Southern Illinois University Carbondale
 OpenSIUC

Diagonal And Triangular Matrices

Hamdan Al Alsulaimani
al_rqai@hotmail.com

Follow this and additional works at: http:// opensiuc.lib.siu.edu/gs_rp

Recommended Citation

Alsulaimani, Hamdan Al, "Diagonal And Triangular Matrices" (2012). Research Papers. Paper 292.
http://opensiuc.lib.siu.edu/gs_rp/292

DIAGONAL AND TRIANGULAR MATRICES

by
Hamdan Alsulaimani

B.S., Kuwait University, 2008

A Research Paper
Submitted in Partial Fulfillment of the Requirements for the Master of Science Degree

Department of Mathematics
in the Graduate School
Southern Illinois University Carbondale
December 2012

Copyright by Hamdan, 2012
All Rights Reserved

RESEARCH PAPER APPROVAL

DIAGONAL AND TRIANGULAR MATRICES

By
Hamdan Alsulaimani
A Research Paper Submitted in Partial
Fulfillment of the Requirements
for the Degree of
Master of Science in the field of Mathematics
Approved by:
Robert Fitzgerald
Philip Feinsilver
John McSorley
Graduate School
Southern Illinois University Carbondale
November 1, 2012

AN ABSTRACT OF THE RESEARCH PAPER OF

HAMDAN ALSULAIMANI, for the Master of Science in Mathematics, presented on NOV 1 2012, at Southern Illinois University Carbondale.

TITLE: Diagonal (Triangular) Matrices

PROFESSOR: Dr. R. Fitzgerald

I present the Triangularization Lemma which says that let P be a set of properties, each of which is inherited by quotients. If every collection of transformations on a space of dimension greater than 1 that satisfies P is reducible, then every collection of transformations satisfying P is triangularizable. I also present Burnside's Theorem which says that the only irreducible algebra of linear transformations on the finite-dimensional vector space \mathcal{V} of dimension greater than 1 is the algebra of all linear transformations mapping \mathcal{V} into \mathcal{V}. Moreover, I introduce McCoy's Theorem which says that the pair $\{\mathrm{A}, \mathrm{B}\}$ is triangularizable if and only if $\mathrm{p}(\mathrm{A}, \mathrm{B})(\mathrm{AB}-\mathrm{BA})$ is nilpotent for every noncommutative polynomial p . And then I show the relation between McCoy's Theorem and Lie algebras.

TABLE OF CONTENTS

Abstract iii
Introduction 1
1 Background 2
1.1 Review 2
2 Simultaneous Diagonalization 5
2.1 Diagonal Matrices 5
3 The Triangularization 11
3.1 Triangularization And Reducibility 11
4 Lie Algebras 24
4.1 Diagonal (Triangular) Matrices And Lie Algebra 24
References 27
Vita 28

INTRODUCTION

This paper shows important definitions and theorems for matrices. The main purpose in writing this paper is to explain the concepts of simultaneous diagonalization (triangularization) of matrices and how they are related to Lie algebra. Moreover, this paper may help the students and the mathematical researchers in the area of matrices.

Chapter 1 reviews some basic concepts which help us to understand some definitions and to prove some theorems in next chapters. Also it contains some examples as a review for reader.

Chapter 2 presents some theorems which are related with the simultaneously diagonalizable matrices and it presents the proofs of these theorems. Also, it shows that two matrices are simultaneously similar to diagonal matrices if and only if they commute and each is similar to a diagonal matrix.

Chapter 3 introduces the triangularizablility of transformations. Also this chapter shows some important theorems which are related with concepts of the triangularizablility as Burnside's Theorem which says that the only irreducible algebra of linear transformations on the finite-dimensional vector space \mathcal{V} of dimension greater than 1 is the algebra of all linear transformations mapping \mathcal{V} into \mathcal{V} and McCoy's Theorem which says that the pair $\{A, B\}$ is triangularizable if and only if $p(A, B)(A B-B A)$ is nilpotent for every noncommutative polynomial p.

Chapter 4 presents the definition of a Lie algebra and how it is related with the simultaneously diagonalization (triangularization) of matrices. For instance, this chapter proves the theorem which says that the matrices A and B are simultaneously diagonal if and only if $[\mathcal{A}, \mathcal{A}]=0$ where \mathcal{A} is the lie algebra generated by A, B and the matrices A , B are diagonalizable. Moreover, it shows that the matrices A and B are simultaneously triangularizable if and only if the Lie algebra \mathcal{A} is solvable.

CHAPTER 1

BACKGROUND

1.1 REVIEW

This chapter reviews some basic concepts of linear algebra needed for the later chapters. This material is adapted from [1]. Throughout \mathcal{V} denotes a vector space over \mathbb{C}.

Let \mathcal{V}^{*} be all linear tranformations $T: \mathcal{V} \longrightarrow \mathbb{C}$ and let $\mathcal{V}^{* *}$ be all linear transformations $S: \mathcal{V}^{*} \longrightarrow \mathbb{C}$.

Definition. Consider the evaluation map is

$$
\begin{gathered}
e: \mathcal{V} \longrightarrow \mathcal{V}^{* *} \\
e(v)=S_{v} \quad S_{v}(T)=T(v)
\end{gathered}
$$

\mathcal{V} is reflexive if e is 1-1 and onto. In this case, every linear $S: \mathcal{V}^{*} \longrightarrow \mathbb{C}$. Looks like $S=S_{v}$ for some $v \in \mathcal{V}$.

Theorem 1.1.1. If \mathcal{V} is finite dimensional, then \mathcal{V} is reflexive.

Theorem 1.1.2. (Dimension Theorem)
Let \mathcal{V} and \mathcal{W} be a vector spaces, and let $T: \mathcal{V} \longrightarrow \mathcal{W}$ be linear. If \mathcal{V} is finite-dimensional, then

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(\mathcal{V})
$$

Definition. Let λ be an eigenvalue of \mathbf{A}, then any non-zero vector \mathbf{X} which satisfies the relation

$$
(\lambda \mathbf{I}-\mathbf{A}) \mathbf{X}=\mathbf{0}
$$

(i.e $\mathbf{A X}=\lambda \mathbf{X}$) is called the eigenvector of \mathbf{A}, and it is said to be associated with the eigenvalue λ.

Definition. Let T be a linear operator on a vector space \mathcal{V}, and λ be an eigenvalue of T. Define $E_{\lambda}=\{x \in \mathcal{V}: T(x)=\lambda x\}=N(T-\lambda I)$. The set E_{λ} is called the eigenspace of T corresponding to the eigenvalue λ. Namely, the set of all eigenvectors is the eigenspace E_{λ}.

Example 1.1.1. Let

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-2 & 4
\end{array}\right)
$$

First, we have to find characteristic polynomial $(\operatorname{det}(t \mathbf{I}-\mathbf{A}))$ to find eigenvalues. Now, $\mathrm{CP}=\operatorname{det}(t \mathbf{I}-\mathbf{A})=t^{2}-5 t+6=(\mathrm{t}-2)(\mathrm{t}-3)$, then $\lambda_{1}=2$ and $\lambda_{2}=3$. Thus λ_{1} and λ_{2} are the eigenvalues of \mathbf{A}. Second, we have to find null space of $\mathbf{A}-\lambda \mathbf{I}$ to find the eigenvectors of A. When $\lambda_{1}=2$, then $(\mathbf{A}-2 \mathbf{I}) x=0$, so the eigenvector of \mathbf{A} is

$$
\binom{1}{1}
$$

.When $\lambda_{2}=3$, then $(\mathbf{A}-3 \mathbf{I}) x=0$, so the eigenvector of \mathbf{A} is

$$
\binom{1 / 2}{1}
$$

Theorem 1.1.3. Let T be a linear operator on a finite-dimensional vector space \mathcal{V}, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq m$

Definition. An eigenvalue of a matrix is regular if its multiplicity is equal to the $\operatorname{dim}\left(E_{\lambda}\right)$.

Theorem 1.1.4. A matrix is similar to a diagonal matrix if and only if all its eigenvalues are regular.

This theorem states, in fact, that \mathbf{A} is similar to a diagonal matrix if and only if $\operatorname{dim} \mathbf{R}(\lambda \mathbf{I}-\mathbf{A})=n-m_{\lambda}(\mathbf{A})$ for every value of λ.

Theorem 1.1.5. Let \mathcal{V} be a vector space with dimension n. Then every linearly independent subset of \mathcal{V} can be extend to a basis for \mathcal{V}.

Definition. A matrix $\mathbf{A} \in \mathbf{M}_{n \times n}(\mathbb{C})$ is called nilpotent if, for some positive integer k , $\mathbf{A}^{k}=0$, where 0 is the $n \times n$ zero matrix.

CHAPTER 2 SIMULTANEOUS DIAGONALIZATION

2.1 DIAGONAL MATRICES

In general, this chapter studies matrices which are simultaneously similar to diagonal matrices. We show that two matrices are simultaneously similar to diagonal matrices if and only if they commute and each is similar to a diagonal matrix. This material is adapted from [4].

Definition. The matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$ are simultaneously similar to diagonal (triangular) matrices if there exists a matrix S such that $\mathbf{S}^{-1} \mathbf{A S}, \mathbf{S}^{-1} \mathbf{B S}, \mathbf{S}^{-1} \mathbf{C S}, \ldots$ are all diagonal (triangular) matrices.

Definition. A matrix of type $\left(r_{1}, \ldots, r_{k}\right)$ is a matrix of order $r_{1}+\ldots+r_{k}$ having the block diagonal form $\operatorname{dg}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}\right)$ where $\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}$ are of order $\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}$ respectively.

Example 2.1.1. The type of matrix is not defined uniquely. Thus the matrix

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right)
$$

may equally well be said to be of type $(2,1)$ or of type (3).

Theorem 2.1.1. Let $\lambda_{1}, \ldots, \lambda_{k}$ be distinct numbers, and write $r_{1}+\ldots+r_{k}=n$. Then an $n \times n$ matrix commutes with

$$
\boldsymbol{D}=\boldsymbol{d} \boldsymbol{g}\left(\lambda_{1} I_{r_{1}}, \ldots, \lambda_{k} I_{r_{k}}\right)
$$

if and only if it is of type $\left(r_{1}, \ldots, r_{k}\right)$.

Proof. (\Rightarrow) Let $\mathbf{A D}=\mathbf{D A}$ and write A in the partitioned form

$$
A=\left(\begin{array}{cccc}
A^{(11)} & A^{(12)} & \cdots & A^{(1 k)} \\
A^{(21)} & A^{(22)} & \cdots & A^{(2 k)} \\
\vdots & \vdots & \ddots & \vdots \\
A^{(k 1)} & A^{(k 2)} & \cdots & A^{(k k)}
\end{array}\right) \text {, and let } D=\left(\begin{array}{cccc}
\lambda_{1} I_{r_{1}} & 0 & \cdots & 0 \\
0 & \lambda_{2} I_{r_{2}} & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{k} I_{r_{k}}
\end{array}\right)
$$

where $A^{(i j)}$ is an $r_{i} \times r_{j}$ matrix. Then

$$
A D=\left(\begin{array}{cccc}
A^{(11)} & A^{(12)} & \cdots & A^{(1 k)} \\
A^{(21)} & A^{(22)} & \cdots & A^{(2 k)} \\
\vdots & \vdots & \ddots & \vdots \\
A^{(k 1)} & A^{(k 2)} & \cdots & A^{(k k)}
\end{array}\right)\left(\begin{array}{cccc}
\lambda_{1} I_{r_{1}} & 0 & \cdots & 0 \\
0 & \lambda_{2} I_{r_{2}} & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{k} I_{r_{k}}
\end{array}\right)
$$

Then

$$
\begin{gathered}
A D=\left(\begin{array}{cccc}
\lambda_{1} A^{(11)} & \lambda_{2} A^{(12)} & \cdots & \lambda_{k} A^{(1 k)} \\
\lambda_{1} A^{(21)} & \lambda_{2} A^{(22)} & \cdots & \lambda_{k} A^{(2 k)} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1} A^{(k 1)} & \lambda_{2} A^{(k 2)} & \cdots & \lambda_{k} A^{(k k)}
\end{array}\right) \\
D A=\left(\begin{array}{cccc}
\lambda_{1} I_{r_{1}} & 0 & \cdots & 0 \\
0 & \lambda_{2} I_{r_{2}} & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{k} I_{r_{k}}
\end{array}\right)\left(\begin{array}{cccc}
A^{(11)} & A^{(12)} & \cdots & A^{(1 k)} \\
A^{(21)} & A^{(22)} & \cdots & A^{(2 k)} \\
\vdots & \vdots & \ddots & \vdots \\
A^{(k 1)} & A^{(k 2)} & \cdots & A^{(k k)}
\end{array}\right),
\end{gathered}
$$

Then

$$
D A=\left(\begin{array}{cccc}
\lambda_{1} A^{(11)} & \lambda_{1} A^{(12)} & \cdots & \lambda_{1} A^{(1 k)} \\
\lambda_{2} A^{(21)} & \lambda_{2} A^{(22)} & \cdots & \lambda_{2} A^{(2 k)} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{k} A^{(k 1)} & \lambda_{k} A^{(k 2)} & \cdots & \lambda_{k} A^{(k k)}
\end{array}\right)
$$

and therefore $\lambda_{i} \mathbf{A}^{(i j)}=\lambda_{j} \mathbf{A}^{(i j)}(i, j=1, \ldots, k)$. This implies that $\mathbf{A}^{(i j)}=\mathbf{O}$ when $i \neq j$, then

$$
A=\left(\begin{array}{cccc}
A^{(11)} & 0 & \cdots & 0 \\
0 & A^{(22)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A^{(k k)}
\end{array}\right)
$$

and thus \mathbf{A} is of type $\left(r_{1}, \ldots, r_{k}\right)$.
(\Leftarrow) Conversely, let \mathbf{A} is of type $\left(r_{1}, \ldots, r_{k}\right)$, then

$$
A=\left(\begin{array}{cccc}
A^{(11)} & 0 & \cdots & 0 \\
0 & A^{(22)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A^{(k k)}
\end{array}\right) \text {, and let } D=\left(\begin{array}{cccc}
\lambda_{1} I_{r_{1}} & 0 & \cdots & 0 \\
0 & \lambda_{2} I_{r_{2}} & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{k} I_{r_{k}}
\end{array}\right)
$$

then we have

$$
A D=\left(\begin{array}{cccc}
A^{(11)} \lambda_{1} & 0 & \cdots & 0 \\
0 & A^{(22)} \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A^{(k k)} \lambda_{k}
\end{array}\right)=\left(\begin{array}{cccc}
\lambda_{1} A^{(11)} & 0 & \cdots & 0 \\
0 & \lambda_{2} A^{(22)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{k} A^{(k k)}
\end{array}\right)=D A,
$$

then \mathbf{A} of type $\left(r_{1}, \ldots, r_{k}\right)$ commutes with \mathbf{D}.

Theorem 2.1.2. (Rank-multiplicity theorem)

For every $n \times n$ matrix \boldsymbol{A} and every number w we have

$$
\operatorname{dim} \boldsymbol{R}(w \boldsymbol{I}-\boldsymbol{A}) \geq n-m_{w}(\boldsymbol{A}) .
$$

Proof. By (Dimension Theorem) we have

$$
\begin{equation*}
n-\operatorname{dim} \mathbf{R}(w \mathbf{I}-\mathbf{A})=\operatorname{dim} N(w \mathbf{I}-\mathbf{A}), \tag{2.1}
\end{equation*}
$$

and by theorem(1.1.3) we have

$$
\begin{equation*}
\operatorname{dim} N(w \mathbf{I}-\mathbf{A}) \leq m_{w}(\mathbf{A}) \tag{2.2}
\end{equation*}
$$

Then, form (2.1) and (2.2) we have

$$
\operatorname{dim} \mathbf{R}(w \mathbf{I}-\mathbf{A}) \geq n-m_{w}(\mathbf{A})
$$

Theorem 2.1.3. If a matrix \boldsymbol{A} of type $\left(r_{1}, \ldots, r_{k}\right)$ is similar to a diagonal matrix, then there exists a matrix \boldsymbol{S} of type $\left(r_{1}, \ldots, r_{k}\right)$ such that $\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}$ is diagonal.

Proof. Write $r_{1}+\ldots+r_{k}=n$ and $\mathbf{A}=\operatorname{dg}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}\right)$ where $\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}$ are of order $\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}$ respectively. If \mathbf{X} is any $p \times p$ matrix and w any number, put

$$
f_{w}(\mathbf{X})=\operatorname{dim} \mathbf{R}\left(w \mathbf{I}_{p}-\mathbf{X}\right)+m_{w}(\mathbf{X})-p
$$

By the rank-multiplicity theorem, we have, for all \mathbf{X} and w,

$$
f_{w}(\mathbf{X}) \geq 0
$$

Moreover, by theorem (1.1.4),

$$
f_{w}(\mathbf{X})=0 \quad(\text { for all } w)
$$

if and only if \mathbf{X} is similar to a diagonal matrix. Now clearly

$$
f_{w}(\mathbf{A})=\sum_{i=1}^{k} f_{w}\left(\mathbf{A}_{i}\right)
$$

and so

$$
\sum_{i=1}^{k} f_{w}\left(\mathbf{A}_{i}\right)=0
$$

For all w by hypothesis. Hence $f_{w}\left(\mathbf{A}_{i}\right)=0$ for $i=1, \ldots, k$ and all w. Each matrix \mathbf{A}_{i} is therefore similar to a diagonal matrix. For $i=1, \ldots, k$ let \mathbf{S}_{i} be a non-singular matrix and \mathbf{D}_{i} a diagonal matrix, both of order \mathbf{r}_{i}, such that $\mathbf{S}_{i}^{-1} \mathbf{A}_{i} \mathbf{S}_{i}=\mathbf{D}_{i}$. writing $\mathbf{S}=\operatorname{dg}\left(\mathbf{S}_{1}, \ldots, \mathbf{S}_{k}\right)$, we obtain at once

$$
\mathbf{S}^{-1} \mathbf{A S}=\operatorname{dg}\left(\mathbf{D}_{1}, \ldots, \mathbf{D}_{k}\right)
$$

and the theorem therefore proved.

The following is the main theorem of this chapter.

Theorem 2.1.4. Two matrices are simultaneously similar to diagonal matrices if and only if they commute and each is similar to a diagonal matrix.

Proof. (\Rightarrow) Let \mathbf{A}, \mathbf{B} be given matrices. If there exists a matrix \mathbf{S} such that $\mathbf{S}^{-1} \mathbf{A S}$, $\mathbf{S}^{-1} \mathbf{B S}$ are both diagonal, then these two matrices commute and therefore \mathbf{A} and \mathbf{B} are commute. Let we explain this part of proof. Let $D_{1}=\mathbf{S}^{-1} \mathbf{A S}$ and let $D_{2}=\mathbf{S}^{-1} \mathbf{B S}$. As we know $D_{1} D_{2}=D_{2} D_{1}$, then L.H.S $=D_{1} D_{2}=\mathbf{S}^{-1} \mathbf{A S S} \mathbf{S}^{-1} \mathbf{B S}=\mathbf{S}^{-1} \mathbf{A B S}$ and R.H.S $=D_{2} D_{1}=$ $\mathbf{S}^{-1} \mathbf{B S S}^{-1} \mathbf{A S}=\mathbf{S}^{-1} \mathbf{B A S}$. Since $D_{1} D_{2}=D_{2} D_{1}$, then $\mathbf{S}^{-1} \mathbf{A B S}=\mathbf{S}^{-1} \mathbf{B A S}$, so $\mathbf{A B}=$ BA.
(\Leftarrow) Suppose, on the other hand, that $\mathbf{A B}=\mathbf{B A}$ and that \mathbf{A} and \mathbf{B} are both similar to
diagonal matrices. Let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct eigenvalues of \mathbf{A} and let their multiplicities be r_{1}, \ldots, r_{k} respectively. There exists, then, a matrix \mathbf{P} such that

$$
\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}=\mathbf{d g}\left(\lambda_{1} I_{r_{1}}, \ldots, \lambda_{k} I_{r_{k}}\right)
$$

Now, in view of our hypothesis, $\mathbf{P}^{-1} \mathbf{A P}$ commutes with $\mathbf{P}^{-1} \mathbf{B P}$ and hence, by Theorem (2.1.1), $\mathbf{P}^{-1} \mathbf{B P}$ is of type $\left(r_{1}, \ldots, r_{k}\right)$. Since \mathbf{B} is similar to a diagonal matrix; therefore, by Theorem (2.1.3) there exists a matrix \mathbf{Q}, of type $\left(r_{1}, \ldots, r_{k}\right)$ such that $\mathbf{Q}^{-1} \mathbf{P}^{-1} \mathbf{B P Q}$ is a diagonal. Moreover, again by Theorem (2.1.1), \mathbf{Q} commutes with $\mathbf{P}^{-1} \mathbf{A P}$, and therefore

$$
\mathbf{Q}^{-1} \mathbf{P}^{-1} \mathbf{A P Q}=\mathbf{D}=\operatorname{dg}\left(\lambda_{1} I_{r_{1}}, \ldots, \lambda_{k} I_{r_{k}}\right)
$$

Thus $(\mathbf{P Q})^{-1} \mathbf{A}(\mathbf{P Q})$ and $(\mathbf{P Q})^{-1} \mathbf{B}(\mathbf{P Q})$ are both diagonal, and the theorem is proved.

CHAPTER 3

THE TRIANGULARIZATION

3.1 TRIANGULARIZATION AND REDUCIBILITY

There are many known sufficient conditions that a collection of linear transformations be triangularizable. An important preliminary result is Burnside's Theorem on existence of invariant subspaces for algebras of linear transformation and Burnside's Theorem says that the only irreducible algebra of linear transformations on the finite-dimensional vector space \mathcal{V} of dimension greater than 1 is the algebra of all linear transformations mapping \mathcal{V} into \mathcal{V}. This chapter is adapted from [5].

Throughout this chapter we restrict our attention to collection of linear transformations on a finite-dimensional vector space over \mathbb{C}.

Definition. A subspace \mathcal{W} is invariant for a collection C of linear transformations if $A x \in \mathcal{W}$ whenever $x \in \mathcal{W}$ and $A \in C$. A subspace is nontrivial if it is different from $\{0\}$ and from the entire space. A collection of linear transformations is reducible if it has a nontrivial invariant subspace and is irreducible otherwise.

The central definition is the following.

Definition. A collection of linear transformations is triangularizable if there is a basis for the vector space such that all transformations in the collection have upper triangular matrix representations with respect to that basis.

It is clear that triangularizablility is equivalent to the existence of a chain of invariant subspaces

$$
\{0\}=\mathcal{W}_{0} \subset \mathcal{W}_{1} \subset \mathcal{W}_{2} \subset \ldots \subset \mathcal{W}_{n}=\mathcal{V}
$$

with dimension of \mathcal{W}_{j} equal to j for each j and with \mathcal{V} the entire vector space. Namely, if the collection is triangularizable with respect to the basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Let \mathcal{W}_{j} be the
linear span of $\left\{e_{1}, e_{2}, \ldots, e_{j}\right\}$ for each j. Any such chain is called a triangularizing chain for the collection.

Quotient spaces will play an important role in this study.

Definition. : Let \mathcal{V} be a vector space and T a linear transformation

$$
T: \mathcal{V} \longrightarrow \mathcal{V}
$$

Suppose N is a T-invariant subspace (i.e if $n \in N$ then $T(n) \in N$). The quotient space: $\mathcal{V} / N=\{v+N: v \in \mathcal{V}\}$. Define $\hat{T}: \mathcal{V} / N \longrightarrow \mathcal{V} / N$ by $\hat{T}(v+N)=T(v)+N$ for all $v \in \mathcal{V}$. This is well defined : if $v_{1}+N=v_{2}+N$ need to show $\hat{T}\left(v_{1}+N\right)=\hat{T}\left(v_{2}+N\right)$. Let $v_{1}+N=v_{2}+N$, then $v_{1}-v_{2} \in N$. Since N is a T-invariant subspace, then $T\left(v_{1}-v_{2}\right) \in N$. And since T is a linear transformation, then $T\left(v_{1}\right)-T\left(v_{2}\right) \in N$, so $T\left(v_{1}\right)+N=T\left(v_{2}\right)+N$, then

$$
\hat{T}\left(v_{1}+N\right)=\hat{T}\left(v_{2}+N\right)
$$

is well defined.

Definition. : A property P is inherited by quotients if P is true for (T, \mathcal{V}), then P is also true for $(\hat{T}, \hat{\mathcal{V}})$.

Theorem 3.1.1. (The Triangularization Lemma) let P be a set of properties, each of which is inherited by quotients. If every collection of transformations on a space of dimension greater than 1 that satisfies P is reducible, then every collection of transformations satisfying P is triangularizable.

Proof. The proof is by induction on $\operatorname{dim} \mathcal{V}$. If $\operatorname{dim} \mathcal{V}=1$ then the chain $\{0\}=\mathcal{V}_{0} \subset \mathcal{V}_{1}=\mathcal{V}$ satisfies condition for triangularizability. Namely, \mathcal{V}_{0} and \mathcal{V}_{1} are C-invariant and dim $\mathcal{V}_{i}=i$.

Suppose $\operatorname{dim} \mathcal{V}>1$. Choose a maximal chain of C-invariant subspaces of \mathcal{V} (since C is a collection of T's).

$$
\{0\}=\mathcal{M}_{0} \subset \mathcal{M}_{1} \subset \mathcal{M}_{2} \subset \ldots \subset \mathcal{M}_{n}=\mathcal{V}
$$

We need to show $\operatorname{dim} \mathcal{M}_{k} / \mathcal{M}_{k-1}=1$ for all k (since the $\operatorname{dim} \mathcal{M}_{i}=i$). Suppose instead that for some k , $\operatorname{dim} \mathcal{M}_{k} / \mathcal{M}_{k-1}>1$. Each $T \in C$ induces $T_{0}: \mathcal{M}_{k} \longrightarrow \mathcal{M}_{k}$ and $\hat{T}_{0}: \mathcal{M}_{k} / \mathcal{M}_{k-1} \longrightarrow \mathcal{M}_{k} / \mathcal{M}_{k-1}$ as \mathcal{M}_{k} and \mathcal{M}_{k-1} are C-invariant. Let C_{0} be the collection of T_{0} 's and \hat{C}_{0} the collection of \hat{T}_{0} 's). Now, P is true for $\left(\hat{C}_{0}, \mathcal{M}_{k} / \mathcal{M}_{k-1}\right)$ by hypothesis. So $\mathcal{M}_{k} / \mathcal{M}_{k-1}$ is reducible, by hypothesis. So there exists a non-trivial \hat{C}_{0}-invariant subspace $L=\left\{x+M_{k-1}: x \in M_{k}\right\}$. Define $L^{*}=\left\{x \in M_{k}: x+M_{k-1} \in L\right\}$.

Claim a: L^{*} is T-invariant.
Pick $x \in L^{*}$ (we want to show that $T(x) \in L^{*}$). Now, $x+\mathcal{M}_{k-1} \in L$. Since \mathcal{M}_{k}, \mathcal{M}_{k-1} are T-invariant subspace and L is \hat{T}_{0}-invariant subspace, so $T(x) \in M_{k}$ such that $\hat{T}_{0}\left(x+M_{k-1}\right) \in L$, and $T(x) \in M_{k}$ such that $T(x)+M_{k-1} \in L$, then $T(x) \in L^{*}$, so L^{*} is T-invariant.

Claim b: $\mathcal{M}_{k-1} \subsetneq L^{*} \subsetneq \mathcal{M}_{k}$.
First, we want to prove claim 1, claim 2, claim 3, and claim 4 to prove $\mathcal{M}_{k-1} \subsetneq L^{*} \subsetneq \mathcal{M}_{k}$.
Claim 1: $\mathcal{M}_{k-1} \subset L^{*}$.
Let $x \in \mathcal{M}_{k-1}$, then $x+\mathcal{M}_{k-1}=0+\mathcal{M}_{k-1} \in L$, since L is subspace of $\mathcal{M}_{k} / \mathcal{M}_{k-1}$, thus $x \in L^{*}$.

Claim 2: $\mathcal{M}_{k-1} \neq L^{*}$.
We want to prove that there exists $x \in L^{*}$, but $x \notin \mathcal{M}_{k-1}$, Since $L \neq 0$, so there exists $x+\mathcal{M}_{k-1} \neq 0+\mathcal{M}_{k-1}$, and $x+\mathcal{M}_{k-1} \in L$. Then $x \notin \mathcal{M}_{k-1}$, and $x \in L^{*}$.

Claim 3: $L^{*} \subset \mathcal{M}_{k}$.
Let $x \in L^{*}$, then $x \in \mathcal{M}_{k}$ (by definition of L^{*}).
Claim 4: $L^{*} \neq \mathcal{M}_{k}$.
We want to prove that there exists $\mathrm{y} \in \mathcal{M}_{k}$, but $y \notin L^{*}$. Since L is nontrivial invariant subspace of $\mathcal{M}_{k} / \mathcal{M}_{k-1}$, so $L \neq \mathcal{M}_{k} / \mathcal{M}_{k-1}$. Then there exists $y+\mathcal{M}_{k-1} \in \mathcal{M}_{k} / \mathcal{M}_{k-1}$, and $y+\mathcal{M}_{k-1} \notin L$. Then $y \in \mathcal{M}_{k}$, but $y \notin L^{*}$.

From claim 1, claim 2, claim 3, and claim 4, then we have claim b (i.e $\mathcal{M}_{k-1} \subsetneq L^{*} \subsetneq$ \mathcal{M}_{k}), but this contradicts with maximality of the chain $\left\{\mathcal{M}_{j}\right\}$. So, $\operatorname{dim} \mathcal{M}_{k} / \mathcal{M}_{k-1}=1$ for all k . Then

$$
\{0\}=\mathcal{M}_{0} \subset \mathcal{M}_{1} \subset \mathcal{M}_{2} \subset \ldots \subset \mathcal{M}_{n}=\mathcal{V}
$$

satisfies condition for triangularizability.

Theorem 3.1.2. Every commutative collection of linear transformations is triangularizable.

Proof. Let C be a collection of commuting T. We check that commutativity is inherited by quotient. Say $W \subset \mathcal{V}$ is a invariant subspace under all $T \in C$. By the definition of a quotient space

$$
\begin{gathered}
\hat{T}: \mathcal{V} / W \longrightarrow \mathcal{V} / W \\
\hat{T}(v+W)=T(v)+W \quad \text { for all } v \in \mathcal{V}
\end{gathered}
$$

We want to prove that $\hat{T}_{1} \hat{T}_{2}=\hat{T}_{2} \hat{T}_{1}$

$$
\begin{aligned}
\hat{T}_{1} \hat{T}_{2}(v+W) & =\hat{T}_{1}\left(T_{2}(v)+W\right) \\
& =T_{1} T_{2}(v)+W \\
& =T_{2} T_{1}(v)+W \\
& =\hat{T}_{2}\left(T_{1}(v)+W\right) \\
& =\hat{T}_{2} \hat{T}_{1}(v+W)
\end{aligned}
$$

Then $\hat{T}_{1} \hat{T}_{2}=\hat{T}_{2} \hat{T}_{1}$

Our main goal is proving that C is reducible, this means we want to prove that there exists a non-trivial invariant subspace. First, we need to prove this if all T's are a multiple of the identity. Second, if there exists $T_{1} \in C$, and T_{1} is not multiple of identity, then we
want to to prove that there exists W which is invariant under C.
Case 1: All T 's are a multiple of the identity
Pick any $W \subset V$. If $w \in W$, then $T(w)=\lambda w \in W$. Hence \mathcal{W} is invariant, so every subspace is invariant.
Case2: There exists $T_{1} \in C$, and T_{1} is not a multiple of identity.
Let λ be any eigenvalue of T_{1} and let W be corresponding eigenspace. If $T_{2} \in C$, and $x \in W$, then $T_{1} T_{2}(x)=T_{2} T_{1}(x)=T_{2}(\lambda x)=\lambda T_{2}(x)$, so $T_{2}(x)$ is an eigenvector for T_{1}, and so $T_{2}(x) \in W$. Then W is invariant under C. It is non-trivial for two reasons :
(a) λ is an eigenvalue so there is eigenvector and so $W \neq 0$.
(b) If $W=V$, Then $T_{1} \lambda=\lambda v$, for all $v \in W$, So T_{1} is multiple of identity.

This is contradiction, then $W \neq V$.
From Case 1, Case 2, (a) and (b), we conclude that W is a nontrivial invariant subspace under C, so C is reducible. Then by Theorem (3.1.1) C is triangularizable.

Definition. : A noncommutative polynomial in the linear transformations $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ is any linear combination of words in the transformations.

We use $\sigma(A)$ to denote the spectrum (which in the present, finite-dimensional, case is simply the set of eigenvalues) of A.

Theorem 3.1.3. (Spectral Mapping Theorem)

Suppose $\left\{A_{1}, \ldots, A_{k}\right\}$ is a triangularizable collection of linear transformations, and if p is any noncommutative polynomial in $\left\{A_{1}, \ldots, A_{k}\right\}$, then

$$
\sigma\left(p\left(A_{1}, \ldots, A_{k}\right)\right) \subset p\left(\sigma\left(A_{1}\right), \ldots, \sigma\left(A_{k}\right)\right)
$$

where $p\left(\sigma\left(A_{1}\right), \ldots, \sigma\left(A_{k}\right)\right)$ denotes the set of all $p\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ such that $\lambda_{j} \in \sigma\left(A_{j}\right)$ for all j. Proof. . This follows immediately from the facts that
(i) the eigenvalues of triangular matrices are the entries on the main diagonal,
(ii) each of the diagonal entries of a product of given matrices is a product of diagonal entries, and
(iii) each of the diagonal entries of a sum of given matrices is a sum of diagonal entries of the given matrices.

Example 3.1.1. Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right), \text { and } B=\left(\begin{array}{ll}
1 & 2 \\
0 & 4
\end{array}\right)
$$

then

$$
A B=\left(\begin{array}{ll}
1 & 10 \\
0 & 12
\end{array}\right), \text { and } A+B=\left(\begin{array}{ll}
2 & 4 \\
0 & 7
\end{array}\right)
$$

then we have $\sigma(A B)=\{1,12\} \subset \sigma(A) \sigma(B)=\{1,3\} .\{1,4\}=\{1,3,4,12\}$ and also we have $\sigma(A+B)=\{2,7\} \subset \sigma(A)+\sigma(B)=\{1,3\}+\{1,4\}=\{2,4,5,7\}$.

Theorem 3.1.4. Every linear transformation on a finite-dimensional space is the sum of transformations of rank 1 .

Proof. Recall $\operatorname{rank}(T)=1$ means $\operatorname{dim} R(T)=1$. Also if linear

$$
T: \mathcal{V} \longrightarrow \mathbb{C}
$$

then the matrix of T is a row $1 \times n$ matrix. Pick any linear

$$
S: \mathcal{V} \longrightarrow \mathcal{V}
$$

and pick basis B then $[S]_{B}$: is a $n \times n$ matrix.

$$
[S]_{B}=\left(\begin{array}{cc}
r_{1} & \cdots \\
0 & \cdots \\
\vdots & \vdots \\
0 & \cdots
\end{array}\right)+\left(\begin{array}{cc}
0 & \cdots \\
r_{2} & \cdots \\
\vdots & \vdots \\
0 & \cdots
\end{array}\right)+\cdots+\left(\begin{array}{cc}
0 & \cdots \\
0 & \cdots \\
\vdots & \vdots \\
r_{n} & \cdots
\end{array}\right) \text { all rank } 1
$$

where r_{i} is the $i^{\text {th }}$ row of $[S]_{B}$, so the sum of matrices is rank 1 .

Definition. An algebra of linear transformations is a collection of linear transformations that is closed under addition, multiplication, and multiplication by scalars. An algebra is unital if it contains the identity transformation. In a unital algebra with identity I, we use the notation λ is an abbreviation for λI. The notation $\mathcal{B}(\mathcal{V})$ is used to denote the algebra of all linear transformations mapping \mathcal{V} into \mathcal{V}. (The notation $\mathcal{L}(\mathcal{V})$ is also common.)

If \mathcal{A} is an algebra of linear transformations and x is any given vector, then $\{A x: A \in \mathcal{A}\}$ is easily seen to be an invariant subspace for \mathcal{A}. However, for some \mathcal{A} and $x,\{A x: A \in \mathcal{A}\}$ is the entire space (in which case x is said to be a cycle vector for \mathcal{A}).

Theorem 3.1.5. (Burnside's Theorem) The only irreducible algebra of linear transformations on the finite-dimensional vector space \mathcal{V} of dimension greater than 1 is the algebra of all linear transformations mapping \mathcal{V} into \mathcal{V}.

Proof. Let \mathcal{A} be an irreducible algebra. We first show that \mathcal{A} contains a transformation of rank 1. For this, let T_{0} be a transformation in \mathcal{A} with minimal nonzero rank. We must show that this rank is 1 . If rank $\left(T_{0}\right)>1$, then $\operatorname{dim} R\left(T_{0}\right)>1$. So, there would be vectors x_{1} and x_{2} such that $\left\{T_{0} x_{1}, T_{0} x_{2}\right\}$ is linearly independent set.
claim: $\left\{A T_{0}\left(x_{1}\right): A \in \mathcal{A}\right\}=\mathcal{V}$

Set $\mathcal{W}=\left\{A T_{0}\left(x_{1}\right): A \in \mathcal{A}\right\}$. We want to check that \mathcal{W} is invariant under \mathcal{A}. Pick $A T_{0}\left(x_{1}\right) \in \mathcal{W}$, and pick $\hat{A} \in \mathcal{A}$, then $\hat{A}\left(A T_{0}\left(x_{1}\right)\right)=\hat{A} A T_{0}\left(x_{1}\right)=(\hat{A} A) T_{0}\left(x_{1}\right)$,
since \mathcal{A} is an algebra, then $\hat{A} A \in \mathcal{A}$, so $(\hat{A} A) T_{0}\left(x_{1}\right) \in \mathcal{W}$. Moreover, $\mathcal{W} \neq 0$ because $x_{1} \neq 0$. And as we know that \mathcal{A} is irreducible, then only invariant subspace is 0 or \mathcal{V}. Therefore, $\mathcal{W}=\mathcal{V}$ which proves the claim. Since $\left\{A T_{0}\left(x_{1}\right): A \in \mathcal{A}\right\}=\mathcal{V}$, then there is $A_{0} \in \mathcal{A}$ such that $A_{0} T_{0} x_{1}=x_{2}$. Then $\left\{T_{0} A_{0} T_{0} x_{1}, T_{0} x_{1}\right\}$ is linearly independent and $T_{0} A_{0} T_{0}-\lambda T_{0} \neq 0$
for all scalars λ (since if $T_{0} A_{0} T_{0}-\lambda T_{0}=0$ then multiplying by x_{1} would give $T_{0} A_{0} T_{0} x_{1}$ and $T_{0} x_{1}$ dependent). Let we take the restriction

$$
\left.T_{0} A_{0}\right|_{T_{0}(v)}: T_{0}(\mathcal{V}) \longrightarrow T_{0}(\mathcal{V})
$$

Then $T_{0} A_{0}\left(T_{0} v\right)=T_{0}\left(A_{0} T_{0} v\right) \in T_{0}(\mathcal{V})$
let λ_{0} be an eigenvalue of $\left.T_{0} A_{0}\right|_{T_{0}(v)}$, then there exists $0 \neq z \in T_{0}(\mathcal{V})$ such that $T_{0} A_{0}(z)=$ $\lambda_{0} z$, and $\left(\left.T_{0} A_{0}\right|_{T_{0}(v)}-\lambda_{0} I\right)(z)=0$. Moreover, $\left.T_{0} A_{0}\right|_{T_{0}(v)}-\lambda_{0} I$ is not invertible. We want to explain this part of proof briefly

$$
\mathcal{V} \xrightarrow{T_{0}} T_{0}(\mathcal{V}) \xrightarrow[\text { is not invertible }]{\left.T_{0} A_{0}\right|_{T_{0}(v)}-\lambda_{0} I} T_{0}(\mathcal{V})
$$

Then we have $R\left(\left.T_{0} A_{0}\right|_{T_{0}(\mathcal{V})}-\lambda_{0} I\right) \subsetneq T_{0}(\mathcal{V})$, so $R\left(\left(T_{0} A_{0}-\lambda_{0} I\right) T_{0}\right) \subsetneq T_{0}(\mathcal{V})$. Thus $\operatorname{rank}\left(\left(T_{0} A_{0}-\lambda_{0} I\right) T_{0}\right)<\operatorname{rank} T_{0}$. This contradicts the minimality of the rank of T_{0}, then we conclude that T_{0} has rank 1 (i.e $\operatorname{dim}\left(T_{0}\right)=1$).

Pick a nonzero vector $y_{0} \in R\left(T_{0}\right)$. Since $R\left(T_{0}\right)=\left\{\alpha y_{0}: \alpha \in \mathbb{C}\right\}$, For any $x \in \mathcal{V}$ and $T_{0}(x) \in R\left(T_{0}\right)$ we have

$$
T_{0}(x)=\alpha y_{0} \text { for some } \alpha \in \mathbb{C}
$$

Define

$$
\phi_{0}: \mathcal{V} \longrightarrow \mathbb{C}
$$

by

$$
\phi_{0}(x)=\alpha, \quad \alpha \in \mathbb{C}
$$

We want to prove that ϕ_{0} is linear. Now, $\phi_{0}(x+y)$ satisfies

$$
\begin{aligned}
T_{0}(x+y) & =\phi_{0}(x+y) y_{0} \\
L . H . S & =T_{0}(x)+T_{0}(y) \\
& =\phi_{0}(x) y_{0}+\phi_{0}(y) y_{0} \\
& =\left[\phi_{0}(x)+\phi_{0}(y)\right] y_{0} \\
& =\phi_{0}(x+y) y_{0}=\text { R.H.S }
\end{aligned}
$$

$\Rightarrow \phi_{0}$ is linear. so

$$
\begin{equation*}
T_{0}(x)=\phi_{0}(x) y_{0} \tag{3.1}
\end{equation*}
$$

Since every linear transformation of rank 1 has the form $x \rightarrow \phi(x) y$ for a vector y in \mathcal{V} and linear functional ϕ, and by Theorem (3.1.4) every linear transformation on a finite-dimensional space is the sum of transformations of rank 1 , it suffices to show that \mathcal{A} contains every T of the form $T(x)=\phi(x) y$.

Let $\mathcal{F}=\left\{\phi \in \mathcal{V}^{*}:\right.$ if $S(x)=\phi(x) y_{0}$ then $\left.S \in \mathcal{A}\right\} \subset \mathcal{V}^{*}$. We want to prove that $\mathcal{F}=\mathcal{V}^{*}$. Suppose $\mathcal{F} \neq \mathcal{V}^{*}$. Pick $\psi \in \mathcal{V}^{*}, \psi \notin \mathcal{F}$, and pick a basis of $\mathcal{F}: \psi_{2}, \ldots, \psi_{s}$. Now, we have $\psi \notin \mathcal{F}$ and $\mathcal{F}=\operatorname{span}\left\{\psi_{2}, \ldots, \psi_{s}\right\}$, then by theorem (1.1.5) $\psi, \psi_{2}, \ldots, \psi_{s}$ are independent and extend this to a basis of $\mathcal{V}^{*}: \psi, \psi_{2}, \ldots, \psi_{s}, \psi_{s+1}, \ldots, \psi_{n}$ Define

$$
S: \mathcal{V}^{*} \longrightarrow \mathbb{C}
$$

by

$$
S\left(a \psi+a_{2} \psi_{2}+\ldots+a_{n} \psi_{n}\right)=a
$$

Since \mathcal{V} is reflexive by Theorem (1.1.1), then $S=S_{x_{0}}$ for some x_{0}. Let $\phi \in \mathcal{F}$, then $\phi=a_{2} \psi_{2}+\ldots+a_{s} \psi_{s}$ and we get $S(\phi)=S\left(a_{2} \psi_{2}+\ldots+a_{s} \psi_{s}\right)=0$. Since $S_{x_{0}}(\phi)=\phi\left(x_{0}\right)$, and $S(\psi)=1$, and $S(\psi)=\psi\left(x_{0}\right)$, then we get $x_{0} \neq 0$ with $\phi\left(x_{0}\right)=0$ for all $\phi \in \mathcal{F}$.

We want to summarize what we got from previous paragraph. We assumed $\mathcal{F} \neq \mathcal{V}^{*}$ (in a proof by contradiction), and we got $x_{0} \neq 0, \phi\left(x_{0}\right)=0$ all $\phi \in \mathcal{F} . \mathcal{F}$ contains $\phi(x)=\phi_{0}(A x)$ and all $A \in \mathcal{A}$. Now, we want to explain why \mathcal{F} contains $\phi(x)=\phi_{0}(A x)$ and all $A \in \mathcal{A}$. So, we need to show that if $S(x)=\phi(x) y_{0}$ then $S \in \mathcal{A}$. Let we say that $S(x)=\phi(x) y_{0}$, then we have $S(x)=\phi_{0}(A x) y_{0}$ and we know that $T_{0}(x)=\phi_{0}(x) y_{0}$ and $T_{0} \in \mathcal{A}$ by equation (3.1). And let \mathcal{A} is algebra and $A \in \mathcal{A}$, then we have $T_{0} A \in \mathcal{A}$, so $S(x)=\phi_{0}(A x) y_{0}=T_{0}(A x)=\left(T_{0} A\right) x$. Thus $S=T_{0} A \in \mathcal{A}$. Then we concluded $\phi_{0}\left(A x_{0}\right)=0$ and all $A \in \mathcal{A}$.

Since $T_{0}\left(x_{3}\right)$ is non-zero for some $x_{3} \in \mathcal{V}$ and $T_{0}\left(x_{3}\right)=\phi_{0}\left(x_{3}\right) y$, so $\phi_{0}\left(x_{3}\right)$ is non-zero for some $x_{3} \in \mathcal{V}$. Since $\left\{A x_{0}: A \in \mathcal{A}\right\}=\mathcal{V}$ by claim, and $x_{3}=A x_{0}$ for some $A \in \mathcal{A}$, then $0 \neq \phi_{0}\left(x_{3}\right)=\phi_{0}\left(A x_{0}\right)$. This contradicts with $\phi_{0}\left(A x_{0}\right)=0$ all $A \in \mathcal{A}$. Hence $\mathcal{F}=\mathcal{V}^{*}$. Now, we have
(1) $y_{0} \neq 0$ [because $\left.0 \neq T_{0} x_{1}=\phi_{0}\left(x_{1}\right) y_{0}\right]$
(2) Claim: $Z=\left\{A y_{0}: A \in \mathcal{A}\right\}$ is invariant subspace. We want to prove $\hat{A}\left(A y_{0}\right) \in Z$. let we pick $A y_{0} \in Z$, and pick $\hat{A} \in \mathcal{A}$
$\hat{A}\left(A y_{0}\right)=(\hat{A} A) y_{0} \in Z$. Since $\hat{A} A \in \mathcal{A}, Z \neq 0$ by (1), and \mathcal{V} is irreducible. So $Z=\mathcal{V}$

$$
\begin{equation*}
A T: \mathcal{V} \longrightarrow \mathbb{C} \tag{3}
\end{equation*}
$$

So $A T \in \mathcal{V}^{*}$
From the previous paragraph, $\mathcal{V}^{*}=\mathcal{F}$. Now, our object is proving that \mathcal{A} contains all rankone transformations. Let we pick T a rank-one transformation, then there exists $y_{1} \neq 0$, and $\phi \in \mathcal{V}^{*}$ with $T(x)=\phi(x) y_{1}$. We want to prove $T \in \mathcal{A}$. We have $\mathcal{F}=\left\{\phi \in \mathcal{V}^{*}\right.$: if $S(x)=\phi(x) y_{0}$ then $\left.S \in \mathcal{A}\right\}$, and we have $\mathcal{F}=\mathcal{V}^{*}$ from previous paragraph. Let $y_{1}=A y_{0}$ by (2) for some $A \in \mathcal{A}$, then $T(x)=\phi(x) A y_{0}$.

Define

$$
\hat{T}=\phi(x) y_{0}
$$

$A \hat{T}(x)=A \phi(x) y_{0}=\phi(x) A y_{0}=\phi(x) y_{1}$.

Then $A \hat{T}=T$, and we have $\phi \in \mathcal{V}^{*}=\mathcal{F}$, so $\hat{T} \in \mathcal{A}$ and $A \in \mathcal{A}$, and $T=A \hat{T} \in \mathcal{A}$. Then \mathcal{A} contains all rank-one transformations. Thus \mathcal{A} contains all transformations by Theorem (3.1.4).

Theorem 3.1.6. (McCoy's Theorem)

The pair $\{A, B\}$ is triangularizable if and only if $p(A, B)(A B-B A)$ is nilpotent for every noncommutative polynomial p.

Proof. (\Rightarrow)
If $\{A, B\}$ is triangularizable, then $\sigma(p(A, B)(A B-B A)) \subset p(\sigma(A), \sigma(B))(\sigma(A B)-\sigma(B A))$ by the Spectral Mapping Theorem. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues of A , and let $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are eigenvalues of B.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\lambda_{1} & * & \cdots & * \\
0 & \lambda_{2} & * & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)\left(\begin{array}{cccc}
\mu_{1} & * & \cdots & * \\
0 & \mu_{2} & * & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mu_{n}
\end{array}\right)-\left(\begin{array}{cccc}
\mu_{1} & * & \cdots & * \\
0 & \mu_{2} & * & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mu_{n}
\end{array}\right)\left(\begin{array}{ccc}
\lambda_{1} & * & \cdots \\
* \\
0 & \lambda_{2} & * \\
\vdots & \vdots & \ddots \\
\vdots \\
0 & 0 & \cdots \\
\lambda_{n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\lambda_{1} \mu_{1} & * & \cdots & * \\
0 & \lambda_{2} \mu_{2} & * & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n} \mu_{n}
\end{array}\right)-\left(\begin{array}{cccc}
\mu_{1} \lambda_{1} & * & \cdots & * \\
0 & \mu_{2} \lambda_{2} & * & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mu_{n} \lambda_{n}
\end{array}\right)=\left(\begin{array}{cccc}
0 & * & \cdots & * \\
0 & 0 & * & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right)
\end{aligned}
$$

we have $\sigma(p(A, B)(A B-B A)) \subset\{0\}$, then we have $\sigma(p(A, B)(A B-B A))=\{0\}$. So $p(A, B)(A B-B A)$ is nilpotent.
(\Leftarrow) If $(A B-B A) v=0$ for all v, then $A B-B A=0$, and $A B=B A$, so the algebra \mathcal{A} generated by A and B is triangularizable by Theorem (3.1.2). Suppose for some v such that $(A B-B A) v \neq 0$, call it $w=(A B-B A) v$, there exists C such that $C w=v$. Namely, pick bases $w_{1}, w_{2}, \cdots, w_{n}$ of W and pick bases $v_{1}, v_{2}, \cdots, v_{n}$ of V. Define T by $T\left(\sum a_{i} w_{i}\right)=\sum a_{i} v_{i}$. Let C be a matrix for T. If \mathcal{A} is irreducible, then by Burnside's Theorem, $C \in \mathcal{A}, C=p(A, B)$ for some p. Let $D=C(A B-B A)$, and we have

$$
\begin{gathered}
D v=v \neq 0 \\
D^{2} v=D(D v)=D v=v \\
D^{3} v=D\left(D^{2} v\right)=D v=v \\
\vdots \\
D^{k} v=v
\end{gathered}
$$

so no $D^{k}=0$,then D is not nilpotent. So \mathcal{A} is reducible and by The Triangularization Lemma then \mathcal{A} is triangularizble. Hence the pair $\{\mathrm{A}, \mathrm{B}\}$ is triangularizable.

Example 3.1.2. Let

$$
A=\left(\begin{array}{cc}
-11 & 6 \\
-28 & 15
\end{array}\right), \text { and } B=\left(\begin{array}{cc}
-14 & 9 \\
-40 & 24
\end{array}\right)
$$

A and B are triangularizble since they have common eigenvector $\binom{1}{2}$ and let $p(A, B)=$ $A^{2}+2 A B+3 B A+4 B^{2}$
then we have

$$
\begin{gathered}
A B-B A=\left(\begin{array}{cc}
12 & -6 \\
24 & -12
\end{array}\right), \text { and } p(A, B)=\left(\begin{array}{cc}
-1169 & 627 \\
-2824 & 1497
\end{array}\right), \\
p(A, B)(A B-B A)=\left(\begin{array}{cc}
1020 & -510 \\
2040 & -1020
\end{array}\right), \text { and }(p(A, B)(A B-B A))^{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),
\end{gathered}
$$

$\Rightarrow(\mathrm{p}(\mathrm{A}, \mathrm{B})(\mathrm{AB}-\mathrm{BA}))$ is nilpotent with $k=2$.

CHAPTER 4

LIE ALGEBRAS

4.1 DIAGONAL (TRIANGULAR) MATRICES AND LIE ALGEBRA

There are a strong relation between Lie algebras and simultaneous diagonalization and triangularization of matrices. This chapter shows the relation between Lie algebras and the matrices which are simultaneously similar to diagonal (triangular) matrices. The material on Lie algebras is from [2]. And the material which is connected with McCoy's theorem is already in McCoy's paper [3].

Definition. Let \mathcal{V} be a vector space with product $\mathcal{V} \times \mathcal{V} \longrightarrow \mathcal{V}$. The product is called bilinear on \mathcal{V} if
(1) $[\alpha \mathrm{a}+\mathrm{b}, \mathrm{c}]=\alpha[\mathrm{a}, \mathrm{c}]+[\mathrm{b}, \mathrm{c}]$
(2) $[\mathrm{a}, \alpha \mathrm{b}+\mathrm{c}]=\alpha[\mathrm{a}, \mathrm{b}]+[\mathrm{a}, \mathrm{c}]$,
for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathcal{V}$ and $\alpha \in \mathbb{C}$.

Definition. A Lie algebra is vector space \mathcal{V} with product $\mathcal{V} \times \mathcal{V} \longrightarrow \mathcal{V}$, written as $[a, b]$, such that
(1)The product is bilinear
(2) $[\mathrm{b}, \mathrm{a}]=-[\mathrm{a}, \mathrm{b}]$
(3) $[[\mathrm{a}, \mathrm{b}], \mathrm{c}]+[[\mathrm{b}, \mathrm{c}], \mathrm{a}]+[[\mathrm{c}, \mathrm{a}], \mathrm{b}]=0$,
for all $a, b, c \in \mathcal{V}$.
Example 4.1.1. $\mathcal{V}=\mathcal{R}^{3}:[\mathrm{a}, \mathrm{b}]=\mathrm{a} \times \mathrm{b}$ (cross product)

Example 4.1.2. If \mathcal{A} is an algebra of matrices then $[\mathrm{A}, \mathrm{B}]=\mathrm{AB}$ - BA . Then from definition (2) is $[\mathrm{B}, \mathrm{A}]=\mathrm{BA}-\mathrm{AB}=-(\mathrm{AB}-\mathrm{BA})=-[\mathrm{A}, \mathrm{B}]$ and (3) is $[[\mathrm{A}, \mathrm{B}], \mathrm{C}]+[[\mathrm{B}, \mathrm{C}], \mathrm{A}]+[[\mathrm{C}, \mathrm{A}], \mathrm{B}]$ $=(\mathrm{AB}-\mathrm{BA}) \mathrm{C}-\mathrm{C}(\mathrm{AB}-\mathrm{BA})+(\mathrm{BC}-\mathrm{CB}) \mathrm{A}-\mathrm{A}(\mathrm{BC}-\mathrm{CB})+(\mathrm{CA}-\mathrm{AC}) \mathrm{B}-\mathrm{B}(\mathrm{CA}-\mathrm{AC})=\mathrm{ABC}$
$-\mathrm{BAC}-\mathrm{CAB}+\mathrm{CBA}+\mathrm{BCA}-\mathrm{CBA}-\mathrm{ABC}+\mathrm{ACB}+\mathrm{CAB}-\mathrm{ACB}-\mathrm{BCA}+\mathrm{BAC}=0$

Theorem 4.1.1. The matrices A and B are simultaneously diagonal if and only if $[\mathcal{A}, \mathcal{A}]=0$ where \mathcal{A} is the lie algebra generated by A, B and the matrices A, B are diagonalizable.

Proof. (\Rightarrow) Let A, B are simultaneously diagonal, then by theorem (2.1.4) we have $\mathrm{AB}=$ BA. So, $[\mathrm{A}, \mathrm{B}]=\mathrm{AB}-\mathrm{BA}=0$. Thus $[\mathcal{A}, \mathcal{A}]=0$.
(\Leftarrow) If $\mathrm{A}, \mathrm{B} \in \mathcal{A}$, then we have $[\mathrm{A}, \mathrm{B}]=\mathrm{AB}-\mathrm{BA}$. Since $[\mathcal{A}, \mathcal{A}]=0$. So, $[\mathrm{A}, \mathrm{B}]=\mathrm{AB}-\mathrm{BA}=$ 0 . Thus $\mathrm{AB}=\mathrm{BA}$. By hypothesis, we have A and B are diagonalizable, then by Theorem (2.1.4), then we have that A and B are simultaneously diagonal.

Definition. A Lie algebra \mathcal{L} is nilpotent if $\mathcal{L}^{k}=0$ for some positive integer k .
\mathcal{L} is algebra of linear transformation and $\mathcal{L}^{\prime}=[\mathcal{L}, \mathcal{L}]$ is a commutator subalgebra.

Definition. Let \mathcal{L} be a Lie algebra. Define

$$
\begin{aligned}
& \mathcal{L}^{\prime}=[\mathcal{L}, \mathcal{L}] \\
& \mathcal{L}^{\prime \prime}=\left[\mathcal{L}^{\prime}, \mathcal{L}^{\prime}\right] \\
& \vdots \\
& \mathcal{L}^{(k)}=\left[\mathcal{L}^{k-1}, \mathcal{L}^{k-1}\right]
\end{aligned}
$$

then \mathcal{L} is solvable if $\mathcal{L}^{(k)}=0$ for some positive integer k .

Theorem 4.1.2. (Engel's Theorem)

A Lie algebra \mathcal{L} is nilpotent if and only if every matrix in \mathcal{L} is nilpotent.

Theorem 4.1.3. (Lie's theorem) If L is a solvable Lie algebra of a linear transformations in a finite-dimensional vector space \mathcal{V} over \mathbb{C}, then the matrices of L can be taken in simultaneously triangular form.

Theorem 4.1.4. Let \mathcal{L} be the Lie algebra generated by A and B. Then the following statements are equivalent:

1) the matrices A and B are simultaneously triangularizable,
2) for any polynomial $p(x, y)$ in the non commuting variables x and y, the matrix $p(A, B)(A B-B A)$ is nilpotent,
3) the Lie algebra \mathcal{L} is a solvable.

Proof. 1) $\Rightarrow 2$) is proved by McCoy's Theorem. 2) $\Rightarrow 3$) is proved by Engel's Theorem, $\mathcal{L}^{\prime}=[\mathcal{L}, \mathcal{L}]$ is nilpotent, so \mathcal{L} is solvable. 3) $\Rightarrow 1$) is proved by Lie's Theorem.

REFERENCES

[1] Friedberg, S.H., Insel, A.J. and Spence, L.E., Linear Algebra, Pearson Education Inc., New Jersey, 2003.
[2] Jacobson, N., Lie Algebra, Dover Publications, Inc., New York 1979.
[3] McCoy, N.H., On The Characteristic Roots of Matric Polynomials, Bull. Amer. Math. Soc., 42 (1936).
[4] Mirsky, L., An Introduction to linear Algebra, Dover Publications, Inc., New York 1990.
[5] Radjavi, H. and Rosenthal, P., Simultaneous Triangularization, Springer-Verlag New York, Inc., New York 2000.

VITA

Graduate School
Southern Illinois University

Hamdan Alsulaimani
Date of Birth: May 25, 1985
2010 Evergreen Terrace Dr. W. Apt 4, Carbondale, Illinois 62901
al_rqai@hotmail.com

Kuwait University
Bachelor of Science, Mathematics, May 2008

Research Paper Title:
Diagonal And Triangular Matrices

Major Professor: Dr. R. Fitzgerald

