Results 

Mag.(p.u.) Power(W) Mag.(p.u.) Power(W) 

DC bus 1 0.99035 1100.73 0.99986 1094.29 

DC bus 3 0.98693 594.441 0.99981 593.08 

AC bus 1 0.98891 1023.02 0.99009 1023.03 

AC bus 2 0.99090 2046.04 0.99211 2046.07 

AC bus 3 0.98839 511.513 0.98957 511.52 

From these two sets of power flow results comparisons for 
the generation buses, it shows that the calculated values are 
close to the simulation thus verifies the effectiveness of the 
proposed algorithm. 

V. CONCLUSION 

A power flow algorithm suitable for droop controlled LV 
hybrid AC-DC microgrid has been proposed where the virtual 
impedance is used in both the AC network, DC network and 
the interlinking converter.  The validation of the proposed 
power flow algorithm is verified by comparing the results 
from time domain simulation and that from calculation 
through this algrothm. Coincidence of the results shows that 
this power flow algorithm can be used as a tool to analyze the 
steady state response of the hybrid microgrid which uses 
droop and virtual impedance as its control strategy. 
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